1
|
Song X, Li Y, Wang C, Zhao Y, Yang S, Guo R, Hu M, Sun M, Zhang G, Li Y, Wang Y, Liu S, Shen Y, Li C, Zhang X, Li J, Fan B, Li B. Efficacy evaluation of a bivalent subunit vaccine against epidemic PEDV heterologous strains with low cross-protection. J Virol 2024; 98:e0130924. [PMID: 39254314 PMCID: PMC11494954 DOI: 10.1128/jvi.01309-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
Variant Porcine epidemic diarrhea virus (PEDV), which causes diarrhea and high mortality in piglets, has become a major pathogen, and co-epidemics of different subtypes of the virus have become a very thorny problem for the clinical prevention and control of PEDV. However, cross-protection between epidemic G2a and G2b subtype strains has not been observed, and there is currently no vaccine against both G2a and G2b strains. In this study, we demonstrate the low cross-protection between G2a and G2b strains with piglet immunization and challenge tests. The trimeric full-length S proteins of G2a and G2b variants were purified and a bivalent subunit vaccine against PEDV G2a/G2b-S was developed. In active and passive immune protection tests, the bivalent subunit vaccine produced high neutralizing antibody titers and S-specific immunoglobulin G (IgG) and IgA titers against both the G2a and G2b strains in piglets and sows. In the attack phase of the viruses, the clinical symptoms and microscopic lesions in the immunized groups were significantly alleviated. Importantly, the PEDV G2a/G2b-S bivalent subunit vaccine conferred effective passive immunity against PEDV G2a and G2b challenges in the form of colostrum-derived antibodies from the immunized sows. In conclusion, our data demonstrate the low cross-protection of PEDV epidemic G2a and G2b strains and show that the G2a/G2b-S bivalent subunit vaccine is protective against both G2a and G2b strains. It is therefore a candidate vaccine for PEDV prevention. IMPORTANCE The detection rate of PEDV G2a subtype strains is currently increasing. Although commercial vaccines are available, most vaccines do not exert an ideal protective effect against these strains. Furthermore, there is no definitive research into the cross-protection between G2a and G2b strains, and no bivalent vaccine provides joint protection against both. Therefore, in this study, we investigated the cross-protection between PEDV G2a and G2b strains and designed a candidate bivalent subunit vaccine combining the trimeric S proteins of the G2a and G2b subtypes. We demonstrate that the cross-protection between strains G2a and G2b is poor and that this bivalent subunit vaccine protects piglets from viral attack by inducing both active and passive immunity. This study emphasizes the effectiveness of the PEDV G2a/G2b-S bivalent subunit vaccine and provides a feasible method for the development of efficient PEDV vaccines.
Collapse
Affiliation(s)
- Xu Song
- School of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yunchuan Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Chuanhong Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Yongxiang Zhao
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shanshan Yang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Rongli Guo
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Mi Hu
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Min Sun
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Gege Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Yupeng Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Yi Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Shiyu Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Yaoxin Shen
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Chengcheng Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Xuehan Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jizong Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Baochao Fan
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Bin Li
- School of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Lu Y, Huang W, Lu Z, Zeng D, Yu K, Bai J, Qin Q, Long M, Qin Y, Chen Y, Wei Z, Ouyang K. Genetic characteristics associated with the virulence of porcine epidemic diarrhea virus (PEDV) with a naturally occurring truncated ORF3 gene. Vet Res 2024; 55:123. [PMID: 39334484 PMCID: PMC11437794 DOI: 10.1186/s13567-024-01384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/09/2024] [Indexed: 09/30/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has emerged in American countries, and it has reemerged in Asia and Europe, causing significant economic losses to the pig industry worldwide. In the present study, the 17GXCZ-1ORF3d strain, which has a naturally large deletion at the 172-554 bp position of the ORF3 gene, together with the 17GXCZ-1ORF3c strain, was serially propagated in Vero cells for up to 120 passages. The adaptability of the two strains gradually increased through serial passages in vitro. Genetic variation analysis of the variants of the two strains from different generations revealed that the naturally truncated ORF3 gene in the 17GXCZ-1ORF3d variants was stably inherited. Furthermore, the survival, viral shedding and histopathological lesions following inoculation of piglets demonstrated that the virulence of 17GXCZ-1ORF3d-P120 was significantly attenuated. These results indicate that the naturally truncated ORF3 gene may accelerate the attenuation of virulence and is involved in PEDV virulence together with mutations in other structural genes. Importantly, immunization of sows with G2b 17GXCZ-1ORF3d-P120 increased PEDV-specific IgG and IgA antibody levels in piglets and conferred partial passive protection against heterologous G2a PEDV strains. Our findings suggest that an attenuated strain with a truncated ORF3 gene may be a promising candidate for protection against PEDV.
Collapse
Affiliation(s)
- Ying Lu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Weijian Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Zhengpu Lu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Deping Zeng
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kechen Yu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiaguo Bai
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qiuying Qin
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Meijin Long
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yifeng Qin
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Ying Chen
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Zuzhang Wei
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Kang Ouyang
- College of Animal Science and Technology, Guangxi University, Nanning, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China.
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China.
| |
Collapse
|
3
|
Zhao F, Ma X, Yang J, Wei Z, Li J, Jiang Y, Cui W, Shan Z, Tang L. Investigation of Transmission and Evolution of PEDV Variants and Co-Infections in Northeast China from 2011 to 2022. Animals (Basel) 2024; 14:2168. [PMID: 39123693 PMCID: PMC11311072 DOI: 10.3390/ani14152168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a rapidly evolving virus that causes outbreaks in pig herds worldwide. Mutations in the S protein of PEDV have led to the emergence of new viral variants, which can reduce vaccine immunity against prevalent strains. To understand the infection and variation pattern of PEDV in China, an extensive epidemiological survey was conducted in northeast China from 2015 to 2022. The genetic diversity of enteroviruses co-infected with PEDV and the PEDV S gene was analyzed, common mutation patterns that may have led to changes in PEDV virulence and infectivity in recent years were identified, and structural changes in the surface of the S protein resulting from mutations in the PEDV S gene from 2011 to 2022 were reviewed. Of note, two distinct mutations in the emerging 2022 HEB strain were identified. These findings provide a basis for a better understanding of PEDV co-infection and genetic evolution in northeast China.
Collapse
Affiliation(s)
- Feipeng Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
| | - Xin’ao Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
| | - Jianfeng Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
| | - Zhiying Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
- Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
- Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
- Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
- Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
- Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| |
Collapse
|
4
|
Li L, Li H, Qiu Y, Li J, Zhou Y, Lv M, Xiang H, Bo Z, Shen H, Sun P. PA-824 inhibits porcine epidemic diarrhea virus infection in vivo and in vitro by inhibiting p53 activation. J Virol 2024; 98:e0041323. [PMID: 38864728 PMCID: PMC11265451 DOI: 10.1128/jvi.00413-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/30/2024] [Indexed: 06/13/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a type A coronavirus that causes severe watery diarrhea in piglets, resulting in severe economic losses worldwide. Therefore, new approaches to control PEDV infection are essential for a robust and sustainable pig industry. We screened 314 small-molecule drug libraries provided by Selleck and found that four drugs had obviously inhibitory effects on PEDV in Vero cells. PA-824, which had the highest SI index and the most reliable clinical safety, was selected for in vivo experiments. Animal attack tests showed that PA-824 effectively alleviated the clinical signs, intestinal pathological changes, and inflammatory responses in lactating piglets after PEDV infection. To further investigate the antiviral mechanism of PA-824, we measured the inhibitory effect of PA-824 on PEDV proliferation in a dose-dependent manner. By exploring the effect of PA-824 on the PEDV life cycle, we found that PA-824 acted directly on viral particles and hindered the adsorption, internalization, and replication phases of the virus, followed by molecular docking analysis to predict the interaction between PA-824 and PEDV non-structural proteins. Finally, we found that PA-824 could inhibit the apoptotic signaling pathway by suppressing PEDV-induced p53 activation. These results suggest that PA-824 could be protective against PEDV infection in piglets and could be developed as a drug or a feed additive to prevent and control PEDV diseases.IMPORTANCEPEDV is a highly contagious enteric coronavirus that widely spread worldwide, causing serious economic losses. There is no drug or vaccine to effectively control PEDV. In this study, we found that PA-824, a compound of mycobacteria causing pulmonary diseases, inhibited PEDV proliferation in both in vitro and in vivo. We also found that PA-824 directly acted on viral particles and hindered the adsorption, internalization, and replication stages of the virus. In addition, we found that PA-824 could inhibit the apoptotic signaling pathway by inhibiting PEDV-induced p53 activation. In conclusion, it is expected to be developed as a drug or a feed additive to prevent and control PEDV diseases.
Collapse
Affiliation(s)
- Liang Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Hongyue Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Yanping Qiu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Jie Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Yi Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Muze Lv
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Hongwei Xiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Zongyi Bo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Haixiao Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Pei Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
5
|
Opriessnig T, Halbur P, Bayne J, Rawal G, Tong H, Mou K, Li G, Zhang D, Zhang J, Muwonge A. Exploratory application of a cannulation model in recently weaned pigs to monitor longitudinal changes in the enteric microbiome across varied porcine reproductive and respiratory syndrome virus (PRRSV) infection statuses. Front Vet Sci 2024; 11:1422012. [PMID: 39100768 PMCID: PMC11294941 DOI: 10.3389/fvets.2024.1422012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction The enteric microbiome and its possible modulation to improve feed conversion or vaccine efficacy is gaining more attention in pigs. Weaning pigs from their dam, along with many routine procedures, is stressful. A better understanding of the impact of this process on the microbiome may be important for improving pig production. The objective of this study was to develop a weaner pig cannulation model, thus allowing ileum content collection from the same pig over time for 16S rRNA sequencing under different porcine reproductive and respiratory syndrome virus (PRRSV) infection statuses. Methods A total of 15 3-week-old pigs underwent abdominal surgery and were fitted with an ileum cannula, with ileum contents collected over time. In this pilot study, treatment groups included a NEG-CONTROL group (no vaccination, no PRRSV challenge), a POS-CONTROL group (no vaccination, challenged with PRRSV), a VAC-PRRSV group (vaccinated, challenged with PRRSV), a VAC-PRO-PRRSV group (vaccinated, supplemented with a probiotic, challenged with PRRSV), and a VAC-ANTI-PRRSV group (vaccinated, administered an antibiotic, challenged with PRRSV). We assessed the microbiome over time and measured anti-PRRSV serum antibodies, PRRSV load in serum and nasal samples, and the severity of lung lesions. Results Vaccination was protective against PRRSV challenge, irrespective of other treatments. All vaccinated pigs mounted an immune response to PRRSV within 1 week after vaccination. A discernible impact of treatment on the diversity, structure, and taxonomic abundance of the enteric microbiome among the groups was not observed. Instead, significant influences on the ileum microbiome were observed in relation to time and treatment. Discussion The cannulation model described in this pilot study has the potential to be useful in studying the impact of weaning, vaccination, disease challenge, and antimicrobial administration on the enteric microbiome and its impact on pig health and production. Remarkably, despite the cannulation procedures, all vaccinated pigs exhibited robust immune responses and remained protected against PRRSV challenge, as evidenced by the development of anti-PRRSV serum antibodies and viral shedding data.
Collapse
Affiliation(s)
- Tanja Opriessnig
- Department of Vaccines and Diagnostics, Moredun Research Institute, Penicuik, United Kingdom
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Patrick Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jenna Bayne
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Hao Tong
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Kathy Mou
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Danyang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Adrian Muwonge
- The Digital One Health Laboratory, Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
6
|
Luo H, Liang Z, Lin J, Wang Y, Liu Y, Mei K, Zhao M, Huang S. Research progress of porcine epidemic diarrhea virus S protein. Front Microbiol 2024; 15:1396894. [PMID: 38873162 PMCID: PMC11169810 DOI: 10.3389/fmicb.2024.1396894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a single-stranded RNA virus with a capsid membrane that causes acute infectious gastrointestinal disease characterized by vomiting, diarrhea, and dehydration in swine. Piglets are more susceptible to PEDV than adults, with an infection rate reaching 90% and a fatality rate as high as 100%. Moreover, PEDV has a rapid transmission rate and broad transmission range. Consequently, PEDV has caused considerable economic losses and negatively impacted the sustainability of the pig industry. The surface spike (S) glycoprotein is the largest structural protein in PEDV virions and is closely associated with host cell fusion and virus invasion. As such, the S protein is an important target for vaccine development. In this article, we review the genetic variation, immunity, apoptosis-induction function, virulence, vaccine potential, and other aspects of the PEDV S protein. This review provides a theoretical foundation for preventing and controlling PEDV infection and serves as a valuable resource for further research and development of PEDV vaccines.
Collapse
Affiliation(s)
- Haojian Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zhaoping Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Junjie Lin
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yiqiao Wang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yingying Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Kun Mei
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shujian Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Hua Sheng Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
7
|
Zhang B, Gou H, Shen H, Zhang C, Liu Z, Wuri N, Nie J, Qu Y, Zhang J, Geri L. Display of porcine epidemic diarrhea virus spike protein B-cell linear epitope on Lactobacillus mucosae G01 S-layer surface induce a robust immunogenicity in mice. Microb Cell Fact 2024; 23:142. [PMID: 38773481 PMCID: PMC11110301 DOI: 10.1186/s12934-024-02409-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/26/2024] [Indexed: 05/23/2024] Open
Abstract
The Porcine epidemic diarrhea virus (PEDV) presents a substantial risk to the domestic pig industry, resulting in extensive and fatal viral diarrhea among piglets. Recognizing the mucosal stimulation triggered by PEDV and harnessing the regulatory impact of lactobacilli on intestinal function, we have developed a lactobacillus-based vaccine that is carefully designed to elicit a strong mucosal immune response. Through bioinformatics analysis, we examined PEDV S proteins to identify B-cell linear epitopes that meet the criteria of being non-toxic, soluble, antigenic, and capable of neutralizing the virus. In this study, a genetically modified strain of Lactobacillus mucosae G01 (L.mucosae G01) was created by utilizing the S layer protein (SLP) as a scaffold for surface presentation. Chimeric immunodominant epitopes with neutralizing activity were incorporated at various sites on SLP. The successful expression of SLP chimeric immunodominant epitope 1 on the surface of L.mucosae G01 was confirmed through indirect immunofluorescence and transmission electron microscopy, revealing the formation of a transparent membrane. The findings demonstrate that the oral administration of L.mucosae G01, which expresses the SLP chimeric immunodominant gene epitope1, induces the production of secreted IgA in the intestine and feces of mice. Additionally, there is an elevation in IgG levels in the serum. Moreover, the levels of cytokines IL-2, IL-4, IFN-γ, and IL-17 are significantly increased compared to the negative control group. These results suggest that L. mucosae G01 has the ability to deliver exogenous antigens and elicit a specific mucosal immune response against PEDV. This investigation presents new possibilities for immunoprophylaxis against PEDV-induced diarrhea.
Collapse
Affiliation(s)
- Bin Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010010, China
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hongchao Gou
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Haiyan Shen
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Chunhong Zhang
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhicheng Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010010, China
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Nile Wuri
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010010, China
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jingjing Nie
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yunzhi Qu
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianfeng Zhang
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Letu Geri
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010010, China.
| |
Collapse
|
8
|
Yang D, Su M, Guo D, Zhao F, Wang M, Liu J, Zhou J, Sun Y, Yang X, Qi S, Li Z, Zhu Q, Xing X, Li C, Cao Y, Feng L, Sun D. Combination of S1-N-Terminal and S1-C-Terminal Domain Antigens Targeting Double Receptor-Binding Domains Bolsters Protective Immunity of a Nanoparticle Vaccine against Porcine Epidemic Diarrhea Virus. ACS NANO 2024; 18:12235-12260. [PMID: 38696217 DOI: 10.1021/acsnano.4c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Variants of coronavirus porcine epidemic diarrhea virus (PEDV) frequently emerge, causing an incomplete match between the vaccine and variant strains, which affects vaccine efficacy. Designing vaccines with rapidly replaceable antigens and high efficacy is a promising strategy for the prevention of infection with PEDV variant strains. In our study, three different types of self-assembled nanoparticles (nps) targeting receptor-binding N-terminal domain (NTD) and C-terminal domain (CTD) of S1 protein, named NTDnps, CTDnps, and NTD/CTDnps, were constructed and evaluated as vaccine candidates against PEDV. NTDnps and CTDnps vaccines mediated significantly higher neutralizing antibody (NAb) titers than NTD and CTD recombinant proteins in mice. The NTD/CTDnps in varying ratios elicited significantly higher NAb titers when compared with NTDnps and CTDnps alone. The NTD/CTDnps (3:1) elicited NAb with titers up to 92.92% of those induced by the commercial vaccine. Piglets immunized with NTD/CTDnps (3:1) achieved a passive immune protection rate of 83.33% of that induced by the commercial vaccine. NTD/CTDnps (3:1) enhanced the capacity of mononuclear macrophages and dendritic cells to take up and present antigens by activating major histocompatibility complex I and II molecules to stimulate humoral and cellular immunity. These data reveal that a combination of S1-NTD and S1-CTD antigens targeting double receptor-binding domains strengthens the protective immunity of nanoparticle vaccines against PEDV. Our findings will provide a promising vaccine candidate against PEDV.
Collapse
Affiliation(s)
- Dan Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Mingjun Su
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Feiyu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Meijiao Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Jiaying Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Jingxuan Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Ying Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Xu Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Shanshan Qi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Zhen Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Yang Cao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P. R. China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| |
Collapse
|
9
|
Zhao Y, Fan B, Song X, Gao J, Guo R, Yi C, He Z, Hu H, Jiang J, Zhao L, Zhong T, Li B. PEDV-spike-protein-expressing mRNA vaccine protects piglets against PEDV challenge. mBio 2024; 15:e0295823. [PMID: 38231557 PMCID: PMC10865985 DOI: 10.1128/mbio.02958-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus, causes severe diarrhea in neonatal piglets, which is associated with a high mortality rate. Thus, developing effective and safe vaccines remains a top priority for controlling PEDV infection. Here, we designed two lipid nanoparticle (LNP)-encapsulated mRNA (mRNA-LNP) vaccines encoding either the full-length PEDV spike (S) protein or a multiepitope chimeric spike (Sm) protein. We found that the S mRNA-LNP vaccine was superior to the Sm mRNA-LNP vaccine at inducing antibody and cellular immune responses in mice. Evaluation of the immunogenicity and efficacy of the S mRNA vaccine in piglets confirmed that it induced robust PEDV-specific humoral and cellular immune responses in vivo. Importantly, the S mRNA-LNP vaccine not only protected actively immunized piglets against PEDV but also equipped neonatal piglets with effective passive anti-PEDV immunity in the form of colostrum-derived antibodies after the immunization of sows. Our findings suggest that the PEDV-S mRNA-LNP vaccine is a promising candidate for combating PEDV infection.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) continues to harm the global swine industry. It is important to develop a highly effective vaccine to control PEDV infection. Here, we report a PEDV spike (S) mRNA vaccine that primes a potent antibody response and antigen-specific T-cell responses in immunized piglets. Active and passive immunization can protect piglets against PED following the virus challenge. This study highlights the efficiency of the PEDV-S mRNA vaccine and represents a viable approach for developing an efficient PEDV vaccine.
Collapse
Affiliation(s)
- Yongxiang Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Xu Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Jie Gao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Cheng Yi
- Suzhou Huiliao Biomedical Technology Co. Ltd., Suzhou, China
| | - Zhaoming He
- Suzhou Huiliao Biomedical Technology Co. Ltd., Suzhou, China
| | - Hongpeng Hu
- Suzhou Huiliao Biomedical Technology Co. Ltd., Suzhou, China
| | - Jianhao Jiang
- Suzhou Huiliao Biomedical Technology Co. Ltd., Suzhou, China
| | - Lixiang Zhao
- Suzhou Huiliao Biomedical Technology Co. Ltd., Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Tianyi Zhong
- Suzhou Huiliao Biomedical Technology Co. Ltd., Suzhou, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| |
Collapse
|
10
|
Rosas-Murrieta NH, Rodríguez-Enríquez A, Herrera-Camacho I, Millán-Pérez-Peña L, Santos-López G, Rivera-Benítez JF. Comparative Review of the State of the Art in Research on the Porcine Epidemic Diarrhea Virus and SARS-CoV-2, Scope of Knowledge between Coronaviruses. Viruses 2024; 16:238. [PMID: 38400014 PMCID: PMC10892376 DOI: 10.3390/v16020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review presents comparative information corresponding to the progress in knowledge of some aspects of infection by the porcine epidemic diarrhea virus (PEDV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronaviruses. PEDV is an alphacoronavirus of great economic importance due to the million-dollar losses it generates in the pig industry. PEDV has many similarities to the SARS-CoV-2 betacoronavirus that causes COVID-19 disease. This review presents possible scenarios for SARS-CoV-2 based on the collected literature on PEDV and the tools or strategies currently developed for SARS-CoV-2 that would be useful in PEDV research. The speed of the study of SARS-CoV-2 and the generation of strategies to control the pandemic was possible due to the knowledge derived from infections caused by other human coronaviruses such as severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS). Therefore, from the information obtained from several coronaviruses, the current and future behavior of SARS-CoV-2 could be inferred and, with the large amount of information on the virus that causes COVID-19, the study of PEDV could be improved and probably that of new emerging and re-emerging coronaviruses.
Collapse
Affiliation(s)
- Nora H. Rosas-Murrieta
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Alan Rodríguez-Enríquez
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Irma Herrera-Camacho
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Lourdes Millán-Pérez-Peña
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Gerardo Santos-López
- Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular y Virología, Instituto Mexicano del Seguro Social (IMSS), Metepec 74360, Mexico;
| | - José F. Rivera-Benítez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad de México 38110, Mexico;
| |
Collapse
|
11
|
Liu S, Yu Q, Li S, Li M, Yang L, Wang Q, Tu Z, Tao F, Yang P, Kong L, Xin X. Expression and immunogenicity of recombinant porcine epidemic diarrhea virus Nsp9. Virology 2023; 587:109861. [PMID: 37572518 DOI: 10.1016/j.virol.2023.109861] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration, and high mortality in newborn piglets, which leads to significant economic losses. Coronavirus nonstructural protein 9 (Nsp9) is an essential RNA binding protein for coronavirus replication, which renders it a promising candidate for developing antiviral drugs and diagnosis targeting PEDV. In this study, PEDV Nsp9 protein fused with MBP protein and His-tag were expressed and purified in Escherichia coli. Furthermore, immunization of MBP-Nsp9 enhances both humoral and cellular immunity responses as compared with that of His-Nsp9 protein. Finally, the swine immunization showed that Nsp9 protein could stimulate the swine immunity system to carry out humoral immunity, and the generated antibody could inhibit the proliferation of PEDV in Vero cells. Altogether, our data provide direct evidence for the immunogenicity of PEDV Nsp9, which sheds light on the future developments of anti-PEDV drugs and vaccines for PED prevention.
Collapse
Affiliation(s)
- Shiguo Liu
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qijia Yu
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Sha Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Mingzhi Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Li Yang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Quansheng Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zewen Tu
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Feifei Tao
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Pingping Yang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiu Xin
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
12
|
Sun P, Wang M, Li J, Qiu Y, Li H, Lv M, Bo Z, Shen H, Li L. Inhibitory effect of Buddlejasaponin IVb on porcine epidemic diarrhea virus in vivo and in vitro. Vet Microbiol 2022; 272:109516. [PMID: 35901581 DOI: 10.1016/j.vetmic.2022.109516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/10/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is one of the main pathogens causing severe diarrhea in piglets. Infection of the host induces apoptosis, causing huge economic losses to the pig industry. At present, the preventive and therapeutic effects of commercial vaccines are not satisfactory, and it is necessary to develop new anti-PEDV drugs. In this study, we screened the PEDV-inhibiting drug Buddlejasaponin IVb from the natural product library, and determined the inhibitory effect of Buddlejasaponin IVb on PEDV proliferation in a dose-dependent manner. By exploring the effect of Buddlejasaponin IVb on the life cycle of PEDV, it was found that Buddlejasaponin IVb mainly inhibits the replication and release stages of PEDV, but there is no report at home and abroad. In addition, Buddlejasaponin IVb can inhibit PEDV-activated NF-κB signaling pathway by downregulating PEDV or LPS induced elevation of cytokine levels (IL-6, IL-8, IL-1β, TNF-α). Finally, we returned to in vivo experiments to explore the antiviral effects of the drug in pigs. The results show that Buddlejasaponin IVb can effectively relieve the clinical symptoms and intestinal damage caused by PEDV infection in pigs. Therefore, this study will provide an important basis for the research on antiviral drugs of PEDV and its members, and at the same time provide guidance for the actual production, which has important application prospects.
Collapse
Affiliation(s)
- Pei Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Mingge Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jie Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yanping Qiu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hongyue Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Muze Lv
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zongyi Bo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Haixiao Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
13
|
Yu R, Dong S, Chen B, Liu Y, Li F, Si F, Xie C, Li Z. Antigenicity Alternations of Variant PEDV S Protein Disclosed by Linear B Cell Epitope Mapping. Viruses 2022; 14:v14071371. [PMID: 35891352 PMCID: PMC9322158 DOI: 10.3390/v14071371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The spike protein (S) plays a crucial role in porcine epidemic diarrhea virus (PEDV) infection and induces neutralizing antibodies. Mutations of the S protein are supposed to provide the main antigenic shift leading to the antigenic escape of PEDVs. It is therefore a significant question how much accumulation of antigenic shift could lead to the antigenic escape of the variant PEDV. To provide an answer in the study, B cell epitopes (BCEs) on the S protein of the PEDV vaccine strain CV777 (SCV777) and variant strain SD2014 (SSD2014) were mapped using biosynthetic peptides and rabbit anti-PEDV S serum. Seventy-nine and 68 linear BCEs were identified from SCV777 and SSD2014, respectively. While 66.2% of the BCEs of SSD2014 could be recognized by anti-SCV777 serum and 67.1% of SCV777 BCEs could be recognized by anti-SSD2014 serum, more than 40% of the BCEs identified using anti-SCV777 serum on SCV777 could not be recognized by anti-SSD2014 serum and vice versa. The completely shared BCEs took low percentages of 29.4% and 25.3% for SSD2014 and SCV777, respectively. These results indicate a low conservation of antigenicity of the S protein compared to a relatively high amino acid sequence similarity of 92.2% between the two strains. The study provided a BCE shift reference of PEDV antigenic escape and surveillance control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhen Li
- Correspondence: ; Tel.: +86-21-6220-6391
| |
Collapse
|
14
|
Niu X, Wang Q. Prevention and Control of Porcine Epidemic Diarrhea: The Development of Recombination-Resistant Live Attenuated Vaccines. Viruses 2022; 14:v14061317. [PMID: 35746788 PMCID: PMC9227446 DOI: 10.3390/v14061317] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/04/2022] Open
Abstract
Porcine epidemic diarrhea (PED), causing up to 100% mortality in neonatal pigs, is a highly contagious enteric disease caused by PED virus (PEDV). The highly virulent genogroup 2 (G2) PEDV emerged in 2010 and has caused huge economic losses to the pork industry globally. It was first reported in the US in 2013, caused country-wide outbreaks, and posed tremendous hardship for many pork producers in 2013–2014. Vaccination of pregnant sows/gilts with live attenuated vaccines (LAVs) is the most effective strategy to induce lactogenic immunity in the sows/gilts and provide a passive protection via the colostrum and milk to suckling piglets against PED. However, there are still no safe and effective vaccines available after about one decade of endeavor. One of the biggest concerns is the potential reversion to virulence of an LAV in the field. In this review, we summarize the status and the major obstacles in PEDV LAV development. We also discuss the function of the transcriptional regulatory sequences in PEDV transcription, contributing to recombination, and possible strategies to prevent the reversion of LAVs. This article provides insights into the rational design of a promising LAV without safety issues.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA;
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA;
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-330-263-3960
| |
Collapse
|
15
|
Novel Neutralizing Epitope of PEDV S1 Protein Identified by IgM Monoclonal Antibody. Viruses 2022; 14:v14010125. [PMID: 35062329 PMCID: PMC8778753 DOI: 10.3390/v14010125] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes devastating enteric disease that inflicts huge economic damage on the swine industry worldwide. A safe and highly effective PEDV vaccine that contains only the virus-neutralizing epitopes (not enhancing epitope), as well as a ready-to-use PEDV neutralizing antibody for the passive immunization of PEDV vulnerable piglets (during the first week of life) are needed, particularly for PEDV-endemic farms. In this study, we generated monoclonal antibodies (mAbs) to the recombinant S1 domain of PEDV spike (S) protein and tested their PEDV neutralizing activity by CPE-reduction assay. The mAb secreted by one hybrodoma clone (A3), that also bound to the native S1 counterpart from PEDV-infected cells (tested by combined co-immunoprecipitation and Western blotting), neutralized PEDV infectivity. Epitope of the neutralizing mAb (mAbA3) locates in the S1A subdomain of the spike protein, as identified by phage mimotope search and multiple sequence alignment, and peptide binding-ELISA. The newly identified epitope is shared by PEDV G1 and G2 strains and other alphacoronaviruses. In summary, mAbA3 may be useful as a ready-to-use antibody for passive immunization of PEDV-susceptible piglets, while the novel neutralizing epitope, together with other, previously known protective epitopes, have potential as an immunogenic cocktail for a safe, next-generation PEDV vaccine.
Collapse
|
16
|
Won H, Lim J, Noh YH, Yoon I, Yoo HS. Efficacy of Porcine Epidemic Diarrhea Vaccines: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2020; 8:vaccines8040642. [PMID: 33147824 PMCID: PMC7712170 DOI: 10.3390/vaccines8040642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Porcine epidemic diarrhea (PED) is a devastating disease that causes considerable economic damage to the global pig industry. Although the causative agent, the porcine epidemic diarrhea virus (PEDV), was identified about a half century ago, there is still much debate on the preventive measures against the disease, especially regarding the PED vaccine. Recent reports on PEDV variants make the vaccination for PEDV more confusing. Therefore, we systematically reviewed published articles on PED and vaccines against the disease and performed a meta-analysis of vaccine efficacy based on the clinical signs, fecal score and survival rates. A total of 299 articles on the efficacy of PED vaccines were found online, and 21 articles were selected that fulfilled all the criteria. A meta-analysis was performed on the 21 articles based on the fecal scores and survival rates. This analysis showed the efficacy of PED vaccines, and no significant differences in the efficacy depending on vaccine type (killed vs. live) or administration route (intramuscular vs. oral) were found. The results from our study suggest that any vaccination against PED is a useful strategy to control the disease regardless of the type of vaccine and administration route.
Collapse
Affiliation(s)
- Hokeun Won
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.W.); (J.L.)
- ChoongAng Vaccine Laboratories Co., Ltd., Daejeon 34055, Korea; (Y.H.N.); (I.Y.)
| | - Jeonggyo Lim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.W.); (J.L.)
- ChoongAng Vaccine Laboratories Co., Ltd., Daejeon 34055, Korea; (Y.H.N.); (I.Y.)
| | - Yun Hee Noh
- ChoongAng Vaccine Laboratories Co., Ltd., Daejeon 34055, Korea; (Y.H.N.); (I.Y.)
| | - Injoong Yoon
- ChoongAng Vaccine Laboratories Co., Ltd., Daejeon 34055, Korea; (Y.H.N.); (I.Y.)
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.W.); (J.L.)
- Bio-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-1263
| |
Collapse
|
17
|
Li F, Zeng Y, Zhang R, Peng K, Jiang C, Xu Z, Zhu L. Genetic variations in S gene of porcine epidemic diarrhoea virus from 2018 in Sichuan Province, China. Vet Med Sci 2020; 6:910-918. [PMID: 32885908 PMCID: PMC7738707 DOI: 10.1002/vms3.326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/28/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
Porcine epidemic diarrhoea virus (PEDV) belongs to the family Coronavirus, a genus of coronavirus, a highly contact-infectious intestinal disease pathogen. In this study, we downloaded 62 PEDV S gene sequences uploaded to GenBank, including 10 uploaded by our laboratory from 2018, and constructed a PEDV S gene evolution tree using MEGA V7.0 software. Phylogenetic tree analysis indicated that the genogroup of PEDV in Sichuan Province was divided into three coexisting genogroups (GII-a, GII-b and GI-a), of them, GII-a has become the main genogroup in the province due to its prevalence and range of spread. Amino acid sequence analysis showed that there were amino acid insertions and deletions in the S protein encoded by the amplified S gene, and there were amino acid mutations in the COE and SS6 of the epitope in the amplified S protein. These results provide a basic research theory for understanding the prevalence of PEDV variation and controlling PED in Sichuan.
Collapse
Affiliation(s)
- Fei Li
- College of Veterinary MedicineSichuan Agricultural University – Chengdu CampusChengduSichuanChina
| | - Yubing Zeng
- College of Veterinary MedicineSichuan Agricultural University – Chengdu CampusChengduSichuanChina
| | - Rubo Zhang
- College of Veterinary MedicineSichuan Agricultural University – Chengdu CampusChengduSichuanChina
| | - Kenan Peng
- College of Veterinary MedicineSichuan Agricultural University – Chengdu CampusChengduSichuanChina
| | - Chaoyuan Jiang
- College of Veterinary MedicineSichuan Agricultural University – Chengdu CampusChengduSichuanChina
| | - Zhiwen Xu
- College of Veterinary MedicineSichuan Agricultural University – Chengdu CampusChengduSichuanChina
| | - Ling Zhu
- College of Veterinary MedicineSichuan Agricultural University – Chengdu CampusChengduSichuanChina
| |
Collapse
|
18
|
Evaluation of Cross-Protection between G1a- and G2a-Genotype Porcine Epidemic Diarrhea Viruses in Suckling Piglets. Animals (Basel) 2020; 10:ani10091674. [PMID: 32957461 PMCID: PMC7552732 DOI: 10.3390/ani10091674] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Porcine epidemic diarrhea (PED), caused by PED virus (PEDV), is a devastating enteric disease in pigs worldwide. At least two genotypes (G1 and G2) and five subgenotypes (G1a, G1b, G2a, G2b, andG2c) of PEDV strains have been identified. To date, the reports on the antigenicity and immunogenicity of those viruses are limited and the results documented on cross-neutralization among different genotypes and/or subgenotypes of PEDV were inconsistent. This study aimed to observe the comparative pathogenicity and cross-protection between G1a and G2a PEDVs, and thus find a new insight into the antigenicity and immunogenicity of PEDVs. The results of the present study demonstrated that the G2a-based inactivated vaccine could provide sterilizing immunity against both highly virulent homologous and heterologous PEDV challenges. In contrast, the G1a-based inactivated vaccine could induce a sterilizing immune response against challenge of homologous strain CV777 and only provide partial protection for the challenge of a heterologous G2a PEDV CH/JX/01. The findings of this study might explain the underlying mechanism that severe PED and deaths still occurred among the neonatal piglets of which CV777-based PEDV vaccine were administered in China, and imply G2a-based PEDV vaccine used in this study might be a good vaccine candidate for PEDV which may provide solid protection against circulating highly virulent PEDVs. Abstract To date, two genotypes, i.e., genotype 1 (G1) and genotype 2 (G2), of porcine epidemic diarrhea virus (PEDV) have been identified in swine, while the cross protection between the G2a and G1a subgenotypes is undetermined. Hence, in the present study, we attempted to observe a comparative pathogenicity and cross protection of G1a (CV777) and G2a (CH/JX/01) PEDVs. Initially pregnant sows were vaccinated twice with the two kinds of inactivated G1a- and G2a-based PEDV vaccines, respectively and the delivered neonatal piglets were challenged with prototype isolates of G1a and G2a PEDVs, and then the pathogenicity and cross-protection in neonatal piglets were observed. The results showed that CH/JX/01, a highly virulent and dominant G2a PEDV strain currently circulating in China had more severe pathogenicity in vitro and in vivo, and induced more strong immune responses, including higher titers of sIgA in maternal milk than that induced by CV777 PEDV, a prototype of G1a PEDV strain. All piglets from the sows immunized with CH/JX/01 could not only survive when challenged with the homologous PEDV, but also be fully protected when challenged with heterogenous G1a PEDV. In contrast, the piglets from the sows immunized with CV777 could be protected when challenged with homologous PEDV and only partially protected when challenged with heterologous G2a strain of PEDV (CH/JX/01). The findings of this study provide new insights into the pathogenicity, antigenicity, and immunogenicity of currently circulating wild type G2a PEDV, which might be valuable for the development of novel PEDV vaccine candidates with improved efficacy.
Collapse
|
19
|
Chen YM, Helm ET, Gabler N, Hostetter JM, Burrough ER. Alterations in Intestinal Innate Mucosal Immunity of Weaned Pigs During Porcine Epidemic Diarrhea Virus Infection. Vet Pathol 2020; 57:642-652. [PMID: 32880235 DOI: 10.1177/0300985820932140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the small intestine, localized innate mucosal immunity is critical for intestinal homeostasis. Porcine epidemic diarrhea virus (PEDV) infection induces villus injury and impairs digestive function. Moreover, the infection might comprise localized innate mucosal immunity. This study investigated specific enterocyte subtypes and innate immune components of weaned pigs during PEDV infection. Four-week-old pigs were orally inoculated with PEDV IN19338 strain (n = 40) or sham-inoculated (n = 24). At day post inoculation (DPI) 2, 4, and 6, lysozyme expression in Paneth cells, cellular density of villous and Peyer's patch microfold (M) cells, and the expression of polymeric immunoglobulin receptor (pIgR) were assessed in the jejunum and ileum by immunohistochemistry, and interleukin (IL)-1β and tumor necrosis factor (TNF)-α were measured in the jejunum by ELISA. PEDV infection led to a decrease in the ratios of villus height to crypt depth (VH-CD) in jejunum at DPI 2, 4, and 6 and in ileum at DPI 4. The number of villous M cells was reduced in jejunum at DPI 4 and 6 and in ileum at DPI 6, while the number of Peyer's patch M cells in ileum increased at DPI 2 and then decreased at DPI 6. PEDV-infected pigs also had reduced lysozyme expression in ileal Paneth cells at DPI 2 and increased ileal pIgR expression at DPI 4. There were no significant changes in IL-1β and TNF-α expression in PEDV-infected pigs compared to controls. In conclusion, PEDV infection affected innate mucosal immunity of weaned pigs through alterations in Paneth cells, villous and Peyer's patch M cells, and pIgR expression.
Collapse
|
20
|
Humoral immune responses in piglets experimentally infected with a field strain of porcine epidemic diarrhea virus. Vet Microbiol 2020; 246:108742. [PMID: 32605747 DOI: 10.1016/j.vetmic.2020.108742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/22/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes severe clinical diarrhea in neonatal piglets, with reported mortality rates between 70-100%. The humoral immunity, especially the local intestinal IgA responses, plays an important role in the immune protection against PEDV infection. In this study, we evaluated the isotype antibody responses against the PEDV nucleocapsid (N) protein and the spike (S) protein subunits 1 (S1) and 2 (S2) in the serum and intestine of piglets. We also determined its serum neutralizing activity against the PEDV field strain HBMC2012 in 21-day-old piglets. Enzyme-linked immunosorbent assays (ELISA) revealed that the production of IgM against the N protein and S1 subunit was higher compared to the S2 subunit. The anti-S2 IgA antibodies were higher than the anti-N protein and anti-S1 IgA at 3 days post-infection (dpi). The specific IgA responses to the S2 subunit were higher than the responses observed in S1. The specific IgG responses against S1 and S2 subunits exceeded those of N protein. The serum neutralizing activities against PEDV were relatively low with a tendency to decline over time. No isotype-specific antibodies were found in the intestinal contents from infected pigs, except the one with weak IgA responses against N protein at 28 dpi. Immunohistochemical staining showed that a few IgM, IgA, and IgG antibody-secreting cells were mainly located in the mucosa of the duodenum and ileum of PEDV-infected pigs at 3 dpi. This study suggests poor systemic and intestinal isotype-specific antibody responses, especially those of IgA, and weak serum neutralizing activities against the field PEDV strain in piglets.
Collapse
|
21
|
Xu X, Du L, Fan B, Sun B, Zhou J, Guo R, Yu Z, Shi D, He K, Li B. A flagellin-adjuvanted inactivated porcine epidemic diarrhea virus (PEDV) vaccine provides enhanced immune protection against PEDV challenge in piglets. Arch Virol 2020; 165:1299-1309. [PMID: 32253616 PMCID: PMC7223252 DOI: 10.1007/s00705-020-04567-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/28/2020] [Indexed: 12/22/2022]
Abstract
Since late 2010, outbreaks of porcine epidemic diarrhea (PED) have been reported in the swine industry in China. A variant PEDV strain that differs from strain CV777 causes prevalent PEDV infections which commercial vaccines based on CV777 cannot provide complete protection. In this study, we designed a new vaccine based on the epidemic PEDV strain AH2012/12, adjuvanted with flagellin, a mucosal adjuvant that induces mucosal and systemic production of IgA. Three groups of pregnant sows were immunized twice, with a 14-day interval, with PEDV adjuvanted with flagellin, PEDV alone, or PBS before farrowing, and newborn piglets from each group were selected and challenged with PEDV. Immunization with this vaccine elicited high levels of IgG, IgA, and neutralizing antibodies in the serum and colostrum of sows, and newborn piglets were protected against PEDV while suckling. This study should guide the prevention and control strategies for PEDV infection, thereby reducing the losses associated with this virus.
Collapse
Affiliation(s)
- Xiangwei Xu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhong-ling Street, Nanjing, 210014, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Luping Du
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Baochao Fan
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhong-ling Street, Nanjing, 210014, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, Jiangsu, People's Republic of China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Bing Sun
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhong-ling Street, Nanjing, 210014, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Jinzhu Zhou
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhong-ling Street, Nanjing, 210014, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Rongli Guo
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhong-ling Street, Nanjing, 210014, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Zhengyu Yu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhong-ling Street, Nanjing, 210014, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Danyi Shi
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhong-ling Street, Nanjing, 210014, Jiangsu, People's Republic of China.,College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, People's Republic of China
| | - Kongwang He
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhong-ling Street, Nanjing, 210014, Jiangsu, People's Republic of China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, People's Republic of China. .,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, Jiangsu, People's Republic of China.
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhong-ling Street, Nanjing, 210014, Jiangsu, People's Republic of China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, People's Republic of China. .,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, Jiangsu, People's Republic of China. .,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
22
|
Hsueh FC, Chang YC, Kao CF, Hsu CW, Chang HW. Intramuscular Immunization with Chemokine-Adjuvanted Inactive Porcine Epidemic Diarrhea Virus Induces Substantial Protection in Pigs. Vaccines (Basel) 2020; 8:vaccines8010102. [PMID: 32102459 PMCID: PMC7157555 DOI: 10.3390/vaccines8010102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Intramuscular (IM) immunization is generally considered incapable of generating a protective mucosal immune response. In the swine industry, attempts to develop a safe and protective vaccine for controlling porcine epidemic diarrhea (PED) via an IM route of administration have been unsuccessful. In the present study, porcine chemokine ligand proteins CCL25, 27, and 28 were constructed and stably expressed in the mammalian expression system. IM co-administration of inactivated PEDV (iPEDV) particles with different CC chemokines and Freund’s adjuvants resulted in recruiting CCR9+ and/or CCR10+ inflammatory cells to the injection site, thereby inducing superior systemic PEDV specific IgG, fecal IgA, and viral neutralizing antibodies in pigs. Moreover, pigs immunized with iPEDV in combination with CCL25 and CCL28 elicited substantial protection against a virulent PEDV challenge. We show that the porcine CC chemokines could be novel adjuvants for developing IM vaccines for modulating mucosal immune responses against mucosal transmissible pathogens in pigs.
Collapse
Affiliation(s)
- Fu-Chun Hsueh
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (F.-C.H.); (Y.-C.C.); (C.-W.H.)
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (F.-C.H.); (Y.-C.C.); (C.-W.H.)
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Chi-Fei Kao
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Chin-Wei Hsu
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (F.-C.H.); (Y.-C.C.); (C.-W.H.)
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (F.-C.H.); (Y.-C.C.); (C.-W.H.)
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Correspondence: ; Tel.: +886-2-3366-3867
| |
Collapse
|
23
|
The 3.1-Angstrom Cryo-electron Microscopy Structure of the Porcine Epidemic Diarrhea Virus Spike Protein in the Prefusion Conformation. J Virol 2019; 93:JVI.00923-19. [PMID: 31534041 PMCID: PMC6854500 DOI: 10.1128/jvi.00923-19] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/04/2019] [Indexed: 01/27/2023] Open
Abstract
Coronavirus spike proteins are large, densely glycosylated macromolecular machines that mediate receptor binding and membrane fusion to facilitate entry into host cells. This report describes the atomic-resolution structure of the spike protein from porcine epidemic diarrhea virus, a pathogenic alphacoronavirus that causes severe agricultural damage. The structure reveals a novel position for the sialic acid-binding attachment domain in the intact spike. We also observed shed fusion-suppressive capping subunits that displayed the putative receptor-binding domain in an accessible conformation. These observations provide a basis for understanding the molecular mechanisms that drive the earliest stages of alphacoronavirus infection and will inform future efforts to rationally design vaccines. Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus that has a significant agricultural and economic impact due to the high mortality rate associated with infection of neonatal piglets. Like other coronaviruses, PEDV makes use of a large, trimeric spike (S) glycoprotein to mediate membrane fusion and gain entry into host cells. Despite the importance of the spike protein in viral entry and host immune responses, high-resolution structural information concerning this large macromolecular machine has been difficult to obtain. Here, we report the cryo-electron microscopy structure of the PEDV S protein in the prefusion conformation at a resolution of 3.1 Å. Our studies revealed that the sialic acid-binding domain at the N terminus of the S1 subunit has an orientation that is substantially different from that observed in the previously determined spike structure from human alphacoronavirus NL63. We also observed dissociated S1 subunit trimers wherein the putative receptor-binding domains exist in a conformation differing from that observed in the intact spike proteins, suggesting that the PEDV receptor-binding domain undergoes conformational rearrangements akin to those that have been described in the related betacoronaviruses. Collectively, these data provide new insights into the biological processes that mediate alphacoronavirus attachment, receptor engagement, and fusion triggering while also identifying a source of conformational heterogeneity that could be manipulated to improve PEDV vaccine antigens. IMPORTANCE Coronavirus spike proteins are large, densely glycosylated macromolecular machines that mediate receptor binding and membrane fusion to facilitate entry into host cells. This report describes the atomic-resolution structure of the spike protein from porcine epidemic diarrhea virus, a pathogenic alphacoronavirus that causes severe agricultural damage. The structure reveals a novel position for the sialic acid-binding attachment domain in the intact spike. We also observed shed fusion-suppressive capping subunits that displayed the putative receptor-binding domain in an accessible conformation. These observations provide a basis for understanding the molecular mechanisms that drive the earliest stages of alphacoronavirus infection and will inform future efforts to rationally design vaccines.
Collapse
|
24
|
Singh G, Singh P, Pillatzki A, Nelson E, Webb B, Dillberger-Lawson S, Ramamoorthy S. A Minimally Replicative Vaccine Protects Vaccinated Piglets Against Challenge With the Porcine Epidemic Diarrhea Virus. Front Vet Sci 2019; 6:347. [PMID: 31696121 PMCID: PMC6817509 DOI: 10.3389/fvets.2019.00347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/24/2019] [Indexed: 11/24/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), is an economically important enteric coronavirus, with over a 90% mortality rate in neonatal piglets. The virus emerged in the US in 2013, resulting in severe production losses. Effective vaccine development against PEDV is a challenge. Inactivated vaccines are of questionable efficacy. Attenuated vaccines, while more effective, require a relatively long lead development time, are associated with safety concerns and are also unable to prevent new field outbreaks. To combine the safety and efficacy advantages of inactivated and attenuated PEDV vaccines, respectively, in this study, we tested the hypothesis that subjecting PEDV virions to heat treatment at 44°C for 10 min to reversibly unfold structural proteins, followed by exposure to RNAse to fragment the genome, would result in a vaccine preparation with intact viral structure/antigenicity but highly diminished replicative abilities. We expected the vaccine to be both safe and effective in a piglet challenge model. Following the heat and RNAse treatment, PEDV virions had an intact electron microscopic ultrastructure and were amplified only in the 3rd passage in Vero cells, indicating that diminished replication was achieved in vitro. Strong PEDV spike-protein specific and virus neutralizing antibody responses were elicited in vaccinated piglets. Upon challenge, all vaccinated pigs were protected against fecal viral shedding and intestinal pathology, while the unvaccinated controls were not. The vaccine virus was not detected in the fecal matter of vaccinated pigs prior to challenge; nor did they develop intestinal lesions. Thus, the described approach has significant promise in improving current approaches for PEDV immunization.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Pankaj Singh
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Angela Pillatzki
- Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| | - Eric Nelson
- Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| | - Brett Webb
- Veterinary Diagnostic Laboratory, North Dakota State University, Fargo, ND, United States
| | - Steven Dillberger-Lawson
- Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| | - Sheela Ramamoorthy
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
25
|
Hsueh FC, Lin CN, Chiou HY, Chia MY, Chiou MT, Haga T, Kao CF, Chang YC, Chang CY, Jeng CR, Chang HW. Updated phylogenetic analysis of the spike gene and identification of a novel recombinant porcine epidemic diarrhoea virus strain in Taiwan. Transbound Emerg Dis 2019; 67:417-430. [PMID: 31538715 DOI: 10.1111/tbed.13365] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/21/2019] [Accepted: 09/10/2019] [Indexed: 11/27/2022]
Abstract
New variants of porcine epidemic diarrhoea virus (PEDV) causing a highly contagious intestinal disease, porcine epidemic diarrhoea virus (PED), have resulted in high mortality in suckling pigs across several countries since 2013. After 2015, the prevalence of the genogroup 2b (G2b) PEDVs decreased in a cyclical pattern with endemic seasonal outbreaks occasionally seen. To better understand the genetic diversity of PEDVs recently circulating in Taiwan, full-length spike (S) genes of 31 PEDV strains from 28 pig farms collected during 2016-2018 were sequenced. While the majority of S gene sequences (from 27/28 farms) were closely related to the previous G2b PEDV strains, increased genetic diversities leading to several nonsynonymous mutations scattering in the neutralizing epitopes of the S gene were detected in PEDVs recently circulating in Taiwan. Furthermore, novel recombinant variants, the PEDV TW/Yunlin550/2018 strains exhibiting recombinant events between a previously isolated Taiwan PEDV G2b strain and a wild-type PEDV G1a strain, were identified and further classified into a new genogroup, G1c. These results provide updated information about the genetic diversity of currently circulating PEDVs in the field and could help to develop more suitable strategies for controlling this disease.
Collapse
Affiliation(s)
- Fu-Chun Hsueh
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Hue-Ying Chiou
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Min-Yuan Chia
- College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Takashi Haga
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chi-Fei Kao
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Yu Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chian-Ren Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Hou Y, Ke H, Kim J, Yoo D, Su Y, Boley P, Chepngeno J, Vlasova AN, Saif LJ, Wang Q. Engineering a Live Attenuated Porcine Epidemic Diarrhea Virus Vaccine Candidate via Inactivation of the Viral 2'- O-Methyltransferase and the Endocytosis Signal of the Spike Protein. J Virol 2019; 93:e00406-19. [PMID: 31118255 PMCID: PMC6639265 DOI: 10.1128/jvi.00406-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/13/2019] [Indexed: 01/18/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets; however, effective and safe vaccines are still not available. We hypothesized that inactivation of the 2'-O-methyltransferase (2'-O-MTase) activity of nsp16 and the endocytosis signal of the spike protein attenuates PEDV yet retains its immunogenicity in pigs. We generated a recombinant PEDV, KDKE4A, with quadruple alanine substitutions in the catalytic tetrad of the 2'-O-MTase using a virulent infectious cDNA clone, icPC22A, as the backbone. Next, we constructed another mutant, KDKE4A-SYA, by abolishing the endocytosis signal of the spike protein of KDKE4A Compared with icPC22A, the KDKE4A and KDKE4A-SYA mutants replicated less efficiently in vitro but induced stronger type I and type III interferon responses. The pathogenesis and immunogenicities of the mutants were evaluated in gnotobiotic piglets. The virulence of KDKE4A-SYA and KDKE4A was significantly reduced compared with that of icPC22A. Mortality rates were 100%, 17%, and 0% in the icPC22A-, KDKE4A-, and KDKE4A-SYA-inoculated groups, respectively. At 21 days postinoculation (dpi), all surviving pigs were challenged orally with a high dose of icPC22A. The KDKE4A-SYA- and KDKE4A-inoculated pigs were protected from the challenge, because no KDKE4A-SYA- and one KDKE4A-inoculated pig developed diarrhea whereas all the pigs in the mock-inoculated group had severe diarrhea, and 33% of them died. Furthermore, we serially passaged the KDKE4A-SYA mutant in pigs three times and did not find any reversion of the introduced mutations. The data suggest that KDKE4A-SYA may be a PEDV vaccine candidate.IMPORTANCE PEDV is the most economically important porcine enteric viral pathogen and has caused immense economic losses in the pork industries in many countries. Effective and safe vaccines are desperately required but still not available. 2'-O-MTase (nsp16) is highly conserved among coronaviruses (CoVs), and the inactivation of nsp16 in live attenuated vaccines has been attempted for several betacoronaviruses. We show that inactivation of both 2'-O-MTase and the endocytosis signal of the spike protein is an approach to designing a promising live attenuated vaccine for PEDV. The in vivo passaging data also validated the stability of the KDKE4A-SYA mutant. KDKE4A-SYA warrants further evaluation in sows and their piglets and may be used as a platform for further optimization. Our findings further confirmed that nsp16 can be a universal target for CoV vaccine development and will aid in the development of vaccines against other emerging CoVs.
Collapse
Affiliation(s)
- Yixuan Hou
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Hanzhong Ke
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jineui Kim
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yunfang Su
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Patricia Boley
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Juliet Chepngeno
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Anastasia N Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| |
Collapse
|
27
|
Pascual-Iglesias A, Sanchez CM, Penzes Z, Sola I, Enjuanes L, Zuñiga S. Recombinant Chimeric Transmissible Gastroenteritis Virus (TGEV) - Porcine Epidemic Diarrhea Virus (PEDV) Virus Provides Protection against Virulent PEDV. Viruses 2019; 11:v11080682. [PMID: 31349683 PMCID: PMC6723174 DOI: 10.3390/v11080682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus causing high morbidity and mortality in porcine herds worldwide. Although both inactivated and live attenuated vaccines have been extensively used, the emergence of highly virulent strains and the recurrent outbreaks even in vaccinated farms highlight the need of effective vaccines. Engineering of genetically defined live attenuated vaccines is a rational approach for novel vaccine development. In this line, we engineered an attenuated virus based on the transmissible gastroenteritis virus (TGEV) genome, expressing a chimeric spike protein from a virulent United States (US) PEDV strain. This virus (rTGEV-RS-SPEDV) was attenuated in highly-sensitive five-day-old piglets, as infected animals did not lose weight and none of them died. In addition, the virus caused very minor tissue damage compared with a virulent virus. The rTGEV-RS-SPEDV vaccine candidate was also attenuated in three-week-old animals that were used to evaluate the protection conferred by this virus, compared with the protection induced by infection with a virulent PEDV US strain (PEDV-NVSL). The rTGEV-RS-SPEDV virus protected against challenge with a virulent PEDV strain, reducing challenge virus titers in jejunum and leading to undetectable challenge virus RNA levels in feces. The rTGEV-RS-SPEDV virus induced a humoral immune response specific for PEDV, including neutralizing antibodies. Altogether, the data indicated that rTGEV-RS-SPEDV is a promising vaccine candidate against virulent PEDV infection.
Collapse
Affiliation(s)
- Alejandro Pascual-Iglesias
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Carlos M Sanchez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Zoltan Penzes
- Ceva Animal Health, Ceva-Phylaxia, Szallas u. 5, 1107 Budapest, Hungary
| | - Isabel Sola
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain.
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
28
|
Liu X, Zhang L, Zhang Q, Zhou P, Fang Y, Zhao D, Feng J, Li W, Zhang Y, Wang Y. Evaluation and comparison of immunogenicity and cross-protective efficacy of two inactivated cell culture-derived GIIa- and GIIb-genotype porcine epidemic diarrhea virus vaccines in suckling piglets. Vet Microbiol 2019; 230:278-282. [PMID: 30827401 DOI: 10.1016/j.vetmic.2019.02.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
Abstract
Although highly virulent GII-genotype PEDV strains have become pandemic in the swine population worldwide, little is known about the differences in immunogenicity and cross-protective efficacy between the GIIa and GIIb subgenotypes. Hence, in the present study, we vaccinated suckling piglets with GIIa (CH/HBXT/2018) and GIIb (CH/HNPJ/2017) PEDV strain-based inactivated vaccine candidates and compared their immunogenicity and cross-protective efficacy. The results showed that both vaccine candidates induced high levels of PEDV-specific IgG antibodies and IFN-γ and reduced the levels of neutralizing antibodies at 21 dpv in suckling piglets. The GIIa-based inactivated vaccine protected all piglets (8/8) against virulent homologous and heterologous virus challenge, while the GIIb strain-based inactivated vaccine protected only 2/4 and 1/4 piglets against virulent homologous and heterologous virus challenge, respectively. Furthermore, antibodies against the GIIa and GIIb strains cross-reacted and cross-neutralized both strains in vitro. Taken together, the data presented in this study indicate that GIIa strain-based inactivated vaccine candidates are more promising than GIIb-based candidates for the development of an effective vaccine against the current highly virulent pandemic PEDV strains.
Collapse
Affiliation(s)
- Xinsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Liping Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Qiaoling Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Peng Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yuzhen Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Donghong Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Jiaxin Feng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Weiyan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yonglu Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
29
|
Bats and Coronaviruses. Viruses 2019; 11:v11010041. [PMID: 30634396 PMCID: PMC6356540 DOI: 10.3390/v11010041] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 11/17/2022] Open
Abstract
Bats are speculated to be reservoirs of several emerging viruses including coronaviruses (CoVs) that cause serious disease in humans and agricultural animals. These include CoVs that cause severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), porcine epidemic diarrhea (PED) and severe acute diarrhea syndrome (SADS). Bats that are naturally infected or experimentally infected do not demonstrate clinical signs of disease. These observations have allowed researchers to speculate that bats are the likely reservoirs or ancestral hosts for several CoVs. In this review, we follow the CoV outbreaks that are speculated to have originated in bats. We review studies that have allowed researchers to identify unique adaptation in bats that may allow them to harbor CoVs without severe disease. We speculate about future studies that are critical to identify how bats can harbor multiple strains of CoVs and factors that enable these viruses to “jump” from bats to other mammals. We hope that this review will enable readers to identify gaps in knowledge that currently exist and initiate a dialogue amongst bat researchers to share resources to overcome present limitations.
Collapse
|
30
|
Kao CF, Chiou HY, Chang YC, Hsueh CS, Jeng CR, Tsai PS, Cheng IC, Pang VF, Chang HW. The Characterization of Immunoprotection Induced by a cDNA Clone Derived from the Attenuated Taiwan Porcine Epidemic Diarrhea Virus Pintung 52 Strain. Viruses 2018; 10:E543. [PMID: 30287770 PMCID: PMC6213177 DOI: 10.3390/v10100543] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) poses a great threat to the global swine industries and the unreliable protection induced by the currently available vaccines remains a major challenge. We previously generated a genogroup 2b (G2b) PEDV Taiwan Pintung 52 (PEDVPT) strain, PEDVPT-P96, and determined its promising host immune response against the virulent PEDVPT-P5 strain. To study the attenuation determinants of PEDVPT-P96 and establish a PEDVPT-P96-based recombinant vector as a vaccine platform for further antigenicity modification, iPEDVPT-P96, a full-length cDNA clone of PEDVPT-P96, was established. Comparing to the parental PEDVPT-P96 virus, the iPEDVPT-P96 virus showed efficient replication kinetics with a delayed decline of viral load and similar but much more uniform plaque sizes in Vero cells. In the 5-week-old piglet model, fecal viral shedding was observed in the PEDVPT-P96-inoculated piglets, whereas those inoculated with iPEDVPT-P96 showed neither detectable fecal viral shedding nor PEDV-associated clinical signs. Moreover, inoculation with iPEDVPT-P96 elicited comparable levels of anti-PEDV specific plasma IgG and fecal/salivary IgA, neutralizing antibody titers, and similar but less effective immunoprotection against the virulent PEDVPT-P5 challenge compared to the parental PEDVPT-P96. In the present study, an infectious cDNA clone of an attenuated G2b PEDV strain was successfully generated for the first time, and the in vitro and in vivo data indicate that iPEDVPT-P96 is further attenuated but remains immunogenic compared to its parental PEDVPT-P96 viral stock. The successful development of the iPEDVPT-P96 cDNA clone could allow for the manipulation of the viral genome to study viral pathogenesis and facilitate the rapid development of effective vaccines.
Collapse
Affiliation(s)
- Chi-Fei Kao
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Hue-Ying Chiou
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Rd, Taichung 402, Taiwan.
| | - Yen-Chen Chang
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Cheng-Shun Hsueh
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Chian-Ren Jeng
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Pei-Shiue Tsai
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Ivan-Chen Cheng
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Victor Fei Pang
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|