1
|
Li K, Lacouture S, Lewandowski E, Thibault E, Gantelet H, Gottschalk M, Fittipaldi N. Molecular characterization of Streptococcus suis isolates recovered from diseased pigs in Europe. Vet Res 2024; 55:117. [PMID: 39334446 PMCID: PMC11429987 DOI: 10.1186/s13567-024-01366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
Streptococcus suis is a major swine pathogen and zoonotic agent, causing important economic losses to the porcine industry. Here, we used genomics approaches to characterize 251 S. suis isolates recovered from diseased pigs across Belgium, France, Germany, Hungary, the Netherlands, Spain, and the United Kingdom. We identified 13 serotypes, being serotypes 9 and 2 the most prevalent, and 34 sequence types (STs), including 16 novel STs, although ST16 and ST1 dominated the strain population. Phylogenetic analysis revealed complex genetic relationships, notable geographic clustering, and potential differential capacity for capsular switching among serotype 9 isolates. We found antimicrobial resistance (AMR) genes in 85.3% of the isolates, with high frequencies of genes conferring resistance to tetracyclines and macrolides. Specifically, 49.4% of the isolates harbored the tetO gene, and 64.9% possessed the ermB gene. Additionally, we observed a diverse array of virulence-associated genes (VAGs), including the classical VAGs mrp, epf, and sly, with variable presence across different genotypes. The high genetic diversity among European S. suis isolates highlights the importance of targeted antimicrobial use and flexible vaccine strategies. Rapid strain characterization is crucial for optimizing swine health management, enabling tailored interventions like the development of autovaccines to mitigate S. suis infections.
Collapse
Affiliation(s)
- Kevin Li
- Groupe de recherche sur les maladies infectieuses en production animale, and Centre de recherche en infectiologie porcine et avicole, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Sonia Lacouture
- Groupe de recherche sur les maladies infectieuses en production animale, and Centre de recherche en infectiologie porcine et avicole, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | | | | | | | - Marcelo Gottschalk
- Groupe de recherche sur les maladies infectieuses en production animale, and Centre de recherche en infectiologie porcine et avicole, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Nahuel Fittipaldi
- Groupe de recherche sur les maladies infectieuses en production animale, and Centre de recherche en infectiologie porcine et avicole, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada.
| |
Collapse
|
2
|
Sheng Q, Xu Q, Lan Z, Wu Z. Comparative Genome Analysis of Two Streptococcus suis Serotype 8 Strains Identifies Two New Virulence-Associated Genes. Animals (Basel) 2024; 14:572. [PMID: 38396540 PMCID: PMC10886379 DOI: 10.3390/ani14040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Streptococcus suis is an important zoonotic pathogen that can cause meningitis and septicemia in swine and humans. Among numerous pathogenic serotypes, S. suis serotype 8 has distinctive characteristics such as a high detection rate and causing multi-host infection. There is no complete genome of serotype 8 strains so far. In this study, the complete genome of two S. suis serotype 8 strains, virulent strain 2018WUSS151 and non-virulent strain WUSS030, were sequenced. Comparative genomic analysis showed that the homology of the two genomes reaches 99.68%, and the main difference is the distinctive prophages. There are 83 genes unique to virulent strain 2018WUSS151, including three putative virulence-associated genes (PVGs). Two PVGs, padR and marR, are passenger genes in ISSsu2 family transposons that are able to form circular DNA intermediates during transposition, indicating the possibility of horizontal transmission among S. suis strains. The deletion mutant of PVGs marR or atpase attenuated the virulence of serotype 2 virulent SC070731 in a mouse infection model, confirming their role in S. suis virulence. These findings contribute to clarifying the genomic characterization of S. suis serotype 8 and S. suis pathogenesis.
Collapse
Affiliation(s)
- Qi Sheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; (Q.S.); (Q.X.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Qiuhua Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; (Q.S.); (Q.X.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Zouran Lan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; (Q.S.); (Q.X.)
- Shandong Provincial Center for Animal Disease Control, Jinan 250100, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; (Q.S.); (Q.X.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
- Guangdong Provincial Key Laboratory of Research on the Technology of Pig-Breeding and Pig-Disease Prevention, Guangzhou 511400, China
| |
Collapse
|
3
|
Rosa MN, Vezina B, Marogna G, Canu A, Molotzu MR, Tola S. Streptococcus ruminantium-associated sheep mastitis outbreak detected in Italy is distinct from bovine isolates. Vet Res 2023; 54:118. [PMID: 38087338 PMCID: PMC10717183 DOI: 10.1186/s13567-023-01248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Streptococcus ruminantium is the causative agent of several bovine and ovine diseases, however reports are uncommon and application of whole genome sequencing to identify is rare. We report for the first time, a severe ovine mastitis outbreak caused by S. ruminantium in Italy, 2022. S. ruminantium was isolated from 12 adult lactating ewes with diffuse nodules in the mammary parenchyma and predominantly serous and clotted milk. All outbreak isolates, along with five additional historical Italian isolates (between 2011 and 2017), were genomically characterised and then analysed in the context of all publicly available S. ruminantium genomes. Antimicrobial susceptibility testing was performed to determine the MICs of 16 antibiotics. The results showed that all isolates were susceptible to all antimicrobials tested except kanamycin. Single Nucleotide Variant analysis confirmed this as a clonal outbreak across 10 sheep (≤ 15 SNVs), while the two others were colonised by more distantly related clones (≤ 53 pairwise SNVs), indicating the presence of multiple infecting lineages. The five historical S. ruminantium isolates were comprised of genetically-distant singletons (between 1259 and 5430 pairwise SNVs to 2022 outbreak isolates). Ovine isolates were found to be genetically distinct to bovine isolates, forming monophyletic groups. Bovine isolates were similarly made up of singleton clones in all but two isolates. Taken together, our genomic analysis using all globally available genomes is consistent with general opportunistic pathogenesis of S. ruminantium. We encourage future genomic surveillance efforts to facilitate outbreak detection, as well as improve our understanding of this poorly-understood, multi-host, zoonotic pathogen.
Collapse
Affiliation(s)
- Maria Nives Rosa
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi", 07100, Sassari, Italy
| | - Ben Vezina
- Department of Infectious Diseases, Central Clinical School, Monash University and the Alfred Hospital, Melbourne, VIC, Australia.
| | - Gavino Marogna
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi", 07100, Sassari, Italy
| | - Antonella Canu
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi", 07100, Sassari, Italy
| | - Monica Rosaria Molotzu
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi", 07100, Sassari, Italy
| | - Sebastiana Tola
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi", 07100, Sassari, Italy.
| |
Collapse
|
4
|
Meng Y, Lin S, Niu K, Ma Z, Lin H, Fan H. Vimentin affects inflammation and neutrophil recruitment in airway epithelium during Streptococcus suis serotype 2 infection. Vet Res 2023; 54:7. [PMID: 36717839 PMCID: PMC9885403 DOI: 10.1186/s13567-023-01135-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/19/2022] [Indexed: 01/31/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) frequently colonizes the swine upper respiratory tract and can cause Streptococcal disease in swine with clinical manifestations of pneumonia, meningitis, and septicemia. Previously, we have shown that vimentin, a kind of intermediate filament protein, is involved in the penetration of SS2 through the tracheal epithelial barrier. The initiation of invasive disease is closely related to SS2-induced excessive local inflammation; however, the role of vimentin in airway epithelial inflammation remains unclear. Here, we show that vimentin deficient mice exhibit attenuated lung injury, diminished production of proinflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and the IL-8 homolog, keratinocyte-derived chemokine (KC), and substantially reduced neutrophils in the lungs following intranasal infection with SS2. We also found that swine tracheal epithelial cells (STEC) without vimentin show decreased transcription of IL-6, TNF-α, and IL-8. SS2 infection caused reassembly of vimentin in STEC, and pharmacological disruption of vimentin filaments prevented the transcription of those proinflammatory cytokines. Furthermore, deficiency of vimentin failed to increase the transcription of nucleotide oligomerization domain protein 2 (NOD2), which is known to interact with vimentin, and the phosphorylation of NF-κB protein p65. This study provides insights into how vimentin promotes excessive airway inflammation, thereby exacerbating airway injury and SS2-induced systemic infection.
Collapse
Affiliation(s)
- Yu Meng
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shaojie Lin
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kai Niu
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Kittiwan N, Calland JK, Mourkas E, Hitchings MD, Murray S, Tadee P, Tadee P, Duangsonk K, Meric G, Sheppard SK, Patchanee P, Pascoe B. Genetic diversity and variation in antimicrobial-resistance determinants of non-serotype 2 Streptococcus suis isolates from healthy pigs. Microb Genom 2022; 8:mgen000882. [PMID: 36326658 PMCID: PMC9836093 DOI: 10.1099/mgen.0.000882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Streptococcus suis is a leading cause of bacterial meningitis in South-East Asia, with frequent zoonotic transfer to humans associated with close contact with pigs. A small number of invasive lineages are responsible for endemic infection in the swine industry, causing considerable global economic losses. A lack of surveillance and a rising trend in clinical treatment failure has raised concerns of growing antimicrobial resistance (AMR) among invasive S. suis. Gene flow between healthy and disease isolates is poorly understood and, in this study, we sample and sequence a collection of isolates predominantly from healthy pigs in Chiang Mai province, Northern Thailand. Pangenome characterization identified extensive genetic diversity and frequent AMR carriage in isolates from healthy pigs. Multiple AMR genes were identified, conferring resistance to aminoglycosides, lincosamides, tetracycline and macrolides. All isolates were non-susceptible to three or more different antimicrobial classes, and 75 % of non-serotype 2 isolates were non-susceptible to six or more classes (compared to 37.5 % of serotype 2 isolates). AMR genes were found on integrative and conjugative elements previously observed in other species, suggesting a mobile gene pool that can be accessed by invasive disease isolates. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Nattinee Kittiwan
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand,Integrative Research Centre for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand,Veterinary Research and Development Center (Upper Northern Region), Hang Chat, Lampang 52190, Thailand
| | - Jessica K. Calland
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Evangelos Mourkas
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| | - Matthew D. Hitchings
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Susan Murray
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK,Present address: Pathogen Genomics Unit, Public Health Wales, Cardiff, Wales, UK
| | - Pakpoom Tadee
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand,Integrative Research Centre for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phacharaporn Tadee
- Faculty of Animal Science and Technology, Maejo University, Chiang Mai 50290, Thailand
| | - Kwanjit Duangsonk
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Guillaume Meric
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK,Present address: Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Samuel K. Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, UK,Faculty of Allied Medical Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Prapas Patchanee
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand,Integrative Research Centre for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand,*Correspondence: Prapas Patchanee,
| | - Ben Pascoe
- Integrative Research Centre for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand,Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, UK,Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK,Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Old Road Campus, Oxford, UK,*Correspondence: Ben Pascoe,
| |
Collapse
|
6
|
Rosa NM, Penati M, Fusar-Poli S, Addis MF, Tola S. Species identification by MALDI-TOF MS and gap PCR-RFLP of non-aureus Staphylococcus, Mammaliicoccus, and Streptococcus spp. associated with sheep and goat mastitis. Vet Res 2022; 53:84. [PMID: 36243811 PMCID: PMC9569034 DOI: 10.1186/s13567-022-01102-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococci and streptococci are common causes of intramammary infection in small ruminants, and reliable species identification is crucial for understanding epidemiology and impact on animal health and welfare. We applied MALDI-TOF MS and gap PCR–RFLP to 204 non-aureus staphylococci (NAS) and mammaliicocci (NASM) and to 57 streptococci isolated from the milk of sheep and goats with mastitis. The top identified NAS was Staphylococcus epidermidis (28.9%) followed by Staph. chromogenes (27.9%), haemolyticus (15.7%), caprae, and simulans (6.4% each), according to both methods (agreement rate, AR, 100%). By MALDI-TOF MS, 13.2% were Staph. microti (2.9%), xylosus (2.0%), equorum, petrasii and warneri (1.5% each), Staph. sciuri (now Mammaliicoccus sciuri, 1.0%), arlettae, capitis, cohnii, lentus (now M. lentus), pseudintermedius, succinus (0.5% each), and 3 isolates (1.5%) were not identified. PCR–RFLP showed 100% AR for Staph. equorum, warneri, arlettae, capitis, and pseudintermedius, 50% for Staph. xylosus, and 0% for the remaining NASM. The top identified streptococcus was Streptococcus uberis (89.5%), followed by Strep. dysgalactiae and parauberis (3.5% each) and by Strep. gallolyticus (1.8%) according to both methods (AR 100%). Only one isolate was identified as a different species by MALDI-TOF MS and PCR–RFLP. In conclusion, MALDI-TOF MS and PCR–RFLP showed a high level of agreement in the identification of the most prevalent NAS and streptococci causing small ruminant mastitis. Therefore, gap PCR–RFLP can represent a good identification alternative when MALDI-TOF MS is not available. Nevertheless, some issues remain for Staph. haemolyticus, minor NAS species including Staph. microti, and species of the novel genus Mammaliicoccus.
Collapse
Affiliation(s)
- Nives Maria Rosa
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi", Via Duca degli Abruzzi 8, 07100, Sassari, Italy
| | - Martina Penati
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.,MILab, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Sara Fusar-Poli
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.,MILab, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Maria Filippa Addis
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy. .,MILab, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.
| | - Sebastiana Tola
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi", Via Duca degli Abruzzi 8, 07100, Sassari, Italy
| |
Collapse
|
7
|
Meng Y, Wang Q, Ma Z, Li W, Niu K, Zhu T, Lin H, Lu C, Fan H. Streptococcal autolysin promotes dysfunction of swine tracheal epithelium by interacting with vimentin. PLoS Pathog 2022; 18:e1010765. [PMID: 35921364 PMCID: PMC9377611 DOI: 10.1371/journal.ppat.1010765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/15/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is a major zoonotic pathogen resulting in manifestations as pneumonia and septic shock. The upper respiratory tract is typically thought to be the main colonization and entry site of SS2 in pigs, but the mechanism through which it penetrates the respiratory barrier is still unclear. In this study, a mutant with low invasive potential to swine tracheal epithelial cells (STECs) was screened from the TnYLB-1 transposon insertion mutant library of SS2, and the interrupted gene was identified as autolysin (atl). Compared to wild-type (WT) SS2, Δatl mutant exhibited lower ability to penetrate the tracheal epithelial barrier in a mouse model. Purified Atl also enhanced SS2 translocation across STEC monolayers in Transwell inserts. Furthermore, Atl redistributed the tight junctions (TJs) in STECs through myosin light chain kinase (MLCK) signaling, which led to increased barrier permeability. Using mass spectrometry, co-immunoprecipitation (co-IP), pull-down, bacterial two-hybrid and saturation binding experiments, we showed that Atl binds directly to vimentin. CRISPR/Cas9-targeted deletion of vimentin in STECs (VIM KO STECs) abrogated the capacity of SS2 to translocate across the monolayers, SS2-induced phosphorylation of myosin II regulatory light chain (MLC) and MLCK transcription, indicating that vimentin is indispensable for MLCK activation. Consistently, vimentin null mice were protected from SS2 infection and exhibited reduced tracheal and lung injury. Thus, MLCK-mediated epithelial barrier opening caused by the Atl-vimentin interaction is found to be likely the key mechanism by which SS2 penetrates the tracheal epithelium. Streptococcus suis serotype 2 (SS2), an emerging zoonotic agent, can breach the respiratory barrier and cause invasive disease in pigs. Here, we identified the novel role of autolysin Atl in penetration of the respiratory barrier by SS2 and its systemic dissemination and identified its binding partner, vimentin, a type III intermediate filament protein. Atl contributed to the MLCK-triggered redistribution of tight junctions to open the tracheal epithelial barrier. Knockout of vimentin abolished the ability of SS2 to penetrate the monolayer barrier and the activation of MLCK. Furthermore, vimentin null mice were protected from infection by intranasally administered SS2. This study is the first to demonstrate that the interaction between the GBS Bsp-like domain of Atl and vimentin promotes MLCK-mediated dysfunction of the epithelial barrier, which may provide theoretical information for prophylactic and/or therapeutic treatments against diseases caused by similar respiratory pathogens.
Collapse
Affiliation(s)
- Yu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qing Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Weiyi Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kai Niu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ting Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Chengping Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- * E-mail:
| |
Collapse
|
8
|
First Report of Streptococcus ruminantium in Wildlife: Phenotypic Differences with a Spanish Domestic Ruminant Isolate. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Streptococcus ruminantium is a recent reclassification of the former Streptococcus suis serovar 33. Although knowledge about S. suis is extensive, information on S. ruminantium host range and pathogenic potential is still scarce. This bacterium has been isolated from lesions in domestic ruminants, but there are no reports in wild animals. Here, we provide information on lesions associated with S. ruminantium in Pyrenean chamois (Rupicapra pyrenaica) and domestic sheep from NE Spain, as well as phenotypic biopatterns and antimicrobial resistance (AMR) of the isolates. Overall, lesions caused by S. ruminantium were similar to those caused by S. suis, excluding polyserositis. Heterogeneity of the phenotypic profiles was observed within the S. ruminantium strains by VITEK-2, resulting in only two tests common to all S. ruminantium isolates and different from S. suis: Alpha-Galactosidase and Methyl-B-D-Glucopyranoside, both positive for S. suis and negative for S. ruminantium strains. Isolates from Pyrenean chamois were susceptible to all antimicrobials tested, except danofloxacin, whereas the domestic sheep isolate was resistant to tetracycline. In conclusion, S. ruminantium can cause infection and be associated with pathology in both wild and domestic ruminants. Due to its phenotypic diversity, a specific PCR is optimal for identification in routine diagnosis.
Collapse
|
9
|
Disease surveillance in England and Wales, November 2021. Vet Rec 2021; 189:431-434. [PMID: 34860371 DOI: 10.1002/vetr.1239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Schmallenberg virus infection suspected in a calf born to an imported heifer. Vet Rec 2021; 189:61-65. [PMID: 34297385 DOI: 10.1002/vetr.749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Gottschalk M, Lacouture S, Fecteau G, Desrochers A, Boa A, Saab ME, Okura M. Canada: Isolation of Streptococcus ruminantium ( Streptococcus suis-like) from diseased ruminants in Canada. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2020; 61:473-475. [PMID: 32355345 PMCID: PMC7155883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Marcelo Gottschalk
- Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Gottschalk, Lacouture, Fecteau, Desrochers, Boa), Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3 (Saab); National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan (Okura)
| | - Sonia Lacouture
- Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Gottschalk, Lacouture, Fecteau, Desrochers, Boa), Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3 (Saab); National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan (Okura)
| | - Gilles Fecteau
- Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Gottschalk, Lacouture, Fecteau, Desrochers, Boa), Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3 (Saab); National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan (Okura)
| | - André Desrochers
- Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Gottschalk, Lacouture, Fecteau, Desrochers, Boa), Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3 (Saab); National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan (Okura)
| | - Anaïs Boa
- Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Gottschalk, Lacouture, Fecteau, Desrochers, Boa), Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3 (Saab); National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan (Okura)
| | - Matthew E Saab
- Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Gottschalk, Lacouture, Fecteau, Desrochers, Boa), Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3 (Saab); National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan (Okura)
| | - Masatoshi Okura
- Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Gottschalk, Lacouture, Fecteau, Desrochers, Boa), Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3 (Saab); National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan (Okura)
| |
Collapse
|