1
|
Chagas DB, Santos FDS, de Oliveira NR, Bohn TLO, Dellagostin OA. Recombinant Live-Attenuated Salmonella Vaccine for Veterinary Use. Vaccines (Basel) 2024; 12:1319. [PMID: 39771981 PMCID: PMC11680399 DOI: 10.3390/vaccines12121319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Vaccination is essential for maintaining animal health, with priority placed on safety and cost effectiveness in veterinary use. The development of recombinant live-attenuated Salmonella vaccines (RASVs) has enabled the construction of balanced lethal systems, ensuring the stability of plasmid vectors encoding protective antigens post-immunization. These vaccines are particularly suitable for production animals, providing long-term immunity against a range of bacterial, viral, and parasitic pathogens. This review summarizes the progress made in this field, with a focus on clinical trials demonstrating the efficacy and commercial potential of RASVs in veterinary medicine.
Collapse
Affiliation(s)
- Domitila Brzoskowski Chagas
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Rio Grande do Sul, Brazil (T.L.O.B.)
| | - Francisco Denis Souza Santos
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Rio Grande do Sul, Brazil (T.L.O.B.)
- Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande 96200-400, Rio Grande do Sul, Brazil
| | - Natasha Rodrigues de Oliveira
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Rio Grande do Sul, Brazil (T.L.O.B.)
| | - Thaís Larré Oliveira Bohn
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Rio Grande do Sul, Brazil (T.L.O.B.)
| | - Odir Antônio Dellagostin
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Rio Grande do Sul, Brazil (T.L.O.B.)
| |
Collapse
|
2
|
Zhang J, Baigued H, Chen S, Borigen H, Tana T, Quan F, Yang D. Bioinformatics analysis of the antigenic epitopes of L7/L12 protein in the B- and T-cells active against Brucella melitensis. Access Microbiol 2024; 6:000786.v3. [PMID: 39687919 PMCID: PMC11648563 DOI: 10.1099/acmi.0.000786.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/24/2024] [Indexed: 12/18/2024] Open
Abstract
The objective is to analyse the physicochemical properties, spatial structure and protein-protein interactions (PPIs) of L7/L12 protein using bioinformatics methods and predict their B- and T-cell epitopes to lay a theoretical foundation for developing a novel multiepitope vaccine (MEV). The National Center for Biotechnology Information (NCBI) database was searched for the amino acid sequences of L7/L12 from Brucella melitensis. In addition, the online softwares, ProtParam and ProtScale, were used to predict the physicochemical properties: NetPhos3.1 and CD-search to predict the phosphorylation sites and conserved domains; SOMPA and SWISS-MODEL to predict the secondary and tertiary structures; the STRING database to analyse the PPIs; and the IEDB, ABCpred, SVMTrip and SYFPEITHI databases to predict the B- and T-cell epitopes. L7/L12 was docked to Toll-like receptor 4 (TLR4), B-cell receptor (BCR), Major histocompatibility complex I-T cell receptor (MHC I-TCR) and MHC II-TCR complexes, respectively, and the binding ability of L7/L12 to the targeted receptors was tested. L7/L12, consisting of 124 amino acids, was determined to be a stable, intracellular, hydrophilic protein containing 6 phosphorylation sites and ribosomal protein-related conserved domains. α-helices accounted for 70.16 %, β-turns for 2.42 %, extended strands for 8.87 % and irregular coils for 18.55 % of the secondary structure. The PPIs indicated that L7/L12 was involved in the constitution of ribosomes and regulating the accuracy of the translation process. Three B-cells, two cytotoxic T lymphocytes and three helper T lymphocyte epitopes were finally screened by comparing multiple databases. L7/L12 binds to TLR4, BCR, MHC I-TCR and MHC II-TCR complexes and forms stable hydrogen bonds, respectively. L7/L12, which governs the translation curate of proteins, possesses several potentially advantageous epitopes, laying a theoretical foundation for designing MEVs.
Collapse
Affiliation(s)
- Jingjie Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010110, PR China
- Pharmaceutical Laboratory, Inner Mongolia International Mongolian Hospital, Hohhot 010065, PR China
| | - Huricha Baigued
- Pharmaceutical Laboratory, Inner Mongolia International Mongolian Hospital, Hohhot 010065, PR China
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Shana Chen
- Pharmaceutical Laboratory, Inner Mongolia International Mongolian Hospital, Hohhot 010065, PR China
| | - Haiyan Borigen
- Pharmaceutical Laboratory, Inner Mongolia International Mongolian Hospital, Hohhot 010065, PR China
| | - Tana Tana
- The Inner Mongolia Autonomous Region Comprehensive Center of Disease Control and Prevention, Hohhot 010051, PR China
| | - Fu Quan
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010110, PR China
| | - Dezhi Yang
- Pharmaceutical Laboratory, Inner Mongolia International Mongolian Hospital, Hohhot 010065, PR China
| |
Collapse
|
3
|
Yang J, Wang Y, Hou Y, Sun M, Xia T, Wu X. Evasion of host defense by Brucella. CELL INSIGHT 2024; 3:100143. [PMID: 38250017 PMCID: PMC10797155 DOI: 10.1016/j.cellin.2023.100143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Brucella , an adept intracellular pathogen, causes brucellosis, a zoonotic disease leading to significant global impacts on animal welfare and the economy. Regrettably, there is currently no approved and effective vaccine for human use. The ability of Brucella to evade host defenses is essential for establishing chronic infection and ensuring stable intracellular growth. Brucella employs various mechanisms to evade and undermine the innate and adaptive immune responses of the host through modulating the activation of pattern recognition receptors (PRRs), inflammatory responses, or the activation of immune cells like dendritic cells (DCs) to inhibit antigen presentation. Moreover, it regulates multiple cellular processes such as apoptosis, pyroptosis, and autophagy to establish persistent infection within host cells. This review summarizes the recently discovered mechanisms employed by Brucella to subvert host immune responses and research progress on vaccines, with the aim of advancing our understanding of brucellosis and facilitating the development of more effective vaccines and therapeutic approaches against Brucella .
Collapse
Affiliation(s)
- Jinke Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yue Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yuanpan Hou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Mengyao Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Tian Xia
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xin Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| |
Collapse
|
4
|
Dawood AS, Elrashedy A, Nayel M, Salama A, Guo A, Zhao G, Algharib SA, Zaghawa A, Zubair M, Elsify A, Mousa W, Luo W. Brucellae as resilient intracellular pathogens: epidemiology, host-pathogen interaction, recent genomics and proteomics approaches, and future perspectives. Front Vet Sci 2023; 10:1255239. [PMID: 37876633 PMCID: PMC10591102 DOI: 10.3389/fvets.2023.1255239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Brucellosis is considered one of the most hazardous zoonotic diseases all over the world. It causes formidable economic losses in developed and developing countries. Despite the significant attempts to get rid of Brucella pathogens in many parts of the world, the disease continues to spread widely. Recently, many attempts proved to be effective for the prevention and control of highly contagious bovine brucellosis, which could be followed by others to achieve a prosperous future without rampant Brucella pathogens. In this study, the updated view for worldwide Brucella distribution, possible predisposing factors for emerging Brucella pathogens, immune response and different types of Brucella vaccines, genomics and proteomics approaches incorporated recently in the field of brucellosis, and future perspectives for prevention and control of bovine brucellosis have been discussed comprehensively. So, the current study will be used as a guide for researchers in planning their future work, which will pave the way for a new world without these highly contagious pathogens that have been infecting and threatening the health of humans and terrestrial animals.
Collapse
Affiliation(s)
- Ali Sobhy Dawood
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Alyaa Elrashedy
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mohamed Nayel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Akram Salama
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Samah Attia Algharib
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues (HZAU), Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ahmed Zaghawa
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Muhammed Zubair
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ahmed Elsify
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Walid Mousa
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| |
Collapse
|
5
|
Chen S, Chen Y, Jiao Z, Wang C, Zhao D, Liu Y, Zhang W, Zhao S, Yang B, Zhao Q, Fu S, He X, Chen Q, Man C, Liu G, Wei X, Du L, Wang F. Clearance of bacteria from lymph nodes in sheep immunized with Brucella suis S2 vaccine is associated with M1 macrophage activation. Vet Res 2023; 54:20. [PMID: 36918910 PMCID: PMC10013293 DOI: 10.1186/s13567-023-01147-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/15/2022] [Indexed: 03/16/2023] Open
Abstract
Ovine brucellosis is a global zoonotic disease of sheep caused by Brucella melitensis, which inflicts a significant burden on human and animal health. Brucella suis strain S2 (B. suis S2) is a smooth live attenuated vaccine for the prevention of ovine brucellosis in China. However, no previous studies have assessed the immunogenicity of B. suis S2 vaccine after oral immunization in sheep. Here, we attempted to evaluate the ovine immune response over the course of B. suis S2 immunization and to identify in vivo predictors for vaccine development. Body temperature, serum Brucella antibodies, serum cytokines (IL-12p70 and interferon [IFN]-γ), and bacterial load in the mandibular lymph nodes (LN), superficial cervical LN, superficial inguinal LN, and spleen were investigated to determine the safety and efficacy of the vaccine. The abnormal body temperature of sheep occurred within 8 days post-infection (dpi). Brucella suis S2 persisted for a short time (< 21 dpi) in the mandibular LN. The highest level of IL-12p70 was observed at 9 dpi, whereas serum IFN-γ levels peaked at 12 dpi. Transcriptome analysis and quantitative reverse transcription PCR were performed to determine gene expression profiles in the mandibular LN of sheep. Antigen processing and presentation pathway was the dominant pathway related to the dataset. Our studies suggest that the immune response in ovine LN resembled type 1 immunity with the secretion of IL-12p70 and IFN-γ after B.suis S2 immunization and the vaccine may eliminate Brucella via stimulation of M1 macrophages through the course of Th cells.
Collapse
Affiliation(s)
- Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Yuanyuan Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Zizhuo Jiao
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Chengqiang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Dantong Zhao
- Jinyu Baoling Bio-Pharmaceutical Co., Ltd., Hohhot, Inner Mongolia, China
| | - Yongbin Liu
- Inner Mongolia University, College Road No. 235, Hohhot, Inner Mongolia, China
| | - Wenguang Zhang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Shihua Zhao
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Bin Yang
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Qinan Zhao
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Shaoyin Fu
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Xiaolong He
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Churiga Man
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Guoying Liu
- Jinyu Baoling Bio-Pharmaceutical Co., Ltd., Hohhot, Inner Mongolia, China
| | - Xuefeng Wei
- Jinyu Baoling Bio-Pharmaceutical Co., Ltd., Hohhot, Inner Mongolia, China
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| |
Collapse
|
6
|
Senevirathne A, Hewawaduge C, Lee JH. Assessing an O-antigen deficient, live attenuated Salmonella Gallinarium strain that is DIVA compatible, environmentally safe, and protects chickens against fowl typhoid. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104433. [PMID: 35568244 DOI: 10.1016/j.dci.2022.104433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
The objective of the present study was to create a highly attenuated, safe Salmonella Gallinarium (SG) vaccine strain for chicken vaccination against fowl typhoid (FT) diseases. The SG vaccine strain (SGVS) consists of three virulence-related gene deletions, namely, lon, cpxR, and rfaL. The parent strain (SGPS) with Δlon ΔcpxR genotype was utilized as the host strain for in-frame rfaL gene deletion by lambda red recombination. The SGVS was highly attenuated with improved environmental safety by zero fecal contamination beyond seven days for both oral and intramuscular immunization routes. Upon inoculation into 1-month-old young chicken, no vaccine-induced adverse behaviors were observed and did not cause a chronic state of infection as the SG wild-type strain did. Immunization of chicken elicited both humoral and cell-mediated immune responses demarcated by, IgY antibody assessment, T-cell responses in peripheral blood mononuclear cells, and the induction of immunomodulatory cytokines, IFN-γ, IL-2, IL-12, and IL-4 to resemble both Th1 and Th2 type of immune responses. The immunological assessment revealed a high level of efficacy of the SGVS when inoculated via the IM route than the oral route. The strain was less cytotoxic with reduced cytotoxicity on chicken macrophages and was DIVA capable with minimum reactivity of immunized serum with purified SG lipopolysaccharides. The challenge study could generate 70% protection in chicken for SGVS, whereas no birds were protected in the PBS challenged group. The protection levels were evident in histopathological assessment of spleen and liver specimens and also the external appearance of the spleen with reduced lesions on immunized groups. Further experiments may be warranted to dose and route optimization for further increase in the protection level derived by present SGVS.
Collapse
Affiliation(s)
- Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, South Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, South Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, South Korea.
| |
Collapse
|
7
|
Heidary M, Dashtbin S, Ghanavati R, Mahdizade Ari M, Bostanghadiri N, Darbandi A, Navidifar T, Talebi M. Evaluation of Brucellosis Vaccines: A Comprehensive Review. Front Vet Sci 2022; 9:925773. [PMID: 35923818 PMCID: PMC9339783 DOI: 10.3389/fvets.2022.925773] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/03/2022] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a bacterial zoonosis caused by Brucella spp. which can lead to heavy economic losses and severe human diseases. Thus, controlling brucellosis is very important. Due to humans easily gaining brucellosis from animals, animal brucellosis control programs can help the eradication of human brucellosis. There are two popular vaccines against animal brucellosis. Live attenuated Brucella abortus strain 19 (S19 vaccine) is the first effective and most extensively used vaccine for the prevention of brucellosis in cattle. Live attenuated Brucella melitensis strain Rev.1 (Rev.1 vaccine) is the most effective vaccine against caprine and ovine brucellosis. Although these two vaccines provide good immunity for animals against brucellosis, the expense of persistent serological responses is one of the main problems of both vaccines. The advantages and limitations of Brucella vaccines, especially new vaccine candidates, have been less studied. In addition, there is an urgent need for new strategies to control and eradicate this disease. Therefore, this narrative review aims to present an updated overview of the available different types of brucellosis vaccines.
Collapse
Affiliation(s)
- Mohsen Heidary
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghanavati
- School of Paramedical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- *Correspondence: Malihe Talebi
| |
Collapse
|
8
|
Gong W, Pan C, Cheng P, Wang J, Zhao G, Wu X. Peptide-Based Vaccines for Tuberculosis. Front Immunol 2022; 13:830497. [PMID: 35173740 PMCID: PMC8841753 DOI: 10.3389/fimmu.2022.830497] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. As a result of the coronavirus disease 2019 (COVID-19) pandemic, the global TB mortality rate in 2020 is rising, making TB prevention and control more challenging. Vaccination has been considered the best approach to reduce the TB burden. Unfortunately, BCG, the only TB vaccine currently approved for use, offers some protection against childhood TB but is less effective in adults. Therefore, it is urgent to develop new TB vaccines that are more effective than BCG. Accumulating data indicated that peptides or epitopes play essential roles in bridging innate and adaptive immunity and triggering adaptive immunity. Furthermore, innovations in bioinformatics, immunoinformatics, synthetic technologies, new materials, and transgenic animal models have put wings on the research of peptide-based vaccines for TB. Hence, this review seeks to give an overview of current tools that can be used to design a peptide-based vaccine, the research status of peptide-based vaccines for TB, protein-based bacterial vaccine delivery systems, and animal models for the peptide-based vaccines. These explorations will provide approaches and strategies for developing safer and more effective peptide-based vaccines and contribute to achieving the WHO's End TB Strategy.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou City, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Pan C, Yue H, Zhu L, Ma GH, Wang HL. Prophylactic vaccine delivery systems against epidemic infectious diseases. Adv Drug Deliv Rev 2021; 176:113867. [PMID: 34280513 PMCID: PMC8285224 DOI: 10.1016/j.addr.2021.113867] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 07/11/2021] [Indexed: 01/04/2023]
Abstract
Prophylactic vaccines have evolved from traditional whole-cell vaccines to safer subunit vaccines. However, subunit vaccines still face problems, such as poor immunogenicity and low efficiency, while traditional adjuvants are usually unable to meet specific response needs. Advanced delivery vectors are important to overcome these barriers; they have favorable safety and effectiveness, tunable properties, precise location, and immunomodulatory capabilities. Nevertheless, there has been no systematic summary of the delivery systems to cover a wide range of infectious pathogens. We herein summarized and compared the delivery systems for major or epidemic infectious diseases caused by bacteria, viruses, fungi, and parasites. We also included the newly licensed vaccines (e.g., COVID-19 vaccines) and those close to licensure. Furthermore, we highlighted advanced delivery systems with high efficiency, cross-protection, or long-term protection against epidemic pathogens, and we put forward prospects and thoughts on the development of future prophylactic vaccines.
Collapse
Affiliation(s)
- Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China
| | - Guang-Hui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Heng-Liang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China.
| |
Collapse
|
10
|
Yang J, He C, Zhang H, Liu M, Zhao H, Ren L, Wu D, Du F, Liu B, Han X, He S, Chen Z. Evaluation and Differential Diagnosis of a Genetic Marked Brucella Vaccine A19ΔvirB12 for Cattle. Front Immunol 2021; 12:679560. [PMID: 34163479 PMCID: PMC8215367 DOI: 10.3389/fimmu.2021.679560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/10/2021] [Indexed: 01/23/2023] Open
Abstract
Brucella abortus is an important zoonotic pathogen that causes severe economic loss to husbandry and poses a threat to human health. The B. abortus A19 live vaccine has been extensively used to prevent bovine brucellosis in China. However, it is difficult to distinguish the serological response induced by A19 from that induced by natural infection. In this study, a novel genetically marked vaccine, A19ΔvirB12, was generated and evaluated. The results indicated that A19ΔvirB12 was able to provide effective protection against B. abortus 2308 (S2308) challenge in mice. Furthermore, the safety and protective efficacy of A19ΔvirB12 have been confirmed in natural host cattle. Additionally, the VirB12 protein allowed for serological differentiation between the S2308 challenge/natural infection and A19ΔvirB12 vaccination. However, previous studies have found that the accuracy of the serological detection based on VirB12 needs to be improved. Therefore, we attempted to identify potential supplementary antigens with differential diagnostic functions by combining label-free quantitative proteomics and protein chip technology. Twenty-six proteins identified only in S2308 were screened; among them, five proteins were considered as potential supplementary antigens. Thus, the accuracy of the differential diagnosis between A19ΔvirB12 immunization and field infection may be improved through multi-antigen detection. In addition, we explored the possible attenuation factors of Brucella vaccine strain. Nine virulence factors were downregulated in A19ΔvirB12. The downregulation pathways of A19ΔvirB12 were significantly enriched in quorum sensing, ATP-binding cassette transporter, and metabolism. Several proteins related to cell division were significantly downregulated, while some proteins involved in transcription were upregulated in S2308. In conclusion, our results contribute to the control and eradication of brucellosis and provide insights into the mechanisms underlying the attenuation of A19ΔvirB12.
Collapse
Affiliation(s)
- Jianghua Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chuanyu He
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,Tecon Biological Co. Ltd., Urumqi, China
| | - Huan Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | | | | | - Lisong Ren
- Tecon Biological Co. Ltd., Urumqi, China
| | | | - Fangyuan Du
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Baoshan Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiaohu Han
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Sun He
- Tecon Biological Co. Ltd., Urumqi, China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.,Brucellosis Prevention and Treatment Engineering Technology Research Center of Inner Mongolia Autonomous Region, Inner Mongolia University for Nationalities, Tongliao, China.,School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Senevirathne A, Hewawaduge C, Lee JH. Immunization of chicken with flagellin adjuvanted Salmonella enteritidis bacterial ghosts confers complete protection against chicken salmonellosis. Poult Sci 2021; 100:101205. [PMID: 34116354 PMCID: PMC8193624 DOI: 10.1016/j.psj.2021.101205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 11/21/2022] Open
Abstract
The present study describes the generation of Salmonella enteritidis (SE) ghosts with a surface decorated Salmonella Typhimurium (ST) flagellin (FliC) antigen for immune enhancement and strain-specific protection. The ghosts were generated by biological means using pJHL184::fliC temperature inducible plasmid where the lysis occurs by phage PhiX174 lysis gene E expression. Being an inactivated strain, no environmental contamination was observed by fecal shedding upon inoculation into the chicken. To test the protective immune responses, ghost vaccination was conducted via the intramuscular route using chicken as the model organism. The development of antigen-specific humoral, cell-mediated, and protective immune responses was assessed. Compared to vector alone and phosphate-buffered saline (PBS) control groups, pJHL184::fliC ghost could generate significantly high antigen-specific IgY and cell-mediated immune (CMI) responses measured by a peripheral blood mononuclear cell proliferation, flow cytometer, and cytokine responses elicited by stimulated splenic T-cells (P < 0.05). The adjuvant effect induced by FliC was demonstrated by elicitation of Toll-like receptor 5 (TLR5). To test the protection efficacy, chickens were challenged with both SE and ST wild type (WT) strains, and the protection efficacy was assessed by determining the presence of challenging strains in the spleen and liver, and by assessing the histopathological alterations. Complete clearance of the challenged strain and least inflammatory signs were evident in the SE ghosts vaccinated group compared to the vector and PBS control. The elimination of both SE and ST in chicken organs ensures the intramuscular immunization of the present SE ghost vaccine can reduce SE and ST contamination levels in chicken that can be beneficial to prevent enteric infections in humans.
Collapse
Affiliation(s)
- Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea.
| |
Collapse
|
12
|
Mycoplasma pneumoniae Infections: Pathogenesis and Vaccine Development. Pathogens 2021; 10:pathogens10020119. [PMID: 33503845 PMCID: PMC7911756 DOI: 10.3390/pathogens10020119] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mycoplasma pneumoniae is a major causative agent of community-acquired pneumonia which can lead to both acute upper and lower respiratory tract inflammation, and extrapulmonary syndromes. Refractory pneumonia caused by M. pneumonia can be life-threatening, especially in infants and the elderly. Here, based on a comprehensive review of the scientific literature related to the respective area, we summarize the virulence factors of M. pneumoniae and the major pathogenic mechanisms mediated by the pathogen: adhesion to host cells, direct cytotoxicity against host cells, inflammatory response-induced immune injury, and immune evasion. The increasing rate of macrolide-resistant strains and the harmful side effects of other sensitive antibiotics (e.g., respiratory quinolones and tetracyclines) in young children make it difficult to treat, and increase the health risk or re-infections. Hence, there is an urgent need for development of an effective vaccine to prevent M. pneumoniae infections in children. Various types of M. pneumoniae vaccines have been reported, including whole-cell vaccines (inactivated and live-attenuated vaccines), subunit vaccines (involving M. pneumoniae protein P1, protein P30, protein P116 and CARDS toxin) and DNA vaccines. This narrative review summarizes the key pathogenic mechanisms underlying M. pneumoniae infection and highlights the relevant vaccines that have been developed and their reported effectiveness.
Collapse
|