1
|
Meng Q, Abraham B, Hu J, Jiang Y. Cutting-edge advances in strain and process engineering for boosting cellulase production in Trichoderma reesei. BIORESOURCE TECHNOLOGY 2024; 419:132015. [PMID: 39719201 DOI: 10.1016/j.biortech.2024.132015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024]
Abstract
Low-cost production of cellulases is a key factor in advancing the commercialization of lignocellulosic biorefinery. Thus far, Trichoderma reesei is the leading cellulase producer for biorefinery applications. Over 70 years of research, considerable advancements have been made in comprehending the mechanisms underlying cellulases biosynthesis and secretion in T. reesei, as well as enzymatic cellulose hydrolysis. However, many unknowns still hinder the rational design of strains for robust cellulase production, with an optimized ratio of cellulolytic enzymes to reduce the required dosage for cellulose hydrolysis. Moreover, large-scale cellulase production relies on submerged fermentation, which suffers from several mass transfer limitations. As the mycelia grow, the fermentation broth rapidly develops non-Newtonian properties, necessitating energy-intensive mixing and aeration to facilitate oxygen transfer essential for strain growth. Herein, this paper critically reviews updated progress in these regards, highlights challenges, and outlines potential solutions.
Collapse
Affiliation(s)
- Qingshan Meng
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Brett Abraham
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Yi Jiang
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China; Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Tani S, Hirose S, Kawaguchi T. Combinational manipulation of transcription factors, CreA and ClbR, is a viable strategy to improve cellulolytic enzyme production in Aspergillus aculeatus. J Biosci Bioeng 2024; 138:361-368. [PMID: 39168730 DOI: 10.1016/j.jbiosc.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
The production of cellulolytic enzymes in response to inducible carbon sources is mainly regulated at the transcriptional level in filamentous fungi. We have identified a cellobiose-response regulator (ClbR) controlling the expression of cellulolytic enzyme-encoding genes in Aspergillus aculeatus. However, the engineering potential of combining the deletion of transcriptional repressors with the overexpression of transcriptional activators to enhance enzyme production has not been analyzed. Here, we investigated the effect of the deletion of the transcriptional repressor creA and the overexpression of the transcriptional activator clbR in enzyme production in A. aculeatus. Here, we verified that a combination of creA deletion and clbR overexpression (Δc&OE) improved cellulase, β-1,4-xylanase, and β-glucosidase production. Cellulase and β-1,4-xylanase production increased 3.4- and 8.0-fold in Δc&OE compared with the host strain (MR12) at 96-h incubation, respectively. β-Glucosidase production in ΔcreA and Δc&OE increased approximately 5.0-fold compared with that in MR12 at 240-h incubation. Transcriptional analysis revealed that the increase in enzyme production was due to increased expression of cellobiohydrolase, endo-β-1,4-glucanase, β-1,4-xylanase, and β-glucosidase 1 (bgl1). Interestingly, bgl1 expression in ΔcreA increased in a dose-dependent manner in response to glucose. Thus, combinational manipulation of transcription factors improved cellulase, xylanase, and β-glucosidase production in A. aculeatus.
Collapse
Affiliation(s)
- Shuji Tani
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gacuen-cho, Sakai 599-8531, Japan.
| | - Shinya Hirose
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gacuen-cho, Sakai 599-8531, Japan
| | - Takashi Kawaguchi
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gacuen-cho, Sakai 599-8531, Japan
| |
Collapse
|
3
|
Kobayashi N, Katayama R, Minamoto K, Kawaguchi T, Tani S. C-terminus of serine-arginine protein kinase-like protein, SrpkF, is involved in conidiophore formation and hyphal growth under salt stress in Aspergillus aculeatus. Int Microbiol 2024; 27:91-100. [PMID: 37195349 DOI: 10.1007/s10123-023-00373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
The serine-arginine protein kinase-like protein, SrpkF, was identified as a regulator for the cellulose-responsive induction of cellulase genes in Aspergillus aculeatus. To analyze various aspects of SrpkF function, we examined the growth of the control strain (MR12); C-terminus deletion mutant, which produced SrpkF1-327 (ΔCsrpkF); whole gene-deletion mutant of srpkF (ΔsrpkF), srpkF overexpressing strain (OEsprkF); and the complemented strain (srpkF+) under various stress conditions. All test strains grew normally on minimal medium under control, high salt (1.5 M KCl), and high osmolality (2.0 M sorbitol and 1.0 M sucrose). However, only ΔCsrpkF showed reduced conidiation on 1.0 M NaCl media. Conidiation of ΔCsrpkF on 1.0 M NaCl media was reduced to 12% compared with that of srpkF+. Further, when OEsprkF and ΔCsrpkF were pre-cultured under salt stress conditions, germination under salt stress conditions was enhanced in both strains. By contrast, deletion of srpkF did not affect hyphal growth and conidiation under the same conditions. We then quantified the transcripts of the regulators involved in the central asexual conidiation pathway in A. aculeatus. The findings revealed that the expression of brlA, abaA, wetA, and vosA was reduced in ΔCsrpkF under salt stress. These data suggest that in A. aculeatus, SrpkF regulates conidiophore development. The C-terminus of SrpkF seems to be important for regulating SrpkF function in response to culture conditions such as salt stress.
Collapse
Affiliation(s)
- Natsumi Kobayashi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
| | - Ryohei Katayama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
| | - Kentaro Minamoto
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
| | - Takashi Kawaguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
| | - Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan.
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan.
| |
Collapse
|
4
|
Kunitake E, Kawaguchi T, Tani S. Independent, cooperative regulation of cellulolytic genes by paralogous transcription factors ClbR and ClbR2 in Aspergillus aculeatus. Biosci Biotechnol Biochem 2024; 88:212-219. [PMID: 37947258 DOI: 10.1093/bbb/zbad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
The cellobiose-responsive regulator ClbR, a Zn(II)2Cys6 binuclear-cluster transcription factor, is a positive regulator of carbohydrate-active enzyme (CAZyme) genes responsive to cellulose in Aspergillus aculeatus. Because Zn(II)2Cys6 transcription factors tend to dimerize with proteins of the same family, we searched for a counterpart of ClbR and identified ClbR2, which is 42% identical to ClbR, as an interacting partner of ClbR by yeast two-hybrid screening. Genetic analyses suggested that ClbR and ClbR2 cooperatively regulate the expression of CAZyme genes in response to cellulose and 1,4-β-mannobiose in A. aculeatus. CAZyme genes under the control of the transcription factor ManR were regulated by ClbR and ClbR2, whereas those controlled by the transcription factor XlnR were regulated by ClbR, but not ClbR2. These findings suggest that ClbR participates in multiple regulatory pathways in A. aculeatus by altering an interacting factor.
Collapse
Affiliation(s)
- Emi Kunitake
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Sakai, Japan
- Graduate School of Bioresources, Mie University , Tsu, Japan
| | - Takashi Kawaguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Sakai, Japan
- Graduate School of Agriculture, Osaka Metropolitan University , Sakai, Japan
| | - Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Sakai, Japan
- Graduate School of Agriculture, Osaka Metropolitan University , Sakai, Japan
| |
Collapse
|
5
|
Liu S, Zhang M, Hong D, Fang Z, Xiao Y, Fang W, Zhang X. Improving the cellobiose hydrolysis activity of glucose-stimulating β-glucosidase Bgl2A. Enzyme Microb Technol 2023; 169:110289. [PMID: 37473697 DOI: 10.1016/j.enzmictec.2023.110289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/05/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
β-Glucosidases with high catalytic activity and glucose tolerant properties possess promising applications in lignocellulose-based industries. To obtain enzymes possessing these properties, a semi-rational strategy was employed to engineer the glucose-stimulating β-glucosidase Bgl2A for high cellobiose hydrolysis activity. A total of 18 mutants were constructed. A22S, V224D, and A22S/V224D exhibited high specific activities of 272.06, 237.60, and 239.29 U/mg toward cellobiose, which were 2.5- to 2.8-fold of Bgl2A. A22S, V224D, and A22S/V224D exhibited increased kcat values, which were 2.7- to 3.1-fold of Bgl2A. A22S and V224D maintained glucose-stimulating property, whereas A22S/V224D lost it. Using 150 g/L cellobiose as the substrate, the amount of glucose produced by A22S was the highest, yielding 129.70 g/L glucose after 3 h reaction at 35 °C. The synergistic effects of the engineered enzymes with commercial cellulase on hydrolyzing cellulose were investigated. Supplemented with the commercial cellulase and A22S, the highest glucose amount of 23.30 g/L was yielded from cellulose with hydrolysis rate of 21.02 %. Given its high cellobiose hydrolysis activity and glucose-stimulating properties, A22S can be used as a component of enzyme cocktail to match mesophilic cellulases for efficient cellulose hydrolysis.
Collapse
Affiliation(s)
- Shuaifeng Liu
- School of Life Sciences, Anhui University; Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing; Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis; Hefei, Anhui 230601, China
| | - Meng Zhang
- School of Life Sciences, Anhui University; Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing; Hefei, Anhui 230601, China
| | - Dengwang Hong
- School of Life Sciences, Anhui University; Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing; Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis; Hefei, Anhui 230601, China
| | - Zemin Fang
- School of Life Sciences, Anhui University; Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing; Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis; Hefei, Anhui 230601, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University; Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing; Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis; Hefei, Anhui 230601, China
| | - Wei Fang
- School of Life Sciences, Anhui University; Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing; Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis; Hefei, Anhui 230601, China.
| | - Xuecheng Zhang
- School of Life Sciences, Anhui University; Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing; Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis; Hefei, Anhui 230601, China.
| |
Collapse
|
6
|
A new function of a putative UDP-glucose 4-epimerase on the expression of glycoside hydrolase genes in Aspergillus aculeatus. Appl Microbiol Biotechnol 2023; 107:785-795. [PMID: 36625911 DOI: 10.1007/s00253-022-12337-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023]
Abstract
In order to figure out the induction mechanisms of glycoside hydrolase genes in Aspergillus aculeatus, we screened approximately 9,000 transfer DNA (T-DNA)-inserted mutants for positive regulators involved in the induction. Since the mutants possess the orotidine 5'-monophosphate decarboxylase gene as a reporter gene to monitor the cellulose-responsive expression of the cellobiohydrolase I gene (cbhI), candidate strains were isolated by counterselection against 5-fluoroorotic acid (5-FOA). One 5-FOA-resistant mutant harboring the T-DNA at the uge5 locus showed reduced cellulose utilization and cbhI expression. A. aculeatus Uge5 is homologous to Aspergillus fumigatus uge5 (Afu5g10780; E-value, 0.0; identities, 93%), which catalyzes the conversion of uridine diphosphate (UDP)-glucose to UDP-galactopyranose. The uge5 deletion mutant in A. aculeatus (Δuge5) showed reduced conidium formation on minimal media supplemented with galactose, locust bean gum (LBG), and guar gum as a carbon source. β-1,4-Endoglucanase and β-1,4-mannanase production in submerged culture containing LBG was reduced to 10% and 6% of the control strain at day 5, respectively, but no difference was observed in cultures containing wheat bran. The expression of major cellulolytic and mannolytic genes in the presence of mannobiose in Δuge5 was reduced to less than 15% of the control strain, while cellobiose-responsive expression was only modestly reduced at early inducing time points. Since all test genes were controlled by a transcription factor ManR, these data demonstrate that Uge5 is involved in inducer-dependent selective expression of genes controlled via ManR. KEY POINTS: • UDP-glucose 4-epimerase (Uge5) regulates expression of glycosyl hydrolase genes. • ManR regulates both cellobiose- and mannobiose-responsive expression. • Uge5 plays a key role in mannobiose-responsive expression.
Collapse
|
7
|
Katayama R, Kobayashi N, Kawaguchi T, Tani S. Serine-arginine protein kinase-like protein, SrpkF, stimulates both cellobiose-responsive and D-xylose-responsive signaling pathways in Aspergillus aculeatus. Curr Genet 2021; 68:143-152. [PMID: 34453575 DOI: 10.1007/s00294-021-01207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/12/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
Aspergillus aculeatus produces cellulolytic enzymes in the presence of their substrates. We screened a library of 12,000 A. aculeatus T-DNA-inserted mutants to identify a regulatory factor involved in the expression of their enzyme genes in response to inducers. We found one mutant that reduced the expression of FIII-avicelase (chbI) in response to cellulose. T-DNA was inserted into a putative protein kinase gene similar to AN10082 in A. nidulans, serine-arginine protein kinase F, SrpkF. Fold increases in srpkF gene expression in response to various carbon sources were 2.3 (D-xylose), 44 (Avicel®), 59 (Bacto™ Tryptone), and 98 (no carbon) compared with D-glucose. Deletion of srpkF in A. aculeatus resulted in a significant reduction in cellulose-responsive expression of chbI, hydrocellulase (cel7b), and FIb-xylanase (xynIb) genes at an early induction phase. Further, the srpkF-overexpressing strain showed upregulation of the srpkF gene from four- to nine-fold higher than in the control strain. srpkF overexpression upregulated cbhI and cel7b in response to cellobiose and the FI-carboxymethyl cellulase gene (cmc1) and xynIb in response to D-xylose. However, the srpkF deletion did not affect the expression of xynIb in response to D-xylose due to the less expression of srpkF under the D-xylose condition. Our data demonstrate that SrpkF is primarily involved in cellulose-responsive expression, though it has a potential to stimulate gene expression in response to both cellobiose and D-xylose in A. aculeatus.
Collapse
Affiliation(s)
- Ryohei Katayama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka, 599-8531, Japan
| | - Natsumi Kobayashi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka, 599-8531, Japan
| | - Takashi Kawaguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka, 599-8531, Japan
| | - Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
8
|
Ammonium Ions Induce Cellulase Synthesis in Trichoderma koningii. Curr Microbiol 2021; 78:3201-3211. [PMID: 34213616 DOI: 10.1007/s00284-021-02568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Cellulase plays an important role in addressing the issue of the energy crisis. However, the yield and degradation efficiency of cellulase remain a major challenge. In the present study, we aimed to verify whether ammonium ion (NH4+) could induce cellulase synthesis from T. koningii AS3.2774 and to explore new functional genes related to the cellulase production. Our results indicated that NH4+ induces cellulase production in a way different from nitrogen sources. NH4+-mediated mycelia displayed a significant increase in transport vesicles. Under NH4+ mediation, CBHI, CBHII, glycoside hydrolase family 5 proteins, Hap2/3/5 complexes, "ribosome biogenesis", and "heme binding" were significantly up-regulated, and differentially expressed genes (DEGs) were mainly involved in "Metabolism". Collectively, our findings illustrated that NH4+ induced the cellulase production at morphological and gene expression levels, which might be related to the Hap2/3/5 complex, ribosomes, and genes involved in various amino acid metabolism, pyruvate metabolism, and glycolysis/gluconeogenesis. Taken together, our results provided valuable insights into the regulatory network of cellulase gene expression in filamentous fungi.
Collapse
|
9
|
Unconventional β-Glucosidases: A Promising Biocatalyst for Industrial Biotechnology. Appl Biochem Biotechnol 2021; 193:2993-3016. [PMID: 33871765 DOI: 10.1007/s12010-021-03568-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
β-Glucosidases primarily catalyze removal of terminal glucosyl residues from a variety of glucoconjugates and also perform transglycosylation and reverse hydrolysis. These catalytic properties can be readily exploited for degradation of lignocellulosic biomass as well as for pharmaceutical, food and flavor industries. β-Glucosidases have been either isolated in the native form from the producer organism or recombinantly expressed and gaged for their biochemical properties and substrate specificities. Although almond and Aspergillus niger have been instantly recognizable sources of β-glucosidases utilized for various applications, an intricate pool of novel β-glucosidases from different sources can provide their potent replacements. Moreover, one can envisage the better efficacy of these novel candidates in biofuel and biorefinery industries facilitating efficient degradation of biomass. This article reviews properties of the novel β-glucosidases such as glucose tolerance and activation, substrate specificity, and thermostability which can be useful for their applications in lignocellulose degradation, food industry, and pharmaceutical industry in comparison with the β-glucosidases from the conventional sources. Such β-glucosidases have potential for encouraging white biotechnology.
Collapse
|
10
|
Tsumura R, Sawada K, Kunitake E, Sumitani JI, Kawaguchi T, Tani S. A component of the septation initiation network complex, AaSepM, is involved in multiple cellulose-responsive signaling pathways in Aspergillus aculeatus. Appl Microbiol Biotechnol 2021; 105:1535-1546. [PMID: 33481069 DOI: 10.1007/s00253-021-11110-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 11/29/2022]
Abstract
Various carbohydrate-active enzymes in Aspergillus are produced in response to physiological inducers, which is regulated at the transcriptional level. To elucidate the induction mechanisms in Aspergillus, we screened for new regulators involved in cellulose-responsive induction from approximately 10,000 Aspergillus aculeatus T-DNA-inserted mutants. We constructed the T-DNA-inserted mutant library using the host strain harboring the orotidine 5'-monophosphate decarboxylase gene (pyrG) under the control of the FIII-avicelase gene (cbhI) promoter. Thus, candidate mutants deficient in cellulose-responsive induction were positively screened via counter selection against 5-fluoroorotic acid (5-FOA). Among less than two hundred 5-FOA-resistant mutants, one mutant that the T-DNA inserted into the AasepM locus reduced the cbhI expression in response to cellulose. Since AaSepM is similar to Schizosaccharomyces pombe Cdc14p (E-value, 2e-20; identities, 33%), which is a component of the septation initiation network (SIN)-complex, we constructed an AasepM deletion mutant (ΔAasepM). We analyzed the expression of cellulase and xylanase genes in response to cellulose, septation, and conidiation in ΔAasepM. The AasepM deletion leads to delayed septation and decreased formation of the conidium chain in A. aculeatus but does not affect hyphal growth on minimal media. We also confirmed AaSepM's involvement in multiple cellulose-responsive signaling pathways of cellulase and xylanase genes under the control of the ManR-dependent, XlnR-dependent, and ManR- and XlnR-independent signaling pathways. KEY POINTS : • A new regulator for cellulolytic gene expression has been identified. • AaSepM is involved in septation and conidiation in A. aculeatus. • AasepM is involved in multiple cellulose-responsive signaling pathways.
Collapse
Affiliation(s)
- Ryosuke Tsumura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
| | - Kazumi Sawada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
| | - Emi Kunitake
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan.,Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, 514-8507, Japan
| | - Jun-Ichi Sumitani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
| | - Takashi Kawaguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
| | - Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan.
| |
Collapse
|
11
|
Crystal Structure of a GH3 β-Glucosidase from the Thermophilic Fungus Chaetomium thermophilum. Int J Mol Sci 2019; 20:ijms20235962. [PMID: 31783503 PMCID: PMC6929035 DOI: 10.3390/ijms20235962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022] Open
Abstract
Beta-glucosidases (β-glucosidases) have attracted considerable attention in recent years for use in various biotechnological applications. They are also essential enzymes for lignocellulose degradation in biofuel production. However, cost-effective biomass conversion requires the use of highly efficient enzymes. Thus, the search for new enzymes as better alternatives of the currently available enzyme preparations is highly important. Thermophilic fungi are nowadays considered as a promising source of enzymes with improved stability. Here, the crystal structure of a family GH3 β-glucosidase from the thermophilic fungus Chaetomium thermophilum (CtBGL) was determined at a resolution of 2.99 Å. The structure showed the three-domain architecture found in other β-glucosidases with variations in loops and linker regions. The active site catalytic residues in CtBGL were identified as Asp287 (nucleophile) and Glu517 (acid/base). Structural comparison of CtBGL with Protein Data Bank (PDB)-deposited structures revealed variations among glycosylated Asn residues. The enzyme displayed moderate glycosylation compared to other GH3 family β-glucosidases with similar structure. A new glycosylation site at position Asn504 was identified in CtBGL. Moreover, comparison with respect to several thermostability parameters suggested that glycosylation and charged residues involved in electrostatic interactions may contribute to the stability of the enzyme at elevated temperatures. The reported CtBGL structure provides additional insights into the family GH3 enzymes and could offer new ideas for further improvements in β-glucosidases for more efficient use in biotechnological applications regarding cellulose degradation.
Collapse
|
12
|
Marine Fungi: Biotechnological Perspectives from Deep-Hypersaline Anoxic Basins. DIVERSITY 2019. [DOI: 10.3390/d11070113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Deep-sea hypersaline anoxic basins (DHABs) are one of the most hostile environments on Earth. Even though DHABs have hypersaline conditions, anoxia and high hydrostatic pressure, they host incredible microbial biodiversity. Among eukaryotes inhabiting these systems, recent studies demonstrated that fungi are a quantitatively relevant component. Here, fungi can benefit from the accumulation of large amounts of organic material. Marine fungi are also known to produce bioactive molecules. In particular, halophilic and halotolerant fungi are a reservoir of enzymes and secondary metabolites with valuable applications in industrial, pharmaceutical, and environmental biotechnology. Here we report that among the fungal taxa identified from the Mediterranean and Red Sea DHABs, halotolerant halophilic species belonging to the genera Aspergillus and Penicillium can be used or screened for enzymes and bioactive molecules. Fungi living in DHABs can extend our knowledge about the limits of life, and the discovery of new species and molecules from these environments can have high biotechnological potential.
Collapse
|
13
|
Juntila DJ, Yoneda K, Suzuki I. Genetic modification of the thraustochytrid Aurantiochytrium sp. 18W-13a for cellobiose utilization by secretory expression of β-glucosidase from Aspergillus aculeatus. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
An Insight into Fungal Cellulases and Their Industrial Applications. Fungal Biol 2019. [DOI: 10.1007/978-3-030-14726-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Hernández C, Milagres AMF, Vázquez-Marrufo G, Muñoz-Páez KM, García-Pérez JA, Alarcón E. An ascomycota coculture in batch bioreactor is better than polycultures for cellulase production. Folia Microbiol (Praha) 2018; 63:467-478. [PMID: 29423709 DOI: 10.1007/s12223-018-0588-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/24/2018] [Indexed: 01/23/2023]
Abstract
Efficient hydrolysis of holocellulose depends on a proper balance between cellulase (endoglucanase, exoglucanase, β-glucosidase) and xylanase activities. The present study aimed to induce the production of cellulases and xylanases using liquid cultures (one, two, three, and four fungal strains on the same bioreactor) of wild strains of Trichoderma harzianum, Aspergillus niger, and Fusarium oxysporum. The strains were identified by amplification and analysis of the ITS rDNA region and the obtained sequences were deposited in Genbank. Enzymes (endoglucanase, exoglucansae, β-glucosidase, and xylanase activities) and the profile of extracellular protein isoforms (SDS-PAGE) produced by different fungal combinations (N = 14) were analyzed by Pearson's correlation matrix and principal component analysis (PCA). According to our results, induction of endoglucanase (19.02%) and β-glucosidase (6.35%) were obtained after 4 days when A. niger and F. oxysporum were cocultured. The combination of A. niger-T. harzianum produced higher endoglucanase in a shorter time than monocultures. On the contrary, when more than two strains were cultured in the same reactor, the relationships of competition were established, trending to diminish the amount of enzymes and the extracellular protein isoforms produced. The xylanase production was sensible to stress produced by mixed cultures, decreasing their activity. This is important when the aim is to produce cellulase-free xylanase. In addition, exoglucanase activity did not change in the combinations tested.
Collapse
Affiliation(s)
- Christian Hernández
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Avenida de las culturas veracruzanas no. 101, colonia Emiliano Zapata, 91090, Xalapa, Veracruz, Mexico
| | - Adriane M F Milagres
- Departamento de Biotecnología, Escola de engenharia de Lorena (EEL), Universidade de São Paulo, Estrada Municipal do Campinho s/n - Pte Nova, Lorena, SP, 12602-810, Brazil
| | - Gerardo Vázquez-Marrufo
- Centro Multidisciplinario de Estudios en Biotecnología (CMEB), Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Calle Morelia-Zinapecuaro Km 9.5, colonia La Palma, 58262, Tarímbaro, Michoacán, Mexico
| | - Karla María Muñoz-Páez
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230, Querétaro, Mexico
| | - José Antonio García-Pérez
- Facultad de Biología, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán, Zona Universitaria, 91090, Xalapa, Veracruz, Mexico
| | - Enrique Alarcón
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Avenida de las culturas veracruzanas no. 101, colonia Emiliano Zapata, 91090, Xalapa, Veracruz, Mexico.
| |
Collapse
|
16
|
Shibata N, Suetsugu M, Kakeshita H, Igarashi K, Hagihara H, Takimura Y. A novel GH10 xylanase from Penicillium sp. accelerates saccharification of alkaline-pretreated bagasse by an enzyme from recombinant Trichoderma reesei expressing Aspergillus β-glucosidase. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:278. [PMID: 29201142 PMCID: PMC5698967 DOI: 10.1186/s13068-017-0970-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/14/2017] [Indexed: 05/31/2023]
Abstract
BACKGROUND Trichoderma reesei is considered a candidate fungal enzyme producer for the economic saccharification of cellulosic biomass. However, performance of the saccharifying enzymes produced by T. reesei is insufficient. Therefore, many attempts have been made to improve its performance by heterologous protein expression. In this study, to increase the conversion efficiency of alkaline-pretreated bagasse to sugars, we conducted screening of biomass-degrading enzymes that showed synergistic effects with enzyme preparations produced by recombinant T. reesei. RESULTS Penicillium sp. strain KSM-F532 produced the most effective enzyme to promote the saccharification of alkaline-pretreated bagasse. Biomass-degrading enzymes from strain KSM-F532 were fractionated and analyzed, and a xylanase, named PspXyn10, was identified. The amino acid sequence of PspXyn10 was determined by cDNA analysis: the enzyme shows a modular structure consisting of glycoside hydrolase family 10 (GH10) and carbohydrate-binding module family 1 (CBM1) domains. Purified PspXyn10 was prepared from the supernatant of a recombinant T. reesei strain. The molecular weight of PspXyn10 was estimated to be 55 kDa, and its optimal temperature and pH for xylanase activity were 75 °C and pH 4.5, respectively. More than 80% of the xylanase activity was maintained at 65 °C for 10 min. With beechwood xylan as the substrate, the enzyme had a Km of 2.2 mg/mL and a Vmax of 332 μmol/min/mg. PspXyn10ΔCBM, which lacked the CBM1 domain, was prepared by limited proteolysis. PspXyn10ΔCBM showed increased activity against soluble xylan, but decreased saccharification efficiency of alkaline-pretreated bagasse. This result indicated that the CBM1 domain of PspXyn10 contributes to the enhancement of the saccharification efficiency of alkaline-pretreated bagasse. A recombinant T. reesei strain, named X2PX10, was constructed from strain X3AB1. X3AB1 is an Aspergillus aculeatus β-glucosidase-expressing T. reesei PC-3-7. X2PX10 also expressed PspXyn10 under the control of the xyn2 promoter. An enzyme preparation from X2PX10 showed almost the same saccharification efficiency of alkaline-pretreated bagasse at half the enzyme dosage as that used for an enzyme preparation from X3AB1. CONCLUSIONS Our results suggest that PspXyn10 promotes the saccharification of alkaline-pretreated bagasse more efficiently than TrXyn3, a GH10 family xylanase from T. reesei, and that the PspXyn10-expressing strain is suitable for enzyme production for biomass saccharification.
Collapse
Affiliation(s)
- Nozomu Shibata
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama 640-8580 Japan
| | - Mari Suetsugu
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama 640-8580 Japan
| | - Hiroshi Kakeshita
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama 640-8580 Japan
| | - Kazuaki Igarashi
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama 640-8580 Japan
| | - Hiroshi Hagihara
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama 640-8580 Japan
| | - Yasushi Takimura
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama 640-8580 Japan
| |
Collapse
|
17
|
Gao J, Qian Y, Wang Y, Qu Y, Zhong Y. Production of the versatile cellulase for cellulose bioconversion and cellulase inducer synthesis by genetic improvement of Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:272. [PMID: 29167702 PMCID: PMC5688634 DOI: 10.1186/s13068-017-0963-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/07/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND The enzymes for efficient hydrolysis of lignocellulosic biomass are a major factor in the development of an economically feasible cellulose bioconversion process. Up to now, low hydrolysis efficiency and high production cost of cellulases remain the significant hurdles in this process. The aim of the present study was to develop a versatile cellulase system with the enhanced hydrolytic efficiency and the ability to synthesize powerful inducers by genetically engineering Trichoderma reesei. RESULTS In our study, we employed a systematic genetic strategy to construct the carbon catabolite-derepressed strain T. reesei SCB18 to produce the cellulase complex that exhibited a strong cellulolytic capacity for biomass saccharification and an extraordinary high β-glucosidase (BGL) activity for cellulase-inducing disaccharides synthesis. We first identified the hypercellulolytic and uracil auxotrophic strain T. reesei SP4 as carbon catabolite repressed, and then deleted the carbon catabolite repressor gene cre1 in the genome. We found that the deletion of cre1 with the selectable marker pyrG led to a 72.6% increase in total cellulase activity, but a slight reduction in saccharification efficiency. To facilitate the following genetic modification, the marker pyrG was successfully removed by homologous recombination based on resistance to 5-FOA. Furthermore, the Aspergillus niger BGLA-encoding gene bglA was overexpressed, and the generated strain T. reesei SCB18 exhibited a 29.8% increase in total cellulase activity and a 51.3-fold enhancement in BGL activity (up to 103.9 IU/mL). We observed that the cellulase system of SCB18 showed significantly higher saccharification efficiency toward differently pretreated corncob residues than the control strains SDC11 and SP4. Moreover, the crude enzyme preparation from SCB18 with high BGL activity possessed strong transglycosylation ability to synthesize β-disaccharides from glucose. The transglycosylation product was finally utilized as the inducer for cellulase production, which provided a 63.0% increase in total cellulase activity compared to the frequently used soluble inducer, lactose. CONCLUSIONS In summary, we constructed a versatile cellulase system in T. reesei for efficient biomass saccharification and powerful cellulase inducer synthesis by combinational genetic manipulation of three distinct types of genes to achieve the customized cellulase production, thus providing a viable strategy for further strain improvement to reduce the cost of biomass-based biofuel production.
Collapse
Affiliation(s)
- Jia Gao
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100 People’s Republic of China
| | - Yuanchao Qian
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100 People’s Republic of China
| | - Yifan Wang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100 People’s Republic of China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100 People’s Republic of China
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100 People’s Republic of China
| |
Collapse
|
18
|
Improved thermostability of a metagenomic glucose-tolerant β-glycosidase based on its X-ray crystal structure. Appl Microbiol Biotechnol 2017; 101:8353-8363. [DOI: 10.1007/s00253-017-8525-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/08/2017] [Accepted: 09/07/2017] [Indexed: 12/29/2022]
|
19
|
Cheng P, Liu B, Su Y, Hu Y, Hong Y, Yi X, Chen L, Su S, Chu JSC, Chen N, Xiong X. Genomics insights into different cellobiose hydrolysis activities in two Trichoderma hamatum strains. Microb Cell Fact 2017; 16:63. [PMID: 28420406 PMCID: PMC5395790 DOI: 10.1186/s12934-017-0680-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/09/2017] [Indexed: 11/13/2022] Open
Abstract
Background Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic wastes. The Trichoderma species of cellulolytic fungi have strong cellulose-degrading capability, and their cellulase systems have been extensively studied. Currently, a major limitation of Trichoderma strains is their low production of β-glucosidases. Results We isolated two Trichoderma hamatum strains YYH13 and YYH16 with drastically different cellulose degrading efficiencies. YYH13 has higher cellobiose-hydrolyzing efficiency. To understand mechanisms underlying such differences, we sequenced the genomes of YYH13 and YYH16, which are essentially identical (38.93 and 38.92 Mb, respectively) and are similar to that of the T. hamatum strain GD12. Using GeneMark-ES, we annotated 11,316 and 11,755 protein-coding genes in YYH13 and YYH16, respectively. Comparative analysis identified 13 functionally important genes in YYH13 under positive selection. Through examining orthologous relationships, we identified 172,655, and 320 genome-specific genes in YYH13, YYH16, and GD12, respectively. We found 15 protease families that show differences between YYH13 and YYH16. Enzymatic tests showed that exoglucanase, endoglucanase, and β-glucosidase activities were higher in YYH13 than YYH16. Additionally, YYH13 contains 10 families of carbohydrate-active enzymes, including GH1, GH3, GH18, GH35, and GH55 families of chitinases, glucosidases, galactosidases, and glucanases, which are subject to stronger positive selection pressure. Furthermore, we found that the β-glucosidase gene (YYH1311079) and pGEX-KG/YYH1311079 bacterial expression vector may provide valuable insight for designing β-glucosidase with higher cellobiose-hydrolyzing efficiencies. Conclusions This study suggests that the YYH13 strain of T. hamatum has the potential to serve as a model organism for producing cellulase because of its strong ability to efficiently degrade cellulosic biomass. The genome sequences of YYH13 and YYH16 represents a valuable resource for studying efficient production of biofuels. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0680-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng Cheng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China. .,National Center for Citrus Improvement, Hunan Agricultural University, Changsha, 410128, China.
| | - Bo Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Yao Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yahui Hong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Xinxin Yi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Chen
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Shengying Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Jeffrey S C Chu
- Wuhan Frasergen Bioinformatics Co. Ltd, 666 Gaoxin Road, East Lake High-tech Zone, Wuahn, 430075, China.
| | - Nansheng Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 5S6, Canada.
| | - Xingyao Xiong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
20
|
Tani S, Yuki S, Kunitake E, Sumitani JI, Kawaguchi T. Dipeptidyl peptidase IV is involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes in Aspergillus aculeatus. Biosci Biotechnol Biochem 2017; 81:1227-1234. [PMID: 28290772 DOI: 10.1080/09168451.2017.1295800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We screened for factors involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes from approximately 12,000 Aspergillus aculeatus T-DNA insertion mutants harboring a transcriptional fusion between the FIII-avicelase gene (cbhI) promoter and the orotidine 5'-monophosphate decarboxylase gene. Analysis of 5-fluoroorodic acid (5-FOA) sensitivity, cellulose utilization, and cbhI expression of the mutants revealed that a mutant harboring T-DNA at the dipeptidyl peptidase IV (dppIV) locus had acquired 5-FOA resistance and was deficient in cellulose utilization and cbhI expression. The deletion of dppIV resulted in a significant reduction in the cellulose-responsive expression of both cbhI as well as genes controlled by XlnR-independent and XlnR-dependent signaling pathways at an early phase in A. aculeatus. In contrast, the dppIV deletion did not affect the xylose-responsive expression of genes under the control of XlnR. These results demonstrate that DppIV participates in cellulose-responsive induction in A. aculeatus.
Collapse
Affiliation(s)
- Shuji Tani
- a Graduate School of Life and Environmental Sciences , Osaka Prefecture University , Sakai , Japan
| | - Shota Yuki
- a Graduate School of Life and Environmental Sciences , Osaka Prefecture University , Sakai , Japan
| | - Emi Kunitake
- a Graduate School of Life and Environmental Sciences , Osaka Prefecture University , Sakai , Japan
| | - Jun-Ichi Sumitani
- a Graduate School of Life and Environmental Sciences , Osaka Prefecture University , Sakai , Japan
| | - Takashi Kawaguchi
- a Graduate School of Life and Environmental Sciences , Osaka Prefecture University , Sakai , Japan
| |
Collapse
|
21
|
Identification of differentially expressed genes from Trichoderma atroviride strain SS003 in the presence of cell wall of Cronartium ribicola. Genes Genomics 2017. [DOI: 10.1007/s13258-016-0512-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Kuusk S, Väljamäe P. When substrate inhibits and inhibitor activates: implications of β-glucosidases. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:7. [PMID: 28053666 PMCID: PMC5209912 DOI: 10.1186/s13068-016-0690-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/16/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND β-glucosidases (BGs) catalyze the hydrolysis of β-glycosidic bonds in glucose derivatives. They constitute an important group of enzymes with biotechnological interest like supporting cellulases in degradation of lignocellulose to fermentable sugars. In the latter context, the glucose tolerant BGs are of particular interest. These BGs often show peculiar kinetics, including inhibitory effects of substrates and activating effects of inhibitors, such as glucose or xylose. The mechanisms behind the activating/inhibiting effects are poorly understood. The nonproductive binding of substrate is expected in cases where enzymes with multiple consecutive binding subsites are studied on substrates with a low degree of polymerization. The effects of inhibitors to BGs exerting nonproductive binding of substrate have not been discussed in the literature before. RESULTS Here, we performed analyses of different reaction schemes using the catalysis by retaining BGs as a model. We found that simple competition of inhibitor with nonproductive binding of substrate can account for the activation of enzyme by inhibitor without involving any allosteric effects. The transglycosylation to inhibitor was also able to explain the activating effect of inhibitor. For both mechanisms, the activation was caused by the increase of kcat with increasing inhibitor concentration, while kcat/Km always decreased. Therefore, the activation by inhibitor was more pronounced at high substrate concentrations. The possible contribution of the two mechanisms in the activation by inhibitor was dependent on the rate-limiting step of glycosidic bond hydrolysis as well as on whether and which glucose-unit-binding subsites are interacting. CONCLUSION Knowledge on the mechanisms of the activating/inhibiting effects of inhibitors helps the rational engineering and selection of BGs for biotechnological applications. Provided that the catalysis is consistent with the reaction schemes addressed here and underlying assumptions, the mechanism of activation by inhibitor reported here is applicable for all enzymes exerting nonproductive binding of substrate.
Collapse
Affiliation(s)
- Silja Kuusk
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b – 202, 51010 Tartu, Estonia
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b – 202, 51010 Tartu, Estonia
| |
Collapse
|
23
|
Hernández‐Guzmán A, Flores‐Martínez A, Ponce‐Noyola P, Villagómez‐Castro JC. Purification and characterization of an extracellular β-glucosidase from Sporothrix schenckii. FEBS Open Bio 2016; 6:1067-1077. [PMID: 27833847 PMCID: PMC5095144 DOI: 10.1002/2211-5463.12108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/28/2016] [Accepted: 07/25/2016] [Indexed: 01/27/2023] Open
Abstract
An extracellular β-glucosidase (E.C. 3.2.1.21), induced by cellulose in the mycelial form of human pathogen fungus Sporothrix schenckii, was purified to homogeneity using hydroxyapatite (HAp) adsorption chromatography in batch and Sephacryl S200-HR size exclusion chromatography. The molecular mass of the purified enzyme was estimated to be 197 kDa by size exclusion chromatography with a subunit of 96.8 kDa determined by SDS/PAGE. The β-glucosidase exhibited optimum catalytic activity at pH 5.5/45 °C and was relatively stable for up to 24 h at 45 °C. Isoelectric focusing displayed an enzyme with a pI value of 4.0. Its activity was inhibited by Fe2+ but not by any other ions or chelating agents. Km and Vmax values of the purified enzyme were 0.012 mm and 2.56 nmol·min-1·mg-1, respectively, using 4-methylumbelliferyl β-D-glucopyranoside (4-MUG) as the substrate and 44.14 mm and 22.49 nmol·min-1·mg-1 when p-nitrophenyl β-D-glucopyranoside (p-NPG) was used. The purified β-glucosidase was active against cellobioside, laminarin, 4-MUG, and p-NPG and slightly active against 4-methylumbelliferyl β-D-cellobioside and p-nitrophenyl β-D-cellobioside but did not hydrolyze 4-methylumbelliferyl β-D-xyloside, 4-methylumbelliferyl β-D-galactopyranoside nor 4-methylumbelliferyl α-D-glucopyranoside. In addition, the enzyme showed transglycosylation activity when it was incubated along with different oligosaccharides. Whether the transglycosylation and cellulase activities function in vivo as a mechanism involved in the degradation of cellulolytic biomass in the saprophytic stage of S. schenckii remains to be determined.
Collapse
Affiliation(s)
- Alicia Hernández‐Guzmán
- Departamento de BiologíaDivisión de Ciencias Naturales y ExactasUniversidad de GuanajuatoMéxico
| | - Alberto Flores‐Martínez
- Departamento de BiologíaDivisión de Ciencias Naturales y ExactasUniversidad de GuanajuatoMéxico
| | - Patricia Ponce‐Noyola
- Departamento de BiologíaDivisión de Ciencias Naturales y ExactasUniversidad de GuanajuatoMéxico
| | | |
Collapse
|
24
|
Baba Y, Sumitani JI, Tanaka K, Tani S, Kawaguchi T. Site-saturation mutagenesis for β-glucosidase 1 from Aspergillus aculeatus to accelerate the saccharification of alkaline-pretreated bagasse. Appl Microbiol Biotechnol 2016; 100:10495-10507. [DOI: 10.1007/s00253-016-7726-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 01/05/2023]
|
25
|
A Metagenomic Advance for the Cloning and Characterization of a Cellulase from Red Rice Crop Residues. Molecules 2016; 21:molecules21070831. [PMID: 27347917 PMCID: PMC6274478 DOI: 10.3390/molecules21070831] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 01/28/2023] Open
Abstract
Many naturally-occurring cellulolytic microorganisms are not readily cultivable, demanding a culture-independent approach in order to study their cellulolytic genes. Metagenomics involves the isolation of DNA from environmental sources and can be used to identify enzymes with biotechnological potential from uncultured microbes. In this study, a gene encoding an endoglucanase was cloned from red rice crop residues using a metagenomic strategy. The amino acid identity between this gene and its closest published counterparts is lower than 70%. The endoglucanase was named EglaRR01 and was biochemically characterized. This recombinant protein showed activity on carboxymethylcellulose, indicating that EglaRR01 is an endoactive lytic enzyme. The enzymatic activity was optimal at a pH of 6.8 and at a temperature of 30 °C. Ethanol production from this recombinant enzyme was also analyzed on EglaRR01 crop residues, and resulted in conversion of cellulose from red rice into simple sugars which were further fermented by Saccharomyces cerevisiae to produce ethanol after seven days. Ethanol yield in this study was approximately 8 g/L. The gene found herein shows strong potential for use in ethanol production from cellulosic biomass (second generation ethanol).
Collapse
|
26
|
Nakajima M, Yoshida R, Miyanaga A, Abe K, Takahashi Y, Sugimoto N, Toyoizumi H, Nakai H, Kitaoka M, Taguchi H. Functional and Structural Analysis of a β-Glucosidase Involved in β-1,2-Glucan Metabolism in Listeria innocua. PLoS One 2016; 11:e0148870. [PMID: 26886583 PMCID: PMC4757417 DOI: 10.1371/journal.pone.0148870] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022] Open
Abstract
Despite the presence of β-1,2-glucan in nature, few β-1,2-glucan degrading enzymes have been reported to date. Recently, the Lin1839 protein from Listeria innocua was identified as a 1,2-β-oligoglucan phosphorylase. Since the adjacent lin1840 gene in the gene cluster encodes a putative glycoside hydrolase family 3 β-glucosidase, we hypothesized that Lin1840 is also involved in β-1,2-glucan dissimilation. Here we report the functional and structural analysis of Lin1840. A recombinant Lin1840 protein (Lin1840r) showed the highest hydrolytic activity toward sophorose (Glc-β-1,2-Glc) among β-1,2-glucooligosaccharides, suggesting that Lin1840 is a β-glucosidase involved in sophorose degradation. The enzyme also rapidly hydrolyzed laminaribiose (β-1,3), but not cellobiose (β-1,4) or gentiobiose (β-1,6) among β-linked gluco-disaccharides. We determined the crystal structures of Lin1840r in complexes with sophorose and laminaribiose as productive binding forms. In these structures, Arg572 forms many hydrogen bonds with sophorose and laminaribiose at subsite +1, which seems to be a key factor for substrate selectivity. The opposite side of subsite +1 from Arg572 is connected to a large empty space appearing to be subsite +2 for the binding of sophorotriose (Glc-β-1,2-Glc-β-1,2-Glc) in spite of the higher Km value for sophorotriose than that for sophorose. The conformations of sophorose and laminaribiose are almost the same on the Arg572 side but differ on the subsite +2 side that provides no interaction with a substrate. Therefore, Lin1840r is unable to distinguish between sophorose and laminaribiose as substrates. These results provide the first mechanistic insights into β-1,2-glucooligosaccharide recognition by β-glucosidase.
Collapse
Affiliation(s)
- Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
- * E-mail:
| | - Ryuta Yoshida
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Koichi Abe
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Yuta Takahashi
- Graduate School of Science & Technology, Niigata University, Nishi-ku, Niigata, Japan
| | - Naohisa Sugimoto
- Graduate School of Science & Technology, Niigata University, Nishi-ku, Niigata, Japan
| | - Hiroyuki Toyoizumi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Hiroyuki Nakai
- Graduate School of Science & Technology, Niigata University, Nishi-ku, Niigata, Japan
| | - Motomitsu Kitaoka
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Hayao Taguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
27
|
Guo B, Amano Y, Nozaki K. Improvements in Glucose Sensitivity and Stability of Trichoderma reesei β-Glucosidase Using Site-Directed Mutagenesis. PLoS One 2016; 11:e0147301. [PMID: 26790148 PMCID: PMC4720395 DOI: 10.1371/journal.pone.0147301] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/02/2016] [Indexed: 01/07/2023] Open
Abstract
Glucose sensitivity and pH and thermal stabilities of Trichoderma reesei Cel1A (Bgl II) were improved by site-directed mutagenesis of only two amino acid residues (L167W or P172L) at the entrance of the active site. The Cel1A mutant showed high glucose tolerance (50% of inhibitory concentration = 650 mM), glucose stimulation (2.0 fold at 50 mM glucose), and enhanced specific activity (2.4-fold) compared with those of the wild-type Cel1A. Furthermore, the mutant enzyme showed stability at a wide pH range of 4.5–9.0 and possessed high thermal stability up to 50°C with 80% of the residual activities compared with the stability seen at the pH range of 6.5–7.0 and temperatures of up to 40°C in the wild-type Cel1A. Kinetic studies for hydrolysis revealed that the Cel1A mutant was competitively inhibited by glucose at similar levels as the wild-type enzyme. Additionally, the mutant enzyme exhibited substrate inhibition, which gradually disappeared with an increasing glucose concentration. These data suggest that the glucose stimulation was caused by relieve the substrate inhibition in the presence of glucose. To conclude, all the properties improved by the mutagenesis would be great advantages in degradation of cellulosic biomass together with cellulases.
Collapse
Affiliation(s)
- Boyang Guo
- Department of Bioscience and Textile Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Yoshihiko Amano
- Department of Bioscience and Textile Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Kouichi Nozaki
- Department of Bioscience and Textile Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- * E-mail:
| |
Collapse
|
28
|
Xia W, Xu X, Qian L, Shi P, Bai Y, Luo H, Ma R, Yao B. Engineering a highly active thermophilic β-glucosidase to enhance its pH stability and saccharification performance. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:147. [PMID: 27446236 PMCID: PMC4955127 DOI: 10.1186/s13068-016-0560-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/11/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND β-Glucosidase is an important member of the biomass-degrading enzyme system, and plays vital roles in enzymatic saccharification for biofuels production. Candidates with high activity and great stability over high temperature and varied pHs are always preferred in industrial practice. To achieve cost-effective biomass conversion, exploring natural enzymes, developing high level expression systems and engineering superior mutants are effective approaches commonly used. RESULTS A newly identified β-glucosidase of GH3, Bgl3A, from Talaromyces leycettanus JCM12802, was overexpressed in yeast strain Pichia pastoris GS115, yielding a crude enzyme activity of 6000 U/ml in a 3 L fermentation tank. The purified enzyme exhibited outstanding enzymatic properties, including favorable temperature and pH optima (75 °C and pH 4.5), good thermostability (maintaining stable at 60 °C), and high catalytic performance (with a specific activity and catalytic efficiency of 905 U/mg and 9096/s/mM on pNPG, respectively). However, the narrow stability of Bgl3A at pH 4.0-5.0 would limit its industrial applications. Further site-directed mutagenesis indicated the role of excessive O-glycosylation in pH liability. By removing the potential O-glycosylation sites, two mutants showed improved pH stability over a broader pH range (3.0-10.0). Besides, with better stability under pH 5.0 and 50 °C compared with wild type Bgl3A, saccharification efficiency of mutant M1 was improved substantially cooperating with cellulase Celluclast 1.5L. And mutant M1 reached approximately equivalent saccharification performance to commercial β-glucosidase Novozyme 188 with identical β-glucosidase activity, suggesting its great prospect in biofuels production. CONCLUSIONS In this study, we overexpressed a novel β-glucosidase Bgl3A with high specific activity and high catalytic efficiency in P. pastoris. We further proved the negative effect of excessive O-glycosylation on the pH stability of Bgl3A, and enhanced the pH stability by reducing the O-glycosylation. And the enhanced mutants showed much better application prospect with substantially improved saccharification efficiency on cellulosic materials.
Collapse
Affiliation(s)
- Wei Xia
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
- />College of Animal Science, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Xinxin Xu
- />Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 People’s Republic of China
| | - Lichun Qian
- />College of Animal Science, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Pengjun Shi
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Yingguo Bai
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Huiying Luo
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Rui Ma
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Bin Yao
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| |
Collapse
|
29
|
Xie L, Zhao J, Wu J, Gao M, Zhao Z, Lei X, Zhao Y, Yang W, Gao X, Ma C, Liu H, Wu F, Wang X, Zhang F, Guo P, Dai G. Efficient hydrolysis of corncob residue through cellulolytic enzymes from Trichoderma strain G26 and L-lactic acid preparation with the hydrolysate. BIORESOURCE TECHNOLOGY 2015; 193:331-336. [PMID: 26143000 DOI: 10.1016/j.biortech.2015.06.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
To prepare fermentable hydrolysate from corncob residue (CCR), Trichoderma strain G26 was cultured on medium containing CCR for production of cellulolytic enzymes through solid-state fermentation (SSF), resulting in 71.3 IU/g (FPA), 136.2 IU/g (CMCase), 85.1 IU/g (β-glucosidase) and 11,344 IU/g (xylanase), respectively. Through a three-stage saccharification strategy, CCR was hydrolyzed by the enzymatic solution (6.5 FPU/ml) into fermentable hydrolysate containing 60.1g/l glucose (81.2% cellulose was converted at solid loading of 12.5%), 21.4% higher than that by the one-stage method. And then the hydrolysate was used to produce L-lactic acid by a previous screened strain Bacillus coagulans ZX25 in the submerged fermentation. 52.0 g/l L-lactic acid was obtained after fermentation for 44 h, with 86.5% glucose being converted to L-lactic acid. The results indicate that the strains and the hydrolysis strategy are promising for commercial production of L-lactic acid from CCR and other biomass.
Collapse
Affiliation(s)
- Lulu Xie
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Jin Zhao
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Jian Wu
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Mingfu Gao
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Zhewei Zhao
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Xiangyun Lei
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Yi Zhao
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Wei Yang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Xiaoxue Gao
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Cuiyun Ma
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Huanfei Liu
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Fengjuan Wu
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Xingxing Wang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Fengwei Zhang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Pengyuan Guo
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Guifu Dai
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China.
| |
Collapse
|