1
|
Trubitsina LI, Trubitsin IV, Lisov AV, Gabdulkhakov AG, Zavarzina AG, Belova OV, Larionova AP, Tishchenko SV, Leontievsky AA. A Novel Two-Domain Laccase with Middle Redox Potential: Physicochemical and Structural Properties. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1658-1667. [PMID: 38105031 DOI: 10.1134/s0006297923100188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 12/19/2023]
Abstract
The gene for a previously unexplored two-domain laccase was identified in the genome of actinobacterium Streptomyces carpinensis VKM Ac-1300. The two-domain laccase, named ScaSL, was produced in a heterologous expression system (Escherichia coli strain M15 [pREP4]). The enzyme was purified to homogeneity using affinity chromatography. ScaSL laccase, like most two-domain laccases, exhibited activity in the homotrimer form. However, unlike the most two-domain laccases, it was also active in multimeric forms. The enzyme exhibited maximum activity at 80°C and was thermally stable. Half-inactivation time of ScaSL at 80°C was 40 min. The laccase was able to oxidize a non-phenolic organic compound ABTS at a maximum rate at pH 4.7, and to oxidized a phenolic compound 2,6-dimethoxyphenol at a maximum rate at pH 7.5. The laccase stability was observed in the pH range 9-11. At pH 7.5, laccase was slightly inhibited by sodium azide, sodium fluoride, and sodium chloride; at pH 4.5, the laccase was completely inhibited by 100 mM sodium azide. The determined Km and kcat of the enzyme for ABTS were 0.1 mM and 20 s-1, respectively. The Km and kcat for 2,6-dimethoxyphenol were 0.84 mM and 0.36 s-1, respectively. ScaSL catalyzed polymerization of humic acids and lignin. Redox potential of the laccase was 0.472 ± 0.007 V. Thus, the ScaSL laccase is the first characterized two-domain laccase with a middle redox potential. Crystal structure of ScaSL was determined with 2.35 Å resolution. Comparative analysis of the structures of ScaSL and other two-domain laccases suggested that the middle potential of ScaSL may be associated with conformational differences in the position of the side groups of amino acids at position 230 (in ScaSL numbering), which belong to the second coordination sphere of the copper atom of the T1 center.
Collapse
Affiliation(s)
- Liubov I Trubitsina
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Ivan V Trubitsin
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexander V Lisov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Azat G Gabdulkhakov
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anna G Zavarzina
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Oxana V Belova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anna P Larionova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Svetlana V Tishchenko
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexey A Leontievsky
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
2
|
Zhu X, Liu J, Li L, Zhen G, Lu X, Zhang J, Liu H, Zhou Z, Wu Z, Zhang X. Prospects for humic acids treatment and recovery in wastewater: A review. CHEMOSPHERE 2023; 312:137193. [PMID: 36370766 DOI: 10.1016/j.chemosphere.2022.137193] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Clean water shortages require the reuse of wastewater. The presence of organic substances such as humic acids in wastewater makes the water treatment process more difficult. Humic acids can significantly affect the removal of heavy metals and other such toxins. Humic acids is formed by the decomposition and transformation of animal and plant remains by microorganisms, and naturally exists in soil and water. It is necessary to degrade and remove humic acids from wastewater. As it seriously human health, effective technologies for removing humic acids from wastewater have attracted great interest over the past decades. This study compared existing techniques for removing humic acids from wastewater, as well as their limitations. Physicochemical treatments including filtration and oxidation are basic and key approaches to removing humic acids. Biological treatments including enzyme and fungi-mediated humic acids degradation are economically feasible but require some scalability. In conclusion, the integrated treatment processes are more significant options for the effective removal of humic acids from wastewater. In addition, humic acids have rich utilization values. It can improve the soil, increase crop yields, and promote the removal of pollutants.
Collapse
Affiliation(s)
- Xuefeng Zhu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Jiadong Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Liang Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Jie Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Zhen Zhou
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, PR China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Xuedong Zhang
- Department of Environmental Engineering, Faculty of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
3
|
Lin S, Wei J, Yang B, Zhang M, Zhuo R. Bioremediation of organic pollutants by white rot fungal cytochrome P450: The role and mechanism of CYP450 in biodegradation. CHEMOSPHERE 2022; 301:134776. [PMID: 35500631 DOI: 10.1016/j.chemosphere.2022.134776] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Cytochrome P450 (CYP450) is a well-known protein family that is widely distributed in many organisms. Members of this family have been implicated in a broad range of reactions involved in the metabolism of various organic compounds. Recently, an increasing number of studies have shown that the CYP450 enzyme also participates in the elimination and degradation of organic pollutants, by white rot fungi (WRF), a famous group of natural degraders. This paper reviews previous investigations of white rot fungal CYP450 involved in the biodegradation of organic pollutants, with a special focus on inhibitory experiments, and the direct and indirect evidence of the role of white rot fungal CYP450 in bioremediation. The catalytic mechanisms of white rot fungal CYP450, its application potential, and future prospect for its use in bioremediation are then discussed.
Collapse
Affiliation(s)
- Shuqi Lin
- Institute of Plant and Microbiology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, PR China
| | - Jinchao Wei
- Zhongye Changtian International Engineering Co., Ltd., Changsha, 410205, PR China
| | - Bentao Yang
- Zhongye Changtian International Engineering Co., Ltd., Changsha, 410205, PR China
| | - Meng Zhang
- Institute of Plant and Microbiology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, PR China
| | - Rui Zhuo
- Institute of Plant and Microbiology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
4
|
Hou J, He X, Zhang S, Yu J, Feng M, Li X. Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145311. [PMID: 33736411 DOI: 10.1016/j.scitotenv.2021.145311] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Sulfate radical-based advanced oxidation processes (SR-AOPs) have attracted increasing attention for the degradation of organic contaminants in water. The oxidants of SR-AOPs could be activated to generate different kinds of reactive oxygen species (ROS, e.g., hydroxyl radicals (OH), sulfate radicals (SO4-), singlet oxygen (1O2), and superoxide radicals (O2-)) by various catalysts. As one of the promising catalysts, cobalt-based catalysts have been extensively investigated in catalytic activity and stability during water remediation. This article mainly summarizes recent advances in preparation and applications of cobalt-based catalysts on peroxydisulfate (PDS)/peroxymonosulfate (PMS) activation since 2016. The review covers the development of homogeneous cobalt ions, cobalt oxides, supported cobalt composites, and cobalt-based mixed metal oxides for PDS/PMS activation, especially for the latest nanocomposites such as cobalt-based metal-organic frameworks and single-atom catalysts. This article also discussed the activation mechanisms and the influencing factors of different cobalt-based catalysts for activating PDS/PMS. Finally, the future perspectives on the challenges and applications of cobalt-based catalysts are presented at the end of this paper.
Collapse
Affiliation(s)
- Jifei Hou
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xiudan He
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Shengqi Zhang
- College of Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Jialin Yu
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Mingbao Feng
- College of Environment & Ecology, Xiamen University, Xiamen 361102, China.
| | - Xuede Li
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Xiao K, Abbt-Braun G, Horn H. Changes in the characteristics of dissolved organic matter during sludge treatment: A critical review. WATER RESEARCH 2020; 187:116441. [PMID: 33022515 DOI: 10.1016/j.watres.2020.116441] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) of sludge is a heterogeneous mixture of high to low molecular weight organic substances which is including proteinaceous compounds, carbohydrates, humic substances, lipids, lignins, organic acids, organic micropollutants and other biological derived substances generated during wastewater treatment. This paper reviews definition, composition, quantification, and transformation of DOM during different sludge treatments, and the complex interplay of DOM with microbial communities. In anaerobic digestion, anaerobic digestion-refractory organic matter, particularly compounds showing polycyclic steroid-like, alkane and aromatic structures can be generated after pretreatment. During dewatering, the DOM fraction of low molecular weight proteins (< 20,000 Dalton) is the key parameter deteriorating sludge dewaterability. During composting, decomposition and polymerization of DOM occur, followed by the formation of humic substances. During landfill treatment, the composition of DOM, particularly humic substances, are related with leachate quality. Finally, suggestions are proposed for a better understanding of the transformation and degradation of DOM during sludge treatment. Future work in sludge studies needs the establishment and implementation of definitions for sample handling and the standardization of DOM methods for analysis, including sample preparation and fractionation, and data integration. A more detailed knowledge of DOM in sludge facilitates the operation and optimization of sludge treatment technologies.
Collapse
Affiliation(s)
- Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China; Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany; DVGW Research Laboratories, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany
| | - Gudrun Abbt-Braun
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany
| | - Harald Horn
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany; DVGW Research Laboratories, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany.
| |
Collapse
|
6
|
Lu Q, Yu Z, Wang L, Liang Z, Li H, Sun L, Shim H, Qiu R, Wang S. Sludge pre-treatments change performance and microbiome in methanogenic sludge digesters by releasing different sludge organic matter. BIORESOURCE TECHNOLOGY 2020; 316:123909. [PMID: 32739582 DOI: 10.1016/j.biortech.2020.123909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
In this study, temporal impacts of thermal, alkaline/acid and thermal-alkaline sludge pre-treatments on digestion performance and microbiome were investigated and compared in methanogenic sludge digesters. Results showed that thermal and alkaline/acid pre-treatments were efficient in releasing intracellular and EPS organic matter, respectively. The thermal-alkaline pre-treatment showed synergistic impacts of both thermal and alkaline/acid pre-treatments by releasing the major portion of sludge organic matter from solid- to liquid-phase, which result in 60-65% organic carbon removal in subsequent sludge digestion and further optimizing digestion temperature had negligible improvement. The 16S rRNA gene-based analyses suggested that organic matter released from sludge pre-treatments is a major deterministic parameter in shaping sludge microbiome. Pre-treatment specific lineages were identified in different sludge digesters, whereas several taxa were identified as common functionally active populations in sludge digestion. This study provided mechanistic insights into impacts of pre-treatments on digestion performance and microbiome in methanogenic sludge digesters.
Collapse
Affiliation(s)
- Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Zehui Yu
- Beijing Enterprises Water Group (China) Investment Limited, Beijing 100102, China
| | - Li Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Haocong Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Lianpeng Sun
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078, China
| | - Rongliang Qiu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
7
|
Oguzie KL, Qiao M, Zhao X, Oguzie EE, Njoku VO, Obodo GA. Oxidative degradation of Bisphenol A in aqueous solution using cobalt ion-activated peroxymonosulfate. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Lisov AV, Zavarzina AG, Belova OV, Leontievsky AA. Humic Acid Transformation by the Fungus Cerrena unicolor Growing on Cellulose and Glucose. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720030108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Pre-treatments to enhance the biodegradability of waste activated sludge: Elucidating the rate limiting step. Biotechnol Adv 2018; 36:1434-1469. [DOI: 10.1016/j.biotechadv.2018.06.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/09/2018] [Accepted: 06/03/2018] [Indexed: 11/17/2022]
|
10
|
Zavarzina AG, Semenova TA, Belova OV, Lisov AV, Leontievskii AA, Ivanova AE. Laccase Production and Humic Acids Decomposition by Microscopic Soil Fungi. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718030153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Biodegradation of dissolved humic substances by fungi. Appl Microbiol Biotechnol 2018; 102:3497-3511. [DOI: 10.1007/s00253-018-8851-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 01/18/2023]
|
12
|
Zahmatkesh M, Spanjers H, van Lier JB. Fungal treatment of humic-rich industrial wastewater: application of white rot fungi in remediation of food-processing wastewater. ENVIRONMENTAL TECHNOLOGY 2017; 38:2752-2762. [PMID: 28024460 DOI: 10.1080/09593330.2016.1276969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This paper presents the results of fungal treatment of a real industrial wastewater (WW), providing insight into the main mechanisms involved and clarifying some ambiguities and uncertainties in the previous reports. In this regard, the mycoremediation potentials of four strains of white rot fungi (WRF): Phanerochaete chrysosporium, Trametes versicolor, Pleurotus ostreatus and Pleurotus pulmonarius were tested to remove humic acids (HA) from a real humic-rich industrial treated WW of a food-processing plant. The HA removal was assessed by color measurement and size-exclusion chromatography (SEC) analysis. T. versicolor showed the best decolorization efficiency of 90% and yielded more than 45% degradation of HA, which was the highest among the tested fungal strains. The nitrogen limitation was studied and results showed that it affected the fungal extracellular laccase and manganese peroxidase (MnP) activities. The results of the SEC analysis revealed that the mechanism of HA removal by WRF involves degradation of large HA molecules to smaller molecules, conversion of HA to fulvic acid-like molecules and also biosorption of HA by fungal mycelia. The effect of HS on the growth of WRF was investigated and results showed that the inhibition or stimulation of growth differs among the fungal strains.
Collapse
Affiliation(s)
- Mostafa Zahmatkesh
- a Section Sanitary Engineering, Department of Water management , Delft University of Technology , Delft , The Netherlands
| | - Henri Spanjers
- a Section Sanitary Engineering, Department of Water management , Delft University of Technology , Delft , The Netherlands
| | - Jules B van Lier
- a Section Sanitary Engineering, Department of Water management , Delft University of Technology , Delft , The Netherlands
| |
Collapse
|
13
|
Recalcitrant Compounds Removal in Raw Leachate and Synthetic Effluents Using the White-Rot Fungus Bjerkandera adusta. WATER 2017. [DOI: 10.3390/w9110824] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|