1
|
Mohammed Yousuf Abdi S, Azizan KA, Syed Abdullah SS, Samsu ZA. Temperature-based investigation of rhamnolipids congeners production by the non-pathogenic Burkholderia thailandensis E264 using LC-QToF-MS metabolomics. Metabolomics 2024; 21:14. [PMID: 39738744 DOI: 10.1007/s11306-024-02205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION Burkholderia thailandensis E264 is a non-pathogenic soil bacterium that produces rhamnolipids (RLs), which are utilised in various fields. Although studies have illustrated changes in RLs congeners in response to environmental factors, studies on the influence of temperature on the RLs congeners produced by B. thailandensis E264 are scarce. OBJECTIVE It was hypothesised that RL congeners will be distributed differently at different temperature, which caused the produced RL to have different properties. This brought about the idea of a tailored production of RL for specific application through temperature control. Thus, this study aimed to investigate the distribution of RLs congeners by B. thailandensis E264 in response to different temperatures. METHODOLOGY B. thailandensis E264 was grown at three different temperatures (25 °C, 30 °C, and 37 °C) for nine days and subjected to metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS). RESULTS The findings indicated that temperature significantly affected the metabolomic distribution of B. thailandensis E264, with mono-rhamno-mono-lipid and mono-rhamno-di-lipid being the predominant metabolites at 37 °C and 30 °C, with relative abundances of 64.1% and 65.3%, respectively. In comparison, di-rhamno-di-lipid was detected at 25 °C with an overall relative abundance of 77.7%. CONCLUSION This investigation showed that changing the cultivation temperature of the non-pathogenic B. thailandensis E264 produces diverse rhamnolipid congeners, which could enable the targeted synthesis of specific RLs for various applications and increase the market value of biosurfactants.
Collapse
Affiliation(s)
- Sarah Mohammed Yousuf Abdi
- Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Alor Gajah, Melaka, 78000, Malaysia
| | - Kamalrul Azlan Azizan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Sharifah Soplah Syed Abdullah
- Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Alor Gajah, Melaka, 78000, Malaysia
| | - Zainatul Asyiqin Samsu
- Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Alor Gajah, Melaka, 78000, Malaysia.
| |
Collapse
|
2
|
Kim HJ, Kim BC, Park H, Cho G, Lee T, Kim HT, Bhatia SK, Yang YH. Microbial production of levulinic acid from glucose by engineered Pseudomonas putida KT2440. J Biotechnol 2024; 395:161-169. [PMID: 39343057 DOI: 10.1016/j.jbiotec.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Levulinic acid(LA) is produced through acid-catalyzed hydrolysis and dehydration of lignocellulosic biomass. It is a key platform chemical used as an intermediate in various industries including biofuels, cosmetics, pharmaceuticals, and polymers. Traditional LA production uses chemical conversion, which requires high temperatures and pressures, strong acids, and produces undesirable side reactions, repolymerization products, and waste problems Therefore, we designed an integrated process to produce LA from glucose through metabolic engineering of Pseudomonas putida KT2440. As a metabolic engineering strategy, codon optimized phospho-2-dehydro-3-deoxyheptonate aldolase (AroG), 3-dehydroshikimate dehydratase (AsbF), and acetoacetate decarboxylase (Adc) were introduced to express genes of the shikimate and β-ketoadipic acid pathways, and the 3-oxoadipate CoA-transferase (pcaIJ) gene was deleted to prevent loss of biosynthetic intermediates. To increase the accumulation of the produced LA, the lva operon encoding levulinyl-CoA synthetase (LvaE) was deleted resulting in the high LA-producing strain P. putida HP203. Culture conditions such as medium, temperature, glucose concentration, and nitrogen source were optimized, and under optimal conditions, P. putida HP203 strain biosynthesized 36.3 mM (4.2 g/L) LA from glucose in a fed-batch fermentation system. When lignocellulosic biomass hydrolysate was used as the substrate, this strain produced 7.31 mM of LA. This is the first report of microbial production of LA from glucose by P. putida. This study suggests the possibility of manipulating biosynthetic pathway to produce biological products from glucose for various applications.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Byung Chan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hanna Park
- Corporate R&D, CJ CheilJedang, Suwon, Gyeonggi 16495, Republic of Korea
| | - Geunsang Cho
- Corporate R&D, CJ CheilJedang, Suwon, Gyeonggi 16495, Republic of Korea
| | - Taekyu Lee
- Corporate R&D, CJ CheilJedang, Suwon, Gyeonggi 16495, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Ortiz-Sanchez M, Solarte-Toro JC, Inocencio-García PJ, Cardona Alzate CA. Sustainability analysis of orange peel biorefineries. Enzyme Microb Technol 2024; 172:110327. [PMID: 37804740 DOI: 10.1016/j.enzmictec.2023.110327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/02/2023] [Accepted: 09/18/2023] [Indexed: 10/09/2023]
Abstract
Biorefineries are constantly evolving since new technological advances in enzyme and microbial processes are boosting research for producing new bio-based products. Nevertheless, the step towards real process implementation must overcome a series of stages based on process sustainability in the early design stages. Orange peel (OP) has been profiled as a potential raw material for producing different products. Few studies have estimated the sustainability of OP-based biorefineries considering the upstream influence on the final process performance. This research aims to perform the sustainability assessment of several OP valorization pathways based on experimental data applying the biorefinery concept. Steam distillation and polyphenolic compound extraction prior to saccharification and anaerobic digestion increase the process performance. A glucose concentration and biogas yield of 21.43 g/L (0.44 g/g OP, db) and 415 mL/g SV were obtained, respectively. An essential oil extraction yield of 1.17 g/100 g OP (db) with a d-limonene content of 91.62% was produced. Moreover, hesperidin, apigenin, and naringenin yields of 7.88 mg/g, 0.475 mg/g, and 0.675 mg/g were obtained. An OP-based biorefinery addressed to produce essential oil, polyphenolic compounds, and biogas with a processing 25 tons/day (wb) has a sustainability index of 66.88%, higher than the values obtained with lesser upstream stages. In conclusion, an integral OP upgrading leads to better enzymatic and anaerobic digestion performances, as well as, a high process sustainability.
Collapse
Affiliation(s)
- Mariana Ortiz-Sanchez
- Universidad Nacional de Colombia sede Manizales, Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería Química, Km 07 vía al Magdalena, Manizales, Colombia.
| | - Juan Camilo Solarte-Toro
- Universidad Nacional de Colombia sede Manizales, Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería Química, Km 07 vía al Magdalena, Manizales, Colombia.
| | - Pablo José Inocencio-García
- Universidad Nacional de Colombia sede Manizales, Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería Química, Km 07 vía al Magdalena, Manizales, Colombia.
| | - Carlos Ariel Cardona Alzate
- Universidad Nacional de Colombia sede Manizales, Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería Química, Km 07 vía al Magdalena, Manizales, Colombia.
| |
Collapse
|
4
|
Sharma P, Mondal K, Kumar S, Tamang S, Najar IN, Das S, Thakur N. RNA thermometers in bacteria: Role in thermoregulation. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - GENE REGULATORY MECHANISMS 2022; 1865:194871. [DOI: 10.1016/j.bbagrm.2022.194871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 04/09/2023]
|
5
|
Qin R, Xu T, Jia X. Engineering Pseudomonas putida To Produce Rhamnolipid Biosurfactants for Promoting Phenanthrene Biodegradation by a Two-Species Microbial Consortium. Microbiol Spectr 2022; 10:e0091022. [PMID: 35730952 PMCID: PMC9431653 DOI: 10.1128/spectrum.00910-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic contaminants that pose a significant environmental hazard. Phenanthrene is one of the model compounds for the study of biodegradation of PAHs. However, the biodegradation of phenanthrene is often limited by its low water solubility and dissolution rate. To overcome this limitation, we engineered a strain of Pseudomonas putida to produce rhamnolipid biosurfactants and thereby promote phenanthrene biodegradation by an engineered strain of Escherichia coli constructed previously in our lab. The E. coli-P. putida two-species consortium exhibited a synergistic effect of these two distinct organisms in degrading phenanthrene, resulting in an increase from 61.15 to 73.86% of the degradation ratio of 100 mg/L phenanthrene within 7 days. After additional optimization of the degradation conditions, the phenanthrene degradation ratio was improved to 85.73%. IMPORTANCE Polycyclic aromatic hydrocarbons (PAHs), which are recalcitrant, carcinogenic, and tend to bioaccumulate, are widespread and persistent environmental pollutants. Based on these characteristics, the U.S. Environmental Protection Agency has listed PAHs as priority contaminants. Although there are many methods to treat PAH pollution, these methods are mostly limited by the poor water solubility of PAHs, which is especially true for the biodegradation process. Recent evidence of PAH-contaminated sites suffering from increasingly severe impact has emerged. As a result, the need to degrade PAHs is becoming urgent. The significance of our study lies in the development of nonpathogenic strains of biosurfactant-producing Pseudomonas aeruginosa for promoting the degradation of phenanthrene by engineered Escherichia coli.
Collapse
Affiliation(s)
- Ruolin Qin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Tao Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
| |
Collapse
|
6
|
Blunt W, Blanchard C, Morley K. Effects of environmental parameters on microbial rhamnolipid biosynthesis and bioreactor strategies for enhanced productivity. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Sharma A, Alajangi HK, Pisignano G, Sood V, Singh G, Barnwal RP. RNA thermometers and other regulatory elements: Diversity and importance in bacterial pathogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1711. [PMID: 35037405 DOI: 10.1002/wrna.1711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 01/11/2023]
Abstract
Survival of microorganisms depends to a large extent on environmental conditions and the occupied host. By adopting specific strategies, microorganisms can thrive in the surrounding environment and, at the same time, preserve their viability. Evading the host defenses requires several mechanisms compatible with the host survival which include the production of RNA thermometers to regulate the expression of genes responsible for heat or cold shock as well as of those involved in virulence. Microorganisms have developed a variety of molecules in response to the environmental changes in temperature and even more specifically to the host they invade. Among all, RNA-based regulatory mechanisms are the most common ones, highlighting the importance of such molecules in gene expression control and novel drug development by suitable structure-based alterations. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Hema Kumari Alajangi
- Department of Biophysics, Panjab University, Chandigarh, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
8
|
Noll P, Treinen C, Müller S, Lilge L, Hausmann R, Henkel M. Exploiting RNA thermometer-driven molecular bioprocess control as a concept for heterologous rhamnolipid production. Sci Rep 2021; 11:14802. [PMID: 34285304 PMCID: PMC8292423 DOI: 10.1038/s41598-021-94400-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022] Open
Abstract
A key challenge to advance the efficiency of bioprocesses is the uncoupling of biomass from product formation, as biomass represents a by-product that is in most cases difficult to recycle efficiently. Using the example of rhamnolipid biosurfactants, a temperature-sensitive heterologous production system under translation control of a fourU RNA thermometer from Salmonella was established to allow separating phases of preferred growth from product formation. Rhamnolipids as bulk chemicals represent a model system for future processes of industrial biotechnology and are therefore tied to the efficiency requirements in competition with the chemical industry. Experimental data confirms function of the RNA thermometer and suggests a major effect of temperature on specific rhamnolipid production rates with an increase of the average production rate by a factor of 11 between 25 and 38 °C, while the major part of this increase is attributable to the regulatory effect of the RNA thermometer rather than an unspecific overall increase in bacterial metabolism. The production capacity of the developed temperature sensitive-system was evaluated in a simple batch process driven by a temperature switch. Product formation was evaluated by efficiency parameters and yields, confirming increased product formation rates and product-per-biomass yields compared to a high titer heterologous rhamnolipid production process from literature.
Collapse
Affiliation(s)
- Philipp Noll
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Chantal Treinen
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Sven Müller
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Lars Lilge
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Rudolf Hausmann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Marius Henkel
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany.
| |
Collapse
|
9
|
Craig K, Johnson BR, Grunden A. Leveraging Pseudomonas Stress Response Mechanisms for Industrial Applications. Front Microbiol 2021; 12:660134. [PMID: 34040596 PMCID: PMC8141521 DOI: 10.3389/fmicb.2021.660134] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
Members of the genus Pseudomonas are metabolically versatile and capable of adapting to a wide variety of environments. Stress physiology of Pseudomonas strains has been extensively studied because of their biotechnological potential in agriculture as well as their medical importance with regards to pathogenicity and antibiotic resistance. This versatility and scientific relevance led to a substantial amount of information regarding the stress response of a diverse set of species such as Pseudomonas chlororaphis, P. fluorescens, P. putida, P. aeruginosa, and P. syringae. In this review, environmental and industrial stressors including desiccation, heat, and cold stress, are cataloged along with their corresponding mechanisms of survival in Pseudomonas. Mechanisms of survival are grouped by the type of inducing stress with a focus on adaptations such as synthesis of protective substances, biofilm formation, entering a non-culturable state, enlisting chaperones, transcription and translation regulation, and altering membrane composition. The strategies Pseudomonas strains utilize for survival can be leveraged during the development of beneficial strains to increase viability and product efficacy.
Collapse
Affiliation(s)
- Kelly Craig
- AgBiome Inc., Research Triangle Park, NC, United States
| | | | - Amy Grunden
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
10
|
Soberón‐Chávez G, González‐Valdez A, Soto‐Aceves MP, Cocotl‐Yañez M. Rhamnolipids produced by Pseudomonas: from molecular genetics to the market. Microb Biotechnol 2021; 14:136-146. [PMID: 33151628 PMCID: PMC7888470 DOI: 10.1111/1751-7915.13700] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022] Open
Abstract
Rhamnolipids are biosurfactants with a wide range of industrial applications that entered into the market a decade ago. They are naturally produced by Pseudomonas aeruginosa and some Burkholderia species. Occasionally, some strains of different bacterial species, like Pseudomonas chlororaphis NRRL B-30761, which have acquired RL-producing ability by horizontal gene transfer, have been described. P. aeruginosa, the ubiquitous opportunistic pathogenic bacterium, is the best rhamnolipids producer, but Pseudomonas putida has been used as heterologous host for the production of this biosurfactant with relatively good yields. The molecular genetics of rhamnolipids production by P. aeruginosa has been widely studied not only due to the interest in developing overproducing strains, but because it is coordinately regulated with the expression of different virulence-related traits by the quorum-sensing response. Here, we highlight how the research of the molecular mechanisms involved in rhamnolipid production have impacted the development of strains that are suitable for industrial production of this biosurfactant, as well as some perspectives to improve these industrial useful strains.
Collapse
Affiliation(s)
- Gloria Soberón‐Chávez
- Departamento de Biología Molecular y BiotecnologíaInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad Universitaria, CDMXCoyoacanMéxico
| | - Abigail González‐Valdez
- Departamento de Biología Molecular y BiotecnologíaInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad Universitaria, CDMXCoyoacanMéxico
| | - Martín P. Soto‐Aceves
- Departamento de Biología Molecular y BiotecnologíaInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad Universitaria, CDMXCoyoacanMéxico
| | - Miguel Cocotl‐Yañez
- Departamento de Microbiología y ParasitologíaFacultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad Universitaria, CDMXCoyoacanMéxico
| |
Collapse
|
11
|
Wittgens A, Rosenau F. Heterologous Rhamnolipid Biosynthesis: Advantages, Challenges, and the Opportunity to Produce Tailor-Made Rhamnolipids. Front Bioeng Biotechnol 2020; 8:594010. [PMID: 33195161 PMCID: PMC7642724 DOI: 10.3389/fbioe.2020.594010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
The first heterologous expression of genes responsible for the production of rhamnolipids was already implemented in the mid-1990s during the functional identification of the rhlAB operon. This was the starting shot for multiple approaches to establish the rhamnolipid biosynthesis in different host organisms. Since most of the native rhamnolipid producing organisms are human or plant pathogens, the intention for these ventures was the establishment of non-pathogenic organisms as heterologous host for the production of rhamnolipids. The pathogenicity of producing organisms is one of the bottlenecks for applications of rhamnolipids in many industrial products especially foods and cosmetics. The further advantage of heterologous rhamnolipid production is the circumvention of the complex regulatory network, which regulates the rhamnolipid biosynthesis in wild type production strains. Furthermore, a suitable host with an optimal genetic background to provide sufficient amounts of educts allows the production of tailor-made rhamnolipids each with its specific physico-chemical properties depending on the contained numbers of rhamnose sugar residues and the numbers, chain length and saturation degree of 3-hydroxyfatty acids. The heterologous expression of rhl genes can also enable the utilization of unusual carbon sources for the production of rhamnolipids depending on the host organism.
Collapse
Affiliation(s)
- Andreas Wittgens
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany.,Ulm Center for Peptide Pharmaceuticals (U-PEP), Ulm University, Ulm, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany.,Ulm Center for Peptide Pharmaceuticals (U-PEP), Ulm University, Ulm, Germany.,Department Synthesis of Macromolecules, Max-Planck-Institute for Polymer Research Mainz, Mainz, Germany
| |
Collapse
|
12
|
Lammens EM, Nikel PI, Lavigne R. Exploring the synthetic biology potential of bacteriophages for engineering non-model bacteria. Nat Commun 2020; 11:5294. [PMID: 33082347 PMCID: PMC7576135 DOI: 10.1038/s41467-020-19124-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022] Open
Abstract
Non-model bacteria like Pseudomonas putida, Lactococcus lactis and other species have unique and versatile metabolisms, offering unique opportunities for Synthetic Biology (SynBio). However, key genome editing and recombineering tools require optimization and large-scale multiplexing to unlock the full SynBio potential of these bacteria. In addition, the limited availability of a set of characterized, species-specific biological parts hampers the construction of reliable genetic circuitry. Mining of currently available, diverse bacteriophages could complete the SynBio toolbox, as they constitute an unexplored treasure trove for fully adapted metabolic modulators and orthogonally-functioning parts, driven by the longstanding co-evolution between phage and host.
Collapse
Affiliation(s)
- Eveline-Marie Lammens
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001, Leuven, BE, Belgium
| | - Pablo Ivan Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs, Lyngby, DK, Denmark
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001, Leuven, BE, Belgium.
| |
Collapse
|
13
|
Wang S, Cui J, Bilal M, Hu H, Wang W, Zhang X. Pseudomonas spp. as cell factories (MCFs) for value-added products: from rational design to industrial applications. Crit Rev Biotechnol 2020; 40:1232-1249. [PMID: 32907412 DOI: 10.1080/07388551.2020.1809990] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In recent years, there has been increasing interest in microbial biotechnology for the production of value-added compounds from renewable resources. Pseudomonas species have been proposed as a suitable workhorse for high-value secondary metabolite production because of their unique characteristics for fast growth on sustainable carbon sources, a clear inherited background, versatile intrinsic metabolism with diverse enzymatic capacities, and their robustness in an extreme environment. It has also been demonstrated that metabolically engineered Pseudomonas strains can produce several industrially valuable aromatic chemicals and natural products such as phenazines, polyhydroxyalkanoates, rhamnolipids, and insecticidal proteins from renewable feedstocks with remarkably high yields suitable for commercial application. In this review, we summarize cell factory construction in Pseudomonas for the biosynthesis of native and non-native bioactive compounds in P. putida, P. chlororaphis, P. aeruginosa, as well as pharmaceutical proteins production by P. fluorescens. Additionally, some novel strategies together with metabolic engineering strategies in order to improve the biosynthetic abilities of Pseudomonas as an ideal chassis are discussed. Finally, we proposed emerging opportunities, challenges, and essential strategies to enable the successful development of Pseudomonas as versatile microbial cell factories for the bioproduction of diverse bioactive compounds.
Collapse
Affiliation(s)
- Songwei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajia Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Loeschcke A, Thies S. Engineering of natural product biosynthesis in Pseudomonas putida. Curr Opin Biotechnol 2020; 65:213-224. [PMID: 32498036 DOI: 10.1016/j.copbio.2020.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Germany.
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Germany.
| |
Collapse
|
15
|
Abstract
Temperature is an important parameter in bioprocesses, influencing the structure and functionality of almost every biomolecule, as well as affecting metabolic reaction rates. In industrial biotechnology, the temperature is usually tightly controlled at an optimum value. Smart variation of the temperature to optimize the performance of a bioprocess brings about multiple complex and interconnected metabolic changes and is so far only rarely applied. Mathematical descriptions and models facilitate a reduction in complexity, as well as an understanding, of these interconnections. Starting in the 19th century with the “primal” temperature model of Svante Arrhenius, a variety of models have evolved over time to describe growth and enzymatic reaction rates as functions of temperature. Data-driven empirical approaches, as well as complex mechanistic models based on thermodynamic knowledge of biomolecular behavior at different temperatures, have been developed. Even though underlying biological mechanisms and mathematical models have been well-described, temperature as a control variable is only scarcely applied in bioprocess engineering, and as a conclusion, an exploitation strategy merging both in context has not yet been established. In this review, the most important models for physiological, biochemical, and physical properties governed by temperature are presented and discussed, along with application perspectives. As such, this review provides a toolset for future exploitation perspectives of temperature in bioprocess engineering.
Collapse
|