1
|
Zhang ZG, Shen X, Jiang SK, Lin JC, Yi Y, Ji XJ. Biocatalytic Hydrogenation of Biomass-Derived Furan Aldehydes to Alcohols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39808924 DOI: 10.1021/acs.jafc.4c11258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The biomass-derived furan aldehydes furfural (FF) and 5-hydroxymethylfurfural (HMF) are versatile platform chemicals used to produce various value-added chemicals through further valorization processes. Selectively reducing C═O in FF and HMF molecules to form furfuryl alcohol (FAL) and 2,5-bis(hydroxymethyl)furan (BHMF), represents an important research field in upgrading biomass-based furan compounds. Currently, the reduction of furan aldehydes to furan alcohols through chemical transformation often leads to unavoidable environmental issues and the formation of potential byproducts. Biocatalysis has demonstrated expanded applications in converting biomass-derived furan aldehydes into a diverse array of value-added chemicals. This process exhibits significant potential in organic synthesis and biotechnology due to its green and sustainable properties. The biocatalytic reduction of FF and HMF represents an especially important route for the selective synthesis of FAL and BHMF. This review discusses recent progress in the biosynthesis of FAL and BHMF from biomass-derived FF and HMF through biocatalytic processes. Recently discovered enzymes and whole cells used as biocatalysts for the production of furan alcohols are summarized. In addition, chemoenzymatic cascades for synthesizing furan alcohols from biomass hydrolysate and raw biomass materials are also discussed.
Collapse
Affiliation(s)
- Zhi-Gang Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Xi Shen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Shi-Kai Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Jia-Chun Lin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Yan Yi
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
2
|
Abbas AM, Elkhatib WF, Aboulwafa MM, Hassouna NA, Aboshanab KM. Characterization of vitamin D3 biotransformation by the cell lysate of Actinomyces hyovaginalis CCASU-A11-2. AMB Express 2024; 14:43. [PMID: 38658456 PMCID: PMC11043238 DOI: 10.1186/s13568-024-01694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
A former work conducted in our Lab, lead to in a effective scale up of vitamin D3 bioconversion into calcitriol by Actinomyces (A.) hyovaginalis isolate CCASU-A11-2 in Lab fermenter (14 L) resulting in 32.8 µg/100 mL of calcitriol. However, the time needed for such a bioconversion process was up to 5 days. Therefore, the objective of this study was to shorten the bioconversion time by using cell-free lysate and studying different factors influencing bioconversion. The crude cell lysate was prepared, freeze-dried, and primarily fractionated into nine fractions, of which, only three fractions, 50, 100, and 150 mM NaCl elution buffers showed 22, 12, and 2 µg/10 mL, calcitriol production, respectively. Ammonium sulfate was used for protein precipitation, and it did not affect the bioconversion process except at a concentration of 10%w/v. Secondary fractionation was carried out using 80 mL of the 50 mM NaCl elution buffer and the results showed the 80 mL eluent volume was enough for the complete elution of the active protein. The pH 7.8, temperature 28 °C, and 6 h reaction time were optimum for maximum calcitriol production (31 µg/10 mL). In conclusion, the transformation of vitamin D3 into calcitriol was successfully carried out within 6 h and at pH 7.8 and 28 °C using fractionated cell lysate. This process resulted in a 10-fold increase in calcitriol as compared to that produced in our previous study using a 14 L fermenter (32.8 µg/100 mL). Therefore, cell-free lysate should be considered for industrial and scaling up vitamin D3 bioconversion into calcitriol.
Collapse
Affiliation(s)
- Ahmad M Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St. Abbassia, Abbassia, Cairo, 11566, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr, South Sinai, Egypt
| | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St. Abbassia, Abbassia, Cairo, 11566, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt
| | - Mohammad M Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St. Abbassia, Abbassia, Cairo, 11566, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr, South Sinai, Egypt
| | - Nadia A Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St. Abbassia, Abbassia, Cairo, 11566, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St. Abbassia, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
3
|
Wang X, Wu H, Wong KH, Wang Y, Chen B, Feng K. Biotransformation of triterpenoid ganoderic acids from exogenous diterpene dihydrotanshinone I in the cultures of Ganoderma sessile. Microb Cell Fact 2023; 22:139. [PMID: 37507727 PMCID: PMC10375632 DOI: 10.1186/s12934-023-02156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Triterpenoids have shown a wide range of biological activities including antitumor and antiviral effects. Typically, triterpenes are synthesized through the mevalonate pathway and are extracted from natural plants and fungi. In this work, triterpenoids, ganoderic acids (GAs) were discovered to be produced via biotransformation of a diterpene, 15,16-dihydrotanshinone I (DHT) in the liquid cultured Ganoderma sessile mycelium. RESULTS Firstly, the biotransformation products, two rare GAs were isolated and purified by column chromatography, and characterized using HR-ESI-MS spectrometry and NMR spectrometry. The two compounds were Lanosta-7,9(11),24-trien-15α,22,β-diacetoxy-3β-hydroxy-26-oic acid (LTHA) and Lanosta-7,9(11),24-trien-15α,22,β-diacetoxy-3β-carbonyl-26-oic acid (LTCA). Then, transcriptome and proteome technologies were employed to measure the expression of mRNA and protein, which further confirmed that triterpenoid GAs could be transformed from exogenous diterpenoid DHT. At the molecular level, we proposed a hypothesis of the mechanism by which DHT converted to GAs in G. sessile mycelium, and the possible genes involved in biotransformation were verified by RT-qPCR. CONCLUSIONS Two rare GAs were obtained and characterized. A biosynthetic pathway of GAs from DHT was proposed. Although the synthetic route was not confirmed, this study provided important insights into omics resources and candidate genes for studying the biotransformation of diterpenes into triterpenes.
Collapse
Affiliation(s)
- Xinwei Wang
- School of Bioengineering, Zunyi Medical University, Jinwan Road No. 368, Zhuhai, 519090, Guangdong, China
| | - Haibo Wu
- School of Bioengineering, Zunyi Medical University, Jinwan Road No. 368, Zhuhai, 519090, Guangdong, China
| | - Ka Hong Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Yixuan Wang
- School of Bioengineering, Zunyi Medical University, Jinwan Road No. 368, Zhuhai, 519090, Guangdong, China
| | - Baixiong Chen
- School of Bioengineering, Zunyi Medical University, Jinwan Road No. 368, Zhuhai, 519090, Guangdong, China
| | - Kun Feng
- School of Bioengineering, Zunyi Medical University, Jinwan Road No. 368, Zhuhai, 519090, Guangdong, China.
| |
Collapse
|
4
|
Occurrence of Furfural and Its Derivatives in Coffee Products in China and Estimation of Dietary Intake. Foods 2023; 12:foods12010200. [PMID: 36613415 PMCID: PMC9818524 DOI: 10.3390/foods12010200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
This is the first report on the content of furfural and its derivatives in coffee products in China. The concentrations of furfural and its derivatives in 449 sampled, commercially available coffee products in China were analyzed through a GC-MS technique, and the associated health risks were estimated. As a result, 5-hydroxymethyl furfural (5-HMF) was identified as the predominant derivative compound, with the highest concentration of 6035.0 mg/kg and detection frequency of 98.7%. The mean dietary exposures of 5-HMF, 5-MF(5-methylfurfural), and 2-F(2-furfural) in coffee products among Chinese consumers were 55.65, 3.00, and 3.23 μg/kg bw/day, respectively. The ranges of mean dietary intake of furfural and its derivatives based on age groups were all lower than the acceptable daily intake (ADI) and the toxicological concern threshold (TTC). Risk evaluation results indicate that coffee product intake did not pose potential risks to consumers. Notably, the analysis revealed that children aged 3-6 years had the highest mean exposure due to their low body weight.
Collapse
|
5
|
Saikia K, Rathankumar AK, Kumar PS, Rangasamy G, Vaithyanathan VK, Vaidyanathan VK. Evaluating the potential of engineered Trichoderma atroviride and its laccase-mediated system for the efficient bioconversion of 5-hydroxymethylfufural. CHEMOSPHERE 2022; 308:136567. [PMID: 36152826 DOI: 10.1016/j.chemosphere.2022.136567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
5-Hydroxymethylfurfural (HMF) is a fermentation inhibitor which is formed during acid-based thermochemical pre-treatment of biomass. The present study involves two approaches for HMF conversion; the first includes screening and identification of fungal strains which produce oxidoreductases for HMF bioconversion, and thereafter evaluating their roles in HMF conversion. Out of the ten fungal strains screened, genetically engineered Trichoderma atroviride (Lac+) showed maximum HMF bioconversion and the activities of ligninolytic enzymes produced were noted. Maximum HMF conversion of 99% was achieved at pH 5.0 and 30 °C when 72 h old 10% inoculum of T. atroviride (Lac+) was utilized for 6 days. Based on the fungal bioconversion of HMF to 2, 5 diformylfuran with 58% yield, laccase was observed to influence the conversion process. Thus, a comparative study was established on HMF conversion by 100 U/mL of commercial laccases and partially purified laccase from T. atroviride (Lac+). In the presence of TEMPO, T. atroviride laccase showed comparable HMF conversion to commercial laccases, which establishes the efficiency of fungi and ligninolytic enzymes in bioconversion of HMF to value-added products.
Collapse
Affiliation(s)
- Kongkona Saikia
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India; Department of Biochemistry, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Abiram Karanam Rathankumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India; Department of Biotechnology, FoE, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, Tamil Nadu, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, Tamil Nadu, 603 110, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Vasanth Kumar Vaithyanathan
- Department of Electronics and Communication Engineering, Hindustan Institute of Technology and Science, Chennai, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
6
|
Detection of Volatiles by HS-SPME-GC/MS and Biological Effect Evaluation of Buddha's Hand Fruit. Molecules 2022; 27:molecules27051666. [PMID: 35268766 PMCID: PMC8911557 DOI: 10.3390/molecules27051666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
The present work aimed to chemically characterize and evaluate the antiradical power and biological effects of Citrus medica var. sarcodactylus essential oil (EO) and hydrolate (Hy) from exocarp as well as methanol extracts, from both exocarp and mesocarp (EEX and MEX). The whole fresh fruit was also investigated by SPME-GC/MS to describe its volatile composition. EO and Hy were analyzed by GC/MS and HS-GC/MS techniques, respectively. Limonene and γ-terpinene were found to be the most abundant compounds both in the fresh parts of the fruit and in the EO, while α-terpineol and terpinen-4-ol were in the Hy. The extracts were also rich in furan and coumarin derivatives. A good antiradical activity of all samples except Hy was detected both against ABTS·+ than DPPH·, removed up to about 50%. The antibacterial activity against Bacillus cereus and Escherichia coli was evaluated by microwell dilution method to determine MIC and MBC values. EEX and MEX showed efficacy at very high concentrations against both tested bacteria. The MIC value of EO against B. cereus was 0.5% v/v, while Hy was not able to inhibit the bacterial growth at the tested concentrations. Cytotoxicity investigated on the HL60 leukemia cell line by MTT assay provided an EC50 of 1.24% v/v for EO. Interesting activity of Hy was also observed.
Collapse
|
7
|
Mokale Kognou AL, Shrestha S, Jiang ZH, Xu C, Sun F, Qin W. High-fructose corn syrup production and its new applications for 5-hydroxymethylfurfural and value-added furan derivatives: Promises and challenges. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
8
|
Phytochemical Characterization, Antioxidant Activity, and Cytotoxicity of Methanolic Leaf Extract of Chlorophytum Comosum (Green Type) (Thunb.) Jacq. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030762. [PMID: 35164026 PMCID: PMC8840168 DOI: 10.3390/molecules27030762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/19/2022]
Abstract
Chlorophytum genus has been extensively studied due to its diverse biological activities. We evaluated the methanolic extract of leaves of Chlorophytum comosum (Green type) (Thunb.) Jacques, the species that is less studied compared to C. borivilianum. The aim was to identify phytoconstituents of the methanolic extract of leaves of C. comosum and biological properties of its different fractions. Water fraction was analyzed with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Nineteen compounds belonging to different chemical classes were identified in the methanolic extract of leaves of C. comosum (Green type) (Thunb.) Jacques. In addition to several fatty acids, isoprenoid and steroid compounds were found among the most abundant constituents. One of the identified compounds, 4'-methylphenyl-1C-sulfonyl-β-d-galactoside, was not detected earlier in Chlorophytum extracts. The water fraction was toxic to HeLa cells but not to Vero cells. Our data demonstrate that methanolic extract of leaves of C. comosum can be a valuable source of bioactive constituents. The water fraction of the extract exhibited promising antitumor potential based on a high ratio of HeLa vs. Vero cytotoxicity.
Collapse
|