1
|
Liu Y, Wang Y, Wen Y, Ma L, Riqing D, Jiang M. Dietary Conversion from All-Concentrate to All-Roughage Alters Rumen Bacterial Community Composition and Function in Yak, Cattle-Yak, Tibetan Yellow Cattle and Yellow Cattle. Animals (Basel) 2024; 14:2933. [PMID: 39457862 PMCID: PMC11503692 DOI: 10.3390/ani14202933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The experiment was to compare the effects of switching all-concentrate to all-roughage diets on rumen microflora and functional metabolism of yak, cattle-yak, Tibetan yellow cattle and yellow cattle living in different altitudes. A total of 24 yaks, cattle-yaks, Tibetan yellow cattle and yellow cattle with a similar weight and good body condition aged 3.5 years were selected and divided into four groups according to species. They were fed a concentrate diet with 40% soybean meal and 60% corn meal for the first month (C group) and a roughage diet with dry corn stalks (100%) for the second month (R group); the formal experimental period was 60 d. These results showed that the conversion had a significant effect on the rumen microflora structure of the four herds, and the biggest difference between concentrate and roughage diets was yak and cattle-yak, followed by Tibetan yellow cattle and yellow cattle. At the phylum level, Bacteroidetes and Firmicutes still predominate in all groups. Compared with the C groups, the relative abundance of Lentisphaerae and Kiritimatiellaeota increased in all R groups, and Lentisphaerae was significantly increased in yak and cattle-yak (p < 0.05). At the genus and species levels, Prevotella had the highest abundance, and the relative abundances of Prevotella, Ruminococcus, Sarcina and Ruminobacter in R groups were lower, while the abundances of other differential genera, including Methanobrevibacter, Fibrobacter, Treponema, Eubacterium, Butyrivibrio, Succinivibrio and Succinimonas, were all higher. Roughage diets increased the number of unique genes and functional genes encoding different CAZymes in rumen microorganisms in all four herds. In the functional contribution analysis, with the exception of ABC transporters and methane metabolism, Prevotella was the main contributor to almost all of these functions. In methane metabolism, Methanobrevibacter had the highest relative abundance, followed by Prevotella, Clostridia and Bacteroidales in all groups. Compared with Tibetan yellow cattle and yellow cattle, yaks and cattle-yaks have better adaptability to roughage, and its utilization rate can be fully improved to reduce methane emission. The study indicates that when four herds are converted to high roughage at the later stage of feeding, the growth and reproduction of rumen microorganisms are affected, and the abundance and diversity of rumen microorganisms are increased to varying degrees. The transformation of concentrate to roughage diet can change the metabolic pathways of rumen microorganisms in yaks and finally affect the fermentation mode of rumen. The above results provide a theoretical basis for the research and development of fattening feeds for yaks, cattle-yaks, Tibetan yellow cattle and yellow cattle and the intensive feeding of livestock on the plateau.
Collapse
Affiliation(s)
- Yili Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (Y.W.); (Y.W.); (D.R.)
| | - Yu Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (Y.W.); (Y.W.); (D.R.)
| | - Yongli Wen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (Y.W.); (Y.W.); (D.R.)
| | - Liangliang Ma
- College of Grassland Resources, Southwest Minzu University, Chengdu 610041, China;
| | - Daojie Riqing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (Y.W.); (Y.W.); (D.R.)
| | - Mingfeng Jiang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (Y.W.); (Y.W.); (D.R.)
| |
Collapse
|
2
|
Li H, Pan C, Wang Y, Li J, Zhang Z, Shahzad K, Mustafa SB, Wang Y, Zhao W. Analysis of histomorphology and SERNINA5 gene expression in different regions of epididymis of cattleyak. J Mol Histol 2024; 55:825-834. [PMID: 39105940 DOI: 10.1007/s10735-024-10234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
The molecular mechanism of sterility in cattleyak is still unresolved. The related factors of infertility in cattleyak were studied by tissue section, SERPINA5 gene cloning and bioinformatics technology. Tissue sections of the epididymis showed poorly structured and disorganized epithelial cells in the corpus of the epididymis compared to the caput of the epididymis, while in the cauda part of the epididymis, the extra basal smooth muscle was thinner, the surface of the epithelial lumen was discontinuous and the epithelium was markedly degenerated. The results of gene cloning showed that the coding sequence (CDS) region of the SERPINA5 gene in cattleyak was 1215 bp in length, encoding a total of 404 amino acids, of which the isoleucine content was the highest, accounting for a total of 49 amino acids (12.1%). The results of real-time fluorescence quantitative PCR (qPCR) showed that the expression of the SERPINA5 gene in the epididymis caput in cattleyak was significantly higher than that in the corpus and cauda (P < 0.05), but there were no significant differences between the corpus and cauda. In the current study, histological and bioinformatics analysis, physicochemical properties, and the expression analysis of the SERPINA5 gene in different regions of the epididymis in cattleyak were carried out to explore the biological complications of cattleyak infertility.
Collapse
Affiliation(s)
- Haiyan Li
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621000, China
| | - Cheng Pan
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621000, China
| | - Yifei Wang
- Department of Clinical Laboratory, Sichuan Mianyang 404 Hospital, Mianyang, Sichuan, 621000, China
| | - Jingjing Li
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621000, China
| | - Zhenzhen Zhang
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621000, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan
| | - Shehr Bano Mustafa
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621000, China
| | - Ye Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, 610057, China.
| | - Wangsheng Zhao
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621000, China.
| |
Collapse
|
3
|
Luo R, DanWu, Luo Z, Li Y, Zhong Y, Li K, Bai Z, Gongga, Suolangsizhu. Alterations in the diversity and composition of the fecal microbiota of domestic yaks (Bos grunniens) with pasture alteration-induced diarrhea. BMC Vet Res 2024; 20:355. [PMID: 39123170 PMCID: PMC11312408 DOI: 10.1186/s12917-024-04196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Diarrhea is a common issue in domestic yaks (Bos grunniens) that can occur with pasture alterations and significantly impacts growth performance. Previous research has examined the microbiota of diarrhetic yaks; however, the structural changes in gut bacterial community and microbial interactions in yaks with grassland alteration-induced diarrhea remain poorly understood. To explore variations in gut microbiota homeostasis among yaks suffering from diarrhea, fecal microbiota diversity and composition were analyzed using 16 S rRNA amplicon sequencing. Gut fecal microbiota diversity was lower in diarrhetic yaks than in non-diarrhetic yaks. Furthermore, the bacterial community composition (including that of Proteobacteria and Actinobacteria) in the feces of diarrhetic yaks displayed significant alterations. Co-occurrence network analysis further underscored the compromised intestinal flora stability in yaks with diarrhea relative to that in non-diarrhetic yaks. Interestingly, the abundance of beneficial bacteria, such as Lachnospiraceae_AC2044_group and Lachnospiraceae_NK4A136_group, were decreased in yaks with diarrhea, and the reductions were negatively correlated with the fecal water content. Collectively, these findings indicate that diminished microbial stability and increased abundance of certain bacteria in the gut may contribute to diarrhea occurrence in yaks.
Collapse
Affiliation(s)
- Runbo Luo
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China
| | - DanWu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhengzhong Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yupeng Li
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China
| | - Yanan Zhong
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China
| | - Kexin Li
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China
| | - Zhanchun Bai
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China
| | - Gongga
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China
| | - Suolangsizhu
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China.
| |
Collapse
|
4
|
Bai H, Zhang H, Wang C, Lambo MT, Li Y, Zhang Y. Effects of altering the ratio of C16:0 and cis-9 C18:1 in rumen bypass fat on growth performance, lipid metabolism, intestinal barrier, cecal microbiota, and inflammation in fattening bulls. J Anim Sci Biotechnol 2024; 15:94. [PMID: 38971799 PMCID: PMC11227724 DOI: 10.1186/s40104-024-01052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/20/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND C16:0 and cis-9 C18:1 may have different effects on animal growth and health due to unique metabolism in vivo. This study was investigated to explore the different effects of altering the ratio of C16:0 and cis-9 C18:1 in fat supplements on growth performance, lipid metabolism, intestinal barrier, cecal microbiota, and inflammation in fattening bulls. Thirty finishing Angus bulls (626 ± 69 kg, 21 ± 0.5 months) were divided into 3 treatments according to the randomized block design: (1) control diet without additional fat (CON), (2) CON + 2.5% palmitic acid calcium salt (PA, 90% C16:0), and (3) CON + 2.5% mixed fatty acid calcium salt (MA, 60% C16:0 + 30% cis-9 C18:1). The experiment lasted for 104 d, after which all the bulls were slaughtered and sampled for analysis. RESULTS MA tended to reduce 0-52 d dry matter intake compared to PA (DMI, P = 0.052). Compared with CON and MA, PA significantly increased 0-52 d average daily gain (ADG, P = 0.027). PA tended to improve the 0-52 d feed conversion rate compared with CON (FCR, P = 0.088). Both PA and MA had no significant effect on 52-104 days of DMI, ADG and FCR (P > 0.05). PA tended to improve plasma triglycerides compared with MA (P = 0.077), significantly increased plasma cholesterol (P = 0.002) and tended to improve subcutaneous adipose weight (P = 0.066) when compared with CON and MA. Both PA and MA increased visceral adipose weight compared with CON (P = 0.021). Only PA increased the colonization of Rikenellaceae, Ruminococcus and Proteobacteria in the cecum, and MA increased Akkermansia abundance (P < 0.05). Compared with CON, both PA and MA down-regulated the mRNA expression of Claudin-1 in the jejunum (P < 0.001), increased plasma diamine oxidase (DAO, P < 0.001) and lipopolysaccharide (LPS, P = 0.045). Compared with CON and MA, PA down-regulated the ZO-1 in the jejunum (P < 0.001) and increased plasma LPS-binding protein (LBP, P < 0.001). Compared with CON, only PA down-regulated the Occludin in the jejunum (P = 0.013). Compared with CON, PA and MA significantly up-regulated the expression of TLR-4 and NF-κB in the visceral adipose (P < 0.001) and increased plasma IL-6 (P < 0.001). Compared with CON, only PA up-regulated the TNF-α in the visceral adipose (P = 0.01). Compared with CON and MA, PA up-regulated IL-6 in the visceral adipose (P < 0.001), increased plasma TNF-α (P < 0.001), and reduced the IgG content in plasma (P = 0.035). Compared with CON, PA and MA increased C16:0 in subcutaneous fat and longissimus dorsi muscle (P < 0.05), while more C16:0 was also deposited by extension and desaturation into C18:0 and cis-9 C18:1. However, neither PA nor MA affected the content of cis-9 C18:1 in longissimus dorsi muscle compared with CON (P > 0.05). CONCLUSIONS MA containing 30% cis-9 C18:1 reduced the risk of high C16:0 dietary fat induced subcutaneous fat obesity, adipose tissue and systemic low-grade inflammation by accelerating fatty acid oxidative utilization, improving colonization of Akkermansia, reducing intestinal barrier damage, and down-regulating NF-κB activation.
Collapse
Affiliation(s)
- Haixin Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Haosheng Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Congwen Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650500, China
| | - Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
5
|
Wang Y, Zhou J, Cao N, Wang L, Tu J, Zeng X, Qiao S. Dietary crude protein time-dependently modulates the bacterial community and metabolites and changes dietary nutrient efficiency in growing pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:1-10. [PMID: 38434773 PMCID: PMC10904165 DOI: 10.1016/j.aninu.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 03/05/2024]
Abstract
The reduced nutrient digestibility of low-protein (LP) diets has been shown to be caused by the weakened fermentative capacity of the post-gut flora. The dynamic regulation of dietary protein contents on post-gut microbial population and fermentative metabolism is unclear. Twelve growing barrows (19.9 ± 0.8 kg) fitted with a T-cannula at the blind end of the cecum were randomly administered a high-protein (HP, 21.5% crude protein [CP]) diet or an LP (15.5% CP) diet for 28 d. The cecal content and feces were collected at d 1, 14, and 28 of the experiment for microflora structures and metabolite concentrations analysis. The nutrient digestibility coefficient and plasma biochemical parameters were also determined. Compared with the HP treatment, the LP treatment showed decreased plasma urea nitrogen concentration and apparent total tract digestibility of dry matter, gross energy, and CP (P < 0.01). In addition, urinary nitrogen losses, total nitrogen losses, and daily nitrogen retention in the LP treatment were lower than those in the HP treatment (P < 0.01), and the nitrogen retention-to-nitrogen intake ratio in the LP treatment was increased (P < 0.01). The HP group showed increased cecal total short-chain fatty acids (SCFA) concentration and fecal propionate, butyrate, and total SCFA concentrations (P < 0.05) on d 14 and 28, which may be mainly related to the elevated abundance of SCFA-producing bacteria, such as Ruminococcus, Lactobacillus, and Prevotella (P < 0.05). Probiotics, such as Bifidobacterium, Bacteroidales S24-7, and Rikenella, enriched in the LP treatment possibly contributed to reduced plasma endotoxin content. The differences in the abundances of almost all the above-mentioned flora appeared on d 28 but not d 14. Likewise, differences in the Simpson and Shannon indices and clustering patterns of the microbiota between treatments were also only observed on d 28. To sum up, in a time-dependent manner, the LP diet increased probiotics with gut-improving functions and decreased SCFA-producing bacteria, which may cause enhanced intestine health and reduced nutrient digestibility.
Collapse
Affiliation(s)
- Yuming Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - Junyan Zhou
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - Ning Cao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lu Wang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - Jiayu Tu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Mo Z, Zhan M, Yang X, Xie P, Xiao J, Cao Y, Xiao H, Song M. Fermented dietary fiber from soy sauce residue exerts antidiabetic effects through regulating the PI3K/AKT signaling pathway and gut microbiota-SCFAs-GPRs axis in type 2 diabetic mellitus mice. Int J Biol Macromol 2024; 270:132251. [PMID: 38729488 DOI: 10.1016/j.ijbiomac.2024.132251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
The gut plays a crucial role in the development and progression of metabolic disorders, particularly in relation to type 2 diabetes mellitus (T2DM). While a high intake of dietary fiber is inversely associated with the risk of T2DM, the specific effects of various dietary fibers on T2DM are not fully understood. This study investigated the anti-diabetic properties of fermented dietary fiber (FDF) derived from soy sauce residue in T2DM mice, demonstrating its ability to lower blood glucose levels and ameliorate insulin resistance. Our findings revealed that FDF could enhance hepatic glucose metabolism via the IRS-1/PI3K/AKT/mTOR pathway. Additionally, the anti-diabetic effect of FDF was correlated with alterations in gut microbiota composition in T2DM mice, promoting a healthier gut environment. Specifically, FDF increased the abundance of beneficial flora such as Dubosiella, Butyricimonas, Lachnospiraceae_NK4A136_group, Lactobacillus and Osillibacter, while reducing harmful bacteria including Bilophila, Parabacteroides and Enterorhabdus. Further analysis of microbial metabolites, including short-chain fatty acids (SCFAs) and bile acids (BAs), provided evidence of FDF's regulatory effects on cecal contents in T2DM mice. Importantly, FDF treatment significantly restored the G-protein-coupled receptors (GPRs) expression in the colon of T2DM mice. In conclusion, our study suggests that the anti-diabetic effects of FDF are associated with the regulation of both the liver-gut axis and the gut microbiota-SCFAs-GPRs axis.
Collapse
Affiliation(s)
- Zheqi Mo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Minmin Zhan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshuang Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Peichun Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Du X, Zhou L, Li Y, Zhang F, Wang L, Yao J, Chen X, Liu S, Cao Y. Effects of yak rumen anaerobic fungus Orpinomyces sp. YF3 fermented on in vitro wheat straw fermentation and microbial communities in dairy goat rumen fluid, with and without fungal flora. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 38685575 DOI: 10.1111/jpn.13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Rumen fungi play an essential role in the breakdown of dietary fibrous components, facilitating the provision of nutrients and energy to the host animals. This study investigated the fermentation characteristics and effects on rumen microbiota of yak rumen anaerobic fungus Orpinomyces sp. YF3 in goat rumen fluid, both with and without fungal flora, utilizing anaerobic fermentation bottles. Crushed and air-dried wheat straw served as the fermentation substrate, and cycloheximide was used to eradicate microorganisms from the rumen fluid of dairy goats. The experiment compromised four treatment groups (2×2 factorial design): control (C); yak fungus group (CF, Orpinomyces sp. YF3); goat fungi eliminated group (CA, antibiotic: 0.25 mg/mL cycloheximide); goat fungi eliminated+yak fungus group (CAF). Each treatment had six replicates. Fermentation characteristics and microbial composition of the fermentation media were analyzed using one-way analysis of variance and high-throughput sequencing technology. The findings revealed that in the Orpinomyces sp. YF3 addition group (CF and CAF groups), there were significant increases in ammonia nitrogen concentration by 70%, total volatile fatty acids (VFA) by 53%, as well as acetate, isobutyrate, and valerate concentrations, and the ratio of acetate to propionate (p < 0.05), while the propionate proportion declined by 13%, alongside a reduction of butyrate concentration (p < 0.05). Similarly, in the CF and CAF groups, there were a notable increase in the relative abundance of Bacteroidota, Synergistota, Desulfobacterota, Actinobacteria, and Fusobacteriota, alongside a decrease in the relative abundance of Fibrobacterota and Proteobacteria (p < 0.05). Bacteria exhibiting increased relative abundance were positively correlated with the activity of carboxymethyl cellulase and avicelase, total VFA concentration, and acetate proportion, while showing a negatively correlation with propionate proportion. In conclusion, supplementing rumen fermentation media with yak rumen anaerobic fungus Orpinomyces sp. YF3 led to an increase in bacteria associated with fibre degradation and acetic acid production, a decrease in propionate-producing bacteria, enhanced the activity of plant cell wall degrading enzymes, and promoted cellulose degradation, ultimately elevating total VAF concentration and acetate proportion. This presents a novel approach to enhance roughage utilization in ruminants.
Collapse
Affiliation(s)
- Xueer Du
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Linlin Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lamei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinghua Chen
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Shimin Liu
- UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Huang C, Feng F, Dai R, Ren W, Li X, Zhaxi T, Ma X, Wu X, Chu M, La Y, Bao P, Guo X, Pei J, Yan P, Liang C. Whole-transcriptome analysis of longissimus dorsi muscle in cattle-yaks reveals the regulatory functions of ADAMTS6 gene in myoblasts. Int J Biol Macromol 2024; 262:129985. [PMID: 38342263 DOI: 10.1016/j.ijbiomac.2024.129985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Cattle-yak, which is the hybrid F1 generation of cattle and yak, demonstrates better production performance compared to yak. However, there is limited research on the molecular mechanisms responsible for the muscle development of cattle-yak. To address this knowledge gap, a comprehensive transcriptomic survey of the longissimus dorsi muscle in cattle-yak was conducted. Three transcript types, namely lncRNAs, miRNAs, and circRNAs, along with protein-coding genes were characterized at two developmental stages (6 m, 18 m) of cattle-yak. The results revealed significant enrichment of these transcripts into pathways related to myoblast differentiation and muscle development signaling. Additionally, the study identified the TCONS00024465/circHIPK3-bta-miR-499-ADAMTS6 regulatory network, which may play a crucial role in the muscle development of cattle-yak by combining the transcriptome data of yak and constructing the ceRNA co-expression network. HEK 293 T cells were used to validate that TCONS00024465 and circHIPK3 are located upstream of bta-miR-499, and can competitively bind to bta-miR-499 as ceRNA. The study also verified that ADAMTS6 regulates skeletal muscle development by inhibiting myoblast proliferation, promoting myoblast differentiation, and positively regulating the apoptosis of myoblasts. Taken together, this study provides new insights into the advantages of cattle-yak production performance and offers a molecular basis for further research on muscle development.
Collapse
Affiliation(s)
- Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Fen Feng
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Wenwen Ren
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xinyi Li
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ta Zhaxi
- Animal Husbandry and Veterinary Workstation in Qilian County, Qilian 810400, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| |
Collapse
|
9
|
Wang D, Tang G, Wang Y, Yu J, Chen L, Chen J, Wu Y, Zhang Y, Cao Y, Yao J. Rumen bacterial cluster identification and its influence on rumen metabolites and growth performance of young goats. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:34-44. [PMID: 37771855 PMCID: PMC10522951 DOI: 10.1016/j.aninu.2023.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/07/2023] [Accepted: 05/15/2023] [Indexed: 09/30/2023]
Abstract
Enterotypes, which are defined as bacterial clusters in the gut microbiome, have been found to have a close relationship to host metabolism and health. However, this concept has never been used in the rumen, and little is known about the complex biological relationships between ruminants and their rumen bacterial clusters. In this study, we used young goats (n = 99) as a model, fed them the same diet, and analyzed their rumen microbiome and corresponding bacterial clusters. The relationships between the bacterial clusters and rumen fermentation and growth performance in the goats were further investigated. Two bacterial clusters were identified in all goats: the P-cluster (dominated by genus Prevotella, n = 38) and R-cluster (dominated by Ruminococcus, n = 61). Compared with P-cluster goats, R-cluster goats had greater growth rates, concentrations of propionate, butyrate, and 18 free amino acids¸ and proportion of unsaturated fatty acids, but lower acetate molar percentage, acetate to propionate ratio, and several odd and branched chain and saturated fatty acids in rumen fluid (P < 0.05). Several members of Firmicutes, including Ruminococcus, Oscillospiraceae NK4A214 group, and Christensenellaceae R-7 group were significantly higher in the R-cluster, whereas Prevotellaceae members, such as Prevotella and Prevotellaceae UCG-003, were significantly higher in P-cluster (P < 0.01). Co-occurrence networks showed that R-cluster enriched bacteria had significant negative correlations with P-cluster enriched bacteria (P < 0.05). Moreover, we found the concentrations of propionate, butyrate and free amino acids, and the proportions of unsaturated fatty acids were positively correlated with R-cluster enriched bacteria (P < 0.05). The concentrations of acetate, acetate to propionate ratio, and the proportion of odd and branched chain and saturated fatty acids were positively correlated with P-cluster enriched bacteria (P < 0.05). Overall, our results indicated that rumen bacterial clusters can influence rumen fermentation and growth performance of young goats, which may shed light on modulating the rumen microbiome in early life to improve the growth performance of ruminant animals.
Collapse
Affiliation(s)
- Dangdang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guangfu Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yannan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Junjian Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Luyu Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanbo Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuanjie Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
10
|
Klinsawat W, Uthaipaisanwong P, Jenjaroenpun P, Sripiboon S, Wongsurawat T, Kusonmano K. Microbiome variations among age classes and diets of captive Asian elephants (Elephas maximus) in Thailand using full-length 16S rRNA nanopore sequencing. Sci Rep 2023; 13:17685. [PMID: 37848699 PMCID: PMC10582034 DOI: 10.1038/s41598-023-44981-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023] Open
Abstract
Asian elephant (Elephas maximus) is the national symbol of Thailand and linked to Thai history and culture for centuries. The elephant welfare improvement is one of the major components to achieve sustainable captive management. Microbiome inhabiting digestive tracts have been shown with symbiotic relations to host health. This work provided high-resolution microbiome profiles of 32 captive elephants at a species level by utilizing full-length 16S rRNA gene nanopore sequencing. Eleven common uncultured bacterial species were found across elephants fed with solid food including uncultured bacterium Rikenellaceae RC9 gut group, Kiritimatiellae WCHB1-41, Phascolarctobacterium, Oscillospiraceae NK4A214 group, Christensenellaceae R-7 group, Oribacterium, Oscillospirales UCG-010, Lachnospiraceae, Bacteroidales F082, uncultured rumen Rikenellaceae RC9 gut group, and Lachnospiraceae AC2044 group. We observed microbiome shifts along the age classes of baby (0-2 years), juvenile (2-10 years), and adult (> 10 years). Interestingly, we found distinct microbiome profiles among adult elephants fed with a local palm, Caryota urens, as a supplement. Potential beneficial microbes have been revealed according to the age classes and feed diets. The retrieved microbiome data could be provided as good baseline microbial profiles for monitoring elephant health, suggesting further studies towards dietary selection suitable for each age class and the use of local supplementary diets.
Collapse
Affiliation(s)
- Worata Klinsawat
- Conservation Ecology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Pichahpuk Uthaipaisanwong
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supaphen Sripiboon
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Kanthida Kusonmano
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
- Bioinformatics and Systems Biology Program, Schools of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| |
Collapse
|
11
|
Zhang J, Zhang T, Xu D, Zhu M, Luo X, Zhang R, He G, Chen Z, Mei S, Zhou B, Wang K, Zhu E, Cheng Z, Chen C. Plasma Metabolomic Profiling after Feeding Dried Distiller's Grains with Solubles in Different Cattle Breeds. Int J Mol Sci 2023; 24:10677. [PMID: 37445854 DOI: 10.3390/ijms241310677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023] Open
Abstract
Dried distiller's grains with solubles (DDGS) are rich in nutrients and can enhance animals' growth and immunity. However, there are few reports on the effects of a diet of DDGS on plasma metabolism and the related action pathways in domestic animals. In this study, groups of Guanling yellow cattle (GY) and Guanling crossbred cattle (GC) having a basal diet served as the control groups (GY-CG and GC-CG), and DDGS replacing 25% of the diet of GY and GC served as the replacement groups (GY-RG and GC-RG), with three cattle in each group. Plasma samples were prepared for metabolomic analysis. Based on multivariate statistical and univariate analyses, differential metabolites and metabolic pathways were explored. Twenty-nine significantly different metabolites (p < 0.05) were screened in GY-RG compared with those in GY-CG and were found to be enriched in the metabolic pathways, including choline metabolism in cancer, linolenic acid metabolism, and amino acid metabolism. Nine metabolites showed significant differences (p < 0.05) between GC-RG and GC-CG and were mainly distributed in the metabolic pathways of choline metabolism in cancer, glycerophospholipid metabolism, prostate cancer metabolism, and gonadotropin-releasing hormone (GnRH) secretion. These results suggest that a DDGS diet may promote healthy growth and development of experimental cattle by modulating these metabolic pathways. Our findings not only shed light on the nutritional effects of the DDGS diet and its underlying mechanisms related to metabolism but also provide scientific reference for the feed utilization of DDGS.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Tiantian Zhang
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Duhan Xu
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Mingming Zhu
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xiaofen Luo
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Rong Zhang
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Guangxia He
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Ze Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Shihui Mei
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Bijun Zhou
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Kaigong Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Erpeng Zhu
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhentao Cheng
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Wu D, Zhang Z, Shao K, Wang X, Huang F, Qi J, Duan Y, Jia Y, Xu M. Effects of Sodium Butyrate Supplementation in Milk on the Growth Performance and Intestinal Microbiota of Preweaning Holstein Calves. Animals (Basel) 2023; 13:2069. [PMID: 37443869 DOI: 10.3390/ani13132069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of the present study was to investigate the effects of sodium butyrate (SB) supplementation on the growth and intestinal microbiota of preweaning dairy calves. Eighty newborn Holstein calves (56 female and 24 male) were randomly allocated to four treatment groups with 20 calves each (14 female and 6 male). The suckling milk for the four treatments was supplemented with 0, 4.4, 8.8, or 17.6 g/d SB. During the 6-week experiment, dry matter intake was recorded daily, body weight was measured weekly, and rectal fecal samples were collected in the 2nd week. The V3-V4 hypervariable regions of the microbial 16S rRNA were amplified and then sequenced. SB supplementation elevated average daily gains (ADGs) in the first and second weeks. The optimal SB supplementation level for the whole preweaning period was 8.78 g/d, as revealed by analyzing the whole preweaning period ADG using second-order polynomial regression (quadratic) equations. The alpha diversity (Shannon diversity index), beta diversity, core phyla and genera, and function of the intestinal microbiota were affected by SB supplementation. In addition, the Shannon diversity index and core phyla and genera of the intestinal microbiota were correlated with calf growth-related indices. Overall, SB supplementation in suckling milk improved the growth performance and intestinal microbiota development of dairy calves in a quadratic manner, and regression analysis indicated an optimal supplementation level of 8.78 g/d.
Collapse
Affiliation(s)
- Donglin Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhanhe Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Kai Shao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xing Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Fudong Huang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jingwei Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
| | - Yizong Duan
- Shazhou Dairy Co., Ltd., Ulanqab 013750, China
| | - Yang Jia
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ming Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
| |
Collapse
|
13
|
Jiang F, Gao Y, Peng Z, Ma X, You Y, Hu Z, He A, Liao Y. Isoacids supplementation improves growth performance and feed fiber digestibility associated with ruminal bacterial community in yaks. Front Microbiol 2023; 14:1175880. [PMID: 37396385 PMCID: PMC10311502 DOI: 10.3389/fmicb.2023.1175880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction This study was conducted to assess the effect of mixed isoacid (MI) supplementation on fermentation characteristics, nutrient apparent digestibility, growth performance, and rumen bacterial community in yaks. Methods A 72-h in vitro fermentation experiment was performed on an ANKOM RF gas production system. MI was added to five treatments at doses of 0, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% on the dry matter (DM) basis of substrates using a total of 26 bottles (4 bottles per treatment and 2 bottles as the blank). Cumulative gas production was measured at 4, 8, 16, 24, 36, 48, and 72 h. Fermentation characteristics including pH, the concentration of volatile fatty acids (VFAs), ammonia nitrogen (NH3-N), microbial proteins (MCP), and the disappearance rate of dry matter (DMD), neutral detergent fiber (NDFD), and acid detergent fiber (ADFD) were measured after a 72-h in vitro fermentation to determine an optimal MI dose. Fourteen Maiwa male yaks (180-220 kg, 3-4 years old of age) were randomly assigned to the control group (without MI, n = 7) and the supplemented MI group (n = 7, supplemented with 0.3% MI on DM basis) for the 85-d animal experiment. Growth performance, nutrient apparent digestibility, rumen fermentation parameters, and rumen bacterial diversity were measured. Results Supplementation with 0.3% MI achieved the greatest propionate and butyrate content, NDFD and ADFD compared with other groups (P < 0.05). Therefore, 0.3% was used for the animal experiment. Supplementation with 0.3% MI significantly increased the apparent digestibility of NDF and ADF (P < 0.05), and the average daily weight gain of yaks (P < 0.05) without affecting the ruminal concentration of NH3-N, MCP, and VFAs. 0.3% MI induced rumen bacteria to form significantly different communities when compared to the control group (P < 0.05). g__norank_f__Bacteroidales_BS11_gut_group, g__norank_f__Muribaculaceae, g__Veillonellaceae_UCG-001, g__Ruminococcus_gauvreauii_group, g__norank_f__norank_o__RF39 and g__Flexilinea were identified as the biomarker taxa in responding to supplementation with 0.3% MI. Meanwhile, the abundance of g__Flexilinea and g__norank_f__norank_o__RF39 were significantly positively correlated with the NDF digestibility (P < 0.05). Conclusion In conclusion, supplementation with 0.3% MI improved the in vitro rumen fermentation characteristics, feed fiber digestibility, and growth performance in yaks, which was associated with changes of the abundance of g__Flexilinea and g__norank_f__norank_o__RF39.
Collapse
Affiliation(s)
- Fei Jiang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yanhua Gao
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resources Reservation and Utilization, Chengdu, China
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhongli Peng
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resources Reservation and Utilization, Chengdu, China
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiulian Ma
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yinjie You
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Zhibin Hu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Anxiang He
- Institute of Animal Husbandry Science, Ganzi Tibetan Autonomous Prefecture, Kangding, China
| | - Yupeng Liao
- Si Chuan Action Biotech Co., Ltd., Guanghan, China
| |
Collapse
|
14
|
Zhu Y, Pan B, Fei X, Hu Y, Yang M, Yu H, Li J, Xiong X. The Biological Characteristics and Differential Expression Patterns of TSSK1B Gene in Yak and Its Infertile Hybrid Offspring. Animals (Basel) 2023; 13:ani13020320. [PMID: 36670860 PMCID: PMC9854725 DOI: 10.3390/ani13020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/05/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
This study aimed to investigate the spatially and temporally expressed patterns and biological characteristics of TSSK1B in male yaks and explore the potential correlation between TSSK1B and male sterility of the yak hybrid offspring (termed cattle-yak). First, the coding sequence (CDS) of TSSK1B was cloned by RT-PCR, and bioinformatics analysis was conducted with relevant software. Quantitative real-time PCR (RT-qPCR) was employed to detect the expression profile of TSSK1B in various tissues of male adult yaks, the spatiotemporal expression of TSSK1B in different stages of yak testes, and the differential expression of TSSK1B between yak and cattle-yak testes. The cellular localization of TSSK1B was determined by immunohistochemistry (IHC). Furthermore, the methylation status of the TSSK1B promoter region was analyzed by bisulfite-sequencing PCR (BSP). The results showed that TSSK1B was 1235 bp long, including 1104 bp of the CDS region, which encoded 367 amino acids. It was a conserved gene sharing the highest homology with Bos mutus (99.67%). In addition, the bioinformatics analysis revealed that TSSK1B was an unstable hydrophilic protein mainly containing the alpha helix of 34.06% and a random coil of 44.41%, with a transmembrane structure of 29 amino acids long. The RT-qPCR results demonstrated that TSSK1B was specifically expressed in yak testes compared with that in other tissues and especially highly expressed in adult yak testes. On the contrary, TSSK1B was hardly expressed in the testis of adult cattle-yak. IHC confirmed that TSSK1B protein was more strongly expressed in the testes of adult yaks than in their fetal and juvenile counterparts. Interestingly, nearly no expression was observed in the testes of cattle-yak compared with the corresponding testes of yak. Bisulfite-sequencing PCR (BSP) revealed that the methylated CpG sites in the TSSK1B promoter region of cattle-yak was significantly higher than that in the yak. Taken together, this study revealed that TSSK1B was specifically expressed in yak testes and highly expressed upon sexual maturity. Moreover, the rare expression in cattle-yak may be related to the hypermethylation of the promoter region, thereby providing a basis for further studies on the regulatory mechanism of TSSK1B in male cattle-yak sterility.
Collapse
Affiliation(s)
- Yanjin Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Bangting Pan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Xixi Fei
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Yulei Hu
- Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Manzhen Yang
- Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Hailing Yu
- Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
15
|
Xiong L, Pei J, Wang X, Guo S, Guo X, Yan P. Lipidomics and Transcriptome Reveal the Effects of Feeding Systems on Fatty Acids in Yak’s Meat. Foods 2022; 11:foods11172582. [PMID: 36076769 PMCID: PMC9455248 DOI: 10.3390/foods11172582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
The differences of fatty acids in yak’s meat under graze feeding (GF) and stall feeding (SF) regimes and the regulation mechanism of the feeding system on the fatty acids content in yak ’s meat was explored in this study. First, the fatty acids in yak’s longissimus dorsi (LD) muscle were detected by gas liquid chromatography (GLC). Compared with GF yaks, the absolute content of ΣSFAs, ΣMUFAs, ΣUFAs, ΣPUFAs and Σn-6PUFAs in SF yak’s LD were higher, whereas Σn-3PUFAs was lower; the relative content of ΣMUFAs, ΣPUFAs, Σn-3PUFAs and ΣUFAs in SF yak’s LD were lower, whereas ΣSFAs was higher. The GF yak’s meat is healthier for consumers. Further, the transcriptomic and lipidomics profiles in yak’s LD were detected by mRNA-Sequencing (mRNA-Seq) and ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS), respectively. The integrated transcriptomic and lipidomics analysis showed the differences in fatty acids were caused by the metabolism of fatty acids, amino acids, carbohydrates and phospholipids, and were mainly regulated by the FASN, FABP3, PLIN1, SLC16A13, FASD6 and SCD genes in the PPAR signaling pathway. Moreover, the SCD gene was the candidate gene for the high content of ΣMUFA, and FADS6 was the candidate gene for the high content of Σn-3PUFAs and the healthier ratio of Σn-6/Σn-3PUFAs in yak meat. This study provides a guidance to consumers in the choice of yak’s meat, and also established a theoretical basis for improving yak’s meat quality.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xingdong Wang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Shaoke Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
- Correspondence: ; Tel.: +86-0931-2115271
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| |
Collapse
|
16
|
Compromised Hindgut Microbial Digestion, Rather Than Chemical Digestion in the Foregut, Leads to Decreased Nutrient Digestibility in Pigs Fed Low-Protein Diets. Nutrients 2022; 14:nu14142793. [PMID: 35889750 PMCID: PMC9316789 DOI: 10.3390/nu14142793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Reduced nutrient digestibility due to low-protein (LP) diets occurring in the foregut or hindgut of pigs remains unclear. Methods: Growing barrows (21.7 ± 1.7 kg) were allotted into LP and high-protein (HP) diet treatments. Ileal digesta and feces were collected for in vitro cross-fermentation and microbial sequencing, and cross-feeding assessed nutrient digestibility. Results: No difference in foregut digesta flora and nutrient digestibility between treatments was observed. LP diet caused decreased total tract digestibility of dry matter (DM), organic matter (OM), gross energy (GE), neutral detergent fiber (NDF), and acid detergent fiber (ADF) compared with the HP diet (p < 0.05). The fermentation broth from LP diet-fed pigs induced less full fermentation digestion of DM, OM, crude protein, and GE than HP broth (p < 0.05). Additionally, LP broth fermentation presented lower fermentation gas and short-chain fatty acids (SCFAs) generation than HP group (p < 0.05). This situation above may be related to decreased abundances of Lachnospiraceae, Eubacterium_eligens_group, Roseburia, and Ruminococcaceae_UCG-009, which can efficiently ferment nutrients to produce SCFA. Conclusions: Change in the flora caused compromise in hindgut microbial fermentation digestion leads to decreased total tract nutrient digestibility in pigs fed an LP diet.
Collapse
|
17
|
Andrade BGN, Bressani FA, Cuadrat RRC, Cardoso TF, Malheiros JM, de Oliveira PSN, Petrini J, Mourão GB, Coutinho LL, Reecy JM, Koltes JE, Neto AZ, R de Medeiros S, Berndt A, Palhares JCP, Afli H, Regitano LCA. Stool and Ruminal Microbiome Components Associated With Methane Emission and Feed Efficiency in Nelore Beef Cattle. Front Genet 2022; 13:812828. [PMID: 35656319 PMCID: PMC9152269 DOI: 10.3389/fgene.2022.812828] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/02/2022] [Indexed: 12/27/2022] Open
Abstract
Background: The impact of extreme changes in weather patterns on the economy and human welfare is one of the biggest challenges our civilization faces. From anthropogenic contributions to climate change, reducing the impact of farming activities is a priority since it is responsible for up to 18% of global greenhouse gas emissions. To this end, we tested whether ruminal and stool microbiome components could be used as biomarkers for methane emission and feed efficiency in bovine by studying 52 Brazilian Nelore bulls belonging to two feed intervention treatment groups, that is, conventional and by-product-based diets. Results: We identified a total of 5,693 amplicon sequence variants (ASVs) in the Nelore bulls’ microbiomes. A Differential abundance analysis with the ANCOM approach identified 30 bacterial and 15 archaeal ASVs as differentially abundant (DA) among treatment groups. An association analysis using Maaslin2 software and a linear mixed model indicated that bacterial ASVs are linked to the host’s residual methane emission (RCH4) and residual feed intake (RFI) phenotype variation, suggesting their potential as targets for interventions or biomarkers. Conclusion: The feed composition induced significant differences in both abundance and richness of ruminal and stool microbial populations in ruminants of the Nelore breed. The industrial by-product-based dietary treatment applied to our experimental groups influenced the microbiome diversity of bacteria and archaea but not of protozoa. ASVs were associated with RCH4 emission and RFI in ruminal and stool microbiomes. While ruminal ASVs were expected to influence CH4 emission and RFI, the relationship of stool taxa, such as Alistipes and Rikenellaceae (gut group RC9), with these traits was not reported before and might be associated with host health due to their link to anti-inflammatory compounds. Overall, the ASVs associated here have the potential to be used as biomarkers for these complex phenotypes.
Collapse
Affiliation(s)
- Bruno G N Andrade
- Embrapa Southeast Livestock, São Carlos, Brazil.,Department of Computer Science, Munster Technological University, MTU/ADAPT, Cork, Ireland
| | | | - Rafael R C Cuadrat
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | | | | | | | - Juliana Petrini
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - Gerson B Mourão
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - Luiz L Coutinho
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | | | | | | | | - Haithem Afli
- Department of Computer Science, Munster Technological University, MTU/ADAPT, Cork, Ireland
| | | |
Collapse
|
18
|
Fan C, Zhang L, Jia S, Tang X, Fu H, Li W, Liu C, Zhang H, Cheng Q, Zhang Y. Seasonal variations in the composition and functional profiles of gut microbiota reflect dietary changes in plateau pikas. Integr Zool 2022; 17:379-395. [PMID: 35051309 PMCID: PMC9305894 DOI: 10.1111/1749-4877.12630] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Seasonal variations in gut microbiota of small mammals and how it is influenced by environmental variables is relatively poorly understood. We sampled 162 wild plateau pikas (Ochotona curzoniae) in four seasons over two and a half years and recorded the air temperature, precipitation, and nutrient content in edible vegetation at the sampling site. After conducting 16S rRNA and shotgun metagenomic sequencing, we found that the highest alpha diversity, the relative abundance of Firmicutes, and the simplest co-occurrence network occurred in winter, whereas that the highest relative abundance of Proteobacteria and the most complex network structure was observed in spring. The highest relative abundance of Verrucomicrobiota and Spirochaetota were seen in summer and autumn, respectively. Air temperature, precipitation, and the contents of crude protein, crude fiber, and polysaccharide in vegetation had significant effects on the seasonal changes in gut microbiota. Diet contributed more to microbial variation than climatic factors. Metagenomic analysis revealed that the amino acid metabolism pathway and axillary activity enzymes were most abundant in summer, while abundance of carbohydrate-binding modules and carbohydrate esterases were highest in spring. These microbial variations were related to the changes in dietary nutrition, indicating that gut microbiota of plateau pika contribute to the efficient use of food resources. This study provides new evidence of how external environmental factors affect the intestinal environment of small mammals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,College of Life Sciences, Qufu Normal University, Qufu, 273165, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| | - Chuanfa Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| |
Collapse
|
19
|
Jiang Y, Dai P, Dai Q, Ma J, Wang Z, Hu R, Zou H, Peng Q, Wang L, Xue B. Effects of the higher concentrate ratio on the production performance, ruminal fermentation, and morphological structure in male cattle-yaks. Vet Med Sci 2021; 8:771-780. [PMID: 34918881 PMCID: PMC8959305 DOI: 10.1002/vms3.678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background The present study evaluated the effects of the different concentrate‐to‐forage ratio on the parameters of production, ruminal fermentation, blood biochemical indices, and ruminal epithelial morphological structure of the male cattle‐yaks. Methods Eight male cattle‐yaks (280 ± 10 kg of body weight) were randomly divided into the high concentrate (HighC, 70% concentrate feeds on a dry matter basis) and low concentrate (LowC, 50% concentrate feeds on a dry matter basis) groups. All the animals were regularly provided rations twice a day at 08:00 and 16:00 h and had free access to water. The experiment lasted for 37 days. Results The dry matter intake and average daily gain of the HighC group were higher (p < 0.05) than those of LowC group. Moreover, a high concentrate diet was found to significantly increase (p < 0.05) the total volatile fatty acid (TVFA) production, and the ratio of propionate and butyrate in TVFA. On the contrary, the ruminal pH, the ratio of isobutyrate and isovalerate, and the acetate‐to‐propionate were significantly decreased (p < 0.05) after high concentrate feeding. The lipopolysaccharide concentrations of the ruminal fluid and plasma in the HighC group were higher (p < 0.05) than those of the LowC group. The results of the ruminal histomorphology showed the rumen to possess an inflammatory reaction. Conclusion These findings revealed that upon higher dry matter intake and average daily gain, high concentrate feeding altered the rumen fermentation and morphology, inducing the ruminal inflammation of the cattle‐yak.
Collapse
Affiliation(s)
- Yahui Jiang
- College of Animal Science and Technology, Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Peng Dai
- Animal Nutrition Institute, Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qindan Dai
- Animal Nutrition Institute, Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- Animal Nutrition Institute, Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhisheng Wang
- Animal Nutrition Institute, Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Rui Hu
- Animal Nutrition Institute, Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Huawei Zou
- Animal Nutrition Institute, Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Quanhui Peng
- Animal Nutrition Institute, Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lizhi Wang
- Animal Nutrition Institute, Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bai Xue
- Animal Nutrition Institute, Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
20
|
Hu C, Ding L, Jiang C, Ma C, Liu B, Li D, Degen AA. Effects of Management, Dietary Intake, and Genotype on Rumen Morphology, Fermentation, and Microbiota, and on Meat Quality in Yaks and Cattle. Front Nutr 2021; 8:755255. [PMID: 34859030 PMCID: PMC8632495 DOI: 10.3389/fnut.2021.755255] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
Traditionally, yaks graze only natural grassland, even in harsh winters. Meat from grazing yaks is considered very healthy; however, feedlot fattening, which includes concentrate, has been introduced. We questioned whether this change in management and diet would have an impact on the rumen and meat quality of yaks. This study examined the morphology, fermentation, and microbiota of the rumen and the quality of meat of three groups of bovines: (1) grazing yaks (GYs, 4-year olds), without dietary supplements; (2) yaks (FYs, 2.5-year olds) feedlot-fattened for 5 months after grazing natural pasture; and (3) feedlot-fattened cattle (FC, Simmental, 2-year olds). This design allowed us to determine the role of diet (with and without concentrate) and genotype (yaks vs. cattle) on variables measured. Ruminal papillae surface area was greater in the FYs than in the GYs (P = 0.02), and ruminal microbial diversity was greater but richness was lesser in the GYs than in the FC and FYs. Concentrations of ruminal volatile fatty acids were greater in the yaks than in the cattle. In addition, both yak groups had higher protein and lower fat contents in meat than the FC. Meat of GY had a lower n6:n3 ratio than FY and FC, and was the only group with a ratio below r, which is recommended for healthy food. Essential amino acids (EAA), as a proportion of total AA and of non-essential AA of yak meat, met WHO criteria for healthy food; whereas FC did not.
Collapse
Affiliation(s)
- Changsheng Hu
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Luming Ding
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, Xining, China
| | - Cuixia Jiang
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chengfang Ma
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Botao Liu
- Gansu Devotion Biotechnology Co., Ltd., Zhangye, China
| | - Donglin Li
- Qinghai Qilian Yida Meat Co., Ltd., Qinghai, China
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|