1
|
Devi MB, Bhattacharya A, Kumar A, Singh CT, Das S, Sarma HK, Mukherjee AK, Khan MR. Potential probiotic Lactiplantibacillus plantarum strains alleviate TNF-α by regulating ADAM17 protein and ameliorate gut integrity through tight junction protein expression in in vitro model. Cell Commun Signal 2024; 22:520. [PMID: 39468700 PMCID: PMC11514838 DOI: 10.1186/s12964-024-01900-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Lactiplantibacillus species are extensively studied for their ability to regulate host immune responses and functional therapeutic potentials. Nevertheless, there is a lack of understanding on the mechanisms of interactions with the hosts during immunoregulatory activities. METHODS Two Lactiplantibacillus plantarum strains MKMB01 and MKMB02 were tested for probiotic potential following Indian Council of Medical Research (ICMR) guidelines. Human colorectal adenocarcinoma cells such as HT-29, caco-2, and human monocytic cell THP-1 were also used to study the potential of MKMB01 and MKMB02 in regulating the host immune response when challenged with enteric pathogen Salmonella enterica typhimurium. Cells were pre-treated with MKMB01 and MKMB02 for 4 h and then stimulated with Salmonella. qRT-PCR and ELISA were used to analyze the genes and protein expression. Confocal microscopy and field emission scanning electron microscopy (FESEM) were used to visualize the effects. An Agilent Seahorse XF analyzer was used to determine real-time mitochondrial functioning. RESULTS Both probiotic strains could defend against Salmonella by maintaining gut integrity via expressing tight junction proteins (TJPs), MUC-2, and toll-like receptors (TLRs) negative regulators such as single Ig IL-1-related receptor (SIGIRR), toll-interacting protein (Tollip), interleukin-1 receptor-associated kinase (IRAK)-M, A20, and anti-inflammatory transforming growth factor-β and interleukin-10. Both strains also downregulated the expression of pro-inflammatory cytokines/chemokines interleukin-1β, monocyte chemoattractant protein (MCP)-1, tumor necrosis factor-alpha (TNF-α), interleukin 6, and nitric oxide (NO). Moreover, TNF-α sheddase protein, a disintegrin and metalloproteinase domain 17 (ADAM17), and its regulator iRhom2 were downregulated by both strains. Moreover, the bacteria also ameliorated Salmonella-induced mitochondrial dysfunction by restoring bioenergetic profiles, such as non-mitochondrial respiration, spare respiratory capacity (SRC), basal respiration, adenosine triphosphate (ATP) production, and maximal respiration. CONCLUSIONS MKMB01 and MKMB02 can reduce pathogen-induced gut-associated disorders and therefore should be further explored for their probiotic potential.
Collapse
Affiliation(s)
- M Bidyarani Devi
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
- Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - Anupam Bhattacharya
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
| | - Arun Kumar
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
| | - Chingtham Thanil Singh
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Santanu Das
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
| | - Hridip Kumar Sarma
- Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
- Microbial Biotechnology and Protein Research laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Mojibur R Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India.
| |
Collapse
|
2
|
Cui Y, Wang D, Zhang L, Qu X. Research progress on the regulatory mechanism of biofilm formation in probiotic lactic acid bacteria. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39244761 DOI: 10.1080/10408398.2024.2400593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Probiotic lactic acid bacteria (LAB) must undergo three key stages of testing, including food processing, storage, and gastrointestinal tract environment, their beneficial effects could exert. The biofilm formation of probiotic LAB is helpful for improving their stress resistances, survival rates, and colonization abilities under adverse environmental conditions, laying an important foundation for their probiotic effects. In this review, the formation process, the composition and function of basic components of probiotic LAB biofilm have been summarized. This review focuses on the regulatory mechanism of probiotic LAB biofilm formation. In addition, the characteristics and related mechanisms of probiotics in biofilm state have been analyzed to guide the application of probiotic LAB biofilms in the field of health and food. The biofilm formation of LAB is an extremely complex process involving multiple regulatory factors. Besides quorum sensing (QS), other regulatory factors are not yet fully understood. The probiotic LAB in biofilm state exhibit superior survival rate, adhesion performance, and immunomodulation ability, attribute to various metabolic processes, including stress response, exopolysaccharide (EPS) metabolism, amino acid and protein metabolisms, etc. The understanding about regulatory mechanism of biofilm formation of different probiotic species and strains will accelerate the development and application of probiotics products.
Collapse
Affiliation(s)
- Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Dongqi Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| |
Collapse
|
3
|
Narang A, Rashid M, Thakur S, Jain SK, Kaur A, Kaur S. Acute Pre- and Post-administration of Lactiplantibacillus plantarum 2034 and Its Secretory Metabolites Ameliorates Hyperglycaemia, Hyperlipidaemia, and Oxidative Stress in Diabetic Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10343-y. [PMID: 39150651 DOI: 10.1007/s12602-024-10343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
The global prevalence rate of diabetes in 2021 was 6.1% making diabetes one of the top 10 causes of death. Prolonged use of antidiabetic medications is associated with various side effects; therefore, alternative treatment strategies for diabetes need exploration. The antidiabetic properties of Lactiplantibacillus plantarum 2034 was explored both in in vitro and in vivo studies. Secretory metabolites of probiotic L. plantarum 2034 exhibited alpha-glucosidase, alpha-amylase, and lipase inhibitory activities, in vitro. Further, the antidiabetic efficacy of 2034 was evaluated in streptozotocin-nicotinamide-induced diabetic rats. In the therapeutic model, oral administration of L. plantarum resulted in normalization of body weight, fasting blood glucose, total cholesterol (TC), and liver enzymes, and significant (p < 0.05) reduction in insulin and triglyceride (TG) levels. Histological evaluation of pancreas, liver, and kidney showed restoration of normal architecture in probiotic-treated group. Similarly, in a preventive + therapeutic model, 14 days of pre-administration of 2034 in pre, pre + post, and cell-free supernatant resulted in significant reduction in glucose, TG, TC, and liver biochemistry of diabetic rats as compared to untreated diabetic rats. An oral glucose tolerance test showed that the glucose levels normalized within 90 min in all the treated groups. Further, the oxidative stress parameters were also studied that showed that in all the treated groups, the concentration of antioxidant enzymes significantly (p < 0.05) increased as compared to diabetic untreated rats. Thus, administration of L. plantarum 2034 and its metabolites successfully ameliorated hyperglycaemia and hypercholesterolemia in both the models probably due to inhibition of gut enzymes and by increasing the concentration of liver antioxidant enzymes.
Collapse
Affiliation(s)
- Anmol Narang
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Muzamil Rashid
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Amarjeet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
4
|
Saini P, Ayyanna R, Kumar R, Bhowmick SK, Bhaskar V, Dey B. Restriction of growth and biofilm formation of ESKAPE pathogens by caprine gut-derived probiotic bacteria. Front Microbiol 2024; 15:1428808. [PMID: 39135871 PMCID: PMC11317286 DOI: 10.3389/fmicb.2024.1428808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
The accelerated rise in antimicrobial resistance (AMR) poses a significant global health risk, necessitating the exploration of alternative strategies to combat pathogenic infections. Biofilm-related infections that are unresponsive to standard antibiotics often require the use of higher-order antimicrobials with toxic side effects and the potential to disrupt the microbiome. Probiotic therapy, with its diverse benefits and inherent safety, is emerging as a promising approach to prevent and treat various infections, and as an alternative to antibiotic therapy. In this study, we isolated novel probiotic bacteria from the gut of domestic goats (Capra hircus) and evaluated their antimicrobial and anti-biofilm activities against the 'ESKAPE' group of pathogens. We performed comprehensive microbiological, biochemical, and molecular characterizations, including analysis of the 16S-rRNA gene V1-V3 region and the 16S-23S ISR region, on 20 caprine gut-derived lactic acid bacteria (LAB). Among these, six selected Lactobacillus isolates demonstrated substantial biofilm formation under anaerobic conditions and exhibited robust cell surface hydrophobicity and autoaggregation, and epithelial cell adhesion properties highlighting their superior enteric colonization capability. Notably, these Lactobacillus isolates exhibited broad-spectrum growth inhibitory and anti-biofilm properties against 'ESKAPE' pathogens. Additionally, the Lactobacillus isolates were susceptible to antibiotics listed by the European Food Safety Authority (EFSA) within the prescribed Minimum Inhibitory Concentration limits, suggesting their safety as feed additives. The remarkable probiotic characteristics exhibited by the caprine gut-derived Lactobacillus isolates in this study strongly endorse their potential as compelling alternatives to antibiotics and direct-fed microbial (DFM) feed supplements in the livestock industry, addressing the escalating need for antibiotic-free animal products.
Collapse
Affiliation(s)
- Prerna Saini
- National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Repally Ayyanna
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Rishi Kumar
- National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sayan Kumar Bhowmick
- National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Vinay Bhaskar
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Bappaditya Dey
- National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
5
|
Barreto Pinilla CM, Brandelli A, Ataíde Isaia H, Guzman F, Sundfeld da Gama MA, Spadoti LM, Torres Silva E Alves A. Probiotic Potential and Application of Indigenous Non-Starter Lactic Acid Bacteria in Ripened Short-Aged Cheese. Curr Microbiol 2024; 81:202. [PMID: 38829392 DOI: 10.1007/s00284-024-03729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/04/2024] [Indexed: 06/05/2024]
Abstract
There are massive sources of lactic acid bacteria (LAB) in traditional dairy products. Some of these indigenous strains could be novel probiotics with applications in human health and supply the growing needs of the probiotic industry. In this work, were analyzed the probiotic and technological properties of three Lactobacilli strains isolated from traditional Brazilian cheeses. In vitro tests showed that the three strains are safe and have probiotic features. They presented antimicrobial activity against pathogenic bacteria, auto-aggregation values around 60%, high biofilm formation properties, and a survivor of more than 65% to simulated acid conditions and more than 100% to bile salts. The three strains were used as adjunct cultures separately in a pilot-scale production of Prato cheese. After 45 days of ripening, the lactobacilli counts in the cheeses were close to 8 Log CFU/g, and was observed a reduction in the lactococci counts (around -3 Log CFU/g) in a strain-dependent manner. Cheese primary and secondary proteolysis were unaffected by the probiotic candidates during the ripening, and the strains showed no lipolytic effect, as no changes in the fatty acid profile of cheeses were observed. Thus, our findings suggest that the three strains evaluated have probiotic properties and have potential as adjunct non-starter lactic acid bacteria (NSLAB) to improve the quality and functionality of short-aged cheeses.
Collapse
Affiliation(s)
| | - Adriano Brandelli
- Laboratory of Applied Microbiology and Biochemistry, Institute of Food Science and Technology (ICTA), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Henrique Ataíde Isaia
- Laboratory of Applied Microbiology and Biochemistry, Institute of Food Science and Technology (ICTA), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Frank Guzman
- Grupo de Investigación en Epidemiología y Diseminación de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Lima, Perú
| | | | - Leila Maria Spadoti
- Dairy Technology Center (TECNOLAT) of the Food Technology Institute (ITAL), Campinas, São Paulo, Brazil
| | | |
Collapse
|
6
|
Lahmamsi H, Ananou S, Lahlali R, Tahiri A. Lactic acid bacteria as an eco-friendly approach in plant production: Current state and prospects. Folia Microbiol (Praha) 2024; 69:465-489. [PMID: 38393576 DOI: 10.1007/s12223-024-01146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Since the late nineteenth century, the agricultural sector has experienced a tremendous increase in chemical use in response to the growing population. Consequently, the intensive and indiscriminate use of these substances caused serious damage on several levels, including threatening human health, disrupting soil microbiota, affecting wildlife ecosystems, and causing groundwater pollution. As a solution, the application of microbial-based products presents an interesting and ecological restoration tool. The use of Plant Growth-Promoting Microbes (PGPM) affected positive production, by increasing its efficiency, reducing production costs, environmental pollution, and chemical use. Among these microbial communities, lactic acid bacteria (LAB) are considered an interesting candidate to be formulated and applied as effective microbes. Indeed, these bacteria are approved by the European Food Safety Authority (EFSA) and Food and Drug Administration (FDA) as Qualified Presumption of Safety statute and Generally Recognized as Safe for various applications. To do so, this review comes as a road map for future research, which addresses the different steps included in LAB formulation as biocontrol, bioremediation, or plant growth promoting agents from the isolation process to their field application passing by the different identification methods and their various uses. The plant application methods as well as challenges limiting their use in agriculture are also discussed.
Collapse
Affiliation(s)
- Haitam Lahmamsi
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, Route Immouzer BP 2202, Fez, Morocco
- Unité de Phytopathologie, Département de Protection des Plantes, Ecole Nationale d'Agriculture, Km10, Rt Haj Kaddour, BP S/40, 50001, Meknes, Morocco
| | - Samir Ananou
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, Route Immouzer BP 2202, Fez, Morocco
| | - Rachid Lahlali
- Unité de Phytopathologie, Département de Protection des Plantes, Ecole Nationale d'Agriculture, Km10, Rt Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
| | - Abdessalem Tahiri
- Unité de Phytopathologie, Département de Protection des Plantes, Ecole Nationale d'Agriculture, Km10, Rt Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
| |
Collapse
|
7
|
Sadiq FA, De Reu K, Yang N, Burmølle M, Heyndrickx M. Interspecies interactions in dairy biofilms drive community structure and response against cleaning and disinfection. Biofilm 2024; 7:100195. [PMID: 38639000 PMCID: PMC11024912 DOI: 10.1016/j.bioflm.2024.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024] Open
Abstract
Interspecies interactions within a biofilm community influence population dynamics and community structure, which in turn may affect the bacterial stress response to antimicrobials. This study was conducted to assess the impact of interactions between Kocuria salsicia and a three-species biofilm community (comprising Stenotrophomonas rhizophila, Bacillus licheniformis, and Microbacterium lacticum) on biofilm mass, the abundance of individual species, and their survival under a laboratory-scale cleaning and disinfection (C&D) regime. The presence of K. salsicia enhanced the cell numbers of all three species in pairwise interactions. The outcomes derived from summing up pairwise interactions did not accurately predict the bacterial population dynamics within communities of more than two species. In four-species biofilms, we observed the dominance of S. rhizophila and B. licheniformis, alongside a concurrent reduction in the cell counts of K. salsicia and M. lacticum. This pattern suggests that the underlying interactions are not purely non-transitive; instead, a more complex interplay results in the dominance of specific species. We observed that bacterial spatial organization and matrix production in different mixed-species combinations affected survival in response to C&D. Confocal microscopy analysis of spatial organization showed that S. rhizophila localized on the biofilm formed by B. licheniformis and M. lacticum, and S. rhizophila was more susceptible to C&D. Matrix production in B. licheniformis, evidenced by alterations in biofilm mass and by scanning electron microscopy, demonstrated its protective role against C&D, not only for this species itself, but also for neighbouring species. Our findings emphasise that various social interactions within a biofilm community not only affect bacterial population dynamics but also influence the biofilm community's response to C&D stress.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff, UK
| | - Koen De Reu
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - Nan Yang
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
- Ghent University, Department of Pathobiology, Pharmacology and Zoological Medicine, Salisburylaan 133, B-9820, Merelbeke, Belgium
| |
Collapse
|
8
|
Rocchetti MT, Russo P, De Simone N, Capozzi V, Spano G, Fiocco D. Immunomodulatory Activity on Human Macrophages by Cell-Free Supernatants to Explore the Probiotic and Postbiotic Potential of Lactiplantibacillus plantarum Strains of Plant Origin. Probiotics Antimicrob Proteins 2024; 16:911-926. [PMID: 37202651 PMCID: PMC11126452 DOI: 10.1007/s12602-023-10084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Upon dietary administration, probiotic microorganisms can reach as live cells the human gut, where they interact with the microbiota and host cells, thereby exerting a beneficial impact on host functions, mainly through immune-modulatory activities. Recently, attention has been drawn by postbiotics, i.e. non-viable probiotic microbes, including their metabolic products, which possess biological activities that benefit the host. Lactiplantibacillus plantarum is a bacterial species that comprises recognised probiotic strains. In this study, we investigated in vitro the probiotic (and postbiotic) potential of seven L. plantarum strains, including five newly isolated from plant-related niches. The strains were shown to possess some basic probiotic attributes, including tolerance to the gastrointestinal environment, adhesion to the intestinal epithelium and safety. Besides, their cell-free culture supernatants modulated cytokine patterns in human macrophages in vitro, promoting TNF-α gene transcription and secretion, while attenuating the transcriptional activation and secretion of both TNF-α and IL-8 in response to a pro-inflammatory signal, and enhancing the production of IL-10. Some strains induced a high IL-10/IL-12 ratio that may correlate to an anti-inflammatory capacity in vivo. Overall, the investigated strains are good probiotic candidates, whose postbiotic fraction exhibits immunomodulatory properties that need further in vivo studies. The main novelty of this work consists in the polyphasic characterisation of candidate beneficial L. plantarum strains obtained from relatively atypical plant-associated niches, by an approach that explores both probiotic and postbiotic potentials, in particular studying the effect of microbial culture-conditioned media on cytokine pattern, analysed at both transcriptional and secretion level in human macrophages.
Collapse
Affiliation(s)
| | - Pasquale Russo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Nicola De Simone
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, C/O CS-DAT, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
9
|
Kostelac D, Dolenec F, Markovinović AB, Markov K, Bursać Kovačević D, Frece J. The Application of Probiotic Bacteria from Strawberry ( Fragaria ananassa × Duch.) in the Fermentation of Strawberry Tree Fruit ( Arbutus unedo L.) Extract. Microorganisms 2024; 12:1000. [PMID: 38792829 PMCID: PMC11124331 DOI: 10.3390/microorganisms12051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The search for unexplored plant resources that would provide a good basis for the development of novel probiotic functional foods is rapidly increasing. In this context, the strawberry tree fruit (Arbutus unedo L.) is particularly interesting, as it is rich in numerous antioxidant bioactive compounds that have been shown to be beneficial to health, but have not yet found industrial applications. In this work, the probiotic characterization of lactic acid bacteria strain Lactiplantibacillus plantarum DB2, isolated from strawberries (Fragaria ananassa × Duch.), was performed. The tested strain proved to be safe to use, displaying no antibiotic resistance or hemolytic activity. Due to its proven probiotic potential during simulated gastrointestinal transit, its antimicrobial activity, and its coaggregation with pathogens, it was selected for fermentation of an aqueous Arbutus unedo L. extract, which was subsequently microencapsulated and freeze-dried to extend its shelf life and preserve its functional properties. The antioxidant activity of the ferment obtained was maintained (80%), while after microencapsulation and freeze-drying, about 50% and 20% of the antioxidant activity was retained, respectively. In conclusion, this study demonstrates for the first time the application of probiotics isolated from strawberries in the fermentation of strawberry tree extract and monitors the antioxidant activity during post-fermentation formulation, paving the way for a potential industrial application of this underutilized plant.
Collapse
Affiliation(s)
| | | | | | | | | | - Jadranka Frece
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (D.K.); (F.D.); (A.B.M.); (K.M.); (D.B.K.)
| |
Collapse
|
10
|
Contente D, Díaz-Formoso L, Feito J, Gómez-Sala B, Costas D, Hernández PE, Muñoz-Atienza E, Borrero J, Poeta P, Cintas LM. Antimicrobial Activity, Genetic Relatedness, and Safety Assessment of Potential Probiotic Lactic Acid Bacteria Isolated from a Rearing Tank of Rotifers ( Brachionus plicatilis) Used as Live Feed in Fish Larviculture. Animals (Basel) 2024; 14:1415. [PMID: 38791633 PMCID: PMC11117289 DOI: 10.3390/ani14101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Aquaculture is a rapidly expanding agri-food industry that faces substantial economic losses due to infectious disease outbreaks, such as bacterial infections. These outbreaks cause disruptions and high mortalities at various stages of the rearing process, especially in the larval stages. Probiotic bacteria are emerging as promising and sustainable alternative or complementary strategies to vaccination and the use of antibiotics in aquaculture. In this study, potential probiotic candidates for larviculture were isolated from a rotifer-rearing tank used as the first live feed for turbot larvae. Two Lacticaseibacillus paracasei and two Lactiplantibacillus plantarum isolates were selected for further characterization due to their wide and strong antimicrobial activity against several ichthyopathogens, both Gram-positive and Gram-negative. An extensive in vitro safety assessment of these four isolates revealed the absence of harmful traits, such as acquired antimicrobial resistance and other virulence factors (i.e., hemolytic and gelatinase activities, bile salt deconjugation, and mucin degradation, as well as PCR detection of biogenic amine production). Moreover, Enterobacterial Repetitive Intergenic Consensus-PCR (ERIC-PCR) analyses unveiled their genetic relatedness, revealing two divergent clusters within each species. To our knowledge, this work reports for the first time the isolation and characterization of Lactic Acid Bacteria (LAB) with potential use as probiotics in aquaculture from rotifer-rearing tanks, which have the potential to optimize turbot larviculture and to introduce novel microbial management approaches for a sustainable aquaculture.
Collapse
Affiliation(s)
- Diogo Contente
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Lara Díaz-Formoso
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Beatriz Gómez-Sala
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- Teagasc Food Research Centre, Moorepark, R93 XE12 Cork, Ireland
| | - Damián Costas
- Centro de Investigación Mariña, Universidade de Vigo, Centro de Investigación Mariña (ECIMAT), 36331 Vigo, Spain;
| | - Pablo E. Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Juan Borrero
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- CECAV-Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| |
Collapse
|
11
|
Khakpour M, Mohsenzadeh M, Salari A. Feasibility of lactiplantibacillus plantarum postbiotics production in challenging media by different techniques. AMB Express 2024; 14:47. [PMID: 38668839 PMCID: PMC11052967 DOI: 10.1186/s13568-024-01704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
The postbiotic derived from Lactiplantibacillus plantarum bacteria was produced in three culture media: milk, MRS, and whey, and its antibacterial and antifungal properties were evaluated. To investigate the production efficiency of postbiotics, three methods, heating, sonication and centrifugation, were utilized to prepare postbiotics in MRS broth culture medium. The antibacterial potency of the postbiotic was evaluated using the agar well-diffusion method, and MIC and MBC tests were conducted for different treatments. The results of the study showed that the postbiotic prepared in food environments such as milk and cheese whey can have antibacterial and antifungal properties similar to the postbiotic prepared in the MRS culture medium. However, it is possible to enrich food matrices such as milk and cheese whey and make further adjustments in terms of pH settings. Additionally, the thermal process was able to create a nanoscale postbiotic, which is a significant achievement for the application of postbiotics in the food and pharmaceutical industries. The future outlook of postbiotics clearly indicates that the emergence of this generation of probiotics can have an attractive and functional position in the food and pharmaceutical industries. Therefore, future research focusing on this subject will contribute to the development of this generation of postbiotics.
Collapse
Affiliation(s)
- Mahsa Khakpour
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Mohsenzadeh
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Salari
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
12
|
Huidrom S, Mukherjee PK, Devi SI. Antimicrobial and Probiotic Potential of Lactobacilli Associated with Traditional Fermented Beverages. Curr Microbiol 2024; 81:137. [PMID: 38597994 DOI: 10.1007/s00284-024-03656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/29/2024] [Indexed: 04/11/2024]
Abstract
Fermented foods have been recognized as a source of probiotic bacteria which can have a positive effect when administered to humans and animals. Discovering new probiotics in fermented food products poses a global economic and health importance. In this study, we investigated the antimicrobial and probiotic potential of lactobacilli isolated from fermented beverages produced traditionally by ethnic groups in Northeast India. Out of thirty Lactobacilli, fifteen exhibited strong antimicrobial activity against Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter aerogenes with significant anti-biofilm and anti-quorum sensing activity. These isolates also showed characteristics associated with probiotic properties, such as tolerance to low pH and bile salts, survival in the gastric tract, auto-aggregation, and hydrophobicity without exhibiting hemolysis formation or resistance to certain antibiotics. The isolates were identified using gram staining, biochemical tests, and 16S rDNA sequencing. They exhibited probiotic potential, broad-spectrum of antibacterial activity, promising anti-biofilm, anti-quorum sensing activity, non-hemolytic, and tolerance to acidic pH and bile salts. Overall, four specific Lactobacillus isolates, Lactiplantibacillus plantarum BRD3A and Lacticaseibacillus paracasei RB10OW from fermented rice-based beverage, and Lactiplantibacillus plantarum RB30Y and Lacticaseibacillus paracasei MP11A from traditional local curd demonstrated potent antimicrobial and probiotic properties. These findings suggest that these lactobacilli isolates from fermented beverages have the potential to be used as probiotics with therapeutic benefits, highlighting the importance of traditional fermented foods for promoting gut health and infectious disease management.
Collapse
Affiliation(s)
- Surmani Huidrom
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal, Manipur, 795001, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Pulok K Mukherjee
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal, Manipur, 795001, India
| | - Sarangthem Indira Devi
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal, Manipur, 795001, India.
| |
Collapse
|
13
|
Abdi-Moghadam Z, Darroudi M, Mahmoudzadeh M, Mohtashami M, Jamal AM, Shamloo E, Rezaei Z. Functional yogurt, enriched and probiotic: A focus on human health. Clin Nutr ESPEN 2023; 57:575-586. [PMID: 37739708 DOI: 10.1016/j.clnesp.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 07/15/2023] [Accepted: 08/03/2023] [Indexed: 09/24/2023]
Abstract
The food industry has always sought to produce products enriched with vitamins, probiotics, polyphenols, and other bioactive compounds to improve physiological function, enhance nutritional value, and provide health. These compounds are essential for human health, and their deficiency can lead to adverse effects. Therefore, food enrichment is an important strategy to improve the nutritional value and, in some cases, improve the quality of food. Recently, functional foods have been very popular around the world. Among food products, dairy products constitute a major part of people's diet, and due to the high consumption of dairy products, including yogurt, the enrichment of this product effectively reduces or prevents diseases associated with nutritional deficiencies. Most consumers generally accept yogurt due to its high nutritional value and low price. So, it can be considered a good candidate for enrichment with micronutrients and probiotics. In recent years, using functional foods to prevent various diseases has become a popular topic for research. In this study, the effect of fortified yogurt in preventing diseases and improving deficiencies has been investigated, and it has been proven that super healthy yogurt has a positive effect on human health.
Collapse
Affiliation(s)
- Zohreh Abdi-Moghadam
- Department of Food Science, Nutrition and Clinical Biochemistry, Faculty of Medicine, Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudzadeh
- Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Amir Mohammad Jamal
- Students Research Committee, Department of Nutrition, Food Science & Clinical Biochemistry, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ehsan Shamloo
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Zeinab Rezaei
- University of Applied Science and Technology, Center of Cheshme noshan khorasan (Alis).
| |
Collapse
|
14
|
Sharafi H, Divsalar E, Rezaei Z, Liu SQ, Moradi M. The potential of postbiotics as a novel approach in food packaging and biopreservation: a systematic review of the latest developments. Crit Rev Food Sci Nutr 2023:1-31. [PMID: 37667831 DOI: 10.1080/10408398.2023.2253909] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Metabolic by-products are part of the so-called postbiotics of probiotics and other beneficial microorganisms, particularly lactic acid bacteria, which have gained popularity as a feasible alternative to improving food quality and safety. Postbiotics in dry and liquid forms can be easily integrated into food formulations and packaging materials, exhibiting antimicrobial and antioxidant effects owing to the presence of multiple antimicrobials, such as organic acids, bacteriocins, exopolysaccharides and bioactive peptides. Postbiotics can thus control the growth of pathogens and spoilage microorganisms, thereby extending the shelf life of food products. Because of their ability to be easily manufactured without requiring extensive processing, postbiotics are regarded as a safer and more sustainable alternative to synthetic preservatives, which can have negative environmental consequences. Additionally, food manufacturers can readily adopt postbiotics in food formulations without significant modifications. This systematic review provides an in-depth analysis of studies on the use of postbiotics in the biopreservation and packaging of a wide range of food products. The review evaluates and discusses the types of microorganisms, postbiotics preparation and modification techniques, methods of usage in dairy products, meat, poultry, seafood, fruits, vegetables, bread, and egg, and their effects on food quality and safety.
Collapse
Affiliation(s)
- Houshmand Sharafi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Elahe Divsalar
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Zeinab Rezaei
- Center of Cheshme noshan khorasan (Alis), University of Applied Science and Technology, Chanaran, Iran
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
15
|
Rezaei Z, Salari A, Khanzadi S, Rhim J, Shamloo E. Preparation of milk-based probiotic lactic acid bacteria biofilms: A new generation of probiotics. Food Sci Nutr 2023; 11:2915-2924. [PMID: 37324845 PMCID: PMC10261778 DOI: 10.1002/fsn3.3273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/22/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Biofilm is considered as a community of microorganisms in which cells adhere to each other on surfaces in a self-produced matrix of extracellular polymer compounds. In recent years, efforts to use the beneficial aspects of biofilm in probiotic research have intensified. In this study, probiotic biofilms of Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus were manufactured using milk and transferred to yogurt in whole and pulverized forms to test in real food conditions. Survival was assessed during 21 days of storage time as well as gastrointestinal conditions. The results indicated that Lp. plantarum and Lc. rhamnosus can form a very desirable and strong biofilm that can have a good protective effect on the survival of these bacteria in probiotic yogurt during processing, storage, and gastrointestinal conditions, in a way that, after 120 min of treatment in high acidic gastrointestinal conditions (pH 2.0), the survival rate decreased by only 0.5 and 1.1 log CFU/ml. Probiotic biofilm can be used as a natural way of utilizing bacteria in biotechnology and fermentation, which is an excellent way to increase the utility of probiotics.
Collapse
Affiliation(s)
- Zeinab Rezaei
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Amir Salari
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Saeid Khanzadi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Jong‐Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research CenterKyung Hee UniversitySeoulRepublic of Korea
| | - Ehsan Shamloo
- Department of Food Science and TechnologyNeyshabur University of Medical SciencesNeyshaburIran
| |
Collapse
|
16
|
Neidhöfer C, Rathore K, Parčina M, Sieber MA. ESKAPEE Pathogen Biofilm Control on Surfaces with Probiotic Lactobacillaceae and Bacillus species. Antibiotics (Basel) 2023; 12:871. [PMID: 37237774 PMCID: PMC10215598 DOI: 10.3390/antibiotics12050871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Combatting the rapidly growing threat of antimicrobial resistance and reducing prevalence and transmission of ESKAPEE pathogens in healthcare settings requires innovative strategies, one of which is displacing these pathogens using beneficial microorganisms. Our review comprehensively examines the evidence of probiotic bacteria displacing ESKAPEE pathogens, with a focus on inanimate surfaces. A systematic search was conducted using the PubMed and Web of Science databases on 21 December 2021, and 143 studies were identified examining the effects of Lactobacillaceae and Bacillus spp. cells and products on the growth, colonization, and survival of ESKAPEE pathogens. While the diversity of study methods limits evidence analysis, results presented by narrative synthesis demonstrate that several species have the potential as cells or their products or supernatants to displace nosocomial infection-causing organisms in a variety of in vitro and in vivo settings. Our review aims to aid the development of new promising approaches to control pathogen biofilms in medical settings by informing researchers and policymakers about the potential of probiotics to combat nosocomial infections. More targeted studies are needed to assess safety and efficacy of different probiotic formulations, followed by large-scale studies to assess utility in infection control and medical practice.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kamni Rathore
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin A. Sieber
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| |
Collapse
|
17
|
Mirzabekyan S, Harutyunyan N, Manvelyan A, Malkhasyan L, Balayan M, Miralimova S, Chikindas ML, Chistyakov V, Pepoyan A. Fish Probiotics: Cell Surface Properties of Fish Intestinal Lactobacilli and Escherichia coli. Microorganisms 2023; 11:microorganisms11030595. [PMID: 36985169 PMCID: PMC10052099 DOI: 10.3390/microorganisms11030595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
The properties of intestinal bacteria/probiotics, such as cell surface hydrophobicity (CSH), auto-aggregation, and biofilm formation ability, play an important role in shaping the relationship between the bacteria and the host. The current study aimed to investigate the cell surface properties of fish intestinal bacteria and probiotics. Microbial adhesion to hydrocarbons was tested according to Kos and coauthors. The aggregation abilities of the investigated strains were studied as described by Collado and coauthors. The ability of bacterial isolates to form a biofilm was determined by performing a qualitative analysis using crystal violet staining based on the attachment of bacteria to polystyrene. These studies prove that bacterial cell surface hydrophobicity (CSH) is associated with the growth medium, and the effect of the growth medium on CSH is species-specific and likely also strain-specific. Isolates of intestinal lactobacilli from fish (Salmo ischchan) differed from isolates of non-fish/shrimp origin in the relationship between auto-aggregation and biofilm formation. Average CSH levels for fish lactobacilli and E. coli might were lower compared to those of non-fish origin, which may affect the efficiency of non-fish probiotics use in fisheries due to the peculiarities of the hosts’ aquatic lifestyles.
Collapse
Affiliation(s)
- Susanna Mirzabekyan
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan 0009, Armenia
| | - Natalya Harutyunyan
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan 0009, Armenia
| | - Anahit Manvelyan
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan 0009, Armenia
| | - Lilit Malkhasyan
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan 0009, Armenia
| | - Marine Balayan
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan 0009, Armenia
| | - Shakhlo Miralimova
- Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100125, Uzbekistan
| | - Michael L. Chikindas
- Health Promoting Natural Laboratory, Rutgers State University, New Brunswick, NJ 08901, USA
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Str., 19/1, 119146 Moscow, Russia
| | - Vladimir Chistyakov
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia
- D.I. Ivanovsky Academy of Biology and Biotechnology, Southern Federal University, Prosp. Stachky 194/1, 344090 Rostov-on-Don, Russia
| | - Astghik Pepoyan
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan 0009, Armenia
- The International Scientific-Educational Center of the National Academy of Sciences of the Republic of Armenia, Yerevan 0019, Armenia
- Correspondence: or or ; Tel.: +374-91-432490
| |
Collapse
|
18
|
Feasibility of biofilm production capacity by Levilactobacillus brevis isolated from motal cheese and evaluation of biofilm resistance produced in vitro and in yogurt. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
19
|
Antimicrobial and Antioxidant Properties of Natural Postbiotics Derived from Five Lactic Acid Bacteria. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp-130785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: The application of natural antimicrobial and antioxidant agents in food and pharmaceutical products has recently become a trend due to the high demand for them from consumers. Postbiotics are bioactive compounds that are produced when the healthy bacteria in the gut ferment fiber. Objectives: This study aimed to compare the antibacterial and antioxidant properties of postbiotics from 5 different lactic acid bacteria (LAB) including Lactiplantibacillus fermentum, Lactiplantibacillus plantarum, Lactiplantibacillus rhamnosus, Lactobacillus casei, and Lactobacillus acidophilus. Methods: Two different methods were adopted to obtain postbiotics (M1 and M2). M1 was the simple method in which the centrifugation was employed while in M2 method, ethyl acetate was used to obtain postbiotics. Agar disc diffusion, minimum inhibition concentration, and minimum bactericidal concentration were used to assess the antimicrobial activity of postbiotics. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) test was performed in order for investigating the antioxidant property. Results: The best results were recorded for L. casei compared to other LABs. Highest values of the agar disc diffusion method were obtained for L. casei. The inhibition zones for Salmonella enterica, Listeria monocytogenes, and Staphylococcus aureus, for examples, were 22 mm, 20 mm, and 19 mm, respectively. The postbiotic of L. casei also exhibited the most potent antioxidant activity among other probiotic bacteria. The data showed that M2 was a more effective method than the other method for acquiring postbiotics. Conclusions: It was recommended LABs postbiotics should be applied as antioxidant, antimicrobial, and preservatives in food and pharmaceutical industries due to their desired effects and natural characteristics.
Collapse
|
20
|
Gao J, Sadiq FA, Zheng Y, Zhao J, He G, Sang Y. Biofilm-based delivery approaches and specific enrichment strategies of probiotics in the human gut. Gut Microbes 2022; 14:2126274. [PMID: 36175161 PMCID: PMC9542427 DOI: 10.1080/19490976.2022.2126274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The use of probiotics has been one of the effective strategies to restructure perturbed human gut microbiota following a disease or metabolic disorder. One of the biggest challenges associated with the use of probiotic-based gut modulation strategies is to keep the probiotic cells viable and stable during the gastrointestinal transit. Biofilm-based probiotics delivery approaches have emerged as fascinating modes of probiotic delivery in which probiotics show significantly greater tolerance and biotherapeutic potential, and interestingly probiotic biofilms can be developed on food-grade surfaces too, which is ideal for the growth and proliferation of bacterial cells for incorporation into food matrices. In addition, biofilms can be further encapsulated with food-grade materials or with bacterial self-produced biofilms. This review presents a newly emerging and unprecedently discussed techniques for the safe delivery of probiotics based on biofilms and further discusses newly emerging prebiotic materials which target specific gut microbiota groups for growth and proliferation.
Collapse
Affiliation(s)
- Jie Gao
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Faizan Ahmed Sadiq
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| | - Yixin Zheng
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jinrong Zhao
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China,CONTACT Guoqing He College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yaxin Sang
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China,Yaxin Sang Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
21
|
Wu M, Dong Q, Ma Y, Yang S, Zohaib Aslam M, Liu Y, Li Z. Potential antimicrobial activities of probiotics and their derivatives against Listeria monocytogenes in food field: A review. Food Res Int 2022; 160:111733. [DOI: 10.1016/j.foodres.2022.111733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 01/04/2023]
|
22
|
Hu MX, He F, Guo YX, Mo LZ, Zhu X. Lactobacillus reuteri Biofilms Inhibit Pathogens and Regulate Microbiota in In Vitro Fecal Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11935-11943. [PMID: 36111836 DOI: 10.1021/acs.jafc.2c02372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacteria colonizing the gastrointestinal tract generally grow well in biofilms. In recent years, probiotic biofilms have been considered the most promising fourth-generation probiotics. However, the research into the functions of probiotic biofilms is just starting. In this study, Lactobacillus reuteri DSM 17938 biofilms formed on electrospun cellulose acetate nanofibrous scaffolds were contrasted with planktonic cells. Pathogen inhibition analysis of Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes suggested a significant distinction between the planktonic and biofilm groups. In human fecal fermentation, L. reuteri remodeled the microbiota by decreasing the relative abundances of Proteobacteria, Escherichia-Shigella, and Desulfovibrio and increasing the relative abundances of Phascolarctobacterium, Bacteroides, and Lactobacillus. Moreover, L. reuteri biofilms played more positive roles in microbiota modulation and short-chain fatty acid production than planktonic L. reuteri. These findings provide an understanding of the beneficial effects of probiotic biofilms, laying a foundation for the application of probiotic biofilms as a health promoter.
Collapse
Affiliation(s)
- Meng-Xin Hu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Fei He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ya-Xin Guo
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Li-Zhen Mo
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xuan Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
23
|
The Bacillary Postbiotics, Including 2-Undecanone, Suppress the Virulence of Pathogenic Microorganisms. Pharmaceutics 2022; 14:pharmaceutics14050962. [PMID: 35631548 PMCID: PMC9143114 DOI: 10.3390/pharmaceutics14050962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/11/2022] [Accepted: 04/27/2022] [Indexed: 01/25/2023] Open
Abstract
Secreted molecules from probiotic Bacilli have often been considered potential pharmaceuticals to fight infections caused by bacterial or yeast pathogens. In the present study, we investigated the antagonistic potential of secreted probiotic filtrates (hereafter, postbiotics) derived from Lactobacillus plantarum cells against pathogenic microorganisms, such as Escherichia coli, Staphylococcus aureus, and Candida albicans. We found that the postbiotics mitigate the biofilms of the tested pathogens with no notable effect on their planktonic growth. In addition, the postbiotics suppressed some virulence traits, for instance, the dendrite swarming motility of E. coli and yeast-to-hyphal switch in C. albicans. Further assays with an active constituent produced by the L. plantarum cells–2-undecanone revealed two significant findings: (i) 2-undecanone inhibits C. albicans biofilms and hyphae in vitro and in a Caenorhabditis elegans model, and (ii) it interacts specifically with Gln 58 amino acid residue of hyphal wall protein-1 (Hwp-1) in molecular docking analysis. The results suggest the targeted mode of antagonistic action of 2-undecanone against C. albicans biofilm. In total, the findings of the study depict an appealing strategy to use postbiotics, including specific ketone molecules, produced by L. plantarum for developing novel antibiofilm and anti-hyphal pharmaceuticals.
Collapse
|