1
|
Fan X, Zhang W, Zheng R, Zhang Y, Lai X, Han J, Fang Z, Han B, Huang W, Ye B, Dai S. GSDMD Mediates Ang II-Induced Hypertensive Nephropathy by Regulating the GATA2/AQP4 Signaling Pathway. J Inflamm Res 2024; 17:8241-8259. [PMID: 39525316 PMCID: PMC11549917 DOI: 10.2147/jir.s488553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Aim Hypertensive nephropathy is a common complication of hypertension. However, no effective measures are currently available to prevent the progression of renal insufficiency. Gasdermin D (GSDMD) is a crucial mediator of pyroptosis that induces an excessive inflammatory response. In the present study, we aimed to determine the effect of GSDMD on the pathogenesis of hypertensive nephropathy, which may provide new insights into the treatment of hypertensive nephropathy. Methods C57BL/6 (wild-type, WT) and Gsdmd knockout (Gsdmd-/-) mice were subcutaneously infused with angiotensin II (Ang II) via osmotic mini-pumps to establish a hypertensive renal injury model. Recombinant adeno-associated virus serotype 9 (AAV9) carrying GSDMD cDNA was used to overexpress GSDMD. Renal function biomarkers, histopathological changes, and inflammation and fibrosis indices were assessed. Transcriptome sequencing (RNA-seq) and cleavage under targets and mentation (CUT & Tag) experiments were performed to identify the downstream pathogenic mechanisms of GSDMD in hypertensive nephropathy. Results GSDMD was activated in the kidneys of mice induced by Ang II (P < 0.001). This activation was primarily observed in the renal tubular epithelial cells (P < 0.0001). GSDMD deficiency attenuated renal injury and fibrosis induced by Ang II (P < 0.0001), whereas Gsdmd overexpression promoted renal injury and fibrosis (P < 0.01). Mechanistically, GSDMD increased Ang II-induced GATA binding protein 2 (GATA2) transcription factor expression (P < 0.01). GATA2 also bound to the aquaporin 4 (Aqp4) promoter sequence and facilitated Aqp4 transcription (P < 0.001), leading to renal injury and fibrosis. Moreover, treatment with GI-Y1, an inhibitor of GSDMD, alleviated Ang II-induced renal injury and fibrosis (P < 0.01). Conclusion GSDMD plays an important role in the development of hypertensive nephropathy. Targeting GSDMD may be a therapeutic strategy for the treatment of hypertensive nephropathy.
Collapse
Affiliation(s)
- Xiaoxi Fan
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- The Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Wenli Zhang
- The Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Ruihan Zheng
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Yucong Zhang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Xianhui Lai
- Department of Cardiology, Yuhuan County People’s Hospital of Zhejiang Province, Taizhou, People’s Republic of China
| | - Jibo Han
- Department of Cardiology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Zimin Fang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Bingjiang Han
- Department of Cardiology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Weijian Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Bozhi Ye
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- The Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Shanshan Dai
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- The Key Laboratory of Emergency and Disaster Medicine of Wenzhou, Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| |
Collapse
|
2
|
Rajput S, Gautam D, Vats A, Roshan M, Goyal P, Rana C, S M P, Ludri A, De S. Aquaporin (AQP) gene family in Buffalo and Goat: Molecular characterization and their expression analysis. Int J Biol Macromol 2024; 280:136145. [PMID: 39353522 DOI: 10.1016/j.ijbiomac.2024.136145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Aquaporins (AQPs) are essential membrane proteins facilitating water and small solute transport across cell membranes. Mammals have approximately 13 paralogs of AQPs that may have evolved through gene duplication events. These genes are present in two separate clusters within the genome. In the present study, comprehensive 13 AQP genes (AQP0-12) were cloned and characterized in buffalo and goat. The protein coding region of AQPs in both species ranged from 729 to 990 bps, corresponding to 263-330 amino acid residues. Two important residues including NPA motifs and ar/R selectivity filter were found conserved in all AQPs, except for AQP7, 11 and 12. AQP0, 2, 4, 5, 7, 9, 12 showed tissue-restricted expression, whereas AQP1, 3, 8, and 11 exhibited ubiquitous expression across several tissues. AQP10 was identified as a pseudogene in all artiodactyls. Transcript variants were identified in buffalo and goat, where some variants of goat AQP5 and 6 lacked important motifs. Evolutionary analysis indicated positive selection at or near the NPA motifs and ar/R selectivity filter of AQP0, 3, 6, 7, and 10 that may alter its structure and function. This study is crucial for future investigations aiming to study the molecular mechanisms of AQPs in response to various physiological conditions.
Collapse
Affiliation(s)
- Shiveeli Rajput
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Devika Gautam
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Ashutosh Vats
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Mayank Roshan
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Priyanka Goyal
- Animal Biochemistry Division, ICAR-National Dairy Research Institute (NDRI), Karnal 132001, Haryana, India
| | - Chanchal Rana
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Payal S M
- Animal Biochemistry Division, ICAR-National Dairy Research Institute (NDRI), Karnal 132001, Haryana, India
| | - Ashutosh Ludri
- Department of Physiology, ICAR-National Dairy Research Institute (NDRI), Karnal 132001, Haryana, India
| | - Sachinandan De
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India.
| |
Collapse
|
3
|
Liang P, Zhu M, Sun X, Wang L, Li B, Ming S, Younis M, Yang J, Wu Y, Huang X. LncRNA-mRNA co-expression analysis reveals aquaporin-9-promoted neutrophil extracellular trap formation and inflammatory activation in sepsis. Int Immunopharmacol 2024; 140:112916. [PMID: 39133961 DOI: 10.1016/j.intimp.2024.112916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024]
Abstract
Sepsis is a life-threatening condition caused by an excessive inflammatory response to an infection. However, the precise regulatory mechanism of sepsis remains unclear. Using a strand-specific RNA-sequencing, we identified 115 hub differentially expressed long noncoding RNAs (lncRNAs) and 443 mRNAs in septic patients, primarily participated in crucial pathways including neutrophil extracellular trap (NET) formation and toll-like receptor signaling. Notably, NETs related gene aquaporin-9 (AQP9) and its associated lncRNAs exhibited significant upregulation in septic neutrophils. Functional experiments revealed AQP9 interacts with its lncRNAs to augment the formation of neutrophil NETs. In murine sepsis models, AQP9 inhibition with phloretin reduced proinflammatory cytokine production and lung damage. These findings provide crucial insights into the regulatory role of AQP9 in sepsis, unraveling its interaction with associated lncRNAs in transmitting downstream signals, holding promise in informing the development of novel therapeutic strategies aimed at ameliorating the debilitating effects of sepsis.
Collapse
Affiliation(s)
- Pingping Liang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China; Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Manman Zhu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Xingzi Sun
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Li Wang
- Department of Obstetrics and Gynecology, Perinatal Medical Center, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Siqi Ming
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Muhammad Younis
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China; Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China; Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| |
Collapse
|
4
|
Lv W, Liao J, Li C, Liu D, Luo X, Diao R, Wang Y, Jin Y. Aquaporin 1 is renoprotective in septic acute kidney injury by attenuating inflammation, apoptosis and fibrosis through inhibition of P53 expression. Front Immunol 2024; 15:1443108. [PMID: 39238634 PMCID: PMC11374652 DOI: 10.3389/fimmu.2024.1443108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
Sepsis associated Acute kidney injury (AKI) is a common clinical syndrome characterized by suddenly decreased in renal function and urinary volume. This study was designed to investigate the role of Aquaporin 1 (AQP1) and P53 in the development of sepsis-induced AKI and their potential regulatory mechanisms. Firstly, transcriptome sequencing analysis of mice kidney showed AQP1 expression was reduced and P53 expression was elevated in Cecal ligation and puncture (CLP)-induced AKI compared with controls. Bioinformatics confirmed that AQP1 expression was remarkably decreased and P53 expression was obviously elevated in renal tissues or peripheral blood of septic AKI patients. Moreover, we found in vivo experiments that AQP1 mRNA levels were dramatically decreased and P53 mRNA significantly increased following the increased expression of inflammation, apoptosis, fibrosis, NGAL and KIM-1 at various periods in septic AKI. Meanwhile, AQP1 and P53 protein levels increased significantly first and then decreased gradually in kidney tissue and serum of rats in different stages of septic AKI. Most importantly, in vivo and vitro experiments demonstrated that silencing of AQP1 greatly exacerbates renal or cellular injury by up-regulating P53 expression promoting inflammatory response, apoptosis and fibrosis. Overexpression of AQP1 prevented the elevation of inflammation, apoptosis and fibrosis by down-regulating P53 expression in Lipopolysaccharide (LPS)-induced AKI or HK-2 cells. Therefore, our results suggested that AQP1 plays a protective role in modulating AKI and can attenuate inflammatory response, apoptosis and fibrosis via downregulating P53 in septic AKI or LPS-induced HK-2cells. The pharmacological targeting of AQP1 mediated P53 expression might be identified as potential targets for the early treatment of septic AKI.
Collapse
Affiliation(s)
- Wuyang Lv
- Department of Clinical Laboratory, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Clinical Laboratory, Shangluo Central Hospital, Shangluo, Shaanxi, China
| | - Jia Liao
- Department of Clinical Laboratory, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Cuicui Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dongyang Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoxiao Luo
- Department of Clinical Laboratory, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - RuXue Diao
- Department of Clinical Laboratory, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - YuChen Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingyu Jin
- Department of Clinical Laboratory, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
da Silva IV, Mlinarić M, Lourenço AR, Pérez-Garcia O, Čipak Gašparović A, Soveral G. Peroxiporins and Oxidative Stress: Promising Targets to Tackle Inflammation and Cancer. Int J Mol Sci 2024; 25:8381. [PMID: 39125952 PMCID: PMC11313477 DOI: 10.3390/ijms25158381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Peroxiporins are a specialized subset of aquaporins, which are integral membrane proteins primarily known for facilitating water transport across cell membranes. In addition to the classical water transport function, peroxiporins have the unique capability to transport hydrogen peroxide (H2O2), a reactive oxygen species involved in various cellular signaling pathways and regulation of oxidative stress responses. The regulation of H2O2 levels is crucial for maintaining cellular homeostasis, and peroxiporins play a significant role in this process by modulating its intracellular and extracellular concentrations. This ability to facilitate the passage of H2O2 positions peroxiporins as key players in redox biology and cellular signaling, with implications for understanding and treating various diseases linked to oxidative stress and inflammation. This review provides updated information on the physiological roles of peroxiporins and their implications in disease, emphasizing their potential as novel biomarkers and drug targets in conditions where they are dysregulated, such as inflammation and cancer.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Monika Mlinarić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ana Rita Lourenço
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Olivia Pérez-Garcia
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | | | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
6
|
Chandrasekaran V, Wellens S, Bourguignon A, Djidrovski I, Fransen L, Ghosh S, Mazidi Z, Murphy C, Nunes C, Singh P, Zana M, Armstrong L, Dinnyés A, Grillari J, Grillari-Voglauer R, Leonard MO, Verfaillie C, Wilmes A, Zurich MG, Exner T, Jennings P, Culot M. Evaluation of the impact of iPSC differentiation protocols on transcriptomic signatures. Toxicol In Vitro 2024; 98:105826. [PMID: 38615723 DOI: 10.1016/j.tiv.2024.105826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Human induced pluripotent stem cells (iPSC) have the potential to produce desired target cell types in vitro and allow for the high-throughput screening of drugs/chemicals at population level thereby minimising the cost of drug discovery and drug withdrawals after clinical trials. There is a substantial need for the characterisation of the iPSC derived models to better understand and utilise them for toxicological relevant applications. In our study, iPSC (SBAD2 or SBAD3 lines obtained from StemBANCC project) were differentiated towards toxicologically relevant cell types: alveolar macrophages, brain capillary endothelial cells, brain cells, endothelial cells, hepatocytes, lung airway epithelium, monocytes, podocytes and renal proximal tubular cells. A targeted transcriptomic approach was employed to understand the effects of differentiation protocols on these cell types. Pearson correlation and principal component analysis (PCA) separated most of the intended target cell types and undifferentiated iPSC models as distinct groups with a high correlation among replicates from the same model. Based on PCA, the intended target cell types could also be separated into the three germ layer groups (ectoderm, endoderm and mesoderm). Differential expression analysis (DESeq2) presented the upregulated genes in each intended target cell types that allowed the evaluation of the differentiation to certain degree and the selection of key differentiation markers. In conclusion, these data confirm the versatile use of iPSC differentiated cell types as standardizable and relevant model systems for in vitro toxicology.
Collapse
Affiliation(s)
- Vidya Chandrasekaran
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081HZ Amsterdam, the Netherlands
| | - Sara Wellens
- University of Artois, UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Aurore Bourguignon
- BioTalentum Ltd, Gödöllő, Hungary; Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, H-2100, Gödöllő, Hungary
| | - Ivo Djidrovski
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Leonie Fransen
- Toxicology Department, Radiation, Chemical and Environmental Hazards (RCE) Directorate, UK Health Security Agency, Harwell Campus, OX11 0RQ, UK
| | - Sreya Ghosh
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Zahra Mazidi
- Evercyte GmbH, Vienna, Austria; Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cormac Murphy
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081HZ Amsterdam, the Netherlands
| | - Carolina Nunes
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland
| | - Pranika Singh
- Edelweiss Connect GmbH, Technology Park Basel, Hochbergerstrasse 60C, 4057 Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | | - Lyle Armstrong
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - András Dinnyés
- BioTalentum Ltd, Gödöllő, Hungary; Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, H-2100, Gödöllő, Hungary
| | - Johannes Grillari
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Ludwig Boltzmann Institute for Traumatology in cooperation with AUVA, Vienna, Austria
| | | | - Martin O Leonard
- Toxicology Department, Radiation, Chemical and Environmental Hazards (RCE) Directorate, UK Health Security Agency, Harwell Campus, OX11 0RQ, UK
| | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081HZ Amsterdam, the Netherlands
| | - Marie-Gabrielle Zurich
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland
| | | | - Paul Jennings
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081HZ Amsterdam, the Netherlands.
| | - Maxime Culot
- University of Artois, UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, Rue Jean Souvraz SP18, F-62300 Lens, France.
| |
Collapse
|
7
|
Zhao L, Zhang Z, Wang P, Zhang N, Shen H, Wu H, Wei Z, Yang F, Wang Y, Yu Z, Li H, Hu Z, Zhai H, Wang Z, Su F, Xie K, Li Y. NHH promotes Sepsis-associated Encephalopathy with the expression of AQP4 in astrocytes through the gut-brain Axis. J Neuroinflammation 2024; 21:138. [PMID: 38802927 PMCID: PMC11131257 DOI: 10.1186/s12974-024-03135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a significant cause of mortality in patients with sepsis. Despite extensive research, its exact cause remains unclear. Our previous research indicated a relationship between non-hepatic hyperammonemia (NHH) and SAE. This study aimed to investigate the relationship between NHH and SAE and the potential mechanisms causing cognitive impairment. In the in vivo experimental results, there were no significant abnormalities in the livers of mice with moderate cecal ligation and perforation (CLP); however, ammonia levels were elevated in the hippocampal tissue and serum. The ELISA study suggest that fecal microbiota transplantation in CLP mice can reduce ammonia levels. Reduction in ammonia levels improved cognitive dysfunction and neurological impairment in CLP mice through behavioral, neuroimaging, and molecular biology studies. Further studies have shown that ammonia enters the brain to regulate the expression of aquaporins-4 (AQP4) in astrocytes, which may be the mechanism underlying brain dysfunction in CLP mice. The results of the in vitro experiments showed that ammonia up-regulated AQP4 expression in astrocytes, resulting in astrocyte damage. The results of this study suggest that ammonia up-regulates astrocyte AQP4 expression through the gut-brain axis, which may be a potential mechanism for the occurrence of SAE.
Collapse
Affiliation(s)
- Lina Zhao
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhen Zhang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Pei Wang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Nannan Zhang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hao Shen
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hening Wu
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhiyong Wei
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Fei Yang
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, 024000, China
| | - Yunying Wang
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, 024000, China
| | - Zhijie Yu
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, 024000, China
| | - Haibo Li
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, 024000, China
| | - Zhanfei Hu
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, 024000, China
| | - Hongyan Zhai
- Department of Ultrasound, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhiwei Wang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Fuhong Su
- Experimental Laboratory of the Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, 1070, Belgium
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Yun Li
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
8
|
Zbieralski K, Staszewski J, Konczak J, Lazarewicz N, Nowicka-Kazmierczak M, Wawrzycka D, Maciaszczyk-Dziubinska E. Multilevel Regulation of Membrane Proteins in Response to Metal and Metalloid Stress: A Lesson from Yeast. Int J Mol Sci 2024; 25:4450. [PMID: 38674035 PMCID: PMC11050377 DOI: 10.3390/ijms25084450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In the face of flourishing industrialization and global trade, heavy metal and metalloid contamination of the environment is a growing concern throughout the world. The widespread presence of highly toxic compounds of arsenic, antimony, and cadmium in nature poses a particular threat to human health. Prolonged exposure to these toxins has been associated with severe human diseases, including cancer, diabetes, and neurodegenerative disorders. These toxins are known to induce analogous cellular stresses, such as DNA damage, disturbance of redox homeostasis, and proteotoxicity. To overcome these threats and improve or devise treatment methods, it is crucial to understand the mechanisms of cellular detoxification in metal and metalloid stress. Membrane proteins are key cellular components involved in the uptake, vacuolar/lysosomal sequestration, and efflux of these compounds; thus, deciphering the multilevel regulation of these proteins is of the utmost importance. In this review, we summarize data on the mechanisms of arsenic, antimony, and cadmium detoxification in the context of membrane proteome. We used yeast Saccharomyces cerevisiae as a eukaryotic model to elucidate the complex mechanisms of the production, regulation, and degradation of selected membrane transporters under metal(loid)-induced stress conditions. Additionally, we present data on orthologues membrane proteins involved in metal(loid)-associated diseases in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland; (K.Z.); (J.S.); (J.K.); (N.L.); (M.N.-K.); (D.W.)
| |
Collapse
|
9
|
Zhang H, Wang X, Liu J, Zhang Y, Ka M, Ma Y, Xu J, Zhang W. Role of neutrophil myeloperoxidase in the development and progression of high-altitude pulmonary edema. Biochem Biophys Res Commun 2024; 703:149681. [PMID: 38382360 DOI: 10.1016/j.bbrc.2024.149681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/28/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Neutrophil infiltration and hypoxic pulmonary vasoconstriction induced by hypobaric hypoxic stress are vital in high-altitude pulmonary edema (HAPE). Myeloperoxidase (MPO), an important enzyme in neutrophils, is associated with inflammation and oxidative stress and is also involved in the regulation of nitric oxide synthase (NOS), an enzyme that catalyzes the production of the vasodilatory factor nitric oxide (NO). However, the role of neutrophil MPO in HAPE's progression is still uncertain. Therefore, we hypothesize that MPO is involved in the development of HAPE via NOS. METHODS In Xining, China (altitude: 2260 m), C57BL/6 N wild-type and mpo-/- mice served as normoxic controls, while a hypobaric chamber simulated 7000 m altitude for hypoxia. L-NAME, a nitric oxide synthase (NOS) inhibitor to inhibit NO production, was the experimental drug, and D-NAME, without NOS inhibitory effects, was the control. After measuring pulmonary artery pressure (PAP), samples were collected and analyzed for blood neutrophils, oxidative stress, inflammation, vasoactive substances, pulmonary alveolar-capillary barrier permeability, and lung tissue morphology. RESULTS Wild-type mice's lung injury scores, permeability, and neutrophil counts rose at 24 and 48 h of hypoxia exposure. Under hypoxia, PAP increased from 12.89 ± 1.51 mmHg under normoxia to 20.62 ± 3.33 mmHg significantly in wild-type mice and from 13.24 ± 0.79 mmHg to 16.50 ± 2.07 mmHg in mpo-/- mice. Consistent with PAP, inducible NOS activity, lung permeability, lung injury scores, oxidative stress response, and inflammation showed more significant increases in wild-type mice than in mpo-/- mice. Additionally, endothelial NOS activity and NO levels decreased more pronouncedly in wild-type mice than in mpo-/- mice. NOS inhibition during hypoxia led to more significant increases in PAP, permeability, and lung injury scores compared to the drug control group, especially in wild-type mice. CONCLUSION MPO knockout reduces oxidative stress and inflammation to preserve alveolar-capillary barrier permeability and limits the decline in endothelial NOS activity to reduce PAP elevation during hypoxia. MPO inhibition emerges as a prospective therapeutic strategy for HAPE, offering avenues for precise interventions.
Collapse
Affiliation(s)
- Huan Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, 810001, China; Key Laboratory of High Altitude Medicine (Ministry of Education), 810000, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, 810001, China; Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, China.
| | - Xiaojun Wang
- Department of Basic Medicine, Medical College of Qinghai University, Xining, Qinghai, 810001, China.
| | - Jie Liu
- Department of Pathology, Xi'an Chest Hospital, Xian, Shaanxi, 710000, China.
| | - Yu Zhang
- Department of Basic Medicine, Medical College of Qinghai University, Xining, Qinghai, 810001, China.
| | - Maojia Ka
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, 810001, China; Key Laboratory of High Altitude Medicine (Ministry of Education), 810000, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, 810001, China.
| | - Yi Ma
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, 810001, China; Key Laboratory of High Altitude Medicine (Ministry of Education), 810000, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, 810001, China.
| | - Jiaolong Xu
- Department of Basic Medicine, Medical College of Qinghai University, Xining, Qinghai, 810001, China; Linyi Central Hospital, Linyi, Shandong, 276400, China.
| | - Wei Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, 810001, China; Key Laboratory of High Altitude Medicine (Ministry of Education), 810000, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, 810001, China.
| |
Collapse
|
10
|
Kalita A, Das M. Aquaporins (AQPs) as a marker in the physiology of inflammation and its interaction studies with garcinol. Inflammopharmacology 2024; 32:1575-1592. [PMID: 38267609 DOI: 10.1007/s10787-023-01412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/17/2023] [Indexed: 01/26/2024]
Abstract
Aquaporins like AQP1, AQP3, and AQP4 are known to be involved in the pathophysiology of inflammation based on earlier reports. This study aimed to evaluate the involvement of Aquaporins as a potential target of inflammation. The study also investigates the efficacy of methanolic extract of Garcinia (GME) and its potent phytocompound (garcinol) against the Aquaporins involved in inflammation. siRNA silencing of AQP3 was carried out in RAW264.7 cells followed by LPS stimulation (1 µg/ml) and assessment of important markers of inflammation including NO, PGE2, TNF-α, IL-6, IL-1β, CCL20, iNOS and COX-2. To assess the anti-inflammatory potential of Garcinia extract and garcinol, cells were stimulated with 1 µg/ml LPS in the absence and presence of increasing concentrations of GME and garcinol. During the experimental period, extract concentrations (115 µg/ml and 230 µg/ml for RAW264.7; 118 µg/ml and 236 µg/ml for THP-1) and garcinol concentrations (6 µM and 12 µM for RAW264.7; 3 µM and 6 µM for THP-1) were selected based on the IC50. The anti-inflammatory effects were assessed by measuring the levels of TNF-α, IL-1β, IL-6, and CCL20 in LPS-stimulated cells. The AQP expression was studied at transcriptional and translational levels using qPCR and Western blot analysis respectively. AQP3 knockdown significantly decreased the NO, PGE2, TNF-α, IL-1β levels along with iNOS and COX-2 mRNA expression. LPS stimulation led to a significant increase in the mRNA and protein level expression AQP1, AQP3, and AQP4 in RAW264.7 cells; and AQP1 and AQP3 in THP-1 cells indicating their role as markers of inflammation. GME and garcinol effectively suppressed the LPS-induced proinflammatory cytokine production in both cell lines. The results indicate that AQP1, AQP3, and AQP4 could play a crucial role as markers of inflammation. Anti-inflammatory agents like Garcinia could potentially decrease the expression of such AQPs, thus inhibiting the inflammatory process.
Collapse
Affiliation(s)
- Anuradha Kalita
- Department of Zoology, Animal Physiology and Biochemistry Laboratory, Gauhati University, Guwahati, Assam, 781014, India
| | - Manas Das
- Department of Zoology, Animal Physiology and Biochemistry Laboratory, Gauhati University, Guwahati, Assam, 781014, India.
| |
Collapse
|
11
|
Chen Y, Wang Y, Jin R, Lv Z, Fu Y, Teng J, Wang X. Renal dysfunction in AQP4 NMOSD and MS; a potential predictor of relapse and prognosis. Clin Immunol 2024; 259:109875. [PMID: 38141747 DOI: 10.1016/j.clim.2023.109875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVE This study aimed to explore the association between kidney function and the risk of relapse as well as prognosis in patients with aquaporin-4 (AQP4)-immunoglobulin G (IgG)-seropositive neuromyelitis optica spectrum disorder (NMOSD). METHODS We focused on patients experiencing their first onset of AQP4-IgG-seropositive NMOSD. Data on demographics, disease characteristics, and kidney function were collected, with the primary assessment utilizing the estimated glomerular filtration rate (eGFR). Associations between eGFR and relapse risk were examined using multivariate Cox proportional hazards regression models. Additionally, logistic regression models were employed to evaluate the impact of eGFR on clinical prognosis. RESULTS Our analysis revealed glomerular hyperfiltration and impaired urine concentrating ability in patients with AQP4-IgG-seropositive NMOSD. Multivariate Cox proportional hazards regression demonstrated a positive correlation between eGFR and the risk of relapse. Logistic regression analysis further identified higher eGFR as an independent predictor of disease relapse and prognosis in AQP4-IgG-seropositive NMOSD patients. CONCLUSIONS The eGFR of patients with AQP4-IgG-seropositive NMOSD emerges as a potential diagnostic biomarker for this condition, indicating its significance in predicting both relapse risk and clinical prognosis.
Collapse
Affiliation(s)
- Yongkang Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China; Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yilin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ruoqi Jin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zheng Lv
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yu Fu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xuejing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
12
|
Ziehe D, Marko B, Thon P, Rahmel T, Palmowski L, Nowak H, von Busch A, Wolf A, Witowski A, Vonheder J, Ellger B, Wappler F, Schwier E, Henzler D, Köhler T, Zarbock A, Ehrentraut SF, Putensen C, Frey UH, Anft M, Babel N, Adamzik M, Koos B, Bergmann L, Unterberg M, Rump K. The Aquaporin 3 Polymorphism (rs17553719) Is Associated with Sepsis Survival and Correlated with IL-33 Secretion. Int J Mol Sci 2024; 25:1400. [PMID: 38338680 PMCID: PMC10855683 DOI: 10.3390/ijms25031400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Sepsis is a common life-threatening disease caused by dysregulated immune response and metabolic acidosis which lead to organ failure. An abnormal expression of aquaporins plays an important role in organ failure. Additionally, genetic variants in aquaporins impact on the outcome in sepsis. Thus, we investigated the polymorphism (rs17553719) and expression of aquaporin-3 (AQP3) and correlated these measurements with the survival of sepsis patients. Accordingly, we collected blood samples on several days (plus clinical data) from 265 sepsis patients who stayed in different ICUs in Germany. Serum plasma, DNA, and RNA were then separated to detect the promotor genotypes of AQP3 mRNA expression of AQP3 and several cytokines. The results showed that the homozygote CC genotype exhibited a significant decrease in 30-day survival (38.9%) compared to the CT (66.15%) and TT genotypes (76.3%) (p = 0.003). Moreover, AQP3 mRNA expression was significantly higher and nearly doubled in the CC compared to the CT (p = 0.0044) and TT genotypes (p = 0.018) on the day of study inclusion. This was accompanied by an increased IL-33 concentration in the CC genotype (day 0: p = 0.0026 and day 3: p = 0.008). In summary, the C allele of the AQP3 polymorphism (rs17553719) shows an association with increased AQP3 expression and IL-33 concentration accompanied by decreased survival in patients with sepsis.
Collapse
Affiliation(s)
- Dominik Ziehe
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Britta Marko
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Patrick Thon
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Lars Palmowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Hartmuth Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
- Center for Artificial Intelligence, Medical Informatics and Data Science, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Alexander von Busch
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Alexander Wolf
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Andrea Witowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Jolene Vonheder
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Björn Ellger
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Klinikum Westfalen, 44309 Dortmund, Germany;
| | - Frank Wappler
- Department of Anesthesiology and Operative Intensive Care Medicine, University of Witten/Herdecke, Cologne Merheim Medical School, 51109 Cologne, Germany;
| | - Elke Schwier
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049 Herford, Germany; (E.S.); (D.H.); (T.K.)
| | - Dietrich Henzler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049 Herford, Germany; (E.S.); (D.H.); (T.K.)
| | - Thomas Köhler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049 Herford, Germany; (E.S.); (D.H.); (T.K.)
| | - Alexander Zarbock
- Klinik für Anästhesiologie, Operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, 48149 Münster, Germany;
| | - Stefan Felix Ehrentraut
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Bonn, 53127 Bonn, Germany; (S.F.E.); (C.P.)
| | - Christian Putensen
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Bonn, 53127 Bonn, Germany; (S.F.E.); (C.P.)
| | - Ulrich Hermann Frey
- Marien Hospital Herne, Universitätsklinikum der Ruhr-Universität Bochum, 44625 Herne, Germany;
| | - Moritz Anft
- Center for Translational Medicine, Medical Clinic I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, 44625 Herne, Germany; (M.A.); (N.B.)
| | - Nina Babel
- Center for Translational Medicine, Medical Clinic I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, 44625 Herne, Germany; (M.A.); (N.B.)
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Lars Bergmann
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Matthias Unterberg
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| | - Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (D.Z.); (B.M.); (P.T.); (T.R.); (L.P.); (H.N.); (A.v.B.); (A.W.); (A.W.); (J.V.); (M.A.); (B.K.); (L.B.); (M.U.)
| |
Collapse
|
13
|
Thon P, Rahmel T, Ziehe D, Palmowski L, Marko B, Nowak H, Wolf A, Witowski A, Orlowski J, Ellger B, Wappler F, Schwier E, Henzler D, Köhler T, Zarbock A, Ehrentraut SF, Putensen C, Frey UH, Anft M, Babel N, Sitek B, Adamzik M, Bergmann L, Unterberg M, Koos B, Rump K. AQP3 and AQP9-Contrary Players in Sepsis? Int J Mol Sci 2024; 25:1209. [PMID: 38279209 PMCID: PMC10816878 DOI: 10.3390/ijms25021209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Sepsis involves an immunological systemic response to a microbial pathogenic insult, leading to a cascade of interconnected biochemical, cellular, and organ-organ interaction networks. Potential drug targets can depict aquaporins, as they are involved in immunological processes. In immune cells, AQP3 and AQP9 are of special interest. In this study, we tested the hypothesis that these aquaporins are expressed in the blood cells of septic patients and impact sepsis survival. Clinical data, routine laboratory parameters, and blood samples from septic patients were analyzed on day 1 and day 8 after sepsis diagnosis. AQP expression and cytokine serum concentrations were measured. AQP3 mRNA expression increased over the duration of sepsis and was correlated with lymphocyte count. High AQP3 expression was associated with increased survival. In contrast, AQP9 expression was not altered during sepsis and was correlated with neutrophil count, and low levels of AQP9 were associated with increased survival. Furthermore, AQP9 expression was an independent risk factor for sepsis lethality. In conclusion, AQP3 and AQP9 may play contrary roles in the pathophysiology of sepsis, and these results suggest that AQP9 may be a novel drug target in sepsis and, concurrently, a valuable biomarker of the disease.
Collapse
Affiliation(s)
- Patrick Thon
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Dominik Ziehe
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Lars Palmowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Britta Marko
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Hartmuth Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
- Center for Artificial Intelligence, Medical Informatics and Data Science, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Alexander Wolf
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Andrea Witowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Jennifer Orlowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Björn Ellger
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Klinikum Westfalen, 44309 Dortmund, Germany;
| | - Frank Wappler
- Department of Anesthesiology and Operative Intensive Care Medicine, University of Witten/Herdecke, Cologne Merheim Medical School, 51109 Cologne, Germany;
| | - Elke Schwier
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049 Herford, Germany; (E.S.); (D.H.); (T.K.)
| | - Dietrich Henzler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049 Herford, Germany; (E.S.); (D.H.); (T.K.)
| | - Thomas Köhler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049 Herford, Germany; (E.S.); (D.H.); (T.K.)
| | - Alexander Zarbock
- Klinik für Anästhesiologie, Operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, 48149 Münster, Germany;
| | - Stefan Felix Ehrentraut
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Bonn, 53127 Bonn, Germany; (S.F.E.); (C.P.)
| | - Christian Putensen
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Bonn, 53127 Bonn, Germany; (S.F.E.); (C.P.)
| | - Ulrich Hermann Frey
- Marien Hospital Herne, Universitätsklinikum der Ruhr-Universität Bochum, 44625 Herne, Germany;
| | - Moritz Anft
- Center for Translational Medicine, Medical Clinic I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, 44625 Herne, Germany; (M.A.); (N.B.)
| | - Nina Babel
- Center for Translational Medicine, Medical Clinic I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, 44625 Herne, Germany; (M.A.); (N.B.)
| | - Barbara Sitek
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Lars Bergmann
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Matthias Unterberg
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| |
Collapse
|
14
|
Li Q, Qu L, Miao Y, Li Q, Zhang J, Zhao Y, Cheng R. A gene network database for the identification of key genes for diagnosis, prognosis, and treatment in sepsis. Sci Rep 2023; 13:21815. [PMID: 38071387 PMCID: PMC10710458 DOI: 10.1038/s41598-023-49311-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Sepsis and sepsis-related diseases cause a high rate of mortality worldwide. The molecular and cellular mechanisms of sepsis are still unclear. We aim to identify key genes in sepsis and reveal potential disease mechanisms. Six sepsis-related blood transcriptome datasets were collected and analyzed by weighted gene co-expression network analysis (WGCNA). Functional annotation was performed in the gProfiler tool. DSigDB was used for drug signature enrichment analysis. The proportion of immune cells was estimated by the CIBERSORT tool. The relationships between modules, immune cells, and survival were identified by correlation analysis and survival analysis. A total of 37 stable co-expressed gene modules were identified. These modules were associated with the critical biology process in sepsis. Four modules can independently separate patients with long and short survival. Three modules can recurrently separate sepsis and normal patients with high accuracy. Some modules can separate bacterial pneumonia, influenza pneumonia, mixed bacterial and influenza A pneumonia, and non-infective systemic inflammatory response syndrome (SIRS). Drug signature analysis identified drugs associated with sepsis, such as testosterone, phytoestrogens, ibuprofen, urea, dichlorvos, potassium persulfate, and vitamin B12. Finally, a gene co-expression network database was constructed ( https://liqs.shinyapps.io/sepsis/ ). The recurrent modules in sepsis may facilitate disease diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Qingsheng Li
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, People's Republic of China
| | - Lili Qu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, People's Republic of China
| | - Yurui Miao
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, People's Republic of China
| | - Qian Li
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, People's Republic of China
| | - Jing Zhang
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, People's Republic of China
| | - Yongxue Zhao
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, People's Republic of China
| | - Rui Cheng
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, People's Republic of China.
| |
Collapse
|
15
|
Bonosi L, Benigno UE, Musso S, Giardina K, Gerardi RM, Brunasso L, Costanzo R, Paolini F, Buscemi F, Avallone C, Gulino V, Iacopino DG, Maugeri R. The Role of Aquaporins in Epileptogenesis-A Systematic Review. Int J Mol Sci 2023; 24:11923. [PMID: 37569297 PMCID: PMC10418736 DOI: 10.3390/ijms241511923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Aquaporins (AQPs) are a family of membrane proteins involved in the transport of water and ions across cell membranes. AQPs have been shown to be implicated in various physiological and pathological processes in the brain, including water homeostasis, cell migration, and inflammation, among others. Epileptogenesis is a complex and multifactorial process that involves alterations in the structure and function of neuronal networks. Recent evidence suggests that AQPs may also play a role in the pathogenesis of epilepsy. In animal models of epilepsy, AQPs have been shown to be upregulated in regions of the brain that are involved in seizure generation, suggesting that they may contribute to the hyperexcitability of neuronal networks. Moreover, genetic studies have identified mutations in AQP genes associated with an increased risk of developing epilepsy. Our review aims to investigate the role of AQPs in epilepsy and seizure onset from a pathophysiological point of view, pointing out the potential molecular mechanism and their clinical implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Rosario Maugeri
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (U.E.B.); (S.M.); (K.G.); (R.M.G.); (L.B.); (R.C.); (F.P.); (F.B.); (C.A.); (V.G.); (D.G.I.)
| |
Collapse
|
16
|
Smith IM, Stroka KM. The multifaceted role of aquaporins in physiological cell migration. Am J Physiol Cell Physiol 2023; 325:C208-C223. [PMID: 37246634 PMCID: PMC10312321 DOI: 10.1152/ajpcell.00502.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Cell migration is an essential process that underlies many physiological processes, including the immune response, organogenesis in the embryo, and angiogenesis, as well as pathological processes such as cancer metastasis. Cells have at their disposal a variety of migratory behaviors and mechanisms that seem to be specific to cell type and the microenvironment. Research over the past two decades has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. There does not seem to be a universal role that AQPs play in cell migration; the complex interplay between AQPs and cell volume management, signaling pathway activation, and in a few identified circumstances, gene expression regulation, has shown the intricate, and perhaps paradoxical, role of AQPs in cell migration. The objective of this review is to provide an organized and integrated collection of recent work that has elucidated the many mechanisms by which AQPs regulate cell migration.NEW & NOTEWORTHY Research has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. This review compiles insights into the recent findings linking AQPs to physiological cell migration.
Collapse
Affiliation(s)
- Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States
- Biophysics Program, University of Maryland, College Park, Maryland, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland, United States
| |
Collapse
|
17
|
Zhu D, Huang Y, Guo S, Li N, Yang X, Sui A, Wu Q, Zhang Y, Kong Y, Li Q, Zhang T, Zheng W, Li A, Yu J, Ma T, Li S. AQP4 Aggravates Cognitive Impairment in Sepsis-Associated Encephalopathy through Inhibiting Na v 1.6-Mediated Astrocyte Autophagy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205862. [PMID: 36922751 PMCID: PMC10190498 DOI: 10.1002/advs.202205862] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/24/2023] [Indexed: 05/18/2023]
Abstract
The pathology of sepsis-associated encephalopathy (SAE) is related to astrocyte-inflammation associated with aquaporin-4 (AQP4). The aim here is to investigate the effects of AQP4 associated with SAE and reveal its underlying mechanism causing cognitive impairment. The in vivo experimental results reveal that AQP4 in peripheral blood of patients with SAE is up-regulated, also the cortical and hippocampal tissue of cecal ligation and perforation (CLP) mouse brain has significant rise in AQP4. Furthermore, the data suggest that AQP4 deletion could attenuate learning and memory impairment, attributing to activation of astrocytic autophagy, inactivation of astrocyte and downregulate the expression of proinflammatory cytokines induced by CLP or lipopolysaccharide (LPS). Furthermore, the activation effect of AQP4 knockout on CLP or LPS-induced PPAR-γ inhibiting in astrocyte is related to intracellular Ca2+ level and sodium channel activity. Learning and memory impairment in SAE mouse model are attenuated by AQP4 knockout through activating autophagy, inhibiting neuroinflammation leading to neuroprotection via down-regulation of Nav 1.6 channels in the astrocytes. This results in the reduction of Ca2+ accumulation in the cell cytosol furthermore activating the inhibition of PPAR-γ signal transduction pathway in astrocytes.
Collapse
Affiliation(s)
- Dan‐Dan Zhu
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
- Department of Critical Care Medicinethe Second Hospital of Dalian Medical UniversityDalian116023China
| | - Yue‐Lin Huang
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Song‐Yu Guo
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Na Li
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Xue‐Wei Yang
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Ao‐Ran Sui
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Qiong Wu
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Yue Zhang
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Yue Kong
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Qi‐Fa Li
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Ting Zhang
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Wen‐Fei Zheng
- Department of Critical Care Medicinethe Second Hospital of Dalian Medical UniversityDalian116023China
| | - Ai‐Ping Li
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Jian Yu
- Department of Critical Care Medicinethe Second Hospital of Dalian Medical UniversityDalian116023China
| | - Tong‐Hui Ma
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Shao Li
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| |
Collapse
|
18
|
Zhao XH, Yang T, Zheng MY, Zhao P, An LY, Qi YX, Yi KQ, Zhang PC, Sun DL. Cystathionine gamma-lyase (Cth) induces efferocytosis in macrophages via ERK1/2 to modulate intestinal barrier repair. Cell Commun Signal 2023; 21:17. [PMID: 36691021 PMCID: PMC9869634 DOI: 10.1186/s12964-022-01030-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/24/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The inflammatory response induced by intestinal ischaemia‒reperfusion injury (I/R) is closely associated with infectious complications and mortality in critically ill patients, and the timely and effective clearance of apoptotic cells is an important part of reducing the inflammatory response. Studies have shown that the efferocytosis by phagocytes plays an important role. Recently, studies using small intestine organoid models showed that macrophage efferocytosis could promote the repair capacity of the intestinal epithelium. However, no studies have reported efferocytosis in the repair of I/R in animal models. RESULTS We used an in vivo efferocytosis assay and discovered that macrophage efferocytosis played an indispensable role in repairing and maintaining intestinal barrier function after I/R. In addition, the specific molecular mechanism that induced macrophage efferocytosis was Cth-ERK1/2 dependent. We found that Cth drove macrophage efferocytosis in vivo and in vitro. Overexpression/silencing Cth promoted/inhibited the ERK1/2 pathway, respectively, which in turn affected efferocytosis and mediated intestinal barrier recovery. In addition, we found that the levels of Cth and macrophage efferocytosis were positively correlated with the recovery of intestinal function in clinical patients. CONCLUSION Cth can activate the ERK1/2 signalling pathway, induce macrophage efferocytosis, and thus promote intestinal barrier repair. Video Abstract.
Collapse
Affiliation(s)
- Xiao-Hu Zhao
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, 650101, China
| | - Ting Yang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, 650101, China
| | - Meng-Yao Zheng
- Department of Gastroenterology, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, 650101, China
| | - Peinan Zhao
- Department of Medicine (Alfred Hospital), Central Clinical School, Monash University, 99 Commercial Rd, Melbourne, VIC, 3004, Australia
| | - Li-Ya An
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, 650101, China
| | - Yu-Xing Qi
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, 650101, China
| | - Ke-Qian Yi
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, 650101, China
| | - Peng-Cheng Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, 650101, China
| | - Da-Li Sun
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, 650101, China.
| |
Collapse
|
19
|
Li X, Yang B. Non-Transport Functions of Aquaporins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:65-80. [PMID: 36717487 DOI: 10.1007/978-981-19-7415-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although it has been more than 20 years since the first aquaporin was discovered, the specific functions of many aquaporins are still under investigation, because various mice lacking aquaporins have no significant phenotypes. And in many studies, the function of aquaporin is not directly related to its transport function. Therefore, this chapter will focus on some unexpected functions of aquaporins, such the decreased tumor angiogenesis in AQP1 knockout mice, and AQP1 promotes cell migration, possibly by accelerating the water transport in lamellipodia of migrating cells. AQP transports glycerol, and water regulates glycerol content in epidermis and fat, thereby regulating skin hydration/biosynthesis and fat metabolism. AQPs may also be involved in neural signal transduction, cell volume regulation, and organelle physiology. AQP1, AQP3, and AQP5 are also involved in cell proliferation. In addition, AQPs have also been reported to play roles in inflammation in various tissues and organs. The functions of these AQPs may not depend on the permeability of small molecules such as water and glycerol, suggesting AQPs may play more roles in different biological processes in the body.
Collapse
Affiliation(s)
- Xiaowei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
20
|
Sun M, Li L. Identification of Biomarkers Associated with Heart Failure Caused by Idiopathic Dilated Cardiomyopathy Using WGCNA and Machine Learning Algorithms. Int J Genomics 2023; 2023:2250772. [PMID: 37143707 PMCID: PMC10154102 DOI: 10.1155/2023/2250772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
Background The genetic factors and pathogenesis of idiopathic dilated cardiomyopathy-induced heart failure (IDCM-HF) have not been understood thoroughly; there is a lack of specific diagnostic markers and treatment methods for the disease. Hence, we aimed to identify the mechanisms of action at the molecular level and potential molecular markers for this disease. Methods Gene expression profiles of IDCM-HF and non-heart failure (NF) specimens were acquired from the database of Gene Expression Omnibus (GEO). We then identified the differentially expressed genes (DEGs) and analyzed their functions and related pathways by using "Metascape". Weighted gene co-expression network analysis (WGCNA) was utilized to search for key module genes. Candidate genes were identified by intersecting the key module genes identified via WGCNA with DEGs and further screened via the support vector machine-recursive feature elimination (SVM-RFE) method and the least absolute shrinkage and selection operator (LASSO) algorithm. At last, the biomarkers were validated and evaluated the diagnostic efficacy by the area under curve (AUC) value and further confirmed the differential expression in the IDCM-HF and NF groups using an external database. Results We detected 490 genes exhibiting differential expression between IDCM-HF and NF specimens from the GSE57338 dataset, with most of them being concentrated in the extracellular matrix (ECM) of cells related to biological processes and pathways. After screening, 13 candidate genes were identified. Aquaporin 3 (AQP3) and cytochrome P450 2J2 (CYP2J2) showed high diagnostic efficacy in the GSE57338 and GSE6406 datasets, respectively. In comparison to the NF group, AQP3 was significantly down-regulated in the IDCM-HF group, while CYP2J2 was significantly up-regulated. Conclusion As far as we know, this is the first study that combines WGCNA and machine learning algorithms to screen for potential biomarkers of IDCM-HF. Our findings suggest that AQP3 and CYP2J2 could be used as novel diagnostic markers and treatment targets of IDCM-HF.
Collapse
Affiliation(s)
- Mengyi Sun
- Department of Clinical Laboratory, Jining First People′s Hospital, Jining, Shandong, China
| | - Linping Li
- Institute of Cardiovascular Diseases of Jining Medical Research Academy, Jining First People′s Hospital, Jining, Shandong, China
| |
Collapse
|
21
|
Liao M, Yu W, Xie Q, Zhang L, Pan Q, Zhao N, Li L, Cheng Y, Zhang X, Sun D, Chai J. Hepatic Aquaporin 10 Expression Is Downregulated by Activated NFκB Signaling in Human Obstructive Cholestasis. GASTRO HEP ADVANCES 2022; 2:412-423. [PMID: 39132646 PMCID: PMC11307722 DOI: 10.1016/j.gastha.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/01/2022] [Indexed: 08/13/2024]
Abstract
Background and Aims Recent studies reported that the hepatic expression of AQP8 and AQP9 was downregulated in bile duct-ligated (BDL) rats and that overexpression of human AQP1 in the rat liver attenuated cholestasis. However, the hepatic expression of AQP10 and its regulatory mechanism in human cholestasis remain unclear. Methods Serum and liver samples were collected from 34 patients with obstructive cholestasis and from 12 control patients. Eight-week-old male C57BL/6J mice were intravenously injected with an adeno-associated virus 8 (AAV8) encoding human AQP10 driven by a hepatocyte-specific Alb promotor (AAV8-Alb promotor-hAQP10) for functional studies. Constructs of the AQP10 promoter and PLC/PRF/5-ASBT cell lines were used for regulatory mechanism studies. Results AQP10 was significantly downregulated in patients with obstructive cholestasis and negatively associated with the serum levels of total bile acid (TBA). The hepatocyte-specific overexpression of hAQP10 significantly attenuated the cholestatic liver injury and intrahepatic bile acids (BA) accumulation in BDL mice. Conjugated BAs, such as TCA and inflammatory factor TNFα, significantly repressed AQP10 expression. Furthermore, NFκB p65/p50 directly bound to the AQP10 promotor and decreased its activity in PLC/RPF/5-ASBT cells and in the livers of patients with obstructive cholestasis. However, these changes were diminished by BAY 11-7082 (a specific inhibitor of NFκB signaling). Conclusion We are the first to report that AQP10 was significantly decreased in patients with obstructive cholestasis. AQP10 overexpression significantly attenuated cholestatic liver injury in BDL mice. Therefore, overexpression of hAQP10 in the liver may be a valuable strategy for cholestasis intervention.
Collapse
Affiliation(s)
- Min Liao
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenjing Yu
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Marine College, Shandong University, Weihai, China
| | - Qiaoling Xie
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Liangjun Zhang
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiong Pan
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Nan Zhao
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Ling Li
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Cheng
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoxun Zhang
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Dequn Sun
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Jin Chai
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
22
|
Rump K, Spellenberg T, von Busch A, Wolf A, Ziehe D, Thon P, Rahmel T, Adamzik M, Koos B, Unterberg M. AQP5-1364A/C Polymorphism Affects AQP5 Promoter Methylation. Int J Mol Sci 2022; 23:ijms231911813. [PMID: 36233114 PMCID: PMC9570216 DOI: 10.3390/ijms231911813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
The quantity of aquaporin 5 protein in neutrophil granulocytes is associated with human sepsis-survival. The C-allele of the aquaporin (AQP5)-1364A/C polymorphism was shown to be associated with decreased AQP5 expression, which was shown to be relevant in this context leading towards improved outcomes in sepsis. To date, the underlying mechanism of the C-allele—leading to lower AQP5 expression—has been unknown. Knowing the detailed mechanism depicts a crucial step with a target to further interventions. Genotype-dependent regulation of AQP5 expression might be mediated by the epigenetic mechanism of promoter methylation and treatment with epigenetic-drugs could maybe provide benefit. Hence, we tested the hypothesis that AQP5 promoter methylation differs between genotypes in specific types of immune cells.: AQP5 promoter methylation was quantified in cells of septic patients and controls by methylation-specific polymerase chain reaction and quantified by a standard curve. In cell-line models, AQP5 expression was analyzed after demethylation to determine the impact of promoter methylation on AQP5 expression. C-allele of AQP5-1364 A/C promoter polymorphism is associated with a five-fold increased promoter methylation in neutrophils (p = 0.0055) and a four-fold increase in monocytes (p = 0.0005) and lymphocytes (p = 0.0184) in septic patients and healthy controls as well. In addition, a decreased AQP5 promoter methylation was accompanied by an increased AQP5 expression in HL-60 (p = 0.0102) and REH cells (p = 0.0102). The C-allele which is associated with lower gene expression in sepsis is accompanied by a higher methylation level of the AQP5 promoter. Hence, AQP5 promoter methylation could depict a key mechanism in genotype-dependent expression.
Collapse
|
23
|
Cheng Y, Zheng J, Zhan Y, Liu C, Lu B, Hu J. Identification of hub genes and pathophysiological mechanism related to acute unilateral vestibulopathy by integrated bioinformatics analysis. Front Neurol 2022; 13:987076. [PMID: 36237611 PMCID: PMC9552803 DOI: 10.3389/fneur.2022.987076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Background Although many pathological mechanisms and etiological hypotheses of acute unilateral vestibulopathy (AUVP) have been reported, but the actual etiology remains to be elucidated. Objective This study was based on comprehensive bioinformatics to identify the critical genes of AUVP and explore its pathological mechanism. Methods Gene expression profiles of AUVP and normal samples were collected from GSE146230 datasets of the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was constructed, and the WGCNA R-package extracted significant modules. The limma R-package was applied to identify differentially expressed genes (DEGs). The common genes of practical modules and DEGs were screened for GO and KEGG pathways analysis. The protein–protein interaction (PPI) layout and hub genes validation was created by Cytoscape software using the link from the STRING database. The functions of hub genes were predicted through the CTD (comparative genetics database). Results A total of 332 common genes were screened from practical modules and DEGs. Functional enrichment analysis revealed that these genes were predominantly associated with inflammation and infection. After construction of PPI, expressions of hub genes, and drawing ROC curves, LILRB2, FPR1, AQP9, and LILRA1 are highly expressed in AUVP (p < 0.05) and have a certain diagnostic efficacy for AUVP (AUC > 0.7), so they were selected as hub genes. The functions of hub genes suggested that the occurrence of AUVP may be related to inflammation, necrosis, hepatomegaly, and other conditions in CTD. Conclusion LILRB2, FPR1, AQP9, and LILRA1 may play essential roles in developing AUVP, providing new ideas for diagnosing and treating AUVP.
Collapse
|
24
|
Gandhi J, Naik MN, Mishra DK, Joseph J. Proteomic profiling of aspergillus flavus endophthalmitis derived extracellular vesicles in an in-vivo murine model. Med Mycol 2022; 60:myac064. [PMID: 36002004 DOI: 10.1093/mmy/myac064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/25/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular Vesicles (EVs) play pivotal roles in cell-to-cell communication, and are involved in potential pathological and physiological cellular processes. The aim of this study was to understand the proteomic cargo of these vesicles, in a murine model of Aspergillus flavus (AF) endophthalmitis. EVs were isolated from A. flavus infected C57BL/6 mice eyes by differential ultracentrifugation at 24 h post infection (p.i) and isolated EVs were characterized by Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), Exocet assay, and western blot. Proteomic profiling of EVs was then evaluated by mass spectrometry (LC-MS/MS) and compared it with control uninfected mice. The average size of the EVs were 180-280 nm by DLS and the number of EVs increased to 1.55 × 1010 in infected mice in comparison to EVs from uninfected eye (1.24 × 109). Western blot was positive for CD9, CD63, and CD81 confirming the presence of EVs. LC-MS/MS analysis, identified 81 differentially expressed proteins, of these 22 were up-regulated and 59 were down-regulated. Gene Ontology (GO) analysis revealed enrichment of lipid metabolism, protein complex binding, and transferase activity, and the proteins associated were Aquaporin-5, CD177 antigen, Solute carrier family-25, and Calcium/calmodulin-dependent protein kinase. Additionally, KEGG pathway analysis indicated that glucagon signalling, metabolic, and PPAR signalling pathway were significantly associated with EVs from A. flavus infected mice eyes. The protein cargo in EVs from A. flavus endophthalmitis provides new insights into the pathogenesis of fungal endophthalmitis and validation of these proteins can serve as diagnostic and/or prognostic biomarkers for patients with a clinical suspicion of fungal endophthalmitis. LAY SUMMARY EVs play an important role in cell communication. In our study proteomic profiling of EVs isolated from A. flavus infected mice provided new insights into the understanding of the pathobiology of A. flavus endophthalmitis and validation of these proteins can serve as biomarkers.
Collapse
Affiliation(s)
- Jaishree Gandhi
- Jhaveri Microbiology Centre, LV Prasad Eye Institute, Hyderabad, Telangana 500034, India
- Center for Doctoral Studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Milind N Naik
- Department of Ophthalmic Plastic and Facial Aesthetic Surgery, LV Prasad Eye Institute, Hyderabad, Telangana 500034,India
| | - Dilip K Mishra
- Ophthalmic Pathology Laboratory, LV Prasad Eye Institute, Hyderabad, Telangana 500034, India
| | - Joveeta Joseph
- Jhaveri Microbiology Centre, LV Prasad Eye Institute, Hyderabad, Telangana 500034, India
| |
Collapse
|
25
|
Shangzu Z, Dingxiong X, ChengJun M, Yan C, Yangyang L, Zhiwei L, Ting Z, Zhiming M, Yiming Z, Liying Z, Yongqi L. Aquaporins: Important players in the cardiovascular pathophysiology. Pharmacol Res 2022; 183:106363. [PMID: 35905892 DOI: 10.1016/j.phrs.2022.106363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022]
Abstract
Aquaporin is a membrane channel protein widely expressed in body tissues, which can control the input and output of water in cells. AQPs are differentially expressed in different cardiovascular tissues and participate in water transmembrane transport, cell migration, metabolism, inflammatory response, etc. The aberrant expression of AQPs highly correlates with the onset of ischemic heart disease, myocardial ischemia-reperfusion injury, heart failure, etc. Despite much attention to the regulatory role of AQPs in the cardiovascular system, the translation of AQPs into clinical application still faces many challenges, including clarification of the localization of AQPs in the cardiovascular system and mechanisms mediating cardiovascular pathophysiology, as well as the development of cardiovascular-specific AQPs modulators.Therefore, in this study, we comprehensively reviewed the critical roles of AQP family proteins in maintaining cardiovascular homeostasis and described the underlying mechanisms by which AQPs mediated the outcomes of cardiovascular diseases. Meanwhile, AQPs serve as important therapeutic targets, which provide a wide range of opportunities to investigate the mechanisms of cardiovascular diseases and the treatment of those diseases.
Collapse
Affiliation(s)
- Zhang Shangzu
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Xie Dingxiong
- Gansu Institute of Cardiovascular Diseases, LanZhou,China
| | - Ma ChengJun
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Chen Yan
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Li Yangyang
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Liu Zhiwei
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Zhou Ting
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Miao Zhiming
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Zhang Yiming
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Zhang Liying
- Gansu University of traditional Chinese Medicine, LanZhou, China; Gansu Institute of Cardiovascular Diseases, LanZhou,China.
| | - Liu Yongqi
- Gansu University of traditional Chinese Medicine, LanZhou, China; Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, China.
| |
Collapse
|
26
|
Aquaporin 8ab is required in zebrafish embryonic intestine development. Acta Biochim Biophys Sin (Shanghai) 2022; 54:952-960. [PMID: 35880566 PMCID: PMC9828320 DOI: 10.3724/abbs.2022077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aquaporin 8 (AQP8) is a small integral membrane protein that selectively transports water and other small uncharged solutes across cell plasma membranes. It has been demonstrated that AQP8 is ubiquitously present in various tissues and organs of mammals, and participates in many physiological and pathological processes. Recent studies showed that AQP8 is highly expressed in the columnar epithelial cells of mammalian colonic mucosa facing lumen, indicating that AQP8 plays potential roles in the physiology and pathophysiology of gastrointestinal tract. However, the role of AQP8 during gastrointestinal tract development is unclear. In the present study, RT-PCR results reveal that the zebrafish genome encodes three kinds of aqp8s ( aqp8aa, aqp8ab, and aqp8b). We use whole mount in situ hybridization to describe aqp8 genes spatiotemporal expression pattern, and the results show that aqp8ab mRNA is detectable mainly in the zebrafish embryonic intestine. To reveal the details of aqp8ab distribution, histological sections are employed. Transverse sections indicate that aqp8ab mRNA expression is more intense in the layer lining the intestinal cavity. Knockout of aqp8ab using the CRISPR/Cas9 system induces intestine development defects and abnormal formation of intestinal lumen. In addition, aqp8ab mRNA significantly rescues the intestine defects in the aqp8ab mutant. These results indicate that aqp8ab is required in the intestine development of zebrafish.
Collapse
|
27
|
da Silva IV, Garra S, Calamita G, Soveral G. The Multifaceted Role of Aquaporin-9 in Health and Its Potential as a Clinical Biomarker. Biomolecules 2022; 12:biom12070897. [PMID: 35883453 PMCID: PMC9313442 DOI: 10.3390/biom12070897] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
Aquaporins (AQPs) are transmembrane channels essential for water, energy, and redox homeostasis, with proven involvement in a variety of pathophysiological conditions such as edema, glaucoma, nephrogenic diabetes insipidus, oxidative stress, sepsis, cancer, and metabolic dysfunctions. The 13 AQPs present in humans are widely distributed in all body districts, drawing cell lineage-specific expression patterns closely related to cell native functions. Compelling evidence indicates that AQPs are proteins with great potential as biomarkers and targets for therapeutic intervention. Aquaporin-9 (AQP9) is the most expressed in the liver, with implications in general metabolic and redox balance due to its aquaglyceroporin and peroxiporin activities, facilitating glycerol and hydrogen peroxide (H2O2) diffusion across membranes. AQP9 is also expressed in other tissues, and their altered expression is described in several human diseases, such as liver injury, inflammation, cancer, infertility, and immune disorders. The present review compiles the current knowledge of AQP9 implication in diseases and highlights its potential as a new biomarker for diagnosis and prognosis in clinical medicine.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Sabino Garra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
- Correspondence: (G.C.); (G.S.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Correspondence: (G.C.); (G.S.)
| |
Collapse
|
28
|
Mohammad S, O’Riordan CE, Verra C, Aimaretti E, Alves GF, Dreisch K, Evenäs J, Gena P, Tesse A, Rützler M, Collino M, Calamita G, Thiemermann C. RG100204, A Novel Aquaporin-9 Inhibitor, Reduces Septic Cardiomyopathy and Multiple Organ Failure in Murine Sepsis. Front Immunol 2022; 13:900906. [PMID: 35774785 PMCID: PMC9238327 DOI: 10.3389/fimmu.2022.900906] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is caused by systemic infection and is a major health concern as it is the primary cause of death from infection. It is the leading cause of mortality worldwide and there are no specific effective treatments for sepsis. Gene deletion of the neutral solute channel Aquaporin 9 (AQP9) normalizes oxidative stress and improves survival in a bacterial endotoxin induced mouse model of sepsis. In this study we described the initial characterization and effects of a novel small molecule AQP9 inhibitor, RG100204, in a cecal ligation and puncture (CLP) induced model of polymicrobial infection. In vitro, RG100204 blocked mouse AQP9 H2O2 permeability in an ectopic CHO cell expression system and abolished the LPS induced increase in superoxide anion and nitric oxide in FaO hepatoma cells. Pre-treatment of CLP-mice with RG100204 (25 mg/kg p.o. before CLP and then again at 8 h after CLP) attenuated the hypothermia, cardiac dysfunction (systolic and diastolic), renal dysfunction and hepatocellular injury caused by CLP-induced sepsis. Post-treatment of CLP-mice with RG100204 also attenuated the cardiac dysfunction (systolic and diastolic), the renal dysfunction caused by CLP-induced sepsis, but did not significantly reduce the liver injury or hypothermia. The most striking finding was that oral administration of RG100204 as late as 3 h after the onset of polymicrobial sepsis attenuated the cardiac and renal dysfunction caused by severe sepsis. Immunoblot quantification demonstrated that RG100204 reduced activation of the NLRP3 inflammasome pathway. Moreover, myeloperoxidase activity in RG100204 treated lung tissue was reduced. Together these results indicate that AQP9 may be a novel drug target in polymicrobial sepsis.
Collapse
Affiliation(s)
- Shireen Mohammad
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Shireen Mohammad, ; Christoph Thiemermann,
| | - Caroline E. O’Riordan
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Chiara Verra
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Eleonora Aimaretti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | - Johan Evenäs
- Red Glead Discovery Akiebolag (AB), Lund, Sweden
| | - Patrizia Gena
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Bari, Italy
| | - Angela Tesse
- Nantes Université, Instite National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Rescherche Scientifique (CNRS), l’institut du Thorax, Nantes, France
| | - Michael Rützler
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
- Apoglyx Akiebolag (AB), Lund, Sweden
| | - Massimo Collino
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Bari, Italy
| | - Christoph Thiemermann
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Shireen Mohammad, ; Christoph Thiemermann,
| |
Collapse
|
29
|
IL-1R1 blockade attenuates liver injury through inhibiting the recruitment of myeloid-derived suppressor cells in sepsis. Biochem Biophys Res Commun 2022; 620:21-28. [DOI: 10.1016/j.bbrc.2022.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022]
|
30
|
Paidas MJ, Sampath N, Schindler EA, Cosio DS, Ndubizu CO, Shamaladevi N, Kwal J, Rodriguez S, Ahmad A, Kenyon NS, Jayakumar AR. Mechanism of Multi-Organ Injury in Experimental COVID-19 and Its Inhibition by a Small Molecule Peptide. Front Pharmacol 2022; 13:864798. [PMID: 35712703 PMCID: PMC9196045 DOI: 10.3389/fphar.2022.864798] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Severe disease from SARS-CoV-2 infection often progresses to multi-organ failure and results in an increased mortality rate amongst these patients. However, underlying mechanisms of SARS- CoV-2-induced multi-organ failure and subsequent death are still largely unknown. Cytokine storm, increased levels of inflammatory mediators, endothelial dysfunction, coagulation abnormalities, and infiltration of inflammatory cells into the organs contribute to the pathogenesis of COVID-19. One potential consequence of immune/inflammatory events is the acute progression of generalized edema, which may lead to death. We, therefore, examined the involvement of water channels in the development of edema in multiple organs and their contribution to organ dysfunction in a Murine Hepatitis Virus-1 (MHV-1) mouse model of COVID-19. Using this model, we recently reported multi-organ pathological abnormalities and animal death similar to that reported in humans with SARS-CoV-2 infection. We now identified an alteration in protein levels of AQPs 1, 4, 5, and 8 and associated oxidative stress, along with various degrees of tissue edema in multiple organs, which correlate well with animal survival post-MHV-1 infection. Furthermore, our newly created drug (a 15 amino acid synthetic peptide, known as SPIKENET) that was designed to prevent the binding of spike glycoproteins with their receptor(s), angiotensin- converting enzyme 2 (ACE2), and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) (SARS-CoV-2 and MHV-1, respectively), ameliorated animal death and reversed altered levels of AQPs and oxidative stress post-MHV-1 infection. Collectively, our findings suggest the possible involvement of altered aquaporins and the subsequent edema, likely mediated by the virus-induced inflammatory and oxidative stress response, in the pathogenesis of COVID- 19 and the potential of SPIKENET as a therapeutic option.
Collapse
Affiliation(s)
- Michael J. Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Michael J. Paidas, ; Arumugam R. Jayakumar,
| | - Natarajan Sampath
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Emma A. Schindler
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Daniela S. Cosio
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Chima Obianuju Ndubizu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | | | - Jaclyn Kwal
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Suset Rodriguez
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anis Ahmad
- Department of Radiation Oncology, Sylvester Cancer Center, University of Miami School of Medicine, Miami, FL, United States
| | - Norma Sue Kenyon
- Microbiology & Immunology and Biomedical Engineering, Diabetes Research Institute, University of Miami, Miami, FL, United States
| | - Arumugam R. Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Michael J. Paidas, ; Arumugam R. Jayakumar,
| |
Collapse
|
31
|
Proteomic profiling of exosomes in a mouse model of Candida albicans endophthalmitis. Exp Cell Res 2022; 417:113222. [PMID: 35618014 DOI: 10.1016/j.yexcr.2022.113222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
Abstract
Exosomes play pivotal roles in intercellular communication, and pathophysiological functions. In this study, we aimed to understand the role of exosomal proteome derived from C. albicans infected mice (C57BL/6) eyeball. Exosomes were characterized by Dynamic Light Scattering and western blot, quantified and subjected to LC-MS/MS and cytokine quantification by ELISA. The average size of exosomes was 170-200 nm with number of exosomes amounted to 1.42 × 1010 in infected set compared to control (1.24 × 109). Western blot was positive for CD9, CD63 and CD81 confirming the presence of exosomes. IL-6, IL1β, TNF-α, and IFN-γ levels were significantly elevated in infected eye at 72 h.p.i. Proteomic analysis identified 42 differentially expressed proteins, of these 37 were upregulated and 5 were downregulated. Gene Ontology (GO) revealed enrichment of cell adhesion, cytoskeleton organization, and cellular response proteins such as aquaporin-5, gasdermin-A, CD5 antigen-like, Catenin, V-ATPase, and vesicle associated protein. Additionally, KEGG pathway analysis indicated the association of metabolic and carbon signalling pathways with exosomes from C. albicans infected eye. The protein cargo in exosomes released during endophthalmitis with C. albicans seems to play a unique role in the pathogenesis of the disease and further validations with larger cohort of patients is required to confirm them as biomarkers. .
Collapse
|
32
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
33
|
Tu H, Ma D, Luo Y, Tang S, Li Y, Chen G, Wang L, Hou Z, Shen C, Lu H, Zhuang X, Zhang L. Quercetin alleviates chronic renal failure by targeting the PI3k/Akt pathway. Bioengineered 2021; 12:6538-6558. [PMID: 34528858 PMCID: PMC8806539 DOI: 10.1080/21655979.2021.1973877] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic renal failure (CRF) threatens human health greatly and attracts worldwide concerns of health professionals in the public health sector. In our preliminary study, we found that Compound capsule (Shengqing Jiangzhuo Capsule, SQJZJN) had a significant therapeutic effect on CRF. Quercetin is one of the main components of this Compound capsule. In this study, we investigated the effect of Quercetin monomer on CRF and the regulation of PI3k/Akt pathway. Network pharmacology analysis methods were employed to analyze the SQJZJN/Quercetin/PIK3R1 network relationships. In this study, a CRF rat model was prepared using the gavage adenine solution method and detected the indicators of Creatinine (Cr), Blood Urea Nitrogen (BUN), and Uric Acid (UA). After treating the rat model with Quercetin and PIK3R1-interfering lentivirus, respectively, we observed the changes on the histological morphology of the kidney and detected apoptosis using TUNEL staining. Gene and protein expression associated with renal function were detected using qPCR, WB and immunofluorescence. Quercetin was identified as the main ingredient of SQJZJN by the network pharmacological screening and Quercetin at 1.5 and 3 g/(kg.d) concentrations could effectively alleviate the CRF symptoms, reduce the levels of Cr, BUN, and UA, and markedly inhibit cell apoptosis demonstrated by the intragastric administration. Furthermore, the protein expression of p-PI3K, p-AKT, NLRP3, caspase1, AQP1, and AQP2 in all groups was detected by immunofluorescence and western blot assays, indicating that Quercetin could reduce the expression of NLRP3, caspase1, p-PI3k, and p-Akt, and increase the expression of AQP1 and AQP2 in the renal tissues of CRF rats. Being labeled with biotin and incubated with the total protein extracted from kidney tissues, Quercetin could bind to PIK3R1. Following the PIK3R1 interference lentivirus was injected into the CRF model rats by tail vein, the CRF symptoms were effectively alleviated in the PIK3R1 interference group, consistent with the effect of Quercetin. Taken together, Quercetin, a major component of SQJZJN, might minimize renal fibrosis and apoptosis in CRF rats by inhibiting the PI3k/Akt pathway through targeting PIK3R1. By regulating AQP1 and AQP2, both water retention and toxin accumulation were reduced.
Collapse
Affiliation(s)
- Haitao Tu
- Division of Nephrology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Duanhua Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Yuanyuan Luo
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuifu Tang
- Division of Nephrology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Ying Li
- Division of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Gangyi Chen
- Division of Nephrology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Liangliang Wang
- Division of Nephrology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Zhengkun Hou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chuangpeng Shen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huan Lu
- Division of Nephrology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Xun Zhuang
- Department of Rehabilitation Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Liangyou Zhang
- Division of Nephrology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| |
Collapse
|
34
|
Prophylactic effect of myricetin and apigenin against lipopolysaccharide-induced acute liver injury. Mol Biol Rep 2021; 48:6363-6373. [PMID: 34401985 DOI: 10.1007/s11033-021-06637-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Liver has an important role in the initiation and progression of multiple organ failure that occurs in sepsis. Many natural active substances can be used to reduce the liver injury caused by sepsis. For this aim, the effects of myricetin and apigenin on mice model of acute liver injury was evaluated in this study. METHODS AND RESULTS Thirty-six mice were randomly divided into six groups as; control, lipopolysaccharide (LPS) (5 mg/kg), LPS + myricetin (100 mg/kg), LPS + myricetin (200 mg/kg), LPS + apigenin (100 mg/kg), and LPS + apigenin (200 mg/kg) groups. Myricetin and apigenin were administered orally for 7 days, and LPS was administered intraperitoneally only on the 7th day of the study. 24 h after LPS application, all animals were sacrificed and serum biochemical parameters, histopathology and oxidative stress and inflammation markers of liver tissue were examined. Myricetin and apigenin pre-treatments increased serum albumin and total protein levels, liver GSH level and catalase and SOD activities and decreased serum ALT, AST, ALP, γ-GT, CRP, total and direct bilirubin levels, liver MPO activity, MDA, NOx, PGE2, TNF-α, IL-1β, and IL-6 levels, iNOS and COX-2 mRNA levels, phosphorylation of NF-κB p65, IκB, and IKK proteins but not p38, ERK, and JNK proteins in LPS-treated mice. Myricetin and apigenin administration also regained the hepatic architecture disrupted during LPS application. CONCLUSION Myricetin and apigenin pre-treatments led to reduction of liver injury indices and oxidative stress and inflammatory events and these flavonoids has probably hepatoprotective effects in acute liver injury.
Collapse
|
35
|
Ablimit A, Abdureyim Z, Yang P, Azmat R, Shan W, Yao Q. Testicular AQP1 expression in a rat model of testicular Ischemia-Reperfusion injury. J Pediatr Urol 2021; 17:169.e1-169.e6. [PMID: 33358303 DOI: 10.1016/j.jpurol.2020.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/01/2020] [Accepted: 12/03/2020] [Indexed: 11/27/2022]
Abstract
UNLABELLED Aquaporin 1 (AQP1) is the archetype of all aquaporins and involved in rapid cellular water fluxes and cell volume regulation. AN OBJECTIVE This study was conducted for the investigation of AQP1 expression in normal testicular tissues and those with I/R injury in a rat model. STUDY DESIGN A TT rat model was established using male Wister rats (4 weeks old, 180-220 g), and AQP1 distribution in the testicular tissues was detected by immunohistochemistry. The wet/dry (W/D) weight ratios of the testes were determined at 12 h, 24 h, 36 h, 48 h, or 5 days after the establishment of the TT model. At each time point, pathological sections were prepared and the mRNA and protein expression levels of AQP1 were determined by RT-qPCR and Western blotting, respectively. RESULTS Immunohistochemical staining indicated that AQP1 distributes in testicular vascular endothelial cells and interstitial connective tissues. The testicular edema was observed 12 and 24 h after TT, as indicated by the increase in wet/dry weight ratio and pathological changes, such as enlarged testicular interstitium, atrophy of spermatogenic tubules, and epineurium tubule exfoliation. Increase in the expression levels of Aqp1 mRNA and AQP1 protein levels peaked at 24 h. Edema was alleviated at 36 and 48 h, as manifested by the gradual thinning of the spermatogenic tubules epithelium with narrowed interstitium and weakened inflammatory cell infiltration. Meanwhile, the mRNA and protein levels of AQP1 dramatically decreased. At 5 days after TT, edema was nearly absent, and the mRNA and protein levels of AQP1 were restored to basal levels. DISCUSSION Testicular torsion increases AQP1 expression and W/D ratios in testis tissues. The upregulation of AQP1 expression and decline in AQP1 level are consistent to the development and alleviation of edema in testis tissues that underwent testicular torsion. CONCLUSION Changes in AQP1 expression were consistent with edema severity in the testes, indicating a close relationship between the expression of AQP1 and the extent of edema in testicular I/R.
Collapse
Affiliation(s)
- Abduxukur Ablimit
- Department of Histology and Embryology, Basic Medical College, Xinjiang Medical University, Urumqi 830011, China.
| | - Zumrat Abdureyim
- Center of Morphology, Basic Medical College, Xinjiang Medical University, Urumqi 830011, China.
| | - Pan Yang
- Department of Physiology, Basic Medical College, Xinjiang Medical University, Urumqi 830011, China.
| | - Rozjan Azmat
- Department of Physiology, Basic Medical College, Xinjiang Medical University, Urumqi 830011, China.
| | - Weibi Shan
- Department of Physiology, Basic Medical College, Xinjiang Medical University, Urumqi 830011, China.
| | - Qiaoling Yao
- Department of Physiology, Basic Medical College, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
36
|
Azad AK, Raihan T, Ahmed J, Hakim A, Emon TH, Chowdhury PA. Human Aquaporins: Functional Diversity and Potential Roles in Infectious and Non-infectious Diseases. Front Genet 2021; 12:654865. [PMID: 33796134 PMCID: PMC8007926 DOI: 10.3389/fgene.2021.654865] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are integral membrane proteins and found in all living organisms from bacteria to human. AQPs mainly involved in the transmembrane diffusion of water as well as various small solutes in a bidirectional manner are widely distributed in various human tissues. Human contains 13 AQPs (AQP0-AQP12) which are divided into three sub-classes namely orthodox aquaporin (AQP0, 1, 2, 4, 5, 6, and 8), aquaglyceroporin (AQP3, 7, 9, and 10) and super or unorthodox aquaporin (AQP11 and 12) based on their pore selectivity. Human AQPs are functionally diverse, which are involved in wide variety of non-infectious diseases including cancer, renal dysfunction, neurological disorder, epilepsy, skin disease, metabolic syndrome, and even cardiac diseases. However, the association of AQPs with infectious diseases has not been fully evaluated. Several studies have unveiled that AQPs can be regulated by microbial and parasitic infections that suggest their involvement in microbial pathogenesis, inflammation-associated responses and AQP-mediated cell water homeostasis. This review mainly aims to shed light on the involvement of AQPs in infectious and non-infectious diseases and potential AQPs-target modulators. Furthermore, AQP structures, tissue-specific distributions and their physiological relevance, functional diversity and regulations have been discussed. Altogether, this review would be useful for further investigation of AQPs as a potential therapeutic target for treatment of infectious as well as non-infectious diseases.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jahed Ahmed
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Al Hakim
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tanvir Hossain Emon
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | |
Collapse
|
37
|
Ablation of Aquaporin-9 Ameliorates the Systemic Inflammatory Response of LPS-Induced Endotoxic Shock in Mouse. Cells 2021; 10:cells10020435. [PMID: 33670755 PMCID: PMC7922179 DOI: 10.3390/cells10020435] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Septic shock is the most severe complication of sepsis, being characterized by a systemic inflammatory response following bacterial infection, leading to multiple organ failure and dramatically high mortality. Aquaporin-9 (AQP9), a membrane channel protein mainly expressed in hepatocytes and leukocytes, has been recently associated with inflammatory and infectious responses, thus triggering strong interest as a potential target for reducing septic shock-dependent mortality. Here, we evaluated whether AQP9 contributes to murine systemic inflammation during endotoxic shock. Wild type (Aqp9+/+; WT) and Aqp9 gene knockout (Aqp9−/−; KO) male mice were submitted to endotoxic shock by i.p. injection of lipopolysaccharide (LPS; 40 mg/kg) and the related survival times were followed during 72 h. The electronic paramagnetic resonance and confocal microscopy were employed to analyze the nitric oxide (NO) and superoxide anion (O2−) production, and the expression of inducible NO-synthase (iNOS) and cyclooxigenase-2 (COX-2), respectively, in the liver, kidney, aorta, heart and lung of the mouse specimens. LPS-treated KO mice survived significantly longer than corresponding WT mice, and 25% of the KO mice fully recovered from the endotoxin treatment. The LPS-injected KO mice showed lower inflammatory NO and O2− productions and reduced iNOS and COX-2 levels through impaired NF-κB p65 activation in the liver, kidney, aorta, and heart as compared to the LPS-treated WT mice. Consistent with these results, the treatment of FaO cells, a rodent hepatoma cell line, with the AQP9 blocker HTS13268 prevented the LPS-induced increase of inflammatory NO and O2−. A role for AQP9 is suggested in the early acute phase of LPS-induced endotoxic shock involving NF-κB signaling. The modulation of AQP9 expression/function may reveal to be useful in developing novel endotoxemia therapeutics.
Collapse
|
38
|
da Silva IV, Soveral G. Aquaporins in Immune Cells and Inflammation: New Targets for Drug Development. Int J Mol Sci 2021; 22:ijms22041845. [PMID: 33673336 PMCID: PMC7917738 DOI: 10.3390/ijms22041845] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/25/2022] Open
Abstract
The mammalian immune system senses foreign antigens by mechanisms that involve the interplay of various kinds of immune cells, culminating in inflammation resolution and tissue clearance. The ability of the immune cells to communicate (via chemokines) and to shift shape for migration, phagocytosis or antigen uptake is mainly supported by critical proteins such as aquaporins (AQPs) that regulate water fluid homeostasis and volume changes. AQPs are protein channels that facilitate water and small uncharged molecules’ (such as glycerol or hydrogen peroxide) diffusion through membranes. A number of AQP isoforms were found upregulated in inflammatory conditions and are considered essential for the migration and survival of immune cells. The present review updates information on AQPs’ involvement in immunity and inflammatory processes, highlighting their role as crucial players and promising targets for drug discovery.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Correspondence: ; Tel.: +351-217946461
| |
Collapse
|
39
|
Messerer DAC, Schmidt H, Frick M, Huber-Lang M. Ion and Water Transport in Neutrophil Granulocytes and Its Impairment during Sepsis. Int J Mol Sci 2021; 22:1699. [PMID: 33567720 PMCID: PMC7914618 DOI: 10.3390/ijms22041699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Neutrophil granulocytes are the vanguard of innate immunity in response to numerous pathogens. Their activity drives the clearance of microbe- and damage-associated molecular patterns, thereby contributing substantially to the resolution of inflammation. However, excessive stimulation during sepsis leads to cellular unresponsiveness, immunological dysfunction, bacterial expansion, and subsequent multiple organ dysfunction. During the short lifespan of neutrophils, they can become significantly activated by complement factors, cytokines, and other inflammatory mediators. Following stimulation, the cells respond with a defined (electro-)physiological pattern, including depolarization, calcium influx, and alkalization as well as with increased metabolic activity and polarization of the actin cytoskeleton. Activity of ion transport proteins and aquaporins is critical for multiple cellular functions of innate immune cells, including chemotaxis, generation of reactive oxygen species, and phagocytosis of both pathogens and tissue debris. In this review, we first describe the ion transport proteins and aquaporins involved in the neutrophil ion-water fluxes in response to chemoattractants. We then relate ion and water flux to cellular functions with a focus on danger sensing, chemotaxis, phagocytosis, and oxidative burst and approach the role of altered ion transport protein expression and activity in impaired cellular functions and cell death during systemic inflammation as in sepsis.
Collapse
Affiliation(s)
- David Alexander Christian Messerer
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, 89081 Ulm, Germany;
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Ulm, 89081 Ulm, Germany
| | - Hanna Schmidt
- Institute of General Physiology, Ulm University, 89081 Ulm, Germany; (H.S.); (M.F.)
- Department of Pediatrics and Adolescent Medicine, University Hospital of Ulm, 89081 Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, 89081 Ulm, Germany; (H.S.); (M.F.)
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, 89081 Ulm, Germany;
| |
Collapse
|
40
|
Catarina AV, Branchini G, Bettoni L, De Oliveira JR, Nunes FB. Sepsis-Associated Encephalopathy: from Pathophysiology to Progress in Experimental Studies. Mol Neurobiol 2021; 58:2770-2779. [PMID: 33495934 DOI: 10.1007/s12035-021-02303-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Sepsis is an organ dysfunction caused by an uncontrolled inflammatory response from the host to an infection. Sepsis is the main cause of morbidity and mortality in intensive care units (ICU) worldwide. One of the first organs to suffer from injuries resulting from sepsis is the brain. The central nervous system (CNS) is particularly vulnerable to damage, mediated by inflammatory and oxidative processes, which can cause the sepsis-associated encephalopathy (SAE), being reported in up to 70% of septic patients. This review aims to bring a summary of the main pathophysiological changes and dysfunctions in SAE, and the main focuses of current experimental studies for new treatments and therapies. The pathophysiology of SAE is complex and multifactorial, combining intertwined processes, and is promoted by countless alterations and dysfunctions resulting from sepsis, such as inflammation, neuroinflammation, oxidative stress, reduced brain metabolism, and injuries to the integrity of the blood-brain barrier (BBB). The treatment is limited once its cause is not completely understood. The patient's sedation is far to provide an adequate treatment to this complex condition. Studies and experimental advances are important for a better understanding of its pathophysiology and for the development of new treatments, medicines, and therapies for the treatment of SAE and to reduce its effects during and after sepsis.
Collapse
Affiliation(s)
- Anderson Velasque Catarina
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, RS, 90050-170, Brazil.
| | - Gisele Branchini
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, RS, 90050-170, Brazil
| | - Lais Bettoni
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, RS, 90050-170, Brazil
| | - Jarbas Rodrigues De Oliveira
- Laboratório de Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Brazil
| | - Fernanda Bordignon Nunes
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, RS, 90050-170, Brazil.,Laboratório de Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Brazil
| |
Collapse
|
41
|
Hypotheses about sub-optimal hydration in the weeks before coronavirus disease (COVID-19) as a risk factor for dying from COVID-19. Med Hypotheses 2020; 144:110237. [PMID: 33254543 PMCID: PMC7467030 DOI: 10.1016/j.mehy.2020.110237] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/20/2020] [Accepted: 08/30/2020] [Indexed: 02/03/2023]
Abstract
To address urgent need for strategies to limit mortality from coronavirus disease 2019 (COVID-19), this review describes experimental, clinical and epidemiological evidence that suggests that chronic sub-optimal hydration in the weeks before infection might increase risk of COVID-19 mortality in multiple ways. Sub-optimal hydration is associated with key risk factors for COVID-19 mortality, including older age, male sex, race-ethnicity and chronic disease. Chronic hypertonicity, total body water deficit and/or hypovolemia cause multiple intracellular and/or physiologic adaptations that preferentially retain body water and favor positive total body water balance when challenged by infection. Via effects on serum/glucocorticoid-regulated kinase 1 (SGK1) signaling, aldosterone, tumor necrosis factor-alpha (TNF-alpha), vascular endothelial growth factor (VEGF), aquaporin 5 (AQP5) and/or Na+/K+-ATPase, chronic sub-optimal hydration in the weeks before exposure to COVID-19 may conceivably result in: greater abundance of angiotensin converting enzyme 2 (ACE2) receptors in the lung, which increases likelihood of COVID-19 infection, lung epithelial cells which are pre-set for exaggerated immune response, increased capacity for capillary leakage of fluid into the airway space, and/or reduced capacity for both passive and active transport of fluid out of the airways. The hypothesized hydration effects suggest hypotheses regarding strategies for COVID-19 risk reduction, such as public health recommendations to increase intake of drinking water, hydration screening alongside COVID-19 testing, and treatment tailored to the pre-infection hydration condition. Hydration may link risk factors and pathways in a unified mechanism for COVID-19 mortality. Attention to hydration holds potential to reduce COVID-19 mortality and disparities via at least 5 pathways simultaneously.
Collapse
|
42
|
Li X, Cai H, Ren X, He J, Tang J, Xie P, Wang N, Nie F, Lei L, Wang C, Li W, Ma J. Sandstorm weather is a risk factor for mortality in ischemic heart disease patients in the Hexi Corridor, northwestern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34099-34106. [PMID: 32557065 DOI: 10.1007/s11356-020-09616-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Ischemic heart disease (IHD) is one of the leading causes of mortality worldwide. Moreover, the effects of air pollution have been associated with several cardiovascular diseases (CVDs). The relationship between sandstorm weather and IHD is unknown. The Hexi Corridor is located in northwestern China and is a typical desert region comprising a large area of desert with a high incidence of sandstorms. This study aimed to explore the association between sandstorm weather and IHD-related mortality in this area. We acquired meteorological data of sandstorm weather from 2006 to 2015 from the Gansu Meteorological Bureau, and data regarding deaths due to IHD in five cities within the Hexi Corridor were collected from the death registration system of the Center for Disease Control of Gansu during the same period. Two other cities with few sandstorm events were selected as control regions. The time series method of the generalized additive model (GAM) was used to assess the association between sandstorm weather and IHD-related mortality in the Hexi Corridor. The results showed that the frequency of sandstorms in the Hexi Corridor was higher than that in the control regions (5.48% vs 1.64%, P < 0.01), and IHD-related mortality was correspondingly higher than that in the control regions (56.42/100,000 vs 45.62/100,000, P < 0.01). After stratification by gender, age, and urban/rural residence, a significant difference in IHD-related mortality was also noted (P < 0.05). Significant associations were found between sandstorm weather and IHD-related mortality, and the relative risk (RR) increased with an increasing number of days of sandstorm weather. According to the monthly and annual analyses, the mortality rate corresponded to sandstorm frequency. Our data suggest a positive association between sandstorm weather and IHD-related mortality in the Hexi Corridor of Gansu Province. The underlying mechanism requires further study.
Collapse
Affiliation(s)
- Xinghui Li
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Hui Cai
- Gansu Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xiaolan Ren
- Department of Prevention and Control of Chronic Non-communicable Diseases, Gansu Provincial Center for Disease Control and Prevention, Lanzhou, 730000, China
| | - Jin He
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Jia Tang
- Department of Infectious Diseases, Huashan Hospital of Fudan University, Shanghai, 200041, China
| | - Ping Xie
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Nan Wang
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Fangfei Nie
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Linfeng Lei
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Chenchen Wang
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Wenli Li
- Central Meteorological Station of Gansu Meteorological Bureau, Lanzhou, 730000, China
| | - Jing Ma
- Department of Endocrinology, Gansu Provincial Hospital, No. 204 Donggang West Road, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
43
|
Rump K, Rahmel T, Rustige AM, Unterberg M, Nowak H, Koos B, Schenker P, Viebahn R, Adamzik M, Bergmann L. The Aquaporin3 Promoter Polymorphism -1431 A/G is Associated with Acute Graft Rejection and Cytomegalovirus Infection in Kidney Recipients Due to Altered Immune Cell Migration. Cells 2020; 9:cells9061421. [PMID: 32521638 PMCID: PMC7349827 DOI: 10.3390/cells9061421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Major complications after kidney transplantation are graft rejection and cytomegalovirus (CMV) infection, which are related to T-cell function, which depends on aquaporin 3 (AQP3) expression. The impact of the AQP3 A(−1431)G promoter polymorphism in kidney transplant recipients was unelucidated and we explored the effect of AQP3 polymorphism on immune cell function and its association with graft rejection and CMV infection in 237 adult patients within 12 months after transplantation. AQP3 promoter polymorphism was molecular and functional characterized. Kaplan–Meier plots evaluated the relationship between genotypes and the incidence of CMV infection and graft rejection. AQP3 A(−1431)G A-allele was associated with enhanced immune cell migration and AQP3 expression in T-cells. The incidences of rejection were 45.4% for the A-allele and 27.1% for G-allele carriers (p = 0.005) and the A-allele was a strong risk factor (hazard ratio (HR): 1.95; 95% CI: 1.216 to 3.127; p = 0.006). The incidences for CMV infection were 21% for A-allele and 35% for G-allele carriers (p = 0.013) and G-allele was an independent risk factor (p = 0.023), with a doubled risk for CMV infection (HR: 1.9; 95% CI: 1.154 to 3.128; p = 0.012). Hence, A-allele confers more resistance against CMV infection, but susceptibility to graft rejection mediated by T-cells. Thus, AQP3-genotype adapted management of immunosuppression and antiviral prophylaxis after kidney transplantation seems prudent.
Collapse
Affiliation(s)
- Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum der Ruhr Universität Bochum Knappschaftskrankenhaus Bochum, 44801 Bochum, Germany; (T.R.); (A.-M.R.); (M.U.); (H.N.); (B.K.); (M.A.); (L.B.)
- Correspondence: ; Tel.: +49-23432-29242; Fax: +49-234299-3009
| | - Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum der Ruhr Universität Bochum Knappschaftskrankenhaus Bochum, 44801 Bochum, Germany; (T.R.); (A.-M.R.); (M.U.); (H.N.); (B.K.); (M.A.); (L.B.)
| | - Anna-Maria Rustige
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum der Ruhr Universität Bochum Knappschaftskrankenhaus Bochum, 44801 Bochum, Germany; (T.R.); (A.-M.R.); (M.U.); (H.N.); (B.K.); (M.A.); (L.B.)
| | - Matthias Unterberg
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum der Ruhr Universität Bochum Knappschaftskrankenhaus Bochum, 44801 Bochum, Germany; (T.R.); (A.-M.R.); (M.U.); (H.N.); (B.K.); (M.A.); (L.B.)
| | - Hartmuth Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum der Ruhr Universität Bochum Knappschaftskrankenhaus Bochum, 44801 Bochum, Germany; (T.R.); (A.-M.R.); (M.U.); (H.N.); (B.K.); (M.A.); (L.B.)
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum der Ruhr Universität Bochum Knappschaftskrankenhaus Bochum, 44801 Bochum, Germany; (T.R.); (A.-M.R.); (M.U.); (H.N.); (B.K.); (M.A.); (L.B.)
| | - Peter Schenker
- Chirurgische Universitätsklinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.S.); (R.V.)
| | - Richard Viebahn
- Chirurgische Universitätsklinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.S.); (R.V.)
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum der Ruhr Universität Bochum Knappschaftskrankenhaus Bochum, 44801 Bochum, Germany; (T.R.); (A.-M.R.); (M.U.); (H.N.); (B.K.); (M.A.); (L.B.)
| | - Lars Bergmann
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum der Ruhr Universität Bochum Knappschaftskrankenhaus Bochum, 44801 Bochum, Germany; (T.R.); (A.-M.R.); (M.U.); (H.N.); (B.K.); (M.A.); (L.B.)
| |
Collapse
|
44
|
Guo R, Li Y, Han M, Liu J, Sun Y. Emodin attenuates acute lung injury in Cecal-ligation and puncture rats. Int Immunopharmacol 2020; 85:106626. [PMID: 32492627 DOI: 10.1016/j.intimp.2020.106626] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Acute lung injury (ALI) is a major cause of sepsis-induced acute respiratory failure. Emodin has been considered to play a protective role for acute lung edema in cecal ligation and puncture (CLP)-induced sepsis model. In this study we aimed to investigate whether emodin could improve CLP-induced lung sepsis via regulating aquaporin (AQP) and tight junction (TJ), inflammatory factors, and pulmonary apoptosis. The results showed that sepsis-induced pulmonary pathological changes were significantly improved after emodin treatment. Emodin was found to upregulate AQP and TJ expression in the CLP model. Meanwhile, inflammatory cytokine release and pulmonary apoptosis was remarkably reduced after emodin treatment in lung sepsis. Our data demonstrated that emodin could suppresse inflammation, restore pulmonary epithelial barrier and reduce mortality in CLP-induced ALI, suggesting the potential therapeutic application of emodin in sepsis.
Collapse
Affiliation(s)
- Ruimin Guo
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yanjun Li
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Min Han
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jun Liu
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yanni Sun
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
45
|
Shi Q, Wu YZ, Yang X, Xiao K, Maimaitiming A, Gao LP, Chen C, Gao C, Guo Y, Dong XP. Significant enhanced expressions of aquaporin-1, -4 and -9 in the brains of various prion diseases. Prion 2020; 13:173-184. [PMID: 31814527 PMCID: PMC6746548 DOI: 10.1080/19336896.2019.1660487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aquaporins (AQPs) are widely expressed in various types of tissues, among them AQP1, AQP4 and AQP9 are expressed predominately with relatively special distributing features in various brain regions. The aberrant changes of AQP1 and AQP4 have been observed in the brains of Alzheimer disease (AD). To evaluate the underlying alteration of brain AQPs in prion diseases, scrapie strains of 139A, ME7 and S15 infected mice were tested in this study. Western blots revealed markedly increased levels of AQP1, AQP4 and AQP9 in the brain tissues of all tested scrapie-infected mice collected at terminal stage. Analyses of the AQPs levels in the brain tissues collected at different time-points during incubation period showed time-dependent increased in 139A and ME7-infected mice, especially at the middle-late stage. The AQP1 levels also increased in the cortex regions of some human prion diseases, including the patients with sporadic Creutzfeldt-Jakob disease (CJD), fatal familial insomnia (FFI) and G114V genetic CJD (gCJD). Immunohistochemistry (IHC) assays verified that the AQPs-positive cells were astrocyte-like morphologically; meanwhile, numerous various sizes of AQPs-positive particles and dots were also observable in the brain sections of scrapie-infected mice. Immunofluorescent assays (IFAs) illustrated that the signals of AQPs colocalized with those of the GFAP positive proliferative astrocytes, and more interestingly, appeared to overlap also with the signals of PrP in the brains of scrapie-infected mice. Moreover, IHC assays with a commercial doublestain system revealed that distributing areas of AQPs overlapped not only with that of the activated large astrocytes, but also with that of abundantly deposited PrPSc in the brain tissues of scrapie murine models. Our data here propose the solid evidences that the expressions of brain AQP1, AQP4 and AQP9 are all aberrantly enhanced in various murine models of scrapie infection. The closely anatomical association between the accumulated AQPs and deposited PrPSc in the brain tissues indicates that the abnormally increased water channel proteins participate in the pathogenesis of prion diseases.
Collapse
Affiliation(s)
- Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yue-Zhang Wu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuehua Yang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Adalaiti Maimaitiming
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li-Ping Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanjun Guo
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Global Public Health, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
46
|
Aquaporin 5 -1364A/C Promoter Polymorphism Is Associated with Pulmonary Inflammation and Survival in Acute Respiratory Distress Syndrome. Anesthesiology 2020; 130:404-413. [PMID: 30689610 DOI: 10.1097/aln.0000000000002560] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC Acute respiratory distress syndrome is defined according to clinical criteria, but lack of precise characterization may contribute to negative trials and impede personalized care. Polymorphisms of aquaporin-5, a key mediator of inflammation, may impact outcome. WHAT THIS ARTICLE TELLS US THAT IS NEW In acute respiratory distress syndrome attributable to bacterial pneumonia, the C-allele of the aquaporin-5 -1364A/C promoter polymorphism is associated with less pulmonary inflammation and greater survival. This may improve characterization of acute respiratory distress syndrome and ultimately facilitate individualized care. BACKGROUND The aquaporin-5 (AQP5) -1364A/C promoter single-nucleotide polymorphism is associated with an altered AQP5 expression and mortality in sepsis. Because AQP5 expression alters neutrophil cell migration, it could affect pulmonary inflammation and survival in bacterially evoked acute respiratory distress syndrome. Accordingly, the authors tested the hypotheses that the AC/CC genotype in patients with bacterially evoked pneumonia resulting in acute respiratory distress syndrome is associated with (1) attenuated pulmonary inflammation and (2) higher 30-day survival. METHODS In this prospective, observational study, bronchoalveolar lavage and blood sampling were performed within 24 h of intensive care unit admission. In 136 Caucasian patients with bacterially evoked acute respiratory distress syndrome, genotype of the AQP5 -1364A/C promoter polymorphism, bronchoalveolar lavage total protein, albumin, white cell concentrations, and lactate dehydrogenase activity were measured to evaluate the relationship between genotypes and survival. RESULTS AC/CC patients as well as survivors showed lower bronchoalveolar lavage protein (0.9 mg/ml vs. 2.3 mg/ml, P < 0.001 and 1.6 mg/ml vs. 2.6 mg/ml, P = 0.035), albumin (0.2 mg/ml vs. 0.6 mg/ml, P = 0.019 and 0.3 mg/ml vs. 0.6 mg/ml, P = 0.028), leukocytes (424 /ml vs. 1,430/ml; P = 0.016 and 768 /ml vs. 1,826/ml; P = 0.025), and lactate dehydrogenase activity (82 U/l vs. 232 U/l; P = 0.006 and 123 U/l vs. 303 U/l; P = 0.020). Thirty-day survival was associated with AQP5 -1364A/C genotypes (P = 0.005), with survival of 62% for AA genotypes (58 of 93) but 86% for C-allele carriers (37 of 43). Furthermore, multiple proportional hazard analysis revealed the AA genotype was at high risk for death within 30 days (hazard ratio, 3.53; 95% CI, 1.38 to 9.07; P = 0.009). CONCLUSIONS In acute respiratory distress syndrome attributable to bacterial pneumonia, the C-allele of the AQP5 -1364A/C promoter polymorphism is associated with an attenuated pulmonary inflammation and higher 30-day survival. Thus, the AQP5 genotype impacts on inflammation and prognosis in acute respiratory distress syndrome.
Collapse
|
47
|
DNA methylation of a NF-κB binding site in the aquaporin 5 promoter impacts on mortality in sepsis. Sci Rep 2019; 9:18511. [PMID: 31811204 PMCID: PMC6898603 DOI: 10.1038/s41598-019-55051-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
Altered aquaporin 5 (AQP5) expression in immune cells impacts on key mechanisms of inflammation and is associated with sepsis survival. Since epigenetic regulation via DNA methylation might contribute to a differential AQP5 expression in sepsis, we tested the hypotheses that DNA methylation of the AQP5 promotor (1) influences AQP5 expression, (2) is associated with the 30-day survival of septic patients, and (3) alters the nuclear transcription factor NF-κB binding. AQP5 mRNA expression was quantified by real-time PCR in whole blood samples of 135 septic patients. In silico computer analysis of the AQP5 promoter (nt-567 to nt-975) revealed seven putative inflammatory transcription factor binding sites and methylation of these sites was analyzed. Electrophoretic mobility shift assays were performed to assess the binding of nuclear NF-κB to the AQP5 promoter region nt-937. After adjustment for multiple testing, a greater methylation rate was found at cytosine site nt-937 in the AQP5 promoter linked to NF-κB binding in non-survivors compared to survivors (p = 0.002, padj = 0.014). This was associated with greater AQP5 mRNA expression in non-survivors (p = 0.037). Greater (≥16%) promoter methylation at nt-937 was also associated with an independently increased risk of death within 30 days (HR: 3.31; 95% CI: 1.54–6.23; p = 0.002). We detected a functionally important AQP5 promoter cytosine site (nt-937) linked to the binding of the inflammatorily acting nuclear transcription factor NF-κB, with increased methylation in sepsis non-survivors. Thus, nt-937 APQ5 promoter methylation, presumably related to NF-κB binding, is prognostically relevant in sepsis and demonstrates that epigenetic changes impact on sepsis outcome.
Collapse
|
48
|
Rahmel T, Nowak H, Rump K, Koos B, Schenker P, Viebahn R, Adamzik M, Bergmann L. The Aquaporin 5 -1364A/C Promoter Polymorphism Is Associated With Cytomegalovirus Infection Risk in Kidney Transplant Recipients. Front Immunol 2019; 10:2871. [PMID: 31867018 PMCID: PMC6906153 DOI: 10.3389/fimmu.2019.02871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Background: The aquaporin 5 (AQP5) −1364A/C promoter single nucleotide polymorphism affects key mechanisms of inflammation and immune cell migration. Thus, it could be involved in the pathogenesis of cytomegalovirus infection. Accordingly, we tested the hypothesis that the AQP5 promoter −1364A/C polymorphism is associated with the risk of cytomegalovirus infection in kidney transplantation recipients. Methods: We included 259 adult patients who received a kidney transplant from 2007 and 2014 in this observational study. Patients were genotyped for the AQP5 promoter −1364A/C single nucleotide polymorphism and followed up for 12 months after transplantation. Kaplan–Meier plots and multivariable proportional hazard analyses were used to evaluate the relationship between genotypes and the incidence of cytomegalovirus infection. Results: The incidences of cytomegalovirus infection within 12 months after kidney transplantation were 22.9% for the AA genotypes (43/188) and 42.3% for the AC/CC genotypes (30/71; p = 0.002). Furthermore, multivariable COX regression revealed the C-allele of the AQP5 −1364A/C polymorphism to be a strong and independent risk factor for cytomegalovirus infection. In this analysis, AC/CC subjects demonstrated a more than 2-fold increased risk for cytomegalovirus infection within the first year after kidney transplantation (hazard ratio: 2.28; 95% CI: 1.40–3.73; p = 0.001) compared to that in individuals with homozygous AA genotypes. Conclusions: With respect to opportunistic cytomegalovirus infections (attributable to immunosuppression after kidney transplantation), the C-allele of the AQP5 −1364A/C promoter polymorphism is independently associated with an increased 12-months infection risk. These findings emphasize the importance of genetic variations as additional risk factors of cytomegalovirus infection after solid organ transplantations and might also facilitate the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Hartmuth Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Peter Schenker
- Klinik für Chirurgie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Richard Viebahn
- Klinik für Chirurgie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Lars Bergmann
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| |
Collapse
|
49
|
Sisto M, Ribatti D, Lisi S. Aquaporin water channels: New perspectives on the potential role in inflammation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:311-345. [PMID: 31036295 DOI: 10.1016/bs.apcsb.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aquaporins (AQPs) are a family of membrane water channel proteins that osmotically modulate water fluid homeostasis in several tissues; some of them also transport small solutes such as glycerol. At the cellular level, the AQPs regulate not only cell migration and transepithelial fluid transport across membranes, but also common events that are crucial for the inflammatory response. Emerging data reveal a new function of AQPs in the inflammatory process, as demonstrated by their dysregulation in a wide range of inflammatory diseases including edematous states, cancer, obesity, wound healing and several autoimmune diseases. This chapter summarizes the discoveries made so far about the structure and functions of the AQPs and provides updated information on the underlying mechanisms of AQPs in several human inflammatory diseases. The discovery of new functions for AQPs opens new vistas offering promise for the discovery of mechanisms and therapeutic opportunities in inflammatory disorders.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy.
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy
| | - Sabrina Lisi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
50
|
Yang X, Feng L, Zhang Y, Shi Y, Liang S, Zhao T, Sun B, Duan J, Sun Z. Integrative analysis of methylome and transcriptome variation of identified cardiac disease-specific genes in human cardiomyocytes after PM 2.5 exposure. CHEMOSPHERE 2018; 212:915-926. [PMID: 30286548 DOI: 10.1016/j.chemosphere.2018.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/29/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
PM2.5 exposure is strongly linked to cardiac disease. Subtle epigenetic or transcriptional alterations induced by PM2.5 might contribute to pathogenesis and disease susceptibility of cardiac disease. It is still a major challenge to identify biological targets in human genetics. Human cardiomyocytes AC16 was chosen as cell model. Epigenetic effect of PM2.5 in AC16 was analyzed using Illumina HumanMethylation 450 K BeadChip. Meanwhile the transcriptomic profiling was performed by Affymetrix® microarray. PM2.5 induced genome wide variation of DNA methylation pattern, including differentially methylated CpGs in promoter region. Then gene ontology analysis demonstrated differentially methylated genes were significantly clustered in pathways in regulation of apoptotic process, cell death and metabolic pathways, or associated with ion binding and shuttling. Correlation of the methylome and transcriptome revealed a clear bias toward transcriptional suppression by hypermethylation or activation by hypomethylation. Identified 386 genes which exhibited both differential methylation and expression were functionally associated with pathways including cardiovascular system development, regulation of blood vessel size, vasculature development, p53 pathway, AC-modulating/inhibiting GPCRs pathway and cellular response to metal ion/inorganic substance. Disease ontology demonstrated their prominent role in cardiac diseases and identified 14 cardiac-specific genes (ANK2, AQP1 et al.). PPI network analysis revealed 6 novel genes (POLR2I, LEP, BRIX1, ADCY6, INSL3, RARS). Those genes were then verified by qRT-PCR. Thus, in AC16, PM2.5 alters the methylome and transcriptome of genes might be relevant for PM2.5-/heart-associated diseases. Result gives additional insight in PM2.5 relative cardiac diseases/associated genes and the potential mechanisms that contribute to PM2.5 related cardiac disease.
Collapse
Affiliation(s)
- Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yannan Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tong Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Baiyang Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|