1
|
Nani JV, Muotri AR, Hayashi MAF. Peering into the mind: unraveling schizophrenia's secrets using models. Mol Psychiatry 2025; 30:659-678. [PMID: 39245692 DOI: 10.1038/s41380-024-02728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Schizophrenia (SCZ) is a complex mental disorder characterized by a range of symptoms, including positive and negative symptoms, as well as cognitive impairments. Despite the extensive research, the underlying neurobiology of SCZ remain elusive. To overcome this challenge, the use of diverse laboratory modeling techniques, encompassing cellular and animal models, and innovative approaches like induced pluripotent stem cell (iPSC)-derived neuronal cultures or brain organoids and genetically engineered animal models, has been crucial. Immortalized cellular models provide controlled environments for investigating the molecular and neurochemical pathways involved in neuronal function, while iPSCs and brain organoids, derived from patient-specific sources, offer significant advantage in translational research by facilitating direct comparisons of cellular phenotypes between patient-derived neurons and healthy-control neurons. Animal models can recapitulate the different psychopathological aspects that should be modeled, offering valuable insights into the neurobiology of SCZ. In addition, invertebrates' models are genetically tractable and offer a powerful approach to dissect the core genetic underpinnings of SCZ, while vertebrate models, especially mammals, with their more complex nervous systems and behavioral repertoire, provide a closer approximation of the human condition to study SCZ-related traits. This narrative review provides a comprehensive overview of the diverse modeling approaches, critically evaluating their strengths and limitations. By synthesizing knowledge from these models, this review offers a valuable source for researchers, clinicians, and stakeholders alike. Integrating findings across these different models may allow us to build a more holistic picture of SCZ pathophysiology, facilitating the exploration of new research avenues and informed decision-making for interventions.
Collapse
Affiliation(s)
- João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| | - Alysson R Muotri
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| |
Collapse
|
2
|
Tumdam R, Hussein Y, Garin-Shkolnik T, Stern S. NMDA Receptors in Neurodevelopmental Disorders: Pathophysiology and Disease Models. Int J Mol Sci 2024; 25:12366. [PMID: 39596430 PMCID: PMC11594297 DOI: 10.3390/ijms252212366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are critical components of the mammalian central nervous system, involved in synaptic transmission, plasticity, and neurodevelopment. This review focuses on the structural and functional characteristics of NMDARs, with a particular emphasis on the GRIN2 subunits (GluN2A-D). The diversity of GRIN2 subunits, driven by alternative splicing and genetic variants, significantly impacts receptor function, synaptic localization, and disease manifestation. The temporal and spatial expression of these subunits is essential for typical neural development, with each subunit supporting distinct phases of synaptic formation and plasticity. Disruptions in their developmental regulation are linked to neurodevelopmental disorders, underscoring the importance of understanding these dynamics in NDD pathophysiology. We explore the physiological properties and developmental regulation of these subunits, highlighting their roles in the pathophysiology of various NDDs, including ASD, epilepsy, and schizophrenia. By reviewing current knowledge and experimental models, including mouse models and human-induced pluripotent stem cells (hiPSCs), this article aims to elucidate different approaches through which the intricacies of NMDAR dysfunction in NDDs are currently being explored. The comprehensive understanding of NMDAR subunit composition and their mutations provides a foundation for developing targeted therapeutic strategies to address these complex disorders.
Collapse
Affiliation(s)
- Roshan Tumdam
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | - Yara Hussein
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | | | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| |
Collapse
|
3
|
Santarriaga S, Gerlovin K, Layadi Y, Karmacharya R. Human stem cell-based models to study synaptic dysfunction and cognition in schizophrenia: A narrative review. Schizophr Res 2024; 273:78-97. [PMID: 36925354 PMCID: PMC10500041 DOI: 10.1016/j.schres.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Cognitive impairment is the strongest predictor of functional outcomes in schizophrenia and is hypothesized to result from synaptic dysfunction. However, targeting synaptic plasticity and cognitive deficits in patients remains a significant clinical challenge. A comprehensive understanding of synaptic plasticity and the molecular basis of learning and memory in a disease context can provide specific targets for the development of novel therapeutics targeting cognitive impairments in schizophrenia. Here, we describe the role of synaptic plasticity in cognition, summarize evidence for synaptic dysfunction in schizophrenia and demonstrate the use of patient derived induced-pluripotent stem cells for studying synaptic plasticity in vitro. Lastly, we discuss current advances and future technologies for bridging basic science research of synaptic dysfunction with clinical and translational research that can be used to predict treatment response and develop novel therapeutics.
Collapse
Affiliation(s)
- Stephanie Santarriaga
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kaia Gerlovin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasmine Layadi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chimie ParisTech, Université Paris Sciences et Lettres, Paris, France
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
4
|
Stahl A, Heider J, Wüst R, Fallgatter AJ, Schenke-Layland K, Volkmer H, Templin MF. Patient iPSC-derived neural progenitor cells display aberrant cell cycle control, p53, and DNA damage response protein expression in schizophrenia. BMC Psychiatry 2024; 24:757. [PMID: 39482642 PMCID: PMC11526604 DOI: 10.1186/s12888-024-06127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is a severe psychiatric disorder associated with alterations in early brain development. Details of underlying pathomechanisms remain unclear, despite genome and transcriptome studies providing evidence for aberrant cellular phenotypes and pathway deregulation in developing neuronal cells. However, mechanistic insight at the protein level is limited. METHODS Here, we investigate SCZ-specific protein expression signatures of neuronal progenitor cells (NPC) derived from patient iPSC in comparison to healthy controls using high-throughput Western Blotting (DigiWest) in a targeted proteomics approach. RESULTS SCZ neural progenitors displayed altered expression and phosphorylation patterns related to Wnt and MAPK signaling, protein synthesis, cell cycle regulation and DNA damage response. Consistent with impaired cell cycle control, SCZ NPCs also showed accumulation in the G2/M cell phase and reduced differentiation capacity. Furthermore, we correlated these findings with elevated p53 expression and phosphorylation levels in SCZ patient-derived cells, indicating a potential implication of p53 in hampering cell cycle progression and efficient neurodevelopment in SCZ. CONCLUSIONS Through targeted proteomics we demonstrate that SCZ NPC display coherent mechanistic alterations in regulation of DNA damage response, cell cycle control and p53 expression. These findings highlight the suitability of iPSC-based approaches for modeling psychiatric disorders and contribute to a better understanding of the disease mechanisms underlying SCZ, particularly during early development.
Collapse
Affiliation(s)
- Aaron Stahl
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, 72076, Germany.
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany.
| | - Johanna Heider
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany
| | - Richard Wüst
- Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, 72076, Germany
- German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, 72076, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, 72076, Germany
- German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, 72076, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, 72076, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany
| | - Hansjürgen Volkmer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany
| | - Markus F Templin
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany.
| |
Collapse
|
5
|
Vita A, Barlati S, Cavallaro R, Mucci A, Riva MA, Rocca P, Rossi A, Galderisi S. Definition, assessment and treatment of cognitive impairment associated with schizophrenia: expert opinion and practical recommendations. Front Psychiatry 2024; 15:1451832. [PMID: 39371908 PMCID: PMC11450451 DOI: 10.3389/fpsyt.2024.1451832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/22/2024] [Indexed: 10/08/2024] Open
Abstract
A considerable proportion of patients with schizophrenia perform below population norms on standardized neuropsychological tests, and the performance of those performing within normal range is lower than predicted based on parental education. Cognitive impairment predates the onset of psychosis, is observed during symptom remission and in non-affected first-degree relatives of patients. At the present time, cognitive deficits are regarded as key features of schizophrenia, important determinants of poor psychosocial outcome and targets for both pharmacological and non-pharmacological treatment strategies. A group of eight key opinion leaders reviewed and discussed latest advances in scientific research and current good clinical practices on assessment, management, and treatment of CIAS. In the present paper they summarize the current evidence, identify main gaps between current knowledge and mental health services clinical practice, and provide practical recommendations to reduce the gap.
Collapse
Affiliation(s)
- Antonio Vita
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, Azienda Socio-Sanitaria Territoriale (ASST) Spedali Civili of, Brescia, Italy
| | - Stefano Barlati
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, Azienda Socio-Sanitaria Territoriale (ASST) Spedali Civili of, Brescia, Italy
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Armida Mucci
- Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Marco A. Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Biological Psychiatry Unit, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Paola Rocca
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Alessandro Rossi
- Department of Biotechnological and Applied Clinical Sciences, Section of Psychiatry, University of L’Aquila, L’Aquila, Italy
| | - Silvana Galderisi
- Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
6
|
Reis-de-Oliveira G, Carregari VC, Sousa GRDRD, Martins-de-Souza D. OmicScope unravels systems-level insights from quantitative proteomics data. Nat Commun 2024; 15:6510. [PMID: 39095347 PMCID: PMC11297029 DOI: 10.1038/s41467-024-50875-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024] Open
Abstract
Shotgun proteomics analysis presents multifaceted challenges, demanding diverse tool integration for insights. Addressing this complexity, OmicScope emerges as an innovative solution for quantitative proteomics data analysis. Engineered to handle various data formats, it performs data pre-processing - including joining replicates, normalization, data imputation - and conducts differential proteomics analysis for both static and longitudinal experimental designs. Empowered by Enrichr with over 224 databases, OmicScope performs Over Representation Analysis (ORA) and Gene Set Enrichment Analysis (GSEA). Additionally, its Nebula module facilitates meta-analysis from independent datasets, providing a systems biology approach for enriched insights. Complete with a data visualization toolkit and accessible as Python package and a web application, OmicScope democratizes proteomics analysis, offering an efficient and high-quality pipeline for researchers.
Collapse
Affiliation(s)
- Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
- Research Center, Boldrini Children's Hospital, Campinas, SP, Brazil.
| | - Victor Corasolla Carregari
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
- University of Campinas (UNICAMP), Campinas, SP, Brazil.
- Instituto Nacional de Biomarcadores Em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico E Tecnológico, São Paulo, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil.
| |
Collapse
|
7
|
Shen HP, Dong X, Li ZB, Wu JZ, Zheng CM, Hu XJ, Qian C, Wang SP, Zhao YL, Li JC. Protein Profiles and Novel Molecular Biomarkers of Schizophrenia Based on 4D-DIA Proteomics. J Proteome Res 2024; 23:2376-2385. [PMID: 38856018 DOI: 10.1021/acs.jproteome.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Schizophrenia is a severe psychological disorder. The current diagnosis mainly relies on clinical symptoms and lacks laboratory evidence, which makes it very difficult to make an accurate diagnosis especially at an early stage. Plasma protein profiles of schizophrenia patients were obtained and compared with healthy controls using 4D-DIA proteomics technology. Furthermore, 79 DEPs were identified between schizophrenia and healthy controls. GO functional analysis indicated that DEPs were predominantly associated with responses to toxic substances and platelet aggregation, suggesting the presence of metabolic and immune dysregulation in patients with schizophrenia. KEGG pathway enrichment analysis revealed that DEPs were primarily enriched in the chemokine signaling pathway and cytokine receptor interactions. A diagnostic model was ultimately established, comprising three proteins, namely, PFN1, GAPDH and ACTBL2. This model demonstrated an AUC value of 0.972, indicating its effectiveness in accurately identifying schizophrenia. PFN1, GAPDH and ACTBL2 exhibit potential as biomarkers for the early detection of schizophrenia. The findings of our studies provide novel insights into the laboratory-based diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Hui-Ping Shen
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing 312000, China
| | - Xiaotao Dong
- Major Disease Biomarker Research Laboratory, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Zhi-Bin Li
- Major Disease Biomarker Research Laboratory, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Jing-Zhu Wu
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing 312000, China
| | - Chun-Mei Zheng
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing 312000, China
| | - Xie-Jun Hu
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing 312000, China
| | - Chao Qian
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing 312000, China
| | - Sheng-Pang Wang
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing 312000, China
| | - Yu-Long Zhao
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing 312000, China
| | - Ji-Cheng Li
- Major Disease Biomarker Research Laboratory, School of Basic Medical Science, Henan University, Kaifeng 475004, China
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
8
|
Brandão-Teles C, Antunes ASLM, de Moraes Vrechi TA, Martins-de-Souza D. The Roles of hnRNP Family in the Brain and Brain-Related Disorders. Mol Neurobiol 2024; 61:3578-3595. [PMID: 37999871 DOI: 10.1007/s12035-023-03747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) belong to a complex family of RNA-binding proteins that are essential to control alternative splicing, mRNA trafficking, synaptic plasticity, stress granule formation, cell cycle regulation, and axonal transport. Over the past decade, hnRNPs have been associated with different brain disorders such as Alzheimer's disease, multiple sclerosis, and schizophrenia. Given their essential role in maintaining cell function and integrity, it is not surprising that dysregulated hnRNP levels lead to neurological implications. This review aims to explore the primary functions of hnRNPs in neurons, oligodendrocytes, microglia, and astrocytes, and their roles in brain disorders. We also discuss proteomics and other technologies and their potential for studying and evaluating hnRNPs in brain disorders, including the discovery of new therapeutic targets and possible pharmacological interventions.
Collapse
Affiliation(s)
- Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
| | - André S L M Antunes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Talita Aparecida de Moraes Vrechi
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, 13083-862, Brazil.
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil.
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, Instituto Nacional de Biomarcadores em Neuropsiquiatria, São Paulo, Brazil.
| |
Collapse
|
9
|
Salerno JA, Rehen S. Human pluripotent stem cells as a translational toolkit in psychedelic research in vitro. iScience 2024; 27:109631. [PMID: 38628967 PMCID: PMC11019282 DOI: 10.1016/j.isci.2024.109631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Psychedelics, recognized for their impact on perception, are resurging as promising treatments with rapid onset for mood and substance use disorders. Despite increasing evidence from clinical trials, questions persist about the cellular and molecular mechanisms and their precise correlation with treatment outcomes. Murine neurons and immortalized non-neural cell lines harboring overexpressed constructs have shed light on neuroplastic changes mediated by the serotonin 2A receptor (5-HT2AR) as the primary mechanism. However, limitations exist in capturing human- and disease-specific traits. Here, we discuss current accomplishments and prospects for incorporating human pluripotent stem cells (PSCs) to complement these models. PSCs can differentiate into various brain cell types, mirroring endogenous expression patterns and cell identities to recreate disease phenotypes. Brain organoids derived from PSCs resemble cell diversity and patterning, while region-specific organoids simulate circuit-level phenotypes. PSC-based models hold significant promise to illuminate the cellular and molecular substrates of psychedelic-induced phenotypic recovery in neuropsychiatric disorders.
Collapse
Affiliation(s)
- José Alexandre Salerno
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Graduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Department of Morphological Sciences, Biomedical Institute, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Stevens Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Usona Institute, Fitchburg, WI, USA
- Promega Corporation, Madison, WI, USA
| |
Collapse
|
10
|
Faris P, Pischedda D, Palesi F, D’Angelo E. New clues for the role of cerebellum in schizophrenia and the associated cognitive impairment. Front Cell Neurosci 2024; 18:1386583. [PMID: 38799988 PMCID: PMC11116653 DOI: 10.3389/fncel.2024.1386583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Schizophrenia (SZ) is a complex neuropsychiatric disorder associated with severe cognitive dysfunction. Although research has mainly focused on forebrain abnormalities, emerging results support the involvement of the cerebellum in SZ physiopathology, particularly in Cognitive Impairment Associated with SZ (CIAS). Besides its role in motor learning and control, the cerebellum is implicated in cognition and emotion. Recent research suggests that structural and functional changes in the cerebellum are linked to deficits in various cognitive domains including attention, working memory, and decision-making. Moreover, cerebellar dysfunction is related to altered cerebellar circuit activities and connectivity with brain regions associated with cognitive processing. This review delves into the role of the cerebellum in CIAS. We initially consider the major forebrain alterations in CIAS, addressing impairments in neurotransmitter systems, synaptic plasticity, and connectivity. We then focus on recent findings showing that several mechanisms are also altered in the cerebellum and that cerebellar communication with the forebrain is impaired. This evidence implicates the cerebellum as a key component of circuits underpinning CIAS physiopathology. Further studies addressing cerebellar involvement in SZ and CIAS are warranted and might open new perspectives toward understanding the physiopathology and effective treatment of these disorders.
Collapse
Affiliation(s)
- Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Doris Pischedda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
11
|
Burrack N, Yitzhaky A, Mizrahi L, Wang M, Stern S, Hertzberg L. Altered Expression of PDE4 Genes in Schizophrenia: Insights from a Brain and Blood Sample Meta-Analysis and iPSC-Derived Neurons. Genes (Basel) 2024; 15:609. [PMID: 38790238 PMCID: PMC11121586 DOI: 10.3390/genes15050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Schizophrenia symptomatology includes negative symptoms and cognitive impairment. Several studies have linked schizophrenia with the PDE4 family of enzymes due to their genetic association and function in cognitive processes such as long-term potentiation. We conducted a systematic gene expression meta-analysis of four PDE4 genes (PDE4A-D) in 10 brain sample datasets (437 samples) and three blood sample datasets (300 samples). Subsequently, we measured mRNA levels in iPSC-derived hippocampal dentate gyrus neurons generated from fibroblasts of three groups: healthy controls, healthy monozygotic twins (MZ), and their MZ siblings with schizophrenia. We found downregulation of PDE4B in brain tissues, further validated by independent data of the CommonMind consortium (515 samples). Interestingly, the downregulation signal was present in a subgroup of the patients, while the others showed no differential expression or even upregulation. Notably, PDE4A, PDE4B, and PDE4D exhibited upregulation in iPSC-derived neurons compared to healthy controls, whereas in blood samples, PDE4B was found to be upregulated while PDE4A was downregulated. While the precise mechanism and direction of altered PDE4 expression necessitate further investigation, the observed multilevel differential expression across the brain, blood, and iPSC-derived neurons compellingly suggests the involvement of PDE4 genes in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Nitzan Burrack
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel;
- Clinical Research Center, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liron Mizrahi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | - Meiyan Wang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | - Libi Hertzberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- Shalvata Mental Health Center, Affiliated with the Faculty of Medicine, Tel-Aviv University, 13 Aliat Hanoar St., Hod Hasharon 45100, Israel
| |
Collapse
|
12
|
Blokland G, Maleki N, Jovicich J, Mesholam-Gately R, DeLisi L, Turner J, Shenton M, Voineskos A, Kahn R, Roffman J, Holt D, Ehrlich S, Kikinis Z, Dazzan P, Murray R, Lee J, Sim K, Lam M, de Zwarte S, Walton E, Kelly S, Picchioni M, Bramon E, Makris N, David A, Mondelli V, Reinders A, Oykhman E, Morris D, Gill M, Corvin A, Cahn W, Ho N, Liu J, Gollub R, Manoach D, Calhoun V, Sponheim S, Buka S, Cherkerzian S, Thermenos H, Dickie E, Ciufolini S, Reis Marques T, Crossley N, Purcell S, Smoller J, van Haren N, Toulopoulou T, Donohoe G, Goldstein J, Keshavan M, Petryshen T, del Re E. MIR137 polygenic risk for schizophrenia and ephrin-regulated pathway: Role in lateral ventricles and corpus callosum volume. Int J Clin Health Psychol 2024; 24:100458. [PMID: 38623146 PMCID: PMC11017057 DOI: 10.1016/j.ijchp.2024.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Background/Objective. Enlarged lateral ventricle (LV) volume and decreased volume in the corpus callosum (CC) are hallmarks of schizophrenia (SZ). We previously showed an inverse correlation between LV and CC volumes in SZ, with global functioning decreasing with increased LV volume. This study investigates the relationship between LV volume, CC abnormalities, and the microRNA MIR137 and its regulated genes in SZ, because of MIR137's essential role in neurodevelopment. Methods. Participants were 1224 SZ probands and 1466 unaffected controls from the GENUS Consortium. Brain MRI scans, genotype, and clinical data were harmonized across cohorts and employed in the analyses. Results. Increased LV volumes and decreased CC central, mid-anterior, and mid-posterior volumes were observed in SZ probands. The MIR137-regulated ephrin pathway was significantly associated with CC:LV ratio, explaining a significant proportion (3.42 %) of CC:LV variance, and more than for LV and CC separately. Other pathways explained variance in either CC or LV, but not both. CC:LV ratio was also positively correlated with Global Assessment of Functioning, supporting previous subsample findings. SNP-based heritability estimates were higher for CC central:LV ratio (0.79) compared to CC or LV separately. Discussion. Our results indicate that the CC:LV ratio is highly heritable, influenced in part by variation in the MIR137-regulated ephrin pathway. Findings suggest that the CC:LV ratio may be a risk indicator in SZ that correlates with global functioning.
Collapse
Affiliation(s)
- G.A.M. Blokland
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Netherlands
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - N. Maleki
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - J. Jovicich
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - R.I. Mesholam-Gately
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - L.E. DeLisi
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Cambridge Health Alliance, Cambridge, MA, United States
| | - J.A. Turner
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, United States
| | - M.E. Shenton
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton, MA, United States
| | - A.N. Voineskos
- Kimel Family Translational Imaging Genetics Laboratory, Department of Psychiatry, Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - R.S. Kahn
- Brain Centre Rudolf Magnus, Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - J.L. Roffman
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - D.J. Holt
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - S. Ehrlich
- Division of Psychological & Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Z. Kikinis
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - P. Dazzan
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - R.M. Murray
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - J. Lee
- Institute of Mental Health, Woodbridge Hospital, Singapore
| | - K. Sim
- Institute of Mental Health, Woodbridge Hospital, Singapore
| | - M. Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Institute of Mental Health, Woodbridge Hospital, Singapore
- Analytical & Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
| | - S.M.C. de Zwarte
- Brain Centre Rudolf Magnus, Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - E. Walton
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - S. Kelly
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
- Laboratory of NeuroImaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - M.M. Picchioni
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - E. Bramon
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Mental Health Neuroscience Research Department, UCL Division of Psychiatry, University College London, United Kingdom
| | - N. Makris
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - A.S. David
- Division of Psychiatry, University College London, London, United Kingdom
| | - V. Mondelli
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - A.A.T.S. Reinders
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - E. Oykhman
- Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - D.W. Morris
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging and Cognitive Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland, Galway, Ireland
| | - M. Gill
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - A.P. Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - W. Cahn
- Brain Centre Rudolf Magnus, Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - N. Ho
- Institute of Mental Health, Woodbridge Hospital, Singapore
| | - J. Liu
- Genome Institute, Singapore
| | - R.L. Gollub
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - D.S. Manoach
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - V.D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, United States
| | - S.R. Sponheim
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
| | - S.L. Buka
- Department of Epidemiology, Brown University, Providence, RI, United States
| | - S. Cherkerzian
- Department of Medicine, Division of Women's Health, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - H.W. Thermenos
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - E.W. Dickie
- Kimel Family Translational Imaging Genetics Laboratory, Department of Psychiatry, Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - S. Ciufolini
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - T. Reis Marques
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - N.A. Crossley
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - S.M. Purcell
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
- Division of Psychiatric Genomics, Departments of Psychiatry and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - J.W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - N.E.M. van Haren
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - T. Toulopoulou
- Department of Psychology & National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Centre (ASBAM), Bilkent University, Ankara, Turkey
- Department of Psychiatry, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - G. Donohoe
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging and Cognitive Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland, Galway, Ireland
| | - J.M. Goldstein
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Department of Medicine, Division of Women's Health, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - M.S. Keshavan
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - T.L. Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - E.C. del Re
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton, MA, United States
| |
Collapse
|
13
|
Stankovic I, Notaras M, Wolujewicz P, Lu T, Lis R, Ross ME, Colak D. Schizophrenia endothelial cells exhibit higher permeability and altered angiogenesis patterns in patient-derived organoids. Transl Psychiatry 2024; 14:53. [PMID: 38263175 PMCID: PMC10806043 DOI: 10.1038/s41398-024-02740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
Schizophrenia (SCZ) is a complex neurodevelopmental disorder characterized by the manifestation of psychiatric symptoms in early adulthood. While many research avenues into the origins of SCZ during brain development have been explored, the contribution of endothelial/vascular dysfunction to the disease remains largely elusive. To model the neuropathology of SCZ during early critical periods of brain development, we utilized patient-derived induced pluripotent stem cells (iPSCs) to generate 3D cerebral organoids and define cell-specific signatures of disease. Single-cell RNA sequencing revealed that while SCZ organoids were similar in their macromolecular diversity to organoids generated from healthy controls (CTRL), SCZ organoids exhibited a higher percentage of endothelial cells when normalized to total cell numbers. Additionally, when compared to CTRL, differential gene expression analysis revealed a significant enrichment in genes that function in vessel formation, vascular regulation, and inflammatory response in SCZ endothelial cells. In line with these findings, data from 23 donors demonstrated that PECAM1+ microvascular vessel-like structures were increased in length and number in SCZ organoids in comparison to CTRL organoids. Furthermore, we report that patient-derived endothelial cells displayed higher paracellular permeability, implicating elevated vascular activity. Collectively, our data identified altered gene expression patterns, vessel-like structural changes, and enhanced permeability of endothelial cells in patient-derived models of SCZ. Hence, brain microvascular cells could play a role in the etiology of SCZ by modulating the permeability of the developing blood brain barrier (BBB).
Collapse
Affiliation(s)
- Isidora Stankovic
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Michael Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Paul Wolujewicz
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Tyler Lu
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Raphael Lis
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
14
|
Zuccoli GS, Nascimento JM, Moraes-Vieira PM, Rehen SK, Martins-de-Souza D. Mitochondrial, cell cycle control and neuritogenesis alterations in an iPSC-based neurodevelopmental model for schizophrenia. Eur Arch Psychiatry Clin Neurosci 2023; 273:1649-1664. [PMID: 37039888 DOI: 10.1007/s00406-023-01605-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023]
Abstract
Schizophrenia is a severe psychiatric disorder of neurodevelopmental origin that affects around 1% of the world's population. Proteomic studies and other approaches have provided evidence of compromised cellular processes in the disorder, including mitochondrial function. Most of the studies so far have been conducted on postmortem brain tissue from patients, and therefore, do not allow the evaluation of the neurodevelopmental aspect of the disorder. To circumvent that, we studied the mitochondrial and nuclear proteomes of neural stem cells (NSCs) and neurons derived from induced pluripotent stem cells (iPSCs) from schizophrenia patients versus healthy controls to assess possible alterations related to energy metabolism and mitochondrial function during neurodevelopment in the disorder. Our results revealed differentially expressed proteins in pathways related to mitochondrial function, cell cycle control, DNA repair and neuritogenesis and their possible implication in key process of neurodevelopment, such as neuronal differentiation and axonal guidance signaling. Moreover, functional analysis of NSCs revealed alterations in mitochondrial oxygen consumption in schizophrenia-derived cells and a tendency of higher levels of intracellular reactive oxygen species (ROS). Hence, this study shows evidence that alterations in important cellular processes are present during neurodevelopment and could be involved with the establishment of schizophrenia, as well as the phenotypic traits observed in adult patients. Neural stem cells (NSCs) and neurons were derived from induced pluripotent stem cells (iPSCs) from schizophrenia patients and controls. Proteomic analyses were performed on the enriched mitochondrial and nuclear fractions of NSCs and neurons. Whole-cell proteomic analysis was also performed in neurons. Our results revealed alteration in proteins related to mitochondrial function, cell cycle control, among others. We also performed energy pathway analysis and reactive oxygen species (ROS) analysis of NSCs, which revealed alterations in mitochondrial oxygen consumption and a tendency of higher levels of intracellular ROS in schizophrenia-derived cells.
Collapse
Affiliation(s)
- Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - Pedro M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, 13083-862, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, 13083-862, Brazil.
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil.
| |
Collapse
|
15
|
Villanueva R. Advances in the knowledge and therapeutics of schizophrenia, major depression disorder, and bipolar disorder from human brain organoid research. Front Psychiatry 2023; 14:1178494. [PMID: 37502814 PMCID: PMC10368988 DOI: 10.3389/fpsyt.2023.1178494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Tridimensional cultures of human induced pluripotent cells (iPSCs) experimentally directed to neural differentiation, termed "brain organoids" are now employed as an in vitro assay that recapitulates early developmental stages of nervous tissue differentiation. Technical progress in culture methodology enabled the generation of regionally specialized organoids with structural and neurochemical characters of distinct encephalic regions. The technical process of organoid elaboration is undergoing progressively implementation, but current robustness of the assay has attracted the attention of psychiatric research to substitute/complement animal experimentation for analyzing the pathophysiology of psychiatric disorders. Numerous morphological, structural, molecular and functional insights of psychiatric disorders have been uncovered by comparing brain organoids made with iPSCs obtained from control healthy subjects and psychiatric patients. Brain organoids were also employed for analyzing the response to conventional treatments, to search for new drugs, and to anticipate the therapeutic response of individual patients in a personalized manner. In this review, we gather data obtained by studying cerebral organoids made from iPSCs of patients of the three most frequent serious psychiatric disorders: schizophrenia, major depression disorder, and bipolar disorder. Among the data obtained in these studies, we emphasize: (i) that the origin of these pathologies takes place in the stages of embryonic development; (ii) the existence of shared molecular pathogenic aspects among patients of the three distinct disorders; (iii) the occurrence of molecular differences between patients bearing the same disorder, and (iv) that functional alterations can be activated or aggravated by environmental signals in patients bearing genetic risk for these disorders.
Collapse
Affiliation(s)
- Rosa Villanueva
- Departamento de Psiquiatría y Salud Mental, Hospital Universitario La Paz, La Paz, Madrid, Spain
| |
Collapse
|