1
|
Luo C, Chen Q. Trends in CRKP Prevalence and Risk Factors for CRKP Hospital-Acquired Infections in Pediatric Patients Pre-, During-, and Post-COVID-19 Pandemic. Microb Drug Resist 2025; 31:1-11. [PMID: 39655611 DOI: 10.1089/mdr.2024.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
This study aims to delineate the epidemiological trends of carbapenem-resistant Klebsiella pneumoniae (CRKP) in pediatric patients before, during, and after coronavirus disease 2019 (COVID-19) pandemic and to assess the risk factors of CRKP hospital-acquired infections (CRKP-HAIs) across these three periods. We retrospectively collected the clinical data of pediatric patients diagnosed with K. pneumoniae infection at the Children's Hospital of Nanjing Medical University from January 2018 to March 2024. Carbapenemase-related genes were detected by PCR, and statistical analysis was conducted using SPSS 25.0. The current study found that modifications in the COVID-19 pandemic prevention and control measures and antibiotic therapies impact the epidemiological trends and antimicrobial resistance of CRKP. Binary logistic regression analyses revealed various independent risk factors for CRKP-HAIs before, during, and after the COVID-19 pandemic. Healthcare institutions must intensify surveillance for HAIs, continuously monitor and avoid risk factors for CRKP-HAIs, and formulate targeted preventive and control measures to effectively reduce the incidence and spread of these infections. Further, consistent surveillance of CRKP strains coproducing carbapenemase genes is crucial for mitigating the potential health risks in pediatric patients.
Collapse
Affiliation(s)
- Chengjiao Luo
- Institute of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Qian Chen
- Institute of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Vock I, Ragozzino S, Urwyler P, Baumann M, Capoferri G, Keller PM, Tschudin-Sutter S. Screening sites for detection of carbapenemase-producers- a retrospective cohort study. Antimicrob Resist Infect Control 2024; 13:157. [PMID: 39741352 DOI: 10.1186/s13756-024-01513-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025] Open
Abstract
While screening the rectal site and urine may be appropriate for detection of carbapenemase-producing Enterobacterales, respiratory samples, throat and wound swabs may increase the sensitivity of screening protocols when aiming to detect colonization with carbapenemase-producing non-fermenting bacteria. Our results support the need for tailoring screening recommendations according to the bacterial species targeted.
Collapse
Affiliation(s)
- Isabelle Vock
- Division of Infectious Diseases and Infection Control, Hospital Epidemiology, University Hospital Basel, University Basel, Petersgraben 4, CH-4031, Basel, Switzerland
| | - Silvio Ragozzino
- Division of Infectious Diseases and Infection Control, Hospital Epidemiology, University Hospital Basel, University Basel, Petersgraben 4, CH-4031, Basel, Switzerland
| | - Pascal Urwyler
- Division of Infectious Diseases and Infection Control, Hospital Epidemiology, University Hospital Basel, University Basel, Petersgraben 4, CH-4031, Basel, Switzerland
| | - Michelle Baumann
- Division of Infectious Diseases and Infection Control, Hospital Epidemiology, University Hospital Basel, University Basel, Petersgraben 4, CH-4031, Basel, Switzerland
| | - Gioele Capoferri
- Division of Infectious Diseases and Infection Control, Hospital Epidemiology, University Hospital Basel, University Basel, Petersgraben 4, CH-4031, Basel, Switzerland
| | - Peter M Keller
- Division of Bacteriology and Mycology, University Hospital Basel, University Basel, Basel, Switzerland
| | - Sarah Tschudin-Sutter
- Division of Infectious Diseases and Infection Control, Hospital Epidemiology, University Hospital Basel, University Basel, Petersgraben 4, CH-4031, Basel, Switzerland.
- Department of Clinical Research, University Hospital Basel, University Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Giampani A, Simitsopoulou M, Sdougka M, Paschaloudis C, Roilides E, Iosifidis E. The Combinational Effect of Enhanced Infection Control Measures and Targeted Clinical Metagenomics Surveillance on the Burden of Endemic Carbapenem and Other β-Lactam Resistance Among Severely Ill Pediatric Patients. Biomedicines 2024; 13:31. [PMID: 39857615 PMCID: PMC11762654 DOI: 10.3390/biomedicines13010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Antimicrobial resistance (AMR) is recognized as one of the most important global public health threats. There is an urgent need to reduce the spread of these multidrug-resistant bacteria (MDR-B), particularly in extremely vulnerable patients. The aim of this study was to investigate whether targeted gene amplification performed directly on clinical samples can be used simultaneously with a bundle of enhanced infection control measures in a Pediatric Intensive Care Unit (PICU) endemic to MDR-B. Methods: This study had three phases: (1) the baseline phase was performed prior to intervention when first screening and sample collection were performed; (2) the intervention phase was performed when various enhanced infection control measures (EICM) were applied; and (3) the maintenance phase occurred when EICMs were combined with the implementation of targeted molecular surveillance. The presence of four carbapenemase genes, blaKPC, blaOXA-48-like, blaVIM, and blaNDM, as well as the β-lactamase genes blaTEM and blaSHV, was evaluated by PCR after DNA isolation directly from stool samples. The results were compared to culture-based phenotypic analysis. Results and Conclusions: The implementation of EICM appeared to reduce the resistance burden in this sample endemic to an MDR-B clinical setting. The direct implementation of a targeted and customized rapid molecular detection assay to clinical samples seems to be an effective clinical tool for the evaluation of EICM measures.
Collapse
Affiliation(s)
- Athina Giampani
- Infectious Disease Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.G.); (M.S.); (E.I.)
| | - Maria Simitsopoulou
- Infectious Disease Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.G.); (M.S.); (E.I.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Sdougka
- Pediatric Intensive Care Unit, Hippokration General Hospital, 54942 Thessaloniki, Greece
| | | | - Emmanuel Roilides
- Infectious Disease Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.G.); (M.S.); (E.I.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Elias Iosifidis
- Infectious Disease Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.G.); (M.S.); (E.I.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
4
|
López Montesinos I, Carot-Coll A, Montero MM, Sorli Redó L, Siverio-Parès A, Esteban-Cucó S, Durán X, Gomez-Zorrilla S, Horcajada JP. A case-control study of the clinical and economic impact of infections caused by Carbapenemase-producing Enterobacterales (CPE). Infection 2024; 52:2241-2252. [PMID: 38700659 PMCID: PMC11621180 DOI: 10.1007/s15010-024-02268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/12/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE The aim was to analyse the clinical and economic impact of carbapenemase-producing Enterobacterales (CPE) infections. METHODS Case-control study. Adult patients with CPE infections were considered cases, while those with non-CPE infections were controls. Matching criteria were age (± 5 years), sex, source of infection and microorganism (ratio 1:2). Primary outcome was 30-day mortality. Secondary outcomes were 90-day mortality, clinical failure, hospitalisation costs and resource consumption. RESULTS 246 patients (82 cases and 164 controls) were included. Klebsiella pneumoniae OXA-48 was the most common microorganism causing CPE infections. CPE cases had more prior comorbidities (p = 0.007), septic shock (p = 0.003), and were more likely to receive inappropriate empirical and definitive antibiotic treatment (both p < 0.001). Multivariate analysis identified septic shock and inappropriate empirical treatment as independent predictors for 7-day and end-of-treatment clinical failure, whereas Charlson Index and septic shock were associated with 30- and 90-day mortality. CPE infection was independently associated with early clinical failure (OR 2.18, 95% CI, 1.03-4.59), but not with end-of-treatment clinical failure or 30- or 90-day mortality. In terms of resource consumption, hospitalisation costs for CPE were double those of the non-CPE group. CPE cases had longer hospital stay (p < 0.001), required more long-term care facilities (p < 0.001) and outpatient parenteral antibiotic therapy (p = 0.007). CONCLUSIONS The CPE group was associated with worse clinical outcomes, but this was mainly due to a higher comorbidity burden, more severe illness, and more frequent inappropriate antibiotic treatment rather than resistance patterns as such. However, the CPE group consumed more healthcare resources and incurred higher costs.
Collapse
Affiliation(s)
- Inmaculada López Montesinos
- Infectious Disease Service, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Passeig Marítim de La Barceloneta, 25-29, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC ISCIII), Madrid, Spain
| | | | - Maria Milagro Montero
- Infectious Disease Service, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Passeig Marítim de La Barceloneta, 25-29, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC ISCIII), Madrid, Spain
| | - Luisa Sorli Redó
- Infectious Disease Service, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Passeig Marítim de La Barceloneta, 25-29, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC ISCIII), Madrid, Spain
| | - Ana Siverio-Parès
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Microbiology Service, Laboratori de Referència de Catalunya, El Prat de Llobregat (Barcelona), Spain
| | - Sandra Esteban-Cucó
- Microbiology Service, Laboratori de Referència de Catalunya, El Prat de Llobregat (Barcelona), Spain
| | - Xavier Durán
- Methodology and Biostatistics Support Unit, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Silvia Gomez-Zorrilla
- Infectious Disease Service, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Passeig Marítim de La Barceloneta, 25-29, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC ISCIII), Madrid, Spain.
| | - Juan Pablo Horcajada
- Infectious Disease Service, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Passeig Marítim de La Barceloneta, 25-29, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC ISCIII), Madrid, Spain
| |
Collapse
|
5
|
Piletić K, Mežnarić S, Keržić E, Oder M, Gobin I. Comparison of different disinfection protocols against contamination of ceramic surfaces with Klebsiella pneumoniae biofilm. Arh Hig Rada Toksikol 2024; 75:289-296. [PMID: 39718087 PMCID: PMC11667714 DOI: 10.2478/aiht-2024-75-3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/01/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Environmental contamination with Klebsiella pneumoniae biofilm can be a source of healthcare-associated infections. Disinfection with various biocidal active substances is usually the method of choice to remove contamination with biofilm. In this study we tested 13 different disinfection protocols using gaseous ozone, citric acid, and three working concentrations of benzalkonium chloride-based professional disinfecting products on 24-hour-old biofilms formed by two K. pneumoniae strains on ceramic tiles. All tested protocols significantly reduced total bacterial counts compared to control, varying from a log10 CFU reduction factor of 1.4 to 5.6. Disinfection combining two or more biocidal active substances resulted in significantly better anti-biofilm efficacy than disinfection with single substances, and the most effective combination for both strains was that of citric acid, gaseous ozone, and benzalkonium chloride. This follow up study is limited to K. pneumoniae alone, and to overcome this limitation, future studies should include more bacterial species, both Gram-positive and Gramnegative, and more samples for us to find optimal disinfection protocols, applicable in real hospital settings.
Collapse
Affiliation(s)
- Kaća Piletić
- University of Rijeka Faculty of Medicine, Department of Microbiology and Parasitology, Rijeka, Croatia
| | - Silvestar Mežnarić
- University of Rijeka Faculty of Medicine, Department of Basic and Clinical Pharmacology and Toxicology, Rijeka, Croatia
| | - Eli Keržić
- University of Ljubljana Biotechnical Faculty, Department of Wood Science and Technology, Ljubljana, Slovenia
| | - Martina Oder
- University of Ljubljana Faculty of Health Sciences, Department of Sanitary Engineering, Ljubljana, Slovenia
| | - Ivana Gobin
- University of Rijeka Faculty of Medicine, Department of Microbiology and Parasitology, Rijeka, Croatia
| |
Collapse
|
6
|
Hamed NMH, Deif OA, El-Zoka AH, Abdel-Atty MM, Hussein MF. The impact of enhanced cleaning on bacterial contamination of the hospital environmental surfaces: a clinical trial in critical care unit in an Egyptian hospital. Antimicrob Resist Infect Control 2024; 13:138. [PMID: 39563364 PMCID: PMC11575196 DOI: 10.1186/s13756-024-01489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/20/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Contaminated environmental surfaces play an important role in the transmission of pathogens that cause healthcare acquired infection (HAI). The present study aimed to assess the effect of enhanced cleaning techniques on bacterial contamination in high-touch areas compared to routine cleaning at the intensive care units (ICU) of the neurosurgery department of Alexandria Main University Hospital, Egypt. METHODS The assessment of the knowledge and practices of healthcare cleaning workers and nurses was conducted through a questionnaire and an observational checklist. An educational program about enhanced cleaning was carried out for healthcare cleaning workers and nurses in one room of the ICU unit. Environmental surface swabs were taken from the two rooms of the ICU before and after cleaning (room A and room B). Room A was selected to apply the enhanced cleaning, and room B was selected for routine cleaning. RESULTS A significant decrease in bacterial counts in the high-touch areas around the patients after the application of enhanced cleaning compared to routine cleaning (p < 0.001) was observed. Gram-negative bacteria isolated from high-touch areas accounted for 45.6% of the samples collected before enhanced cleaning, and they became 16.3% after enhanced cleaning (p < 0.001), while they accounted for 40% after routine cleaning. The enhanced cleaning intervention in Room A resulted in a significant reduction in total infections, decreasing from 18 cases in the six months prior to the intervention to 11 cases in the six months following its implementation. (p < 0.05). CONCLUSION The effect of enhanced cleaning was evident in decreasing bacterial counts in the high-touch areas around the patient and consequently in the records of the HAI rate inside the ICU. CLINICAL TRIAL REGISTRATION NUMBER PACTR202402531001186, date: 15 February 2024, 'retrospectively registered'.
Collapse
Affiliation(s)
| | - Osama Ahmed Deif
- Neurosurgery Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Aleya Hanafy El-Zoka
- Environmental Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Magda Mohamed Abdel-Atty
- Environmental Chemistry and Biology, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Mohamed Fakhry Hussein
- Environmental Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
7
|
Jian Z, Liu Y, Wang Z, Zeng L, Yan Q, Liu W. A nosocomial outbreak of colistin and carbapenem-resistant hypervirulent Klebsiella pneumoniae in a large teaching hospital. Sci Rep 2024; 14:27744. [PMID: 39533012 PMCID: PMC11557698 DOI: 10.1038/s41598-024-79030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Recently, colistin and carbapenem-resistant hypervirulent Klebsiella pneumoniae (CCR-hvKP) has been observed sporadically. The aim of this study was to report a nosocomial outbreak due to CCR-hvKP, so as to control the transmission of CCR-hvKP and prevent future outbreaks. The clinical characteristics of five involved cases were analyzed and infection prevention and control measures were documented. Five CCR-hvKP isolates were discovered from the five involved cases. Molecular features of the isolates including sequence type, capsule locus, antimicrobial resistance genes, virulence factors and phylogenetic relationship were analyzed by whole-genome sequencing. Validation of the role of the deleterious amino acid mutations to colistin resistance was examined by complementation assays. PCR was performed to identify insertion sequences within the mgrB gene. Mouse intraperitoneal infection models were used to assess virulence phenotype. Five cases infected with CCR-hvKP were identified with a high attributable mortality rate of 60% in the patients. The five outbreak isolates belonged to the high-risk ST11-KL64 clone and were closely clustered. They were highly resistant to commonly used antibiotics and showed hypervirulent in vivo. WGS revealed multiple antimicrobial resistance genes such as blaKPC-2 and blaCTX-M-65 and important virulence factors. Concerning colistin resistance, amino acid mutations G53S in pmrA gene, and T157P, T246A and R256G in pmrB gene were indentified. Among them, the deleterious mutation T157P in pmrB gene was validated to be responsible for the resistance phenotype of isolate KP01, KP03 and KP05. In addition, disruption of mgrB gene by insertion sequences of ISKpn26 and IS903B was indentified in isolate KP02 and KP04, respectively. This is the first report of an outbreak caused by CCR-hvKP. The study highlights infection prevention and control measures are key to successfully fight against CCR-hvKP dissemination and nosocomial infections. Continuous surveillance should be performed to limit the spread of these isolates.
Collapse
Affiliation(s)
- Zijuan Jian
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yanjun Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Zhiqian Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Lanman Zeng
- Infection Control Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
8
|
Lawrence J, O'Hare D, van Batenburg-Sherwood J, Sutton M, Holmes A, Rawson TM. Innovative approaches in phenotypic beta-lactamase detection for personalised infection management. Nat Commun 2024; 15:9070. [PMID: 39433753 PMCID: PMC11494114 DOI: 10.1038/s41467-024-53192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Beta-lactamase-producing Enterobacteriaceae present a significant therapeutic challenge. Current developments in phenotypic diagnostics focus primarily on rapid minimum inhibitory concentration (MIC) determination. There is a requirement for rapid phenotypic diagnostics to improve antimicrobial susceptibility tests (AST) and aid prescribing decisions. Phenotypic AST are limited in their ability to characterise beta-lactamase-producing Enterobacteriaceae in detail. Despite advances in rapid AST, gaps and opportunities remain for developing additional diagnostic approaches that facilitate personalised antimicrobial prescribing. In this perspective, we highlight the state-of-the-art in beta-lactamase detection, identify gaps in current practice, and discuss barriers for innovation within this field.
Collapse
Affiliation(s)
- Jennifer Lawrence
- The NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, London, United Kingdom.
- Centre for Antimicrobial Optimisation, Imperial College London, London, United Kingdom.
| | - Danny O'Hare
- Centre for Antimicrobial Optimisation, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Joseph van Batenburg-Sherwood
- Department of Bioengineering, Sir Michael Uren Hub, Imperial College London, White City Campus, London, United Kingdom
| | - Mark Sutton
- Antimicrobial Discovery, Development and Diagnostics (AD3) UK Health Security Agency, Porton Down, Salisbury, Wiltshire, United Kingdom
- Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Alison Holmes
- The NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, London, United Kingdom
- Centre for Antimicrobial Optimisation, Imperial College London, London, United Kingdom
- David Price Evans Infectious Diseases and Global Health Group, University of Liverpool, Liverpool, United Kingdom
| | - Timothy Miles Rawson
- The NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, London, United Kingdom
- Centre for Antimicrobial Optimisation, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
van Veen A, de Goeij I, Damen M, Huijskens EGW, Paltansing S, van Rijn M, Bentvelsen RG, Veenemans J, van der Linden M, Vos MC, Severin JA. Regional variation in the interpretation of contact precautions for multi-drug-resistant Gram-negative bacteria: a cross-sectional survey. J Hosp Infect 2024; 152:1-12. [PMID: 39069006 DOI: 10.1016/j.jhin.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Contact precautions are recommended when caring for patients with carbapenemase-producing Enterobacterales (CPE), carbapenemase-producing Pseudomonas aeruginosa (CPPA), and extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E). AIM Our aim was to determine the interpretation of contact precautions and associated infection prevention and control (IPC) measures in the non-ICU hospital setting for patients with CPE, CPPA or ESBL-E in 11 hospitals in the Southwest of the Netherlands. METHODS A cross-sectional survey was developed to collect information on all implemented IPC measures, including use of personal protective equipment, IPC measures for visitors, cleaning and disinfection, precautions during outpatient care and follow-up strategies. All 11 hospitals were invited to participate between November 2020 and April 2021. FINDINGS The survey was filled together with each hospital. All hospitals installed isolation precautions for patients with CPE and CPPA during inpatient care and day admissions, whereas 10 hospitals (90.9%) applied isolation precautions for patients with ESBL-E. Gloves and gowns were always used during physical contact with the patient in isolation. Large variations were identified in IPC measures for visitors, cleaning and disinfection products used, and precautions during outpatient care. Four hospitals (36.4%) actively followed up on CPE or CPPA patients with the aim of declaring them CPE- or CPPA-negative as timely as possible, and two hospitals (20.0%) actively followed up on ESBL-E patients. CONCLUSION Contact precautions are interpreted differently between hospitals, leading to regional differences in IPC measures applied in clinical settings. Harmonizing infection-control policies between the hospitals could facilitate patient transfers and benefit collective efforts of preventing transmission of multi-drug-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- A van Veen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - I de Goeij
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - M Damen
- Department of Medical Microbiology, Maasstad General Hospital, Rotterdam, The Netherlands
| | - E G W Huijskens
- Department of Medical Microbiology, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - S Paltansing
- Department of Medical Microbiology and Infection Prevention, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - M van Rijn
- Department of Medical Microbiology and Infectious Diseases, Ikazia Hospital, Rotterdam, The Netherlands
| | - R G Bentvelsen
- Department of Infection Prevention, ZorgSaam Hospital, Terneuzen, The Netherlands; Microvida Laboratory for Microbiology, Amphia Hospital, Breda, The Netherlands
| | - J Veenemans
- Department of Medical Microbiology, Albert Schweitzer Hospital, Dordrecht, The Netherlands; Department of Infection Prevention, Admiraal de Ruyter Hospital, Goes, The Netherlands
| | - M van der Linden
- Department of Infection Prevention, IJsselland Hospital, Capelle aan den IJssel, The Netherlands
| | - M C Vos
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - J A Severin
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Viasus D, Gudiol C, Carratalà J. Treatment of multidrug-resistant Gram-negative bloodstream infections in critically ill patients: an update. Curr Opin Crit Care 2024; 30:448-455. [PMID: 39150047 DOI: 10.1097/mcc.0000000000001190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
PURPOSE OF REVIEW This review describes the latest information in the management of bloodstream infections caused by multidrug-resistant Gram-negative bacilli (MDRGNB) in critically ill patients. RECENT FINDINGS The prevalence of bloodstream infections due to MDRGNB is high, and they pose a significant risk in critically ill patients. Recently, novel antimicrobial agents, including new β-lactam/β-lactamase inhibitor combinations and cefiderocol, have been introduced for treating these infections. Concurrently, updated guidelines have been issued to aid in treatment decisions. Prompt diagnosis and identification of resistance patterns are crucial for initiating effective antibiotic therapy. Current studies, especially with observational design, and with limited sample sizes and patients with bacteremia, suggest that the use of these new antibiotics is associated with improved outcomes in critically ill patients with MDRGNB bloodstream infections. SUMMARY For critically ill patients with bloodstream infections caused by MDRGNB, the use of newly developed antibiotics is recommended based on limited observational evidence. Further randomized clinical trials are necessary to determine the most effective antimicrobial therapies among the available options.
Collapse
Affiliation(s)
- Diego Viasus
- Department of Medicine, Division of Health Sciences, Universidad del Norte and Hospital Universidad del Norte, Barranquilla, Colombia
| | - Carlota Gudiol
- Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, Barcelona
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid
- Institut Català d'Oncologia, IDIBELL, Barcelona, Spain
| | - Jordi Carratalà
- Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, Barcelona
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid
| |
Collapse
|
11
|
Naghavi M, Vollset SE, Ikuta KS, Swetschinski LR, Gray AP, Wool EE, Robles Aguilar G, Mestrovic T, Smith G, Han C, Hsu RL, Chalek J, Araki DT, Chung E, Raggi C, Gershberg Hayoon A, Davis Weaver N, Lindstedt PA, Smith AE, Altay U, Bhattacharjee NV, Giannakis K, Fell F, McManigal B, Ekapirat N, Mendes JA, Runghien T, Srimokla O, Abdelkader A, Abd-Elsalam S, Aboagye RG, Abolhassani H, Abualruz H, Abubakar U, Abukhadijah HJ, Aburuz S, Abu-Zaid A, Achalapong S, Addo IY, Adekanmbi V, Adeyeoluwa TE, Adnani QES, Adzigbli LA, Afzal MS, Afzal S, Agodi A, Ahlstrom AJ, Ahmad A, Ahmad S, Ahmad T, Ahmadi A, Ahmed A, Ahmed H, Ahmed I, Ahmed M, Ahmed S, Ahmed SA, Akkaif MA, Al Awaidy S, Al Thaher Y, Alalalmeh SO, AlBataineh MT, Aldhaleei WA, Al-Gheethi AAS, Alhaji NB, Ali A, Ali L, Ali SS, Ali W, Allel K, Al-Marwani S, Alrawashdeh A, Altaf A, Al-Tammemi AB, Al-Tawfiq JA, Alzoubi KH, Al-Zyoud WA, Amos B, Amuasi JH, Ancuceanu R, Andrews JR, Anil A, Anuoluwa IA, Anvari S, Anyasodor AE, Apostol GLC, Arabloo J, Arafat M, Aravkin AY, Areda D, Aremu A, Artamonov AA, Ashley EA, Asika MO, Athari SS, Atout MMW, Awoke T, Azadnajafabad S, Azam JM, Aziz S, Azzam AY, Babaei M, Babin FX, Badar M, Baig AA, Bajcetic M, Baker S, Bardhan M, Barqawi HJ, Basharat Z, Basiru A, Bastard M, Basu S, Bayleyegn NS, Belete MA, Bello OO, Beloukas A, Berkley JA, Bhagavathula AS, Bhaskar S, Bhuyan SS, Bielicki JA, Briko NI, Brown CS, Browne AJ, Buonsenso D, Bustanji Y, Carvalheiro CG, Castañeda-Orjuela CA, Cenderadewi M, Chadwick J, Chakraborty S, Chandika RM, Chandy S, Chansamouth V, Chattu VK, Chaudhary AA, Ching PR, Chopra H, Chowdhury FR, Chu DT, Chutiyami M, Cruz-Martins N, da Silva AG, Dadras O, Dai X, Darcho SD, Das S, De la Hoz FP, Dekker DM, Dhama K, Diaz D, Dickson BFR, Djorie SG, Dodangeh M, Dohare S, Dokova KG, Doshi OP, Dowou RK, Dsouza HL, Dunachie SJ, Dziedzic AM, Eckmanns T, Ed-Dra A, Eftekharimehrabad A, Ekundayo TC, El Sayed I, Elhadi M, El-Huneidi W, Elias C, Ellis SJ, Elsheikh R, Elsohaby I, Eltaha C, Eshrati B, Eslami M, Eyre DW, Fadaka AO, Fagbamigbe AF, Fahim A, Fakhri-Demeshghieh A, Fasina FO, Fasina MM, Fatehizadeh A, Feasey NA, Feizkhah A, Fekadu G, Fischer F, Fitriana I, Forrest KM, Fortuna Rodrigues C, Fuller JE, Gadanya MA, Gajdács M, Gandhi AP, Garcia-Gallo EE, Garrett DO, Gautam RK, Gebregergis MW, Gebrehiwot M, Gebremeskel TG, Geffers C, Georgalis L, Ghazy RM, Golechha M, Golinelli D, Gordon M, Gulati S, Gupta RD, Gupta S, Gupta VK, Habteyohannes AD, Haller S, Harapan H, Harrison ML, Hasaballah AI, Hasan I, Hasan RS, Hasani H, Haselbeck AH, Hasnain MS, Hassan II, Hassan S, Hassan Zadeh Tabatabaei MS, Hayat K, He J, Hegazi OE, Heidari M, Hezam K, Holla R, Holm M, Hopkins H, Hossain MM, Hosseinzadeh M, Hostiuc S, Hussein NR, Huy LD, Ibáñez-Prada ED, Ikiroma A, Ilic IM, Islam SMS, Ismail F, Ismail NE, Iwu CD, Iwu-Jaja CJ, Jafarzadeh A, Jaiteh F, Jalilzadeh Yengejeh R, Jamora RDG, Javidnia J, Jawaid T, Jenney AWJ, Jeon HJ, Jokar M, Jomehzadeh N, Joo T, Joseph N, Kamal Z, Kanmodi KK, Kantar RS, Kapisi JA, Karaye IM, Khader YS, Khajuria H, Khalid N, Khamesipour F, Khan A, Khan MJ, Khan MT, Khanal V, Khidri FF, Khubchandani J, Khusuwan S, Kim MS, Kisa A, Korshunov VA, Krapp F, Krumkamp R, Kuddus M, Kulimbet M, Kumar D, Kumaran EAP, Kuttikkattu A, Kyu HH, Landires I, Lawal BK, Le TTT, Lederer IM, Lee M, Lee SW, Lepape A, Lerango TL, Ligade VS, Lim C, Lim SS, Limenh LW, Liu C, Liu X, Liu X, Loftus MJ, M Amin HI, Maass KL, Maharaj SB, Mahmoud MA, Maikanti-Charalampous P, Makram OM, Malhotra K, Malik AA, Mandilara GD, Marks F, Martinez-Guerra BA, Martorell M, Masoumi-Asl H, Mathioudakis AG, May J, McHugh TA, Meiring J, Meles HN, Melese A, Melese EB, Minervini G, Mohamed NS, Mohammed S, Mohan S, Mokdad AH, Monasta L, Moodi Ghalibaf A, Moore CE, Moradi Y, Mossialos E, Mougin V, Mukoro GD, Mulita F, Muller-Pebody B, Murillo-Zamora E, Musa S, Musicha P, Musila LA, Muthupandian S, Nagarajan AJ, Naghavi P, Nainu F, Nair TS, Najmuldeen HHR, Natto ZS, Nauman J, Nayak BP, Nchanji GT, Ndishimye P, Negoi I, Negoi RI, Nejadghaderi SA, Nguyen QP, Noman EA, Nwakanma DC, O'Brien S, Ochoa TJ, Odetokun IA, Ogundijo OA, Ojo-Akosile TR, Okeke SR, Okonji OC, Olagunju AT, Olivas-Martinez A, Olorukooba AA, Olwoch P, Onyedibe KI, Ortiz-Brizuela E, Osuolale O, Ounchanum P, Oyeyemi OT, P A MP, Paredes JL, Parikh RR, Patel J, Patil S, Pawar S, Peleg AY, Peprah P, Perdigão J, Perrone C, Petcu IR, Phommasone K, Piracha ZZ, Poddighe D, Pollard AJ, Poluru R, Ponce-De-Leon A, Puvvula J, Qamar FN, Qasim NH, Rafai CD, Raghav P, Rahbarnia L, Rahim F, Rahimi-Movaghar V, Rahman M, Rahman MA, Ramadan H, Ramasamy SK, Ramesh PS, Ramteke PW, Rana RK, Rani U, Rashidi MM, Rathish D, Rattanavong S, Rawaf S, Redwan EMM, Reyes LF, Roberts T, Robotham JV, Rosenthal VD, Ross AG, Roy N, Rudd KE, Sabet CJ, Saddik BA, Saeb MR, Saeed U, Saeedi Moghaddam S, Saengchan W, Safaei M, Saghazadeh A, Saheb Sharif-Askari N, Sahebkar A, Sahoo SS, Sahu M, Saki M, Salam N, Saleem Z, Saleh MA, Samodra YL, Samy AM, Saravanan A, Satpathy M, Schumacher AE, Sedighi M, Seekaew S, Shafie M, Shah PA, Shahid S, Shahwan MJ, Shakoor S, Shalev N, Shamim MA, Shamshirgaran MA, Shamsi A, Sharifan A, Shastry RP, Shetty M, Shittu A, Shrestha S, Siddig EE, Sideroglou T, Sifuentes-Osornio J, Silva LMLR, Simões EAF, Simpson AJH, Singh A, Singh S, Sinto R, Soliman SSM, Soraneh S, Stoesser N, Stoeva TZ, Swain CK, Szarpak L, T Y SS, Tabatabai S, Tabche C, Taha ZMA, Tan KK, Tasak N, Tat NY, Thaiprakong A, Thangaraju P, Tigoi CC, Tiwari K, Tovani-Palone MR, Tran TH, Tumurkhuu M, Turner P, Udoakang AJ, Udoh A, Ullah N, Ullah S, Vaithinathan AG, Valenti M, Vos T, Vu HTL, Waheed Y, Walker AS, Walson JL, Wangrangsimakul T, Weerakoon KG, Wertheim HFL, Williams PCM, Wolde AA, Wozniak TM, Wu F, Wu Z, Yadav MKK, Yaghoubi S, Yahaya ZS, Yarahmadi A, Yezli S, Yismaw YE, Yon DK, Yuan CW, Yusuf H, Zakham F, Zamagni G, Zhang H, Zhang ZJ, Zielińska M, Zumla A, Zyoud SHH, Zyoud SH, Hay SI, Stergachis A, Sartorius B, Cooper BS, Dolecek C, Murray CJL. Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050. Lancet 2024; 404:1199-1226. [PMID: 39299261 PMCID: PMC11718157 DOI: 10.1016/s0140-6736(24)01867-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Antimicrobial resistance (AMR) poses an important global health challenge in the 21st century. A previous study has quantified the global and regional burden of AMR for 2019, followed with additional publications that provided more detailed estimates for several WHO regions by country. To date, there have been no studies that produce comprehensive estimates of AMR burden across locations that encompass historical trends and future forecasts. METHODS We estimated all-age and age-specific deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 22 pathogens, 84 pathogen-drug combinations, and 11 infectious syndromes in 204 countries and territories from 1990 to 2021. We collected and used multiple cause of death data, hospital discharge data, microbiology data, literature studies, single drug resistance profiles, pharmaceutical sales, antibiotic use surveys, mortality surveillance, linkage data, outpatient and inpatient insurance claims data, and previously published data, covering 520 million individual records or isolates and 19 513 study-location-years. We used statistical modelling to produce estimates of AMR burden for all locations, including those with no data. Our approach leverages the estimation of five broad component quantities: the number of deaths involving sepsis; the proportion of infectious deaths attributable to a given infectious syndrome; the proportion of infectious syndrome deaths attributable to a given pathogen; the percentage of a given pathogen resistant to an antibiotic of interest; and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden attributable to and associated with AMR, which we define based on two counterfactuals; respectively, an alternative scenario in which all drug-resistant infections are replaced by drug-susceptible infections, and an alternative scenario in which all drug-resistant infections were replaced by no infection. Additionally, we produced global and regional forecasts of AMR burden until 2050 for three scenarios: a reference scenario that is a probabilistic forecast of the most likely future; a Gram-negative drug scenario that assumes future drug development that targets Gram-negative pathogens; and a better care scenario that assumes future improvements in health-care quality and access to appropriate antimicrobials. We present final estimates aggregated to the global, super-regional, and regional level. FINDINGS In 2021, we estimated 4·71 million (95% UI 4·23-5·19) deaths were associated with bacterial AMR, including 1·14 million (1·00-1·28) deaths attributable to bacterial AMR. Trends in AMR mortality over the past 31 years varied substantially by age and location. From 1990 to 2021, deaths from AMR decreased by more than 50% among children younger than 5 years yet increased by over 80% for adults 70 years and older. AMR mortality decreased for children younger than 5 years in all super-regions, whereas AMR mortality in people 5 years and older increased in all super-regions. For both deaths associated with and deaths attributable to AMR, meticillin-resistant Staphylococcus aureus increased the most globally (from 261 000 associated deaths [95% UI 150 000-372 000] and 57 200 attributable deaths [34 100-80 300] in 1990, to 550 000 associated deaths [500 000-600 000] and 130 000 attributable deaths [113 000-146 000] in 2021). Among Gram-negative bacteria, resistance to carbapenems increased more than any other antibiotic class, rising from 619 000 associated deaths (405 000-834 000) in 1990, to 1·03 million associated deaths (909 000-1·16 million) in 2021, and from 127 000 attributable deaths (82 100-171 000) in 1990, to 216 000 (168 000-264 000) attributable deaths in 2021. There was a notable decrease in non-COVID-related infectious disease in 2020 and 2021. Our forecasts show that an estimated 1·91 million (1·56-2·26) deaths attributable to AMR and 8·22 million (6·85-9·65) deaths associated with AMR could occur globally in 2050. Super-regions with the highest all-age AMR mortality rate in 2050 are forecasted to be south Asia and Latin America and the Caribbean. Increases in deaths attributable to AMR will be largest among those 70 years and older (65·9% [61·2-69·8] of all-age deaths attributable to AMR in 2050). In stark contrast to the strong increase in number of deaths due to AMR of 69·6% (51·5-89·2) from 2022 to 2050, the number of DALYs showed a much smaller increase of 9·4% (-6·9 to 29·0) to 46·5 million (37·7 to 57·3) in 2050. Under the better care scenario, across all age groups, 92·0 million deaths (82·8-102·0) could be cumulatively averted between 2025 and 2050, through better care of severe infections and improved access to antibiotics, and under the Gram-negative drug scenario, 11·1 million AMR deaths (9·08-13·2) could be averted through the development of a Gram-negative drug pipeline to prevent AMR deaths. INTERPRETATION This study presents the first comprehensive assessment of the global burden of AMR from 1990 to 2021, with results forecasted until 2050. Evaluating changing trends in AMR mortality across time and location is necessary to understand how this important global health threat is developing and prepares us to make informed decisions regarding interventions. Our findings show the importance of infection prevention, as shown by the reduction of AMR deaths in those younger than 5 years. Simultaneously, our results underscore the concerning trend of AMR burden among those older than 70 years, alongside a rapidly ageing global community. The opposing trends in the burden of AMR deaths between younger and older individuals explains the moderate future increase in global number of DALYs versus number of deaths. Given the high variability of AMR burden by location and age, it is important that interventions combine infection prevention, vaccination, minimisation of inappropriate antibiotic use in farming and humans, and research into new antibiotics to mitigate the number of AMR deaths that are forecasted for 2050. FUNDING UK Department of Health and Social Care's Fleming Fund using UK aid, and the Wellcome Trust.
Collapse
|
12
|
Boyce JM. Hand and environmental hygiene: respective roles for MRSA, multi-resistant gram negatives, Clostridioides difficile, and Candida spp. Antimicrob Resist Infect Control 2024; 13:110. [PMID: 39334403 PMCID: PMC11437781 DOI: 10.1186/s13756-024-01461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Healthcare-associated infections (HAIs) caused by multidrug-resistant organisms (MDROs) represent a global threat to human health and well-being. Because transmission of MDROs to patients often occurs via transiently contaminated hands of healthcare personnel (HCP), hand hygiene is considered the most important measure for preventing HAIs. Environmental surfaces contaminated with MDROs from colonized or infected patients represent an important source of HCP hand contamination and contribute to transmission of pathogens. Accordingly, facilities are encouraged to adopt and implement recommendations included in the World Health Organization hand hygiene guidelines and those from the Society for Healthcare Epidemiology of America/Infectious Diseases Society of America/Association for Professionals in Infection Control and Epidemiology. Alcohol-based hand rubs are efficacious against MDROs with the exception of Clostridiodes difficile, for which soap and water handwashing is indicated. Monitoring hand hygiene adherence and providing HCP with feedback are of paramount importance. Environmental hygiene measures to curtail MDROs include disinfecting high-touch surfaces in rooms of patients with C. difficile infection daily with a sporicidal agent such as sodium hypochlorite. Some experts recommend also using a sporicidal agent in rooms of patients colonized with C. difficile, and for patients with multidrug-resistant Gram-negative bacteria. Sodium hypochlorite, hydrogen peroxide, or peracetic acid solutions are often used for daily and/or terminal disinfection of rooms housing patients with Candida auris or other MDROs. Products containing only a quaternary ammonium agent are not as effective as other agents against C. auris. Portable medical equipment should be cleaned and disinfected between use on different patients. Detergents are not recommended for cleaning high-touch surfaces in MDRO patient rooms, unless their use is followed by using a disinfectant. Facilities should consider using a disinfectant instead of detergents for terminal cleaning of floors in MDRO patient rooms. Education and training of environmental services employees is essential in assuring effective disinfection practices. Monitoring disinfection practices and providing personnel with performance feedback using fluorescent markers, adenosine triphosphate assays, or less commonly cultures of surfaces, can help reduce MDRO transmission. No-touch disinfection methods such as electrostatic spraying, hydrogen peroxide vapor, or ultraviolet light devices should be considered for terminal disinfection of MDRO patient rooms. Bundles with additional measures are usually necessary to reduce MDRO transmission.
Collapse
Affiliation(s)
- John M Boyce
- J.M. Boyce Consulting, LLC, 214 Hudson View Terrace, Hyde Park, NY, USA.
| |
Collapse
|
13
|
Fanelli C, Pistidda L, Terragni P, Pasero D. Infection Prevention and Control Strategies According to the Type of Multidrug-Resistant Bacteria and Candida auris in Intensive Care Units: A Pragmatic Resume including Pathogens R 0 and a Cost-Effectiveness Analysis. Antibiotics (Basel) 2024; 13:789. [PMID: 39200090 PMCID: PMC11351734 DOI: 10.3390/antibiotics13080789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
Multidrug-resistant organism (MDRO) outbreaks have been steadily increasing in intensive care units (ICUs). Still, healthcare institutions and workers (HCWs) have not reached unanimity on how and when to implement infection prevention and control (IPC) strategies. We aimed to provide a pragmatic physician practice-oriented resume of strategies towards different MDRO outbreaks in ICUs. We performed a narrative review on IPC in ICUs, investigating patient-to-staff ratios; education, isolation, decolonization, screening, and hygiene practices; outbreak reporting; cost-effectiveness; reproduction numbers (R0); and future perspectives. The most effective IPC strategy remains unknown. Most studies focus on a specific pathogen or disease, making the clinician lose sight of the big picture. IPC strategies have proven their cost-effectiveness regardless of typology, country, and pathogen. A standardized, universal, pragmatic protocol for HCW education should be elaborated. Likewise, the elaboration of a rapid outbreak recognition tool (i.e., an easy-to-use mathematical model) would improve early diagnosis and prevent spreading. Further studies are needed to express views in favor or against MDRO decolonization. New promising strategies are emerging and need to be tested in the field. The lack of IPC strategy application has made and still makes ICUs major MDRO reservoirs in the community. In a not-too-distant future, genetic engineering and phage therapies could represent a plot twist in MDRO IPC strategies.
Collapse
Affiliation(s)
- Chiara Fanelli
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy (L.P.); (P.T.)
| | - Laura Pistidda
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy (L.P.); (P.T.)
| | - Pierpaolo Terragni
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy (L.P.); (P.T.)
- Head of Intensive Care Unit, University Hospital of Sassari, 07100 Sassari, Italy
| | - Daniela Pasero
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy (L.P.); (P.T.)
- Head of Intensive Care Unit, Civil Hospital of Alghero, 07041 Alghero, Italy
| |
Collapse
|
14
|
Boutin S, Welker S, Gerigk M, Miethke T, Heeg K, Nurjadi D. Molecular surveillance of carbapenem-resistant Enterobacterales in two nearby tertiary hospitals to identify regional spread of high-risk clones in Germany, 2019-2020. J Hosp Infect 2024; 149:126-134. [PMID: 38723905 DOI: 10.1016/j.jhin.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Understanding the transmission dynamics of carbapenem-resistant Enterobacterales (CRE) is critical to addressing the escalating global threat of antimicrobial resistance (AMR). Although hospital transmission of CRE has been extensively studied, information on community transmission is lacking. AIM To identify genomic clusters of CRE from two nearby institutions that may be indicative of community or inter-facility transmission. METHODS CRE isolates between January 1st, 2019 and December 31st, 2020 from two tertiary hospitals, detected in the respective routine microbiology laboratories, were collected and characterized by short-read whole-genome sequencing. FINDINGS A total of 272 CRE were collected, with Enterobacter cloacae complex (71/192, 37%) predominant in Heidelberg and Escherichia coli (19/80, 24%) in Mannheim. The most common carbapenem resistance gene, blaOXA-48, was detected in 38% of CRE from both centres. Several putative transmission clusters were found, including six clusters of E. cloacae complex, five clusters of Klebsiella pneumoniae, four clusters of Citrobacter freundii, and two clusters each of Escherichia coli and K. aerogenes. No clusters involved isolates from both study centres, except for an ST22 C. freundii cluster. Globally circulating clones were identified between the two centres for ST131 E. coli, ST66 E. hormaechei, and ST22 C. freundii. CONCLUSION This study found no widespread transmission clusters among isolates from both centres, suggesting a hospital-specific clonal structure. This suggests that CRE clusters involving both institutions may indicate emerging or circulating clones in the community, highlighting the need for intersectoral surveillance and data sharing.
Collapse
Affiliation(s)
- S Boutin
- Medical Microbiology and Hygiene, Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany; Department of Infectious Diseases and Microbiology, University of Lübeck and University Hospital Schleswig Holstein Campus Lübeck, Lübeck, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - S Welker
- Institute of Medical Microbiology and Hygiene, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - M Gerigk
- Institute of Medical Microbiology and Hygiene, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - T Miethke
- Institute of Medical Microbiology and Hygiene, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Institute for Innate Immunoscience (MI3), Mannheim, Germany; Center of Experimental Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - K Heeg
- Medical Microbiology and Hygiene, Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - D Nurjadi
- Medical Microbiology and Hygiene, Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany; Department of Infectious Diseases and Microbiology, University of Lübeck and University Hospital Schleswig Holstein Campus Lübeck, Lübeck, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany.
| |
Collapse
|
15
|
Chen L, Zhang T, Liu Z. Molecular epidemiology and risk factors for carbapenem-resistant Enterobacteriaceae infections during 2020-2021 in Northwest China. Microb Pathog 2024:106728. [PMID: 38906492 DOI: 10.1016/j.micpath.2024.106728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/12/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVES Severe infection caused by Carbapenem-resistant Enterobacteriaceae (CRE) is a challenge for clinical anti-infective therapy, and clinical intervention to improve control of CRE is of great significance. The study aims to determine the molecular epidemiology and risk factors of CRE infections to provide evidence for effective control of nosocomial infection in patients with CRE. METHODS A total of 192 non-repetitive CRE strains were collected from January 2020 to December 2021 in Northwest China. To explore the risk factors of CRE infection by univariate and Logistic regression analysis, 1:1 case-control study was used to select Carbapenem sensitive Enterobacteriaceae (CSE) infection patients at the same period as the control group. RESULTS Among the 192 CRE strains, the most common isolates included Klebsiella pneumoniae (Kpn) and Enterobacter cloacae (Ecl). The CRE strain showed the lowest rate of resistance to amikacin at 58.3. 185 CRE strains carried carbapenemase resistance genes of concern in this study. KPC-2 (n=94) was the most common carbapenemase, followed by NDM-1 (n=69), NDM-5 (n=22) and IMP-4 (n=5). OXA-48 and VIM were not detected. And KPC-2 was the most common in all strains. Logistic regression analysis implicated days of invasive ventilator-assisted ventilation (OR=1.452; 95 % CI 1.250~1.686), antibiotic combination therapy (OR=2.149; 95 % CI 1.128~4.094), hypoalbuminemia (OR=6.137; 95 % CI 3.161~11.913), history of immunosuppressant use (OR=25.815; 95 % CI 6.821~97.706) and days of hospitalization (OR=1.020; 95 % CI 1.006~1.035) as independent risk factors associated with CRE infection. Age (OR=0.963; 95% CI 0.943~0.984) and history of hormone use (OR=0.119; 95 % CI 0.028~0.504) were protective factors for CRE infection (P < 0.05). CONCLUSIONS The resistance of commonly used antibiotics in clinical is severe, and CRE strains mainly carry KPC-2 and NDM-1. Multiple risk factors for CRE infection and their control can effectively prevent the spread of CRE.
Collapse
Affiliation(s)
- Lin Chen
- Tsinghua University Affiliated Chuiyangliu Hospital, Department of Infectious Diseases, Beijing 100022, China; The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Tiantian Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zhiwu Liu
- Department of Clinical Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
16
|
Sartelli M, Tascini C, Coccolini F, Dellai F, Ansaloni L, Antonelli M, Bartoletti M, Bassetti M, Boncagni F, Carlini M, Cattelan AM, Cavaliere A, Ceresoli M, Cipriano A, Cortegiani A, Cortese F, Cristini F, Cucinotta E, Dalfino L, De Pascale G, De Rosa FG, Falcone M, Forfori F, Fugazzola P, Gatti M, Gentile I, Ghiadoni L, Giannella M, Giarratano A, Giordano A, Girardis M, Mastroianni C, Monti G, Montori G, Palmieri M, Pani M, Paolillo C, Parini D, Parruti G, Pasero D, Pea F, Peghin M, Petrosillo N, Podda M, Rizzo C, Rossolini GM, Russo A, Scoccia L, Sganga G, Signorini L, Stefani S, Tumbarello M, Tumietto F, Valentino M, Venditti M, Viaggi B, Vivaldi F, Zaghi C, Labricciosa FM, Abu-Zidan F, Catena F, Viale P. Management of intra-abdominal infections: recommendations by the Italian council for the optimization of antimicrobial use. World J Emerg Surg 2024; 19:23. [PMID: 38851757 PMCID: PMC11162065 DOI: 10.1186/s13017-024-00551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024] Open
Abstract
Intra-abdominal infections (IAIs) are common surgical emergencies and are an important cause of morbidity and mortality in hospital settings, particularly if poorly managed. The cornerstones of effective IAIs management include early diagnosis, adequate source control, appropriate antimicrobial therapy, and early physiologic stabilization using intravenous fluids and vasopressor agents in critically ill patients. Adequate empiric antimicrobial therapy in patients with IAIs is of paramount importance because inappropriate antimicrobial therapy is associated with poor outcomes. Optimizing antimicrobial prescriptions improves treatment effectiveness, increases patients' safety, and minimizes the risk of opportunistic infections (such as Clostridioides difficile) and antimicrobial resistance selection. The growing emergence of multi-drug resistant organisms has caused an impending crisis with alarming implications, especially regarding Gram-negative bacteria. The Multidisciplinary and Intersociety Italian Council for the Optimization of Antimicrobial Use promoted a consensus conference on the antimicrobial management of IAIs, including emergency medicine specialists, radiologists, surgeons, intensivists, infectious disease specialists, clinical pharmacologists, hospital pharmacists, microbiologists and public health specialists. Relevant clinical questions were constructed by the Organizational Committee in order to investigate the topic. The expert panel produced recommendation statements based on the best scientific evidence from PubMed and EMBASE Library and experts' opinions. The statements were planned and graded according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) hierarchy of evidence. On November 10, 2023, the experts met in Mestre (Italy) to debate the statements. After the approval of the statements, the expert panel met via email and virtual meetings to prepare and revise the definitive document. This document represents the executive summary of the consensus conference and comprises three sections. The first section focuses on the general principles of diagnosis and treatment of IAIs. The second section provides twenty-three evidence-based recommendations for the antimicrobial therapy of IAIs. The third section presents eight clinical diagnostic-therapeutic pathways for the most common IAIs. The document has been endorsed by the Italian Society of Surgery.
Collapse
Affiliation(s)
- Massimo Sartelli
- Department of Surgery, Macerata Hospital, Via Santa Lucia 2, 62100, Macerata, Italy.
| | - Carlo Tascini
- Infectious Diseases Clinic, Santa Maria Della Misericordia University Hospital of Udine, ASUFC, Udine, Italy
- Infectious Diseases Clinic, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Federico Coccolini
- Department of General, Emergency and Trauma Surgery, Azienda Ospedaliero Universitaria Pisana, University Hospital, Pisa, Italy
| | - Fabiana Dellai
- Infectious Diseases Clinic, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Luca Ansaloni
- Division of General Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Massimo Antonelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze Dell'Emergenza, Anestesiologiche e Della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Matteo Bassetti
- Division of Infectious Diseases, Department of Health Sciences, University of Genova, Genoa, Italy
- Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federico Boncagni
- Anesthesiology and Intensive Care Unit, Macerata Hospital, Macerata, Italy
| | - Massimo Carlini
- Department of General Surgery, S. Eugenio Hospital, Rome, Italy
| | - Anna Maria Cattelan
- Infectious and Tropical Diseases Unit, Padua University Hospital, Padua, Italy
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Arturo Cavaliere
- Unit of Hospital Pharmacy, Viterbo Local Health Authority, Viterbo, Italy
| | - Marco Ceresoli
- General and Emergency Surgery, Milano-Bicocca University, School of Medicine and Surgery, Monza, Italy
| | - Alessandro Cipriano
- Department of Emergency Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Andrea Cortegiani
- Department of Precision Medicine in Medical Surgical and Critical Care, University of Palermo, Palermo, Italy
- Department of Anesthesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | | | - Francesco Cristini
- Infectious Diseases Unit, AUSL Romagna, Forlì and Cesena Hospitals, Forlì, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Eugenio Cucinotta
- Department of Human Pathology of the Adult and Evolutive Age "Gaetano Barresi", Section of General Surgery, University of Messina, Messina, Italy
| | - Lidia Dalfino
- Anesthesia and Intensive Care Unit, Department of Precision and Regenerative Medicine and Ionian Area, Polyclinic of Bari, University of Bari, Bari, Italy
| | - Gennaro De Pascale
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze Dell'Emergenza, Anestesiologiche e Della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Marco Falcone
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Francesco Forfori
- Anesthesia and Intensive Care, Anesthesia and Resuscitation Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Paola Fugazzola
- Division of General Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Ivan Gentile
- Section of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Lorenzo Ghiadoni
- Department of Emergency Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
- Department on Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maddalena Giannella
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonino Giarratano
- Department of Precision Medicine in Medical Surgical and Critical Care, University of Palermo, Palermo, Italy
- Department of Anesthesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | - Alessio Giordano
- Unit of Emergency Surgery, Careggi University Hospital, Florence, Italy
| | - Massimo Girardis
- Anesthesia and Intensive Care Medicine, Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudio Mastroianni
- Department of Public Health and Infectious Diseases, AOU Policlinico Umberto 1, Sapienza University of Rome, Rome, Italy
| | - Gianpaola Monti
- Department of Anesthesia and Intensive Care, ASST GOM Niguarda Ca' Granda, Milan, Italy
| | - Giulia Montori
- Unit of General and Emergency Surgery, Vittorio Veneto Hospital, Vittorio Veneto, Italy
| | - Miriam Palmieri
- Department of Surgery, Macerata Hospital, Via Santa Lucia 2, 62100, Macerata, Italy
| | - Marcello Pani
- Hospital Pharmacy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ciro Paolillo
- Emergency Department, University of Verona, Verona, Italy
| | - Dario Parini
- General Surgery Department, Santa Maria Della Misericordia Hospital, Rovigo, Italy
| | - Giustino Parruti
- Infectious Diseases Unit, Pescara General Hospital, Pescara, Italy
| | - Daniela Pasero
- Department of Emergency, Anaesthesia and Intensive Care Unit, ASL1 Sassari, Sassari, Italy
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Maddalena Peghin
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | - Nicola Petrosillo
- Infection Prevention and Control Service, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Mauro Podda
- Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Caterina Rizzo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Alessandro Russo
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
- Infectious and Tropical Disease Unit, "Renato Dulbecco" Teaching Hospital, Catanzaro, Italy
| | - Loredana Scoccia
- Hospital Pharmacy Unit, Macerata Hospital, AST Macerata, Macerata, Italy
| | - Gabriele Sganga
- Emergency and Trauma Surgery Unit, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Liana Signorini
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Mario Tumbarello
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Infectious and Tropical Diseases Unit, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Fabio Tumietto
- UO Antimicrobial Stewardship-AUSL Bologna, Bologna, Italy
| | | | - Mario Venditti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Bruno Viaggi
- Intensive Care Department, Careggi Hospital, Florence, Italy
| | | | - Claudia Zaghi
- General, Emergency and Trauma Surgery Department, Vicenza Hospital, Vicenza, Italy
| | | | - Fikri Abu-Zidan
- Statistics and Research Methodology, The Research Office, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Fausto Catena
- Emergency and General Surgery Department, Bufalini Hospital, Cesena, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
17
|
Sartelli M, Barie P, Agnoletti V, Al-Hasan MN, Ansaloni L, Biffl W, Buonomo L, Blot S, Cheadle WG, Coimbra R, De Simone B, Duane TM, Fugazzola P, Giamarellou H, Hardcastle TC, Hecker A, Inaba K, Kirkpatrick AW, Labricciosa FM, Leone M, Martin-Loeches I, Maier RV, Marwah S, Maves RC, Mingoli A, Montravers P, Ordóñez CA, Palmieri M, Podda M, Rello J, Sawyer RG, Sganga G, Tattevin P, Thapaliya D, Tessier J, Tolonen M, Ulrych J, Vallicelli C, Watkins RR, Catena F, Coccolini F. Intra-abdominal infections survival guide: a position statement by the Global Alliance For Infections In Surgery. World J Emerg Surg 2024; 19:22. [PMID: 38851700 PMCID: PMC11161965 DOI: 10.1186/s13017-024-00552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024] Open
Abstract
Intra-abdominal infections (IAIs) are an important cause of morbidity and mortality in hospital settings worldwide. The cornerstones of IAI management include rapid, accurate diagnostics; timely, adequate source control; appropriate, short-duration antimicrobial therapy administered according to the principles of pharmacokinetics/pharmacodynamics and antimicrobial stewardship; and hemodynamic and organ functional support with intravenous fluid and adjunctive vasopressor agents for critical illness (sepsis/organ dysfunction or septic shock after correction of hypovolemia). In patients with IAIs, a personalized approach is crucial to optimize outcomes and should be based on multiple aspects that require careful clinical assessment. The anatomic extent of infection, the presumed pathogens involved and risk factors for antimicrobial resistance, the origin and extent of the infection, the patient's clinical condition, and the host's immune status should be assessed continuously to optimize the management of patients with complicated IAIs.
Collapse
Affiliation(s)
- Massimo Sartelli
- Department of Surgery, Macerata Hospital, Via Santa Lucia 2, Macerata, 62100, Italy.
| | - Philip Barie
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Vanni Agnoletti
- Anesthesia and Intensive Care Unit, Bufalini Hospital - AUSL della Romagna, Cesena, Italy
| | - Majdi N Al-Hasan
- Department of Internal Medicine, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Luca Ansaloni
- Department of General and Emergency Surgery, Fondazione IRCCS San Matteo, Pavia, Italy
| | - Walter Biffl
- Division of Trauma and Acute Care Surgery, Scripps Clinic Medical Group, La Jolla, CA, USA
| | - Luis Buonomo
- Emergency, Urgency and Trauma Surgery, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Stijn Blot
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - William G Cheadle
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Raul Coimbra
- Comparative Effectiveness and Clinical Outcomes Research Center - CECORC - Riverside University Health System, Moreno Valley, CA, USA
- Department of Surgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | | | - Paola Fugazzola
- Department of General and Emergency Surgery, Fondazione IRCCS San Matteo, Pavia, Italy
| | - Helen Giamarellou
- First Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Timothy C Hardcastle
- Department of Surgical Sciences, Nelson R Mandela School of Clinical Medicine, University of KwaZulu-Natal, and Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Andreas Hecker
- Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen, Germany
| | - Kenji Inaba
- Department of Surgery, University of Southern California, Los Angeles, CA, USA
| | - Andrew W Kirkpatrick
- Department of Surgery and Critical Care Medicine, University of Calgary, Foothills Medical Centre, Calgary, AB, Canada
| | | | - Marc Leone
- Department of Anaesthesia and Intensive Care Unit, AP-HM, Aix-Marseille University, North Hospital, Marseille, France
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organisation, St James's Hospital, Dublin, Ireland
- Trinity College Dublin, Dublin, Ireland
- Centro de Investigacion Biomedica En Red Entermedades Respiratorias, Institute of Health Carlos III, Madrid, Spain
- Pulmonary Department, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Ronald V Maier
- Department of Surgery, Harborview Medical Centre, University of Washington, Seattle, USA
| | - Sanjay Marwah
- Pandit Bhagwat Dayal Sharma Postgraduate Institute of Medical Sciences, Rohtak, India
| | - Ryan C Maves
- Section of Infectious Diseases, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Andrea Mingoli
- Emergency Department, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Philippe Montravers
- Anesthesiology and Critical Care Medicine Department, DMU PARABOL, Bichat Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Carlos A Ordóñez
- Division of Trauma and Acute Care Surgery, Department of Surgery, Fundación Valle del Lili, Cali, Colombia
| | - Miriam Palmieri
- Department of Surgery, Macerata Hospital, Via Santa Lucia 2, Macerata, 62100, Italy
| | - Mauro Podda
- Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Jordi Rello
- Global Health eCore, Vall d'Hebron University Hospital Campus, Barcelona, 08035, Spain
- Medicine Department, Universitat Internacional de Catalunya, Sant Cugat del Valles, Spain
| | - Robert G Sawyer
- Department of Surgery, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Gabriele Sganga
- Emergency Surgery and Trauma, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Pierre Tattevin
- Infectious Disease and Intensive Care Unit, Pontchaillou University Hospital, Rennes, France
| | | | - Jeffrey Tessier
- Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matti Tolonen
- Emergency Surgery department, Meilahti Tower Hospital, HUS Helsinki University Hospital, Haartmaninkatu 4, Helsinki, Finland
| | - Jan Ulrych
- First Department of Surgery, Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Carlo Vallicelli
- Emergency and General Surgery Department, Bufalini Hospital, Cesena, Italy
| | - Richard R Watkins
- Department of Medicine, Division of Infectious Diseases, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Fausto Catena
- Emergency and General Surgery Department, Bufalini Hospital, Cesena, Italy
| | - Federico Coccolini
- General, Emergency and Trauma Surgery Unit, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
18
|
Stordeur F, Si Larbi AG, Le Neindre K, Ory J, Faibis F, Lawrence C, Barbut F, Lecointe D, Farfour E. A predictive score for the result of carbapenem-resistant Enterobacterales and vancomycin-resistant enterococci screening. J Hosp Infect 2024; 148:20-29. [PMID: 38490490 DOI: 10.1016/j.jhin.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND The duration of extensively drug-resistant bacteria (XDR) carriage depends on several factors for which the information can be difficult to recover. AIM To determine whether past screening and clinical results of patients can predict the results of subsequent screening. METHODS In total, 256 patients were retrospectively included from 10 healthcare centres in France from January 2014 to January 2022. We created a predictive clearance score, ranging from -5 to +7, that included the number of XDR species and the type of resistance detected in the sample, as well as the time from the last positive sample, the number of previous consecutive negative samples, and obtaining at least one negative PCR result in the collection. This score could be used for the upcoming rectal screening of a patient carrying an XDR as soon as the last screening sample was negative. FINDINGS The negative predictive value was >99% for score ≤0. The median time to achieve XDR clearance was significantly shorter for a score of 0 (443 days (259-705)) than that based on previously published criteria. CONCLUSION This predictive score shows high performance for the assessment of XDR clearance. Relative to previous guidelines, it could help to lift specific infection prevention and control measures earlier. Nevertheless, the decision should be made according to other factors, such as antimicrobial use and adherence to hand hygiene.
Collapse
Affiliation(s)
- F Stordeur
- Structure interne de gestion des risques, hygiène, qualité (SIGRHYQ), Centre Hospitalier Poissy-Saint-Germain en Laye, Poissy, France; Unité de prévention du risque infectieux (UPRI), AP-HP Sorbonne Université - Site Saint-Antoine, Paris, France; Centre régional en Antibiothérapie (CRAtb) Ile-de-France, Paris, France.
| | - A-G Si Larbi
- Service d'hémovigilance, Hôpital Foch, Suresnes, France
| | - K Le Neindre
- Microbiologie de l'environnement, AP-HP Sorbonne Université - Site Saint-Antoine, Paris, France; Service de Prévention & Contrôle de l'Infection, département des Agents Infectieux, CHU Caen Normandie, Caen, France
| | - J Ory
- Service de microbiologie et hygiène hospitalière, CHU Nîmes, Nîmes, France
| | - F Faibis
- Microbiologie, Grand Hôpital de l'est francilien (GHEF), site Jossigny, France
| | - C Lawrence
- Structure interne de gestion des risques, hygiène, qualité (SIGRHYQ), Centre Hospitalier Poissy-Saint-Germain en Laye, Poissy, France; Equipe opérationnelle d'hygiène, AP-HP Université Paris Saclay, site Raymond-Poincaré, Garches, France; Equipe de prévention des infections, Centre Hospitalier François Quesnay, Mantes-la-Jolie, France
| | - F Barbut
- Unité de prévention du risque infectieux (UPRI), AP-HP Sorbonne Université - Site Saint-Antoine, Paris, France; Microbiologie de l'environnement, AP-HP Sorbonne Université - Site Saint-Antoine, Paris, France; Centre National de Référence du Clostridioïdes difficile, Paris, France; INSERM, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - D Lecointe
- Service d'hygiène, Prévention et Contrôle des Infections, Centre Hospitalier Sud Francilien (CHSF), Corbeil-Essonnes, France
| | - E Farfour
- Service de Biologie Clinique, hôpital Foch, Suresnes, France
| |
Collapse
|
19
|
Bereanu AS, Bereanu R, Mohor C, Vintilă BI, Codru IR, Olteanu C, Sava M. Prevalence of Infections and Antimicrobial Resistance of ESKAPE Group Bacteria Isolated from Patients Admitted to the Intensive Care Unit of a County Emergency Hospital in Romania. Antibiotics (Basel) 2024; 13:400. [PMID: 38786129 PMCID: PMC11117271 DOI: 10.3390/antibiotics13050400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
The ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella Pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) is a group of bacteria very difficult to treat due to their high ability to acquire resistance to antibiotics and are the main cause of nosocomial infections worldwide, posing a threat to global public health. Nosocomial infections with MDR bacteria are found mainly in Intensive Care Units, due to the multitude of maneuvers and invasive medical devices used, the prolonged antibiotic treatments, the serious general condition of these critical patients, and the prolonged duration of hospitalization. MATERIALS AND METHODS During a period of one year, from January 2023 to December 2023, this cross-sectional study was conducted on patients diagnosed with sepsis admitted to the Intensive Care Unit of the Sibiu County Emergency Clinical Hospital. Samples taken were tracheal aspirate, catheter tip, pharyngeal exudate, wound secretion, urine culture, blood culture, and peritoneal fluid. RESULTS The most common bacteria isolated from patients admitted to our Intensive Care Unit was Klebsiella pneumoniae, followed by Acinetobacter baumanii and Pseudomonas aeruginosa. Gram-positive cocci (Enterococcus faecium and Staphilococcus aureus) were rarely isolated. Most of the bacteria isolated were MDR bacteria. CONCLUSIONS The rise of antibiotic and antimicrobial resistance among strains in the nosocomial environment and especially in Intensive Care Units raises serious concerns about limited treatment options.
Collapse
Affiliation(s)
- Alina-Simona Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Rareș Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
| | - Cosmin Mohor
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Bogdan Ioan Vintilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Ioana Roxana Codru
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Ciprian Olteanu
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Mihai Sava
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| |
Collapse
|
20
|
Wang Z, Shao C, Shao J, Hao Y, Jin Y. Risk factors of Carbapenem-resistant Enterobacterales intestinal colonization for subsequent infections in hematological patients: a retrospective case-control study. Front Microbiol 2024; 15:1355069. [PMID: 38680915 PMCID: PMC11045900 DOI: 10.3389/fmicb.2024.1355069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Objective Infections caused by Carbapenem-resistant Enterobacterales (CRE) have high treatment costs, high mortality and few effective therapeutic agents. This study aimed to determine the risk factors for progression from intestinal colonization to infection in hematological patients and the risk factors for 30-day mortality in infected patients. Methods A retrospective case-control study was conducted in the Department of Hematology at Shandong Provincial Hospital affiliated to Shandong First Medical University from April 2018 to April 2022. Patients who developed subsequent infections were identified as the case group by electronic medical record query of patients with a positive rectal screen for CRE colonization, and patients who did not develop subsequent infections were identified as the control group by stratified random sampling. Univariate analysis and logistic regression analysis determined risk factors for developing CRE infection and risk factors for mortality in CRE-infected patients. Results Eleven hematological patients in the study developed subsequent infections. The overall 30-day mortality rate for the 44 hematological patients in the case-control study was 11.4% (5/44). Mortality was higher in the case group than in the control group (36.5 vs. 3.0%, P = 0.0026), and septic shock was an independent risk factor for death (P = 0.024). Univariate analysis showed that risk factors for developing infections were non-steroidal immunosuppressants, serum albumin levels, and days of hospitalization. In multivariable logistic regression analysis, immunosuppressants [odds ratio (OR), 19.132; 95% confidence interval (CI), 1.349-271.420; P = 0.029] and serum albumin levels (OR, 0.817; 95% CI, 0.668-0.999; P = 0.049) were independent risk factors for developing infections. Conclusion Our findings suggest that septic shock increases mortality in CRE-infected hematological patients. Hematological patients with CRE colonization using immunosuppressive agents and reduced serum albumin are more likely to progress to CRE infection. This study may help clinicians prevent the onset of infection early and take measures to reduce mortality rates.
Collapse
Affiliation(s)
| | | | | | | | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
21
|
Bereanu AS, Vintilă BI, Bereanu R, Codru IR, Hașegan A, Olteanu C, Săceleanu V, Sava M. TiO 2 Nanocomposite Coatings and Inactivation of Carbapenemase-Producing Klebsiella Pneumoniae Biofilm-Opportunities and Challenges. Microorganisms 2024; 12:684. [PMID: 38674628 PMCID: PMC11051735 DOI: 10.3390/microorganisms12040684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The worldwide increase of multidrug-resistant Gram-negative bacteria is a global threat. The emergence and global spread of Klebsiella pneumoniae carbapenemase- (KPC-) producing Klebsiella pneumoniae represent a particular concern. This pathogen has increased resistance and abilities to persist in human reservoirs, in hospital environments, on medical devices, and to generate biofilms. Mortality related to this microorganism is high among immunosuppressed oncological patients and those with multiple hospitalizations and an extended stay in intensive care. There is a severe threat posed by the ability of biofilms to grow and resist antibiotics. Various nanotechnology-based strategies have been studied and developed to prevent and combat serious health problems caused by biofilm infections. The aim of this review was to evaluate the implications of nanotechnology in eradicating biofilms with KPC-producing Klebsiella pneumoniae, one of the bacteria most frequently associated with nosocomial infections in intensive care units, including in our department, and to highlight studies presenting the potential applicability of TiO2 nanocomposite materials in hospital practice. We also described the frequency of the presence of bacterial biofilms on medical surfaces, devices, and equipment. TiO2 nanocomposite coatings are one of the best long-term options for antimicrobial efficacy due to their biocompatibility, stability, corrosion resistance, and low cost; they find their applicability in hospital practice due to their critical antimicrobial role for surfaces and orthopedic and dental implants. The International Agency for Research on Cancer has recently classified titanium dioxide nanoparticles (TiO2 NPs) as possibly carcinogenic. Currently, there is an interest in the ecological, non-toxic synthesis of TiO2 nanoparticles via biological methods. Biogenic, non-toxic nanoparticles have remarkable properties due to their biocompatibility, stability, and size. Few studies have mentioned the use of nanoparticle-coated surfaces as antibiofilm agents. A literature review was performed to identify publications related to KPC-producing Klebsiella pneumoniae biofilms and antimicrobial TiO2 photocatalytic nanocomposite coatings. There are few reviews on the antibacterial and antibiofilm applications of TiO2 photocatalytic nanocomposite coatings. TiO2 nanoparticles demonstrated marked antibiofilm activity, but being nano in size, these nanoparticles can penetrate cell membranes and may initiate cellular toxicity and genotoxicity. Biogenic TiO2 nanoparticles obtained via green, ecological technology have less applicability but are actively investigated.
Collapse
Affiliation(s)
- Alina-Simona Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Bogdan Ioan Vintilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Rareș Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
| | - Ioana Roxana Codru
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Adrian Hașegan
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Ciprian Olteanu
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Vicențiu Săceleanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Mihai Sava
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| |
Collapse
|
22
|
Antimicrobial consumption and resistance in bacteria from humans and food-producing animals: Fourth joint inter-agency report on integrated analysis of antimicrobial agent consumption and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals in the EU/EEA JIACRA IV - 2019-2021. EFSA J 2024; 22:e8589. [PMID: 38405113 PMCID: PMC10885775 DOI: 10.2903/j.efsa.2024.8589] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
The fourth joint inter-agency report on integrated analysis of antimicrobial consumption (AMC) and the occurrence of antimicrobial resistance (AMR) in bacteria from humans and food-producing animals (JIACRA) addressed data obtained by the Agencies' EU-wide surveillance networks for 2019-2021. The analysis also sought to identify whether significant trends in AMR and AMC were concomitant over 2014-2021. AMC in both human and animal sectors, expressed in mg/kg of estimated biomass, was compared at country and European level. In 2021, the total AMC was assessed at 125.0 mg/kg of biomass for humans (28 EU/EEA countries, range 44.3-160.1) and 92.6 mg/kg of biomass for food-producing animals (29 EU/EEA countries, range 2.5-296.5). Between 2014 and 2021, total AMC in food-producing animals decreased by 44%, while in humans, it remained relatively stable. Univariate and multivariate analyses were performed to study associations between AMC and AMR for selected combinations of bacteria and antimicrobials. Positive associations between consumption of certain antimicrobials and resistance to those substances in bacteria from both humans and food-producing animals were observed. For certain combinations of bacteria and antimicrobials, AMR in bacteria from humans was associated with AMR in bacteria from food-producing animals which, in turn, was related to AMC in animals. The relative strength of these associations differed markedly between antimicrobial class, microorganism and sector. For certain antimicrobials, statistically significant decreasing trends in AMC and AMR were concomitant for food-producing animals and humans in several countries over 2014-2021. Similarly, a proportion of countries that significantly reduced total AMC also registered increasing susceptibility to antimicrobials in indicator E. coli from food-producing animals and E. coli originating from human invasive infections (i.e., exhibited 'complete susceptibility' or 'zero resistance' to a harmonised set of antimicrobials). Overall, the findings suggest that measures implemented to reduce AMC in food-producing animals and in humans have been effective in many countries. Nevertheless, these measures need to be reinforced so that reductions in AMC are retained and further continued, where necessary. This also highlights the importance of measures that promote human and animal health, such as vaccination and better hygiene, thereby reducing the need for use of antimicrobials.
Collapse
|
23
|
Ning C, Ouyang H, Shen D, Sun Z, Liu B, Hong X, Lin C, Li J, Chen L, Li X, Huang G. Prediction of survival in patients with infected pancreatic necrosis: a prospective cohort study. Int J Surg 2024; 110:777-787. [PMID: 37851523 PMCID: PMC10871654 DOI: 10.1097/js9.0000000000000844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Infected pancreatic necrosis (IPN) is a severe complication of acute pancreatitis, with mortality rates ranging from 15 to 35%. However, limited studies exist to predict the survival of IPN patients and nomogram has never been built. This study aimed to identify predictors of mortality, estimate conditional survival (CS), and develop a CS nomogram and logistic regression nomogram for real-time prediction of survival in IPN patients. METHODS A prospective cohort study was performed in 335 IPN patients consecutively enrolled at a large Chinese tertiary hospital from January 2011 to December 2022. The random survival forest method was first employed to identify the most significant predictors and capture clinically relevant nonlinear threshold effects. Instantaneous death risk and CS was first utilized to reveal the dynamic changes in the survival of IPN patients. A Cox model-based nomogram incorporating CS and a logistic regression-based nomogram were first developed and internally validated with a bootstrap method. RESULTS The random survival forest model identified seven foremost predictors of mortality, including the number of organ failures, duration of organ failure, age, time from onset to first intervention, hemorrhage, bloodstream infection, and severity classification. Duration of organ failure and time from onset to first intervention showed distinct thresholds and nonlinear relationships with mortality. Instantaneous death risk reduced progressively within the first 30 days, and CS analysis indicated gradual improvement in real-time survival since diagnosis, with 90-day survival rates gradually increasing from 0.778 to 0.838, 0.881, 0.974, and 0.992 after surviving 15, 30, 45, 60, and 75 days, respectively. After further variables selection using step regression, five predictors (age, number of organ failures, hemorrhage, time from onset to first intervention, and bloodstream infection) were utilized to construct both the CS nomogram and logistic regression nomogram, both of which demonstrated excellent performance with 1000 bootstrap. CONCLUSION Number of organ failures, duration of organ failure, age, time from onset to first intervention, hemorrhage, bloodstream infection, and severity classification were the most crucial predictors of mortality of IPN patients. The CS nomogram and logistic regression nomogram constructed by these predictors could help clinicians to predict real-time survival and optimize clinical decisions.
Collapse
Affiliation(s)
- Caihong Ning
- Department of General Surgery
- National Clinical Research Center for Geriatric Disorders
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Hui Ouyang
- Department of General Surgery
- National Clinical Research Center for Geriatric Disorders
| | - Dingcheng Shen
- Department of General Surgery
- National Clinical Research Center for Geriatric Disorders
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Zefang Sun
- Department of General Surgery
- National Clinical Research Center for Geriatric Disorders
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Baiqi Liu
- Department of General Surgery
- National Clinical Research Center for Geriatric Disorders
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Xiaoyue Hong
- Department of General Surgery
- National Clinical Research Center for Geriatric Disorders
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Chiayen Lin
- Department of General Surgery
- National Clinical Research Center for Geriatric Disorders
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Jiarong Li
- Department of General Surgery
- National Clinical Research Center for Geriatric Disorders
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Lu Chen
- Department of General Surgery
- National Clinical Research Center for Geriatric Disorders
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Xinying Li
- Department of General Surgery
- National Clinical Research Center for Geriatric Disorders
| | - Gengwen Huang
- Department of General Surgery
- National Clinical Research Center for Geriatric Disorders
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| |
Collapse
|
24
|
Baek MS, Kim JH, Park JH, Kim TW, Jung HI, Kwon YS. Comparison of mortality rates in patients with carbapenem-resistant Enterobacterales bacteremia according to carbapenemase production: a multicenter propensity-score matched study. Sci Rep 2024; 14:597. [PMID: 38182719 PMCID: PMC10770160 DOI: 10.1038/s41598-023-51118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024] Open
Abstract
The spread of carbapenem-resistant Enterobacterales (CRE) poses a public health threat worldwide. We aimed to compare the mortality rates between the carbapenemase-producing (CP) and non-CP CRE bacteremia. We conducted a retrospective cohort study in patients with CRE bacteremia after propensity score (PS) matching. We performed a Kaplan-Meier curve analysis to identify the cumulative hazard for 30-day mortality. There were 318 patients with CRE between January 1, 2018, and December 31, 2022. There were 252 patients with CP-CRE and 66 with non-CP-RE, respectively. Before PS matching, the 30-day mortality rates were 40.9% in the non-CP-CRE group and 53.2% in the CP-CRE group (p = 0.097). In patients in the intensive care unit (ICU), the mortality rates were 49.0% in the non-CP-CRE group and 57.1% in the CP-CRE group (p = 0.340). After PS matching, the hazard ratio (HR) for mortality in the CP-CRE group was 1.49 (95% confidence interval [CI] 0.74-3.03), p = 0.266). In ICU patients, the HR of CP-CRE was 1.11 (95% CI 0.36-3.39, p = 0.860). The Kaplan-Meier curve for 30-day mortality showed no difference in cumulative hazard. After PS matching, there was no difference in 30-day mortality between patients with CP-CRE and non-CP-CRE bacteremia.
Collapse
Affiliation(s)
- Moon Seong Baek
- Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jong Ho Kim
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chuncheon Sacred Heart Hospital, Hallym University, 77 Sakju-ro, Chuncheon, 24253, Republic of Korea
- Institute of New Frontier Research Team, Hallym University, Chuncheon, Republic of Korea
| | - Joung Ha Park
- Division of Infectious Diseases, Department of Internal Medicine, Gwangmyeong Hospital, Chung-Ang University, Gwangmyeong, Republic of Korea
| | - Tae Wan Kim
- Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Hae In Jung
- Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Young Suk Kwon
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chuncheon Sacred Heart Hospital, Hallym University, 77 Sakju-ro, Chuncheon, 24253, Republic of Korea.
- Institute of New Frontier Research Team, Hallym University, Chuncheon, Republic of Korea.
| |
Collapse
|
25
|
Wu YL, Hu XQ, Wu DQ, Li RJ, Wang XP, Zhang J, Liu Z, Chu WW, Zhu X, Zhang WH, Zhao X, Guan ZS, Jiang YL, Wu JF, Cui Z, Zhang J, Li J, Wang RM, Shen SH, Cai CY, Zhu HB, Jiang Q, Zhang J, Niu JL, Xiong XP, Tian Z, Zhang JS, Zhang JL, Tang LL, Liu AY, Wang CX, Ni MZ, Jiang JJ, Yang XY, Yang M, Zhou Q. Prevalence and risk factors for colonisation and infection with carbapenem-resistant Enterobacterales in intensive care units: A prospective multicentre study. Intensive Crit Care Nurs 2023; 79:103491. [PMID: 37480701 DOI: 10.1016/j.iccn.2023.103491] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023]
Abstract
OBJECTIVES This study aimed to investigate the prevalence and risk factors for carbapenem-resistant Enterobacterales colonisation/infection at admission and acquisition among patients admitted to the intensive care unit. RESEARCH METHODOLOGY/DESIGN A prospective and multicentre study. SETTING This study was conducted in 24 intensive care units in Anhui, China. MAIN OUTCOME MEASURES Demographic and clinical data were collected, and rectal carbapenem-resistant Enterobacterales colonisation was detected by active screening. Multivariate logistic regression models were used to analyse factors associated with colonisation/infection with carbapenem-resistant Enterobacterales at admission and acquisition during the intensive care unit stay. RESULTS There were 1133 intensive care unit patients included in this study. In total, 5.9% of patients with carbapenem-resistant Enterobacterales colonisation/infection at admission, and of which 56.7% were colonisations. Besides, 8.5% of patients acquired carbapenem-resistant Enterobacterales colonisation/infection during the intensive care stay, and of which 67.6% were colonisations. At admission, transfer from another hospital, admission to an intensive care unit within one year, colonisation/infection/epidemiological link with carbapenem-resistant Enterobacterales within one year, and exposure to any antibiotics within three months were risk factors for colonisation/infection with carbapenem-resistant Enterobacterales. During the intensive care stay, renal disease, an epidemiological link with carbapenem-resistant Enterobacterales, exposure to carbapenems and beta-lactams/beta-lactamase inhibitors, and intensive care stay of three weeks or longer were associated with acquisition. CONCLUSION The prevalence of colonisation/infection with carbapenem-resistant Enterobacterales in intensive care units is of great concern and should be monitored systematically. Particularly for the 8.5% prevalence of carbapenem-resistant Enterobacterales acquisition during the intensive care stay needs enhanced infection prevention and control measures in these setting. Surveillance of colonisation/infection with carbapenem-resistant Enterobacterales at admission and during the patient's stay represents an early identification tool to prevent further transmission of carbapenem-resistant Enterobacterales. IMPLICATIONS FOR CLINICAL PRACTICE Carbapenem-resistant Enterobacterales colonization screening at admission and during the patient's stay is an important tool to control carbapenem-resistant Enterobacterales spread in intensive care units.
Collapse
Affiliation(s)
- Yi-Le Wu
- Department of Hospital Infection Prevention and Control, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Qian Hu
- Department of Hospital Infection Prevention and Control, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - De-Quan Wu
- Department of Hospital Infection Prevention and Control, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ruo-Jie Li
- Department of Hospital Infection Prevention and Control, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Ping Wang
- Department of Hospital Infection Prevention and Control, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jin Zhang
- The Second Department of Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhou Liu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wen-Wen Chu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xi Zhu
- Department of Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wen-Hui Zhang
- The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue Zhao
- The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zi-Shu Guan
- Anhui No.2 Provincial People's Hospital, Hefei, Anhui, China
| | - Yun-Lan Jiang
- Department of Hospital Infection Prevention and Control, the First People's Hospital of Anqing, Anqing, Anhui, China
| | - Jin-Feng Wu
- Department of Hospital Infection Prevention and Control, Anqing Municipal Hospital, Anqing, Anhui, China
| | - Zhuo Cui
- Department of Hospital Infection Prevention and Control, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Ju Zhang
- Department of Hospital Infection Prevention and Control, The First People's Hospital of Bengbu, Bengbu, Anhui, China
| | - Jia Li
- Department of Hospital Infection Prevention and Control, The Third People's Hospital of Bengbu, Bengbu, Anhui, China
| | - Ru-Mei Wang
- Department of Hospital Infection Prevention and Control, The First People's Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Shi-Hua Shen
- Department of Hospital Infection Prevention and Control, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Chao-Yang Cai
- Department of Hospital Infection Prevention and Control, The Second People's Hospital of Hefei, Hefei, Anhui, China
| | - Hai-Bin Zhu
- Department of Hospital Infection Prevention and Control, The First People's Hospital of Huainan City, Huainan, Anhui, China
| | - Quan Jiang
- Department of Clinical Laboratory Medicine, Huainan Xinhua Medical Group, Huainan, Anhui, China
| | - Jing Zhang
- Department of Hospital Infection Prevention and Control, Huaibei People's Hospital, Huaibei, Anhui, China
| | - Jia-Lan Niu
- Department of Hospital Infection Prevention and Control, The First People's Hospital of Huoqiu County, Huoqiu, Anhui, China
| | - Xian-Peng Xiong
- Department of Hospital Infection Prevention and Control, Lu'an People's Hospital, Lu'an, Anhui, China
| | - Zhen Tian
- Department of Hospital Infection Prevention and Control, Suzhou Municipal Hospital, Suzhou, Anhui, China
| | - Jian-She Zhang
- Department of Hospital Infection Prevention and Control, Taihe County People's Hospital, Taihe, Anhui, China
| | - Jun-Lin Zhang
- Department of Hospital Infection Prevention and Control, Tongling People's Hospital, Tongling, Anhui, China
| | - Li-Ling Tang
- Department of Hospital Infection Prevention and Control, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - An-Yun Liu
- Department of Hospital Infection Prevention and Control, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Cheng-Xiang Wang
- Department of Hospital Infection Prevention and Control, The First People's Hospital of Wuhu, Wuhu, Anhui, China
| | - Ming-Zhu Ni
- Department of Hospital Infection Prevention and Control, The Second People's Hospital of Wuhu, Wuhu, Anhui, China
| | - Jing-Jing Jiang
- Department of Hospital Infection Prevention and Control, Xuancheng People's Hospital, Xuancheng, Anhui, China
| | - Xi-Yao Yang
- Department of Hospital Infection Prevention and Control, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Min Yang
- The Second Department of Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Qiang Zhou
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
26
|
Ferreira ICDS, Menezes RDP, Jesus TAD, Machado ICDB, Lopes MSM, Costa AD, Araújo LBD, Röder DVDDB. Impact of intestinal colonization by Gram-negative bacteria on the incidence of bloodstream infections and lethality in critically ill neonates. J Infect Public Health 2023; 16 Suppl 1:9-18. [PMID: 37951729 DOI: 10.1016/j.jiph.2023.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Early detection of antimicrobial-resistant microorganisms is crucial to prevent subsequent invasive infections and contain their spread in the Neonatal Intensive Care Unit (NICU). This study aims to investigate the association between intestinal colonization (IC) by Gram-negative bacteria and the risk of bloodstream infection (BSI) in critically ill neonates. METHODS Data from the electronic medical records of 678 newborns admitted to a NICU Brazilian between 2018 and 2022 were retrospectively analyzed. Participants were monitored by the National Health Security Network. RESULTS Among neonates, 6.9 % had IC (56.9 % attributed to Acinetobacter baumannii); of these, 19.1 % developed BSI (66.7 % by Staphylococcus spp.). Within the A. baumannii colonization, 34.5 % occurred during an outbreak in September 2021. Colonized individuals had a longer mean length of stay (49.3 ± 26.4 days) and higher mortality rate (12.8 %) compared to non-colonized individuals (22.2 ± 16.9 days; 6.7 %, respectively). Previous use of antimicrobials and invasive devices significantly increased the risk of colonization. Colonization by drug-resistant microorganisms, along with the occurrence of BSI, was associated with increased mortality and reduced survival time. CONCLUSIONS IC contributed to the incidence of BSI, leading to more extended hospital stays and higher mortality rates. Its early detection proved to be essential to identify an outbreak and control the spread of resistant microorganisms within the NICU.
Collapse
Affiliation(s)
| | - Ralciane de Paula Menezes
- Technical Course in Clinical Analysis, Technical School of Health, Federal University of Uberlândia, Minas Gerais, Brazil.
| | - Thiago Alves de Jesus
- Undergraduate Course in Biomedicine, Institute of Biomedical Sciences, Federal University of Uberlândia, Minas Gerais, Brazil
| | - Izabella Clara de Brito Machado
- Undergraduate Course in Biomedicine, Institute of Biomedical Sciences, Federal University of Uberlândia, Minas Gerais, Brazil
| | - Mallu Santos Mendonça Lopes
- Undergraduate Course in Biomedicine, Institute of Biomedical Sciences, Federal University of Uberlândia, Minas Gerais, Brazil
| | - Aline Diulia Costa
- Undergraduate Course in Biomedicine, Institute of Biomedical Sciences, Federal University of Uberlândia, Minas Gerais, Brazil
| | | | | |
Collapse
|
27
|
Nakayama A, Yamaguchi I, Okamoto K, Maesaki S. Targeted Infection Control Practices in Japanese Hospitals for Multidrug-Resistant Organisms: Guidance From the Public Health Center. Cureus 2023; 15:e50680. [PMID: 38229815 PMCID: PMC10791020 DOI: 10.7759/cureus.50680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 01/18/2024] Open
Abstract
Introduction The study conducted by the Kawaguchi City Public Health Center (PHC) in 2023 on hospital infection control (IC) programs revealed that hospitals can improve their IC programs if the PHC provides training sessions (TSs) that have numerical effects. In this study, we expected that we could help hospitals develop their IC practices by providing targeted guidance. This study aimed to clarify targeted guidance on IC practices and TS programs to develop hospitals'hospitals' IC programs on multidrug-resistant organisms (MDROs) by examining hospitals'hospitals' IC programs in reference to the study conducted in 2023 and other case reports. Methods In June 2022, the Kawaguchi City PHC conducted TSs for 19 hospitals and eight affiliated (AFs) clinics with beds, providing guidelines and practices on infection control (IC) for MDROs. After the TSs, we sent a questionnaire to these hospitals and affiliated clinics. The questionnaire inquired about current and planned IC policies, hand hygiene compliance programs (HHCPs), the usefulness of the TSs conducted by the PHC, and IC programs that the facilities intended to implement or develop in the future. This study examined the relationship between the perceived usefulness of the information provided and the IC programs planned for development, referencing a study conducted in 2023 and other case reports. Results Seventeen hospitals and six AFs with beds responded to the survey, yielding an 85.2% response rate. IC policies for methicillin-resistant Staphylococcus aureus (MRSA) were prepared by 21 hospitals (91.3%), whereas only five hospitals (21.7%) had prepared IC policies for carbapenem-resistant Enterobacteriaceae. Regarding HHCPs, an increase in the availability of alcohol-based hand sanitizer was identified by 17 hospitals (73.9%), while 13 hospitals (56.5%) reported using posters or symbols, 12 hospitals (52.2%) reported using TS and hand sanitizers, and nine hospitals (39.1%) assessed HH compliance and provided feedback. Furthermore, nine hospitals (39.1%) identified HHCPs and Environmental Cleaning (EC) for carbapenemase-producing Enterobacteriaceae (CPE) as useful information. There was a statistically significant association between TSs on HHCPs and the development of new HHCPs (p = 0.027). Additionally, information on EC for CPE was significantly associated with the development of staff cohorting strategies (p = 0.007). However, TS programs were not significantly connected to EC, nor were TSs to be developed. Conclusion The PHC should advise hospitals to assess if their HHCPs effectively contribute to improving HH compliance. It is essential for the PHC to furnish hospitals with resources and information that aid in the development of EC training. Additionally, the PHC should support the creation of specific and effective TS programs focused on EC or TS development. Conducting surveys to identify barriers to implementing staff cohorting strategies is also recommended. We propose that TS programs should include quantifiable data on HHCPs and EC, such as.
Collapse
Affiliation(s)
- Ayako Nakayama
- Department of Administration, Kawaguchi Public Health Center, Kawaguchi City, JPN
| | - Ichiro Yamaguchi
- Department of Environmental Health, National Institute of Public Health, Saitama, JPN
| | - Koji Okamoto
- Department of Administration, Kawaguchi Public Health Center, Kawaguchi City, JPN
| | - Shigefumi Maesaki
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, JPN
| |
Collapse
|
28
|
Vock I, Aguilar-Bultet L, Goldenberger D, Ragozzino S, Kuster S, Tschudin-Sutter S. Epidemiology of patients harboring carbapenemase-producing bacteria and comparison with patients with detection of extended-spectrum beta-lactamase-producing Enterobacterales-A retrospective cohort study. Infect Control Hosp Epidemiol 2023; 44:1959-1965. [PMID: 37424228 PMCID: PMC10755146 DOI: 10.1017/ice.2023.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVE We evaluated the epidemiology of carbapenemase-producing bacteria (CPB) in Switzerland by comparing risk factors between patients colonized with CPB and patients colonized with extended-spectrum β-lactamase-producing Enterobacterales (ESBL-PE). METHODS This retrospective cohort study was conducted at the University Hospital Basel in Switzerland. Hospitalized patients with CPB in any sample between January 2008 and July 2019 were included. The ESBL-PE group consisted of hospitalized patients with detection of ESBL-PE from any sample between January 2016 and December 2018. Comparisons of risk factors for acquisition of CPB and ESBL-PE were performed by logistic regression. RESULTS Inclusion criteria were met for 50 patients in the CPB group and 572 in the ESBL-PE group. In the CPB group, 62% had a travel history and 60% had been hospitalized abroad. When comparing the CPB group to the ESBL-PE group, hospitalization abroad (odds ratio [OR], 25.33; 95% confidence interval [CI], 11.07-57.98) and prior antibiotic therapy (OR, 4.76; 95% CI, 2.15-10.55) remained independently associated with CPB colonization. Hospitalization abroad (P < .001) and prior antibiotic therapy (P < .001) predicted CPB in the comparison of CPB with ESBL Escherichia coli, whereas hospitalization abroad was associated with CPB in comparison to ESBL Klebsiella pneumoniae. CONCLUSIONS Although CPB still seem to be mainly imported from areas of higher endemicity, local acquisition of CPB is emerging, especially in patients with close and/or frequent contact with healthcare services. This trend resembles the epidemiology of ESBL K. pneumoniae, supporting mainly healthcare-associated transmission. Frequent evaluation of CPB epidemiology is required to improve detection of patients at risk of CPB carriage.
Collapse
Affiliation(s)
- Isabelle Vock
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University Basel, Switzerland
| | - Lisandra Aguilar-Bultet
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University Basel, Switzerland
| | - Daniel Goldenberger
- Division of Bacteriology and Mycology, University Hospital Basel, University Basel, Switzerland
| | - Silvio Ragozzino
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University Basel, Switzerland
| | - Sabine Kuster
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University Basel, Switzerland
| | - Sarah Tschudin-Sutter
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University Basel, Switzerland
| |
Collapse
|
29
|
Pan F, Chen P, Duan Y, Yu F, Weng W, Zhang H. Prevalence of intestinal colonization and nosocomial infection with carbapenem-resistant Enterobacteriales in children: a retrospective study. Front Public Health 2023; 11:1251609. [PMID: 38074706 PMCID: PMC10702246 DOI: 10.3389/fpubh.2023.1251609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/09/2023] [Indexed: 12/18/2023] Open
Abstract
Objective We investigated the epidemiological surveillance of the intestinal colonization and nosocomial infection of carbapenem-resistant Enterobacteriales (CRE) isolates from inpatients, which can provide the basis for developing effective prevention. Methods A total of 96 CRE strains were collected from 1,487 fecal samples of hospitalized children between January 2016 and June 2017, which were defined as the "CRE colonization" group. In total, 70 CRE clinical isolates were also randomly selected for the comparison analysis and defined as the "CRE infection" group. The antimicrobial susceptibility of all strains was determined by the microdilution broth method. Polymerase chain reaction (PCR) was used to analyze carbapenemase genes, plasmid typing, and integrons. Multilocus sequence typing was further used to determine clonal relatedness. Results In the "CRE colonization" group, Klebsiella pneumoniae was mostly detected with a rate of 42.7% (41/96), followed by Escherichia coli (34.4%, 33/96) and Enterobacter cloacae (15.6%, 15/96). The ST11 KPC-2 producer, ST8 NDM-5 producer, and ST45 NDM-1 producer were commonly present in carbapenem-resistant K. pneumoniae (CRKPN), carbapenem-resistant E. coli (CRECO), and carbapenem-resistant E. cloacae (CRECL) isolates, respectively. In the "CRE infection" group, 70% (49/70) of strains were K. pneumoniae, with 21.4% E. cloacae (15/70) and 5.7% E. coli (4/70). The ST15 OXA-232 producer and ST48 NDM-5 producer were frequently observed in CRKPN isolates, while the majority of NDM-1-producing CRECL isolates were assigned as ST45. Phylogenetic analysis showed that partial CRE isolates from intestinal colonization and nosocomial infection were closely related, especially for ST11 KPC-2-producing CRKPN and ST45 NDM-1-producing CRECL. Furthermore, plasmid typing demonstrated that IncF and IncFIB were the most prevalent plasmids in KPC-2 producers, while IncX3/IncX2 and ColE were widely spread in NDM producer and OXA-232 producer, respectively. Then, class 1 integron intergrase intI1 was positive in 74.0% (71/96) of the "CRE colonization" group and 52.9% (37/70) of the "CRE infection" group. Conclusion This study revealed that CRE strains from intestinal colonization and nosocomial infection showed a partial correlation in the prevalence of CRE, especially for ST11 KPC-2-producing CRKPN and ST45 NDM-1-producing CRECL. Therefore, before admission, long-term active screening of rectal colonization of CRE isolates should be emphasized.
Collapse
Affiliation(s)
- Fen Pan
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Yuxin Duan
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fangyuan Yu
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhao Weng
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Lee KH, Kim D, Hong JS, Park SY, Cho NH, Kim MN, Lee YJ, Wi Y, Lee EH, Han SH, Jeong SH, Song YG. Prevalence of carbapenemase producing Enterobacterales colonization and risk factor of clinical infection. J Infect Public Health 2023; 16:1860-1869. [PMID: 37837922 DOI: 10.1016/j.jiph.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Carbapenemase-producing Enterobacterales (CPE) are global concerns in infection control, and the number of CPE outbreaks in hospitals is increasing despite the strengthening of contact precautions. This study aimed to confirm the prevalence and transition rate of CPE infection from stool surveillance culture and to identify the acquisition pathway of CPE. METHODS This is a longitudinal review of patients with stool surveillance cultures at a tertiary center in Seoul, South Korea, from July 2018 to June 2020. Pulsed-field gel electrophoresis, multi-locus sequence typing, and whole genome sequencing were performed for carbapenemase-producing Klebsiella pneumoniae and Escherichia coli strains. RESULTS Among 1620 patients who had undergone stool CPE surveillance cultures, only 7.1% of active surveillance at the Emergency Room (ER) and 4.4% of universal surveillance in the Intensive Care Unit (ICU) were stool CPE positive. The transition rates from stool carriers to clinical CPE infections were 29.4% in the ER and 31.3% in the ICU. However, it was significantly high (55.0%) in the initial stool CPE-negative ICU patients. Among the initial stool CPE-positive patients, hypertension (61% vs. 92.3%, P = 0.004), malignancy (28.8% vs. 53.8%, P = 0.027), and mechanical ventilation (25.4% vs. 53.8%, P = 0.011) were significant risk factors for clinical CPE infection. Molecular typing revealed that sequence type (ST) 307 and ST 395 were dominant in K. pneumoniae, and ST 410 was dominant in E. coli isolates. CONCLUSIONS Active surveillance showed a higher detection rate than universal stool CPE screening, and one-third of positive stool CPE specimens ultimately developed subsquent clinical CPE infection. According to the molecular typing of the identified CPE strains, in-hospital spread prevailed over external inflow, and the transition rate to clinical CPE was particularly high in the ICU. Therefore, in order to control CPE propagation, not only active surveillance to block inflow from outside, but also continuous ICU monitoring within the hospital is necessary.
Collapse
Affiliation(s)
- Kyoung Hwa Lee
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dokyun Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Sung Hong
- Department of Companion Animal Health and Science, Silla University, Busan, Republic of Korea
| | - Soon Young Park
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nan Hyoung Cho
- Department of Infection Control, Gangnam Severance Hospital, Seoul, Republic of Korea
| | - Mi Na Kim
- Department of Infection Control, Gangnam Severance Hospital, Seoul, Republic of Korea
| | - Yun Jung Lee
- Department of Infection Control, Gangnam Severance Hospital, Seoul, Republic of Korea
| | - Yeonji Wi
- Department of Infection Control, Gangnam Severance Hospital, Seoul, Republic of Korea
| | - Eun Hwa Lee
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Han
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Goo Song
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Dai Y, Zhang L, Pan T, Shen Z, Meng T, Wu J, Gu F, Wang X, Tan R, Qu H. The ICU-CARB score: a novel clinical scoring system to predict carbapenem-resistant gram-negative bacteria carriage in critically ill patients upon ICU admission. Antimicrob Resist Infect Control 2023; 12:118. [PMID: 37898771 PMCID: PMC10613373 DOI: 10.1186/s13756-023-01326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND With the widespread spread of carbapenem-resistant gram-negative bacteria (CR-GNB) in medical facilities, the carriage of CR-GNB among critically ill patients has become a significant concern in intensive care units (ICU). This study aimed to develop a scoring system to identify CR-GNB carriers upon ICU admission. METHODS Consecutive critically ill patients admitted to the ICU of Shanghai Ruijin Hospital between January 2017 and December 2020 were included. The patients were then divided into training and testing datasets at a 7:3 ratio. Parameters associated with CR-GNB carriage were identified using least absolute shrinkage and selection operator regression analysis. Each parameter was assigned a numerical score ranging from 0 to 100 using logistic regression analysis. Subsequently, a four-tier risk-level system was developed based on the cumulative scores, and assessed using the area under the receiver operating characteristic curve (AUC). RESULTS Of the 1736 patients included in this study, the prevalence of CR-GNB carriage was 10.60%. The clinical scoring system including seven variables (neurological disease, high-risk department history, length of stay ≥ 14 days, ICU history, invasive mechanical ventilation, gastrointestinal tube placement, and carbapenem usage) exhibited promising predictive capabilities. Patients were then stratified using the scoring system, resulting in CR-GNB carriage rates of 2.4%, 12.0%, 36.1%, and 57.9% at the respective risk levels (P < 0.001). Furthermore, the AUC of the developed model in the training set was calculated to be 0.82 (95% CI, 0.78-0.86), while internal validation yielded an AUC of 0.83 (95% CI, 0.77-0.89). CONCLUSIONS The ICU-CARB Score serves as a straightforward and precise tool that enables prompt evaluation of the risk of CR-GNB carriage at the time of ICU admission, thereby facilitating the timely implementation of targeted pre-emptive isolation.
Collapse
Affiliation(s)
- Yunqi Dai
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyun Shen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianjiao Meng
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feifei Gu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
32
|
Wei X, Li Q, He Y, Li L, Li S, Li T. Molecular characteristics and antimicrobial resistance profiles of Carbapenem-Resistant Klebsiella pneumoniae isolates at a tertiary hospital in Nanning, China. BMC Microbiol 2023; 23:318. [PMID: 37898766 PMCID: PMC10612196 DOI: 10.1186/s12866-023-03038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/03/2023] [Indexed: 10/30/2023] Open
Abstract
PURPOSE Carbapenem resistant Klebsiella pneumoniae is associated with nosocomial infections and can cause high mortality, which poses great threat to human health. This study was aimed at investigating the molecular epidemiology and antimicrobial resistance profiles of carbapenem resistant Klebsiella pneumoniae isolates and providing clues for management and control of carbapenem resistant Klebsiella pneumoniae infections. METHODS A total of 2324 Klebsiella pneumoniae strains were isolated from the First Affiliated Hospital of Guangxi Medical University from June 2018 to October 2020, and 103 carbapenem resistant Klebsiella pneumoniae strains from inpatients were collected, and the specimens mainly came from the sputum, urine, secretions, and blood. The antimicrobial susceptibility tests were performed using the VITEK 2 Compact system or the Kirby-Bauer disk-diffusion method. The resistance genes were detected by polymerase chain reaction and sequencing. The homology analysis of carbapenem resistant Klebsiella pneumoniae strains was performed by multilocus sequence typing. RESULTS Antimicrobial susceptibility results showed that the 103 carbapenem resistant Klebsiella pneumoniae strains were resistant to most common antibiotics. Resistance genes detection showed that the carbapenem resistant Klebsiella pneumoniae isolates mainly carried metallo-beta-lactamase, and the predominant gene was NDM-1. The homology analysis found that the major ST type were ST11, follow by ST15 and ST17. CONCLUSION The carbapenem resistant Klebsiella pneumoniae isolates in our study shown resistance to most common antibiotics. Of the 103 carbapenem resistant Klebsiella pneumoniae strains, 91 strains (88.35%) carried carbapenemases genes, and NDM was the predominant carbapenemase gene detected. ST11 was the major ST typing of carbapenem resistant Klebsiella pneumoniae in our hospital. Our finding may play a role in control and management of the carbapenem resistant Klebsiella pneumoniae infections and guiding clinical antibiotic therapy. In addition, metallo-beta-lactamase should be served as a key target to be monitored in carbapenem resistant Klebsiella pneumoniae infection.
Collapse
Affiliation(s)
- Xianzhen Wei
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiuxiang Li
- Department of Clinical Laboratory, Joint Logistics Support Force of the Chinese People's Liberation Army, 923 Hospital, Nanning, China
| | - Yu He
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Linlin Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Taijie Li
- Department of Clinical Laboratory, Wuming Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
33
|
Agodi A, Montineri A, Manuele R, Noto P, Carpinteri G, Castiglione G, Grassi P, Lazzara A, Mattaliano AR, Granvillano G, La Mastra C, La Rosa MC, Maugeri A, Barchitta M. Molecular Typing and Resistance Profile of Acinetobacter baumannii Isolates during the COVID-19 Pandemic: Findings from the "EPIRADIOCLINF" Project. Antibiotics (Basel) 2023; 12:1551. [PMID: 37887252 PMCID: PMC10603994 DOI: 10.3390/antibiotics12101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Due to the COVID-19 pandemic, there has been a shift in focus towards controlling the spread of SARS-CoV-2, which has resulted in the neglect of traditional programs aimed at preventing healthcare-associated infections and combating antimicrobial resistance. The present work aims to characterize the colonization or infection with Acinetobacter baumannii of COVID-19 patients and to identify any clonality between different isolates. Specifically, data and resistance profiles of A. baumannii isolates were prospectively collected from patients recruited by the EPIRADIOCLINF project. Pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) were used for molecular typing. Overall, we analyzed 64 isolates of A. baumannii from 48 COVID-19 patients. According to our analysis, we have identified the spread of a clonally related isolate, referred to as B. The PFGE pattern B includes four subtypes: B1 (consisting of 37 strains), B2 (11), B3 (5), and B4 (2). Furthermore, in the isolates that were examined using MLST, the most observed sequence type was ST/281. In terms of resistance profiles, 59 out of the total isolates (92.2%) were found to be resistant to gentamicin, carbapenems, ciprofloxacin, and tobramycin. The isolation and identification of A. baumannii from COVID-19 patients, along with the high levels of transmission observed within the hospital setting, highlight the urgent need for the implementation of effective prevention and containment strategies.
Collapse
Affiliation(s)
- Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (C.L.M.); (M.C.L.R.); (A.M.); (M.B.)
- Azienda Ospedaliero-Universitaria Policlinico AOUP “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.M.); (R.M.); (G.C.); (A.L.); (A.R.M.)
| | - Arturo Montineri
- Azienda Ospedaliero-Universitaria Policlinico AOUP “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.M.); (R.M.); (G.C.); (A.L.); (A.R.M.)
| | - Rosa Manuele
- Azienda Ospedaliero-Universitaria Policlinico AOUP “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.M.); (R.M.); (G.C.); (A.L.); (A.R.M.)
| | - Paola Noto
- Azienda Ospedaliero-Universitaria Policlinico AOUP “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.M.); (R.M.); (G.C.); (A.L.); (A.R.M.)
| | - Giuseppe Carpinteri
- Azienda Ospedaliero-Universitaria Policlinico AOUP “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.M.); (R.M.); (G.C.); (A.L.); (A.R.M.)
| | - Giacomo Castiglione
- Azienda Ospedaliero-Universitaria Policlinico AOUP “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.M.); (R.M.); (G.C.); (A.L.); (A.R.M.)
| | - Patrizia Grassi
- Azienda Ospedaliero-Universitaria Policlinico AOUP “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.M.); (R.M.); (G.C.); (A.L.); (A.R.M.)
| | - Antonio Lazzara
- Azienda Ospedaliero-Universitaria Policlinico AOUP “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.M.); (R.M.); (G.C.); (A.L.); (A.R.M.)
| | - Anna Rita Mattaliano
- Azienda Ospedaliero-Universitaria Policlinico AOUP “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.M.); (R.M.); (G.C.); (A.L.); (A.R.M.)
| | - Giuseppa Granvillano
- Azienda Ospedaliero-Universitaria Policlinico AOUP “G. Rodolico-San Marco”, 95123 Catania, Italy; (A.M.); (R.M.); (G.C.); (A.L.); (A.R.M.)
| | - Claudia La Mastra
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (C.L.M.); (M.C.L.R.); (A.M.); (M.B.)
| | - Maria Clara La Rosa
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (C.L.M.); (M.C.L.R.); (A.M.); (M.B.)
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (C.L.M.); (M.C.L.R.); (A.M.); (M.B.)
| | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (C.L.M.); (M.C.L.R.); (A.M.); (M.B.)
| |
Collapse
|
34
|
Del Rio A, Puci M, Muresu N, Sechi I, Saderi L, Cugia L, Sotgiu G, Piana A. Comparison of genotypic and phenotypic antimicrobial profile in carbapenemases producing Klebsiella pneumoniae. ACTA BIO-MEDICA : ATENEI PARMENSIS 2023; 94:e2023201. [PMID: 37850773 PMCID: PMC10644917 DOI: 10.23750/abm.v94i5.14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND AND AIM Prompt administration of appropriate antibiotic therapy is crucial in improving outcomes, particularly in cases sustained by multi-drug resistant strains. Although phenotypic antimicrobial susceptibility testing (AST) represents the gold standard to address antibiotics treatment, the long time required to obtained affordable results could negatively affect the prognosis. In contrast, rapid genotypic AST provide essential information for treatment and surveillance program. In order to evaluate the potential adoption of rapid AST in clinical routine, we compared the genotypic and phenotypic antimicrobial profiles of different K.pneumoniae strains, characterized by different expression of carbapenemases-encoding genes. METHODS A set of 109 strains of Cr-Kp were tested for the antimicrobial drugs by the automatized Vitek II system and, in parallel, to the new combination of β-lactams/β-lactamases inhibitors (BL/BLI) by Etest. An antimicrobial resistance index (ARI) was calculated for each strain, assigning each 1 or 0 points based on observed resistance/susceptibility, and dividing the total by the number of antibiotics tested. Kruskal-Wallis test, followed by Dunn's post hoc test (Bonferroni correction), were used to compare quantitative variables among resistance gene subgroups. RESULTS We observed a higher ARI score in KPC/OXA-48 strains, similar profile in KPC alone and KPC/CTX-M groups and a significant lower resistance in no-carbapenemases-producing group. Same trend was observed in AST for BL/BLI. CONCLUSIONS These preliminary results showed a close link between genotypic and phenotypic AST, supporting the adoption of rapid AST in cases of severe infections, ensuring to saving time and providing, the surveillance of MDR strains and improving stewardship programs.
Collapse
|
35
|
Taylor SL, Papanicolas LE, Flynn E, Boyd MA, Wesselingh SL, Rogers GB. Preventing empirical antibiotic treatment failure in migrant populations: screening by infection risk, not ethnic background. Int J Infect Dis 2023; 134:168-171. [PMID: 37343782 DOI: 10.1016/j.ijid.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/14/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
Multidrug-resistant organisms (MDROs) are a major international health threat. In many low and middle-income countries poorly regulated antibiotic use, limited surveillance, and inadequate sanitation give rise to high rates of antibiotic resistance. A resulting reliance on last-line antibiotic options further contributes to the emergence of MDROs. The potential for these pathogens to spread across international borders is a matter of considerable concern. However, this problem is commonly framed as primarily a threat to the health security of countries where resistance is not yet endemic. In fact, it is little acknowledged that those at greatest risk from antibiotic treatment failure are individuals who move from regions of high MDRO prevalence to settings where standard empirical treatment options remain largely effective. In this perspective, we highlight the poor treatment outcomes for disseminated bacterial infections in individuals who have moved from settings in which MDROs are common to those where MDROs are currently less common. We discuss MDRO screening strategies that could avoid stigmatizing vulnerable populations by focusing on future risk of disseminated infection, rather than past risk of acquisition. In practical terms, this means screening individuals before childbirth, immunosuppressive treatments, major surgery, or other events associated with disseminated infection risk, rather than prioritizing screening for individuals from regions with high carriage rates. We argue that such measures would reduce antibiotic treatment failure and improve outcomes while protecting migrant populations from the divisive consequences of targeted screening programs.
Collapse
Affiliation(s)
- Steven L Taylor
- South Australian Health and Medical Research Institute, Adelaide, Australia; College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Lito E Papanicolas
- South Australian Health and Medical Research Institute, Adelaide, Australia; College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Erin Flynn
- South Australian Health and Medical Research Institute, Adelaide, Australia; National Centre for Epidemiology & Population Health, The Australian National University, Canberra, Australia
| | - Mark A Boyd
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Steve L Wesselingh
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Geraint B Rogers
- South Australian Health and Medical Research Institute, Adelaide, Australia; College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
36
|
Rohatgi A, Gupta P. Benzoic acid derivatives as potent antibiofilm agents against Klebsiella pneumoniae biofilm. J Biosci Bioeng 2023; 136:190-197. [PMID: 37479559 DOI: 10.1016/j.jbiosc.2023.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/23/2023]
Abstract
Klebsiella pneumoniae is responsible for a significant proportion of human urinary tract infections, and its biofilm is a major virulence. One potential approach to controlling biofilm-associated infections is targeting the adhesin MrkD1P to disrupt biofilm formation. We employed Schrodinger's Maestro tool with the OPLS 2005 force field to dock compounds with the target protein. Two benzoic acid derivatives, 3-hydroxy benzoic acid and 2,5-dihydroxybenzoic acid, had strong binding free energies (-55.57 and -18.68 kcal/mol) and were the most potent compounds. The in-vitro experiments were conducted to validate the in-silico results. The results showed that both compounds effectively inhibited biofilm formation at low concentrations (4 and 8 mg/mL, respectively) and had antibiofilm activity, restricting cell attachment. Both compounds demonstrated a strong biofilm inhibitory effect, with 97% and 89% reduction in biofilm by 3-hydroxy benzoic acid and 2,5-dihydroxybenzoic acid, respectively. These findings suggest that natural compounds can be a potential source of new drugs to combat biofilm-associated infections. The study highlights the potential of targeting adhesin MrkD1P as an effective approach to controlling biofilm-associated infections caused by K. pneumoniae. The results may have implications for the development of new therapies for biofilm-associated infections and pave the way for future research in this area.
Collapse
Affiliation(s)
- Anuj Rohatgi
- Department of Biotechnology, National Institute of Technology, Raipur 492010, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, Raipur 492010, India.
| |
Collapse
|
37
|
Lemonnier D, Machuel M, Obin O, Outurquin G, Adjidé C, Mullié C. Trends in Antibiotic-Resistant Bacteria Isolated from Screening Clinical Samples in a Tertiary Care Hospital over the 2018-2022 Period. Antibiotics (Basel) 2023; 12:1314. [PMID: 37627734 PMCID: PMC10451239 DOI: 10.3390/antibiotics12081314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
To assess the putative impact of the COVID-19 pandemic on multidrug-resistant (MDR) bacteria recovered from routine screening samples and, more globally, the trends in time to first positive screening sample and carriage duration of those bacteria in patients admitted to a tertiary hospital, data from laboratory results were retrospectively mined over the 2018-2022 period. No significant differences could be found in the number of positive patients or MDR isolates per year, time to positive screening, or carriage duration. Extended-spectrum beta-lactamase producers were dominant throughout the studied period but their relative proportion decreased over time as well as that of meticillin-resistant Staphylococcus aureus. Meanwhile, carbapenemase-producing enterobacteria (CPE) proportion increased. Among the 212 CPE isolates, Klebsiella pneumoniae and Escherichia coli were the more frequent species but, beginning in 2020, a significant rise in Enterobacter cloacae complex and Citrobacter freundii occurred. OXA48 was identified as the leading carbapenemase and, in 2020, a peak in VIM-producing enterobacteria linked to an outbreak of E. cloacae complex during the COVID-19 pandemic was singled out. Finally, a worrisome rise in isolates producing multiple carbapenemases (NDM/VIM and mostly NDM/OXA48) was highlighted, especially in 2022, which could lead to therapeutic dead-ends if their dissemination is not controlled.
Collapse
Affiliation(s)
- Delphine Lemonnier
- Unité de Prévention du Risque Infectieux, Centre Hospitalier Universitaire Amiens-Picardie, 80054 Amiens, France;
| | - Marine Machuel
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, 80054 Amiens, France (C.A.)
| | - Odile Obin
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, 80054 Amiens, France (C.A.)
| | - Gaëtan Outurquin
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, 80054 Amiens, France (C.A.)
| | - Crespin Adjidé
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, 80054 Amiens, France (C.A.)
| | - Catherine Mullié
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, 80054 Amiens, France (C.A.)
- Laboratoire AGIR UR UPJV 4294, UFR de Pharmacie, Université de Picardie Jules Verne, 80037 Amiens, France
| |
Collapse
|
38
|
Lee SH, Kim CH, Lee HY, Park KH, Han SH. Epidemiology of Carbapenem-Resistant Enterobacteriaceae Bacteremia in Gyeonggi Province, Republic of Korea, between 2018 and 2021. Antibiotics (Basel) 2023; 12:1286. [PMID: 37627706 PMCID: PMC10451680 DOI: 10.3390/antibiotics12081286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The incidence of carbapenem-resistant Enterobacteriaceae (CRE) has been increasing since 2008, with Gyeonggi Province in South Korea being particularly vulnerable due to its large number of healthcare facilities. This study examines the trends of CRE occurrence in Gyeonggi Province over the past four years and the epidemiological characteristics of the infected patients. Patients with positive CRE blood cultures admitted to healthcare facilities in Gyeonggi Province from January 2018 to December 2021 were evaluated in this study. Risk factors for CRE-related death were analyzed using data from patients who died within 30 days of the last blood sampling. Older adults aged 70 years and above constituted the majority of patients with CRE bacteremia. Antibiotic use did not significantly affect mortality risk. Non-survivors were more common in tertiary hospitals and intensive care units and included patients with hypertension, malignant tumors, and multiple underlying diseases. Klebsiella pneumoniae was the most common CRE strain, with Klebsiella pneumoniae carbapenemase being the predominant carbapenemase. Our study suggests the endemicity of CRE in Gyeonggi Province and highlights the increasing isolation of CRE strains in South Korean long-term care hospitals within the province. Further, infection control measures and government support specific to each healthcare facility type are crucial.
Collapse
Affiliation(s)
- Seung Hye Lee
- Gyeonggi Infectious Disease Control Center, Health Bureau, Gyeonggi Provincial Government, Suwon-si 16508, Gyeonggi-do, Republic of Korea; (S.H.L.)
| | - Chan Hee Kim
- Gyeonggi Infectious Disease Control Center, Health Bureau, Gyeonggi Provincial Government, Suwon-si 16508, Gyeonggi-do, Republic of Korea; (S.H.L.)
| | - Hee Young Lee
- Center for Preventive Medicine and Public Health, Seoul National University Bundang Hospital, Seongnam-si 13620, Gyeonggi-do, Republic of Korea;
| | - Kun Hee Park
- Pyeongchang County Health and Medical Center, Pyeongchang-gun 25374, Gangwon-do, Republic of Korea;
| | - Su Ha Han
- Department of Nursing, College of Medicine, SoonChunHyang University, Cheonan-si 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
39
|
Park SH, Yi Y, Suh W, Ji SK, Han E, Shin S. The impact of enhanced screening for carbapenemase-producing Enterobacterales in an acute care hospital in South Korea. Antimicrob Resist Infect Control 2023; 12:62. [PMID: 37400884 DOI: 10.1186/s13756-023-01270-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Carbapenemase-producing Enterobacterales (CPE) poses a significant challenge to infection control in healthcare settings. Active screening is recommended to prevent intra-hospital CPE transmission. METHODS CPE screening was initiated at a 660-bed hospital in South Korea in September 2018, targeting patients previously colonized/infected or admitted to outside healthcare facilities (HCFs) within 1 month. Universal intensive care unit (ICU) screening was performed at the time of admission. After a hospital-wide CPE outbreak in July-September 2019, the screening program was enhanced by extending the indications (admission to any HCF within 6 months, receipt of hemodialysis) with weekly screening of ICU patients. The initial screening method was changed from screening cultures to the Xpert Carba-R assay. The impact was assessed by comparing the CPE incidence per 1000 admissions before (phase 1, September 2018-August 2019) and after instituting the enhanced screening program (phase 2, September 2019-December 2020). RESULTS A total of 13,962 (2,149 and 11,813 in each phase) were screened as indicated, among 49,490 inpatients, and monthly screening compliance increased from 18.3 to 93.5%. Compared to phase 1, the incidence of screening positive patients increased from 1.2 to 2.3 per 1,000 admissions (P = 0.005) during phase 2. The incidence of newly detected CPE patients was similar (3.1 vs. 3.4, P = 0.613) between two phases, but the incidence of hospital-onset CPE patients decreased (1.9 vs. 1.1, P = 0.018). A significant decrease was observed (0.5 to 0.1, P = 0.014) in the incidence of patients who first confirmed CPE positive through clinical cultures without a preceding positive screening. Compared to phase 1, the median exposure duration and number of CPE contacts were also markedly reduced in phase 2: 10.8 days vs. 1 day (P < 0.001) and 11 contacts vs. 1 contact (P < 0.001), respectively. During phase 2, 42 additional patients were identified by extending the admission screening indications (n = 30) and weekly in-ICU screening (n = 12). CONCLUSIONS The enhanced screening program enabled us to identify previously unrecognized CPE patients in a rapid manner and curtailed a hospital-wide CPE outbreak. As CPE prevalence increases, risk factors for CPE colonization can broaden, and hospital prevention strategies should be tailored to the changing local CPE epidemiology.
Collapse
Affiliation(s)
- Sun Hee Park
- Infection Prevention and Control Unit, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea.
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- The Catholic University of Korea, Eunpyeong St. Mary's Hospital, 93-19 Jingwan-dong, Eunpyeong-gu, Seoul, Republic of Korea.
| | - Yunmi Yi
- Infection Prevention and Control Unit, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woosuck Suh
- Infection Prevention and Control Unit, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seul Ki Ji
- Infection Prevention and Control Unit, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Eunhee Han
- Infection Prevention and Control Unit, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soyoung Shin
- Infection Prevention and Control Unit, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
40
|
Karampatakis T, Tsergouli K, Roilides E. Infection control measures against multidrug-resistant Gram-negative bacteria in children and neonates. Future Microbiol 2023; 18:751-765. [PMID: 37584552 DOI: 10.2217/fmb-2023-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
The increase in infections caused by multidrug-resistant (MDR) Gram-negative bacteria in neonatal and pediatric intensive care units over recent years is alarming. MDR Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii have constituted the main causes of the MDR Gram-negative bacteria problem. The implementation of infection control measures such as hand hygiene, cohorting of patients, contact precautions, active surveillance and environmental cleaning could diminish their spread. Recently, water safety has been identified as a major component of infection control policies. The aim of the current review is to highlight the effectiveness of these infection control measures in managing outbreaks caused by MDR Gram-negative bacteria in neonatal and pediatric intensive care units and highlight future perspectives on the topic.
Collapse
Affiliation(s)
| | - Katerina Tsergouli
- Microbiology Department, Agios Pavlos General Hospital, Thessaloniki, 551 34, Greece
| | - Emmanuel Roilides
- Infectious Disease Unit, 3rd Department of Pediatrics, School of Health Sciences, Hippokration General Hospital, Thessaloniki, 546 42, Greece
| |
Collapse
|
41
|
Zhou S, Mi S, Rao X, Zhang Q, Wei S, Xiao M, Peng Z, Wang J. Individualized active surveillance for carbapenem-resistant microorganisms using Xpert Carba-R in intensive care units. Sci Rep 2023; 13:9527. [PMID: 37308521 DOI: 10.1038/s41598-023-36321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023] Open
Abstract
Carbapenem antibiotics are widely used in ICU, and the prevalence of carbapenem-resistant microorganisms (CRO) has increased. This study aimed to assess the role of individualized active surveillance using Xpert Carba-R of carbapenem resistance genes on CRO risk. A total of 3,765 patients were admitted to the ICU of Zhongnan Hospital of Wuhan University between 2020 and 2022. The presence of carbapenem resistance genes were monitored using Xpert Carba-R, and CRO incidence was assigned as the investigated outcome. Of 3,765 patients, 390 manifested the presence of CRO, representing a prevalence of 10.36%. Active surveillance using Xpert Carba-R was associated with a lower CRO risk (odds ratio [OR]: 0.77; 95% confidence interval [CI] 0.62-0.95; P = 0.013), especially for carbapenem-resistant Acinetobacter + carbapenem-resistant Pseudomonas aeruginosa (OR: 0.79; 95% CI 0.62-0.99; P = 0.043), carbapenem-resistant Klebsiella pneumoniae (OR: 0.56; 95% CI 0.40-0.79; P = 0.001), and carbapenem-resistant Enterobacteriaceae (OR: 0.65; 95% CI 0.47-0.90; P = 0.008). Individualized active surveillance using Xpert Carba-R may be associated with a reduction in the overall CRO incidence in ICU. Further prospective studies should be performed to verify these conclusions and guide further management of patients in ICU.
Collapse
Affiliation(s)
- Shuliang Zhou
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Donghu Road 169, Wuhan, 430071, Hubei, China
| | - Sulin Mi
- Department of Cardiovascular Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Xin Rao
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Donghu Road 169, Wuhan, 430071, Hubei, China
| | - Qi Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Donghu Road 169, Wuhan, 430071, Hubei, China
| | - Shiwen Wei
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Donghu Road 169, Wuhan, 430071, Hubei, China
| | - Meng Xiao
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Donghu Road 169, Wuhan, 430071, Hubei, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China.
- Clinical Research Center of Hubei Critical Care Medicine, Donghu Road 169, Wuhan, 430071, Hubei, China.
| | - Jing Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China.
- Clinical Research Center of Hubei Critical Care Medicine, Donghu Road 169, Wuhan, 430071, Hubei, China.
| |
Collapse
|
42
|
Shibabaw A, Sahle Z, Metaferia Y, Atlaw A, Adenew B, Gedefie A, Tilahun M, Ebrahim E, Kassa Y, Debash H, Wang SH. Epidemiology and prevention of hospital-acquired carbapenem-resistant Enterobacterales infection in hospitalized patients, Northeast Ethiopia. IJID REGIONS 2023; 7:77-83. [PMID: 37009574 PMCID: PMC10050477 DOI: 10.1016/j.ijregi.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE Carbapenemase-producing carbapenem-resistant Enterobacterales (CP-CRE) are usually healthcare associated. The aim of this study was to investigate the epidemiology of hospital-acquired CRE and multi-drug-resistant infections, and identify associated risk factors in hospitalized patients in Northeast Ethiopia. METHODS This cross-sectional study was conducted in patients admitted with sepsis between January and June 2021. Demographic and clinical data were collected using questionnaires. In total, 384 samples were collected and cultured based on source of infection. Bacterial species identification was performed using biochemical tests, and drug susceptibility testing was done using the Kirby-Bauer disk diffusion method. The modified carbapenem inactivation method was employed for carbapenemase detection. Data were analysed using Statistical Package for the Social Sciences. RESULTS The overall rate of CP-CRE infection was 14.6%. Bloodstream infections and urinary tract infections were the predominant hospital-acquired infections (HAIs). The majority of CP-CRE were Escherichia coli and Klebsiella pneumoniae, and accounted for 4.9%. Chronic underlying disease (adjusted odds ratio (AOR): 7.9, 95% confidence interval (CI): 1.9-31.5), number of beds per room (AOR: 11, 95% CI: 1.7-75) and eating raw vegetables (AOR: 11, 95% CI: 3.4-40) were significantly associated with hospital-acquired CRE infection. CONCLUSIONS The rate of CP-CRE infection found in this study is concerning. There is a need for further evaluation of risk factors and measures to decrease HAI. Hand hygiene, increased laboratory capacity, improved infection prevention measures, and antimicrobial stewardship programmes are needed in healthcare settings to halt the transmission of CP-CRE.
Collapse
Affiliation(s)
- Agumas Shibabaw
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Zenawork Sahle
- Department of Medical Laboratory Sciences, Debre Berhan Health Science College, Debre Berhan, Ethiopia
| | - Yeshi Metaferia
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Asgdew Atlaw
- Department of Medical Laboratory Sciences, Debre Berhan Health Science College, Debre Berhan, Ethiopia
| | - Behailu Adenew
- Department of Medical Laboratory Sciences, Debre Berhan Comprehensive Specialized Hospital, Debre Berhan, Ethiopia
| | - Alemu Gedefie
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Mihret Tilahun
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Endris Ebrahim
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Yeshimebet Kassa
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Habtu Debash
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Shu-Hua Wang
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, and Global One Health initiative, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
43
|
Arzilli G, Forni S, Righi L, Barnini S, Petricci P, Parisio EM, Pistello M, Vivani P, Gemignani G, Baggiani A, Bellandi T, Privitera G, Gemmi F, Tavoschi L, Porretta A. Trends in hospital acquired NDM-producing Enterobacterales in Tuscany (Italy) from 2019 to 2021: impact of the COVID-19 pandemic. J Hosp Infect 2023:S0195-6701(23)00142-1. [PMID: 37160231 DOI: 10.1016/j.jhin.2023.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVES In Tuscany, Italy, New Delhi metallo-beta-lactamase-producing carbapenem-resistant Enterobacterales (NDM-CRE) in hospitalised patients has increasingly been observed since 2018, leading in 2019 to the implementation of enhanced control measures successfully reducing transmission. We describe the NDM-CRE epidemiology during the COVID-19 pandemic in Tuscany. METHODS Data on NDM-CRE patients hospitalised in five Tuscan hospitals were collected from 01/2019 to 12/2021. Weekly rates of NDM-CRE cases on hospital days in medical and critical-care wards were calculated. In March-December 2020, NDM-CRE rates were stratified by COVID-19 diagnosis. Multivariate regression analysis was performed to assess outcomes' differences among two periods analysed and between COVID-19 populations. RESULTS Since March 2020 an increase in NDM-CRE cases was observed, associated with COVID-19 admissions. COVID-19 patients differed significantly from non-COVID-19 ones by several variables, including patient features (age, Charlson index) and clinical history and outcomes (NDM-CRE infection/colonisation, ICU stay, length of stay, mortality). During the pandemic, we observed a higher rate of NDM-CRE cases per hospital days in both non-COVID-19 patients (273/100,000) and COVID-19 patients (370/100,00) when compared with pre-pandemic period cases (187/100,00). CONCLUSIONS Our data suggest a resurgence in NDM-CRE spread among hospitalised patients in Tuscany during the COVID-19 pandemic, as well as a change in patients' case-mix. The observed increase in hospital transmission of NDM-CRE could be related to changes in infection prevention and control procedures, aimed mainly at COVID-19 management, leading to new challenges in hospital preparedness and crisis management planning.
Collapse
Affiliation(s)
- Guglielmo Arzilli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Silvia Forni
- Regional Health Agency of Tuscany, Florence, Italy
| | - Lorenzo Righi
- Quality of care and Clinical networks, Tuscany Region, Florence, Italy
| | - Simona Barnini
- Microbiology Unit, University Hospital of Pisa, Pisa, Italy
| | | | | | - Mauro Pistello
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Virology Unit, University Hospital of Pisa, Pisa, Italy
| | - Paola Vivani
- Massa Carrara Hospital, Toscana Northwest Health Authority, Massa Carrara, Italy
| | | | - Angelo Baggiani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; University Hospital of Pisa, Pisa, Italy
| | - Tommaso Bellandi
- Centre for Clinical Risk Management and Patient Safety, Florence, Italy
| | - Gaetano Privitera
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; University Hospital of Pisa, Pisa, Italy
| | | | - Lara Tavoschi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Andrea Porretta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
44
|
Gajic I, Jovicevic M, Popadic V, Trudic A, Kabic J, Kekic D, Ilic A, Klasnja S, Hadnadjev M, Popadic DJ, Andrijevic A, Prokic A, Tomasevic R, Ranin L, Todorovic Z, Zdravkovic M, Opavski N. The emergence of multidrug-resistant bacteria causing healthcare-associated infections in COVID-19 patients - a retrospective multi-centre study. J Hosp Infect 2023; 137:1-7. [PMID: 37121488 PMCID: PMC10140260 DOI: 10.1016/j.jhin.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
INTRODUCTION We evaluated the prevalence, aetiologies and antibiotic resistance patterns of bacterial infections in hospitalized patients with laboratory-confirmed SARS-CoV-2. We also investigated comorbidities, risk factors, and the mortality rate in COVID-19 patients with bacterial infections. METHODS This retrospective observational study evaluated medical records of 7249 randomly selected patients with COVID-19 admitted to three clinical centres between January 1 2021 and February 16, 2022. A total of 6478 COVID-19 patients met the eligibility criteria for analysis. RESULTS The mean age of the patients with SARS-CoV-2 and bacterial infections was 68.6 ± 15.5 years (range: 24 to 94 years). The majority of patients (68.7%) were older than 65 years. The prevalence of bacterial infections among hospitalized COVID-19 patients was 12.9%, most of them being hospital-acquired (11.5%). Bloodstream (37.7%) and respiratory tract infections (25.6%) were the most common bacterial infections. Klebsiella pneumoniae and Acinetobacter baumannii caused 25.2% and 23.6% of all bacterial infections, respectively. Carbapenem-resistance in Enterobacterales, A. baumannii, and Pseudomonas aeruginosa were 72.6%, 93.7%, and 69.1%. Age >60 years and infections caused by ≥3 pathogens were significantly more prevalent among deceased patients compared to survivors (p<0.05). Furthermore, 95% of patients who were intubated developed ventilator-associated pneumonia. The overall in-hospital mortality rate of patients with SARS-CoV-2 and bacterial infections was 51.6%, while 91.7% of patients who required invasive mechanical ventilation died. CONCLUSIONS Our results reveal a striking association between healthcare-associated bacterial infections as an important complication of COVID-19 and fatal outcomes.
Collapse
Affiliation(s)
- I Gajic
- Faculty of Medicine, University of Belgrade, Dr Subotića starijeg 1, 11000 Belgrade, Serbia.
| | - M Jovicevic
- Faculty of Medicine, University of Belgrade, Dr Subotića starijeg 1, 11000 Belgrade, Serbia
| | - V Popadic
- University Medical Hospital Centre "Bežanijska kosa", Dr Žorža Matea bb, 11070 Belgrade, Serbia
| | - A Trudic
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; Institute for Pulmonary Diseases of Vojvodina, Institutski put 4, 21204 Sremska Kamenica, Serbia
| | - J Kabic
- Faculty of Medicine, University of Belgrade, Dr Subotića starijeg 1, 11000 Belgrade, Serbia
| | - D Kekic
- Faculty of Medicine, University of Belgrade, Dr Subotića starijeg 1, 11000 Belgrade, Serbia
| | - A Ilic
- Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
| | - S Klasnja
- University Medical Hospital Centre "Bežanijska kosa", Dr Žorža Matea bb, 11070 Belgrade, Serbia
| | - M Hadnadjev
- Institute for Pulmonary Diseases of Vojvodina, Institutski put 4, 21204 Sremska Kamenica, Serbia
| | - D J Popadic
- Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
| | - A Andrijevic
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; Institute for Pulmonary Diseases of Vojvodina, Institutski put 4, 21204 Sremska Kamenica, Serbia
| | - A Prokic
- Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
| | - R Tomasevic
- Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
| | - L Ranin
- Faculty of Medicine, University of Belgrade, Dr Subotića starijeg 1, 11000 Belgrade, Serbia
| | - Z Todorovic
- University Medical Hospital Centre "Bežanijska kosa", Dr Žorža Matea bb, 11070 Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Dr Subotića starijeg 1, 11000 Belgrade, Serbia
| | - M Zdravkovic
- University Medical Hospital Centre "Bežanijska kosa", Dr Žorža Matea bb, 11070 Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Dr Subotića starijeg 1, 11000 Belgrade, Serbia
| | - N Opavski
- Faculty of Medicine, University of Belgrade, Dr Subotića starijeg 1, 11000 Belgrade, Serbia
| |
Collapse
|
45
|
Baek MS, Kim S, Kim WY, Kweon MN, Huh JW. Gut microbiota alterations in critically Ill patients with carbapenem-resistant Enterobacteriaceae colonization: A clinical analysis. Front Microbiol 2023; 14:1140402. [PMID: 37082174 PMCID: PMC10110853 DOI: 10.3389/fmicb.2023.1140402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
BackgroundCarbapenem-resistant Enterobacteriaceae (CRE) are an emerging concern for global health and are associated with high morbidity and mortality in critically ill patients. Risk factors for CRE acquisition include broad-spectrum antibiotic use and microbiota dysbiosis in critically ill patients. Therefore, we evaluated the alteration of the intestinal microbiota associated with CRE colonization in critically ill patients.MethodsFecal samples of 41 patients who were diagnosed with septic shock or respiratory failure were collected after their admission to the intensive care unit (ICU). The gut microbiota profile determined using 16S rRNA gene sequencing and quantitative measurement of fecal short-chain fatty acids were evaluated in CRE-positive (n = 9) and CRE negative (n = 32) patients. The analysis of bacterial metabolic abundance to identify an association between CRE acquisition and metabolic pathway was performed.ResultsCRE carriers showed a significantly increased proportion of the phyla Proteobacteria and decreased numbers of the phyla Bacteroidetes as compared to the CRE non-carriers. Linear discriminant analysis (LDA) with linear discriminant effect size showed that the genera Erwinia, Citrobacter, Klebsiella, Cronobacter, Kluyvera, Dysgomonas, Pantoea, and Alistipes had an upper 2 LDA score in CRE carriers. The alpha-diversity indices were significantly decreased in CRE carriers, and beta-diversity analysis demonstrated that the two groups were clustered significantly apart. Among short-chain fatty acids, the levels of isobutyric acid and valeric acid were significantly decreased in CRE carriers. Furthermore, the PICRUSt-predicted metabolic pathways revealed significant differences in five features, including ATP-binding cassette transporters, phosphotransferase systems, sphingolipid metabolism, other glycan degradation, and microbial metabolism, in diverse environments between the two groups.ConclusionCritically ill patients with CRE have a distinctive gut microbiota composition and community structure, altered short-chain fatty acid production and changes in the metabolic pathways. Further studies are needed to determine whether amino acids supplementation improves microbiota dysbiosis in patients with CRE.
Collapse
Affiliation(s)
- Moon Seong Baek
- Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Seungil Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Won-Young Kim
- Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Mi-Na Kweon
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- *Correspondence: Jin Won Huh,
| |
Collapse
|
46
|
Tian F, Li Y, Wang Y, Yu B, Song J, Ning Q, Jian C, Ni M. Risk factors and molecular epidemiology of fecal carriage of carbapenem resistant Enterobacteriaceae in patients with liver disease. Ann Clin Microbiol Antimicrob 2023; 22:10. [PMID: 36710337 PMCID: PMC9884424 DOI: 10.1186/s12941-023-00560-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Carbapenem resistant Enterobacteriaceae (CRE) colonization is a risk factor for CRE infection. CRE infection results in an increase in mortality in patients with cirrhosis. However, minimal data regarding the prevalence and the risk factors of CRE colonization in patients with liver disease yet without liver transplantation are available. The present study aimed to investigate the prevalence, risk factors and molecular epidemiology characteristics of CRE fecal carriage among patients with liver disease. METHODS Stool specimens from 574 adult inpatients with liver disease were collected from December 2020 to April 2021. CRE were screened using selective chromogenic agar medium and identified by the Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). Antimicrobial susceptibility was determined using the broth microdilution method. Carbapenemase genes were characterized by polymerase chain reaction (PCR) and DNA sequencing. Multilocus sequence typing (MLST) was performed for Carbapenem Resistant Klebsiella pneumoniae (CR-KPN) isolates and Carbapenem Resistant Escherichia Coli (CR-ECO) isolates. RESULTS The total number of stool specimens (732) were collected from 574 patients with liver disease. 43 non-duplicated CRE strains were isolated from 39 patients with a carriage rate of 6.79% (39/574). The carriage rate was 15.60% (17/109) in patients with acute-on-chronic liver failure (ACLF). Multivariate analysis indicated that ACLF (P = 0.018), the history of pulmonary infection within past 3 months (P = 0.001) and the use of third generation cephalosporin/β-lactamases inhibitor within past 3 months (P = 0.000) were independent risk factors of CRE colonization in patients with liver disease. Klebsiella Pnuemoniae (KPN) (51.28%) and Escherichia coli (ECO) (30.77%) were main strains in these patients. All CRE strains showed high resistance to most antimicrobials except for polymyxin B and tigecycline. Most (83.72%, 36/43) of the CRE carried carbapenemase genes. blaKPC-2 was the major carbapenemase gene. The molecular epidemiology of KPN were dominated by ST11, while the STs of ECO were scattered. CONCLUSIONS The present study revealed that CRE fecal carriage rates were higher in patients with ACLF than in patients without liver failure. ACLF, the history of pulmonary infection within past 3 months and the use of third generation cephalosporin/β-lactamases inhibitor within past 3 months were independent risk factors of CRE colonization in patients with liver disease. Regular CRE screening for hospitalized patients with liver disease should be conducted to limit the spread of CRE strain.
Collapse
Affiliation(s)
- Fangbing Tian
- grid.412793.a0000 0004 1799 5032Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Li
- grid.412793.a0000 0004 1799 5032Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Wang
- grid.412793.a0000 0004 1799 5032Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Yu
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxin Song
- grid.412793.a0000 0004 1799 5032Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- grid.412793.a0000 0004 1799 5032Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cui Jian
- grid.412793.a0000 0004 1799 5032Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Ni
- grid.412793.a0000 0004 1799 5032Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Timler M, Timler W, Bednarz A, Zakonnik Ł, Kozłowski R, Timler D, Marczak M. Identification and Preliminary Hierarchisation of Selected Risk Factors for Carbapenemase-Producing Enterobacteriaceae (CPE) Colonisation: A Prospective Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1960. [PMID: 36767330 PMCID: PMC9915316 DOI: 10.3390/ijerph20031960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Drug-resistant bacteria are one of the main reasons of deaths worldwide. One of the significant groups of these bacteria are carbapenemase-producing Enterobacteriaceae (CPE). The goal of this cross-sectional study was the identification and hierarchisation of selected risk factors of CPE colonisation. To achieve that goal, we examined 236 patients for the presence of CPE using the standard method of anal swabs. The patients were divided into three groups: hospitalised patients; those chronically dialysed; those requiring home care. A very thorough medical interview was conducted for comorbidities. A statistical analysis relationship between comorbidities and locations of the patient's stay with the positive result of the culture was investigated. A significant relationship was demonstrated between the positive result of the culture and confirmed dementia, heart failure, connective tissue diseases, and established irregularities in the level of leukocytes. No significant relationship was demonstrated with the remaining comorbidities considered in the study. Afterwards these factors were compared for importance for the assessment of risk of a positive swab result-the biggest importance was found in establishing connective tissue disease. Next were dementia, abnormal values of leukocytes, heart failure, and at the end, stay at the orthopaedics ward. Conclusions: The study identified asymptomatic carriers of CPE, which demonstrates the need for further studies in order to identify infection risk factors. The connective tissue diseases are the most important variable which enable the prediction of CPE colonisation-the next ones are dementia, abnormal values of leukocytes, heart failure, and stay at the orthopaedics ward.
Collapse
Affiliation(s)
- Małgorzata Timler
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland
| | - Wojciech Timler
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland
| | - Ariadna Bednarz
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland
| | - Łukasz Zakonnik
- Faculty of Economics and Sociology, University of Lodz, 90-214 Lodz, Poland
| | - Remigiusz Kozłowski
- Department of Emergency Medicine and Disaster Medicine, Medical University of Lodz, 92-212 Lodz, Poland
| | - Dariusz Timler
- Department of Emergency Medicine and Disaster Medicine, Medical University of Lodz, 92-212 Lodz, Poland
| | - Michał Marczak
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
48
|
Limiting the Spread of Multidrug-Resistant Bacteria in Low-to-Middle-Income Countries: One Size Does Not Fit All. Pathogens 2023; 12:pathogens12010144. [PMID: 36678492 PMCID: PMC9866331 DOI: 10.3390/pathogens12010144] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
The spread of multidrug-resistant organisms (MDRO) is associated with additional costs as well as higher morbidity and mortality rates. Risk factors related to the spread of MDRO can be classified into four categories: bacterial, host-related, organizational, and epidemiological. Faced with the severity of the MDRO predicament and its individual and collective consequences, many scientific societies have developed recommendations to help healthcare teams control the spread of MDROs. These international recommendations include a series of control measures based on surveillance cultures and the application of barrier measures, ranging from patients' being isolated in single rooms, to the reinforcement of hand hygiene and implementation of additional contact precautions, to the cohorting of colonized patients in a dedicated unit with or without a dedicated staff. In addition, most policies include the application of an antimicrobial stewardship program. Applying international policies to control the spread of MDROs presents several challenges, particularly in low-to-middle-income countries (LMICs). Through a review of the literature, this work evaluates the real risks of dissemination linked to MDROs and proposes an alternative policy that caters to the means of LMICs. Indeed, sufficient evidence exists to support the theory that high compliance with hand hygiene and antimicrobial stewardship reduces the risk of MDRO transmission. LMICs would therefore be better off adopting such low-cost policies without necessarily having to implement costly isolation protocols or impose additional contact precautions.
Collapse
|
49
|
Regional outbreak of multidrug-resistant Klebsiella pneumoniae carbapenemase-producing Pseudomonas Aeruginosa. Infect Control Hosp Epidemiol 2023; 44:96-98. [PMID: 34593069 PMCID: PMC8971143 DOI: 10.1017/ice.2021.394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Klebsiella pneumoniae carbapenemase-producing P. aeruginosa (KPC-CRPA) are rare in the United States. An outbreak of KPC-CRPA was investigated in Texas using molecular and epidemiologic methods and 17 cases of KPC-CRPA were identified. The isolates were genetically related and harbored the emerging P. aeruginosa multilocus sequence type 235, the first in the United States.
Collapse
|
50
|
Efficacy of Vaporized Hydrogen Peroxide Combined with Silver Ions against Multidrug-Resistant Gram-Negative and Gram-Positive Clinical Isolates. Int J Mol Sci 2022; 23:ijms232415826. [PMID: 36555465 PMCID: PMC9779286 DOI: 10.3390/ijms232415826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance (AMR) is a serious public health problem that results in high morbidity and mortality rates. In particular, multidrug-resistant (MDR) strains circulating in hospital settings pose a major threat as they are associated with serious nosocomial infections. Therefore, regular cleaning and disinfection procedures, usually using chemical disinfectants, must be implemented in these facilities. Hydrogen peroxide (HP)-based disinfectants have proven high microbicidal activity and several comparative advantages over conventional disinfectants. We assessed the in vitro biocidal activity of an 8% HP solution combined with 30 mg/L silver ions (HP + Ag) against MDR clinical isolates of Klebsiella pneumoniae (MDRKp) and Pseudomonas aeruginosa (MDRPa), and methicillin-resistant Staphylococcus aureus (MRSA). Accordingly, the in vitro antibacterial activity was determined using the macrodilution method, and the efficacy was determined for 30 min in terms of (1) activity on bacteria in suspension and (2) activity on surfaces using vaporized HP + Ag on a 20 cm2 stainless steel surface. A strong bactericidal effect of HP + Ag was observed against MDRKp, MDRPa, and MRSA strains, with minimum inhibitory concentrations and minimum bactericidal concentrations between 362.5 and 5800 mg/L. A strong effect was observed during the 30 min of HP + Ag exposure to the resistant clinical isolates, with over 4-Log10 reduction in CFUs. Regarding the efficacy of the disinfectant on surfaces, bacterial load reductions of >99% were observed. These results suggest that HP + Ag is potentially useful as an effective disinfectant for decontaminating surfaces in hospital settings suspected of contamination with MDR bacteria.
Collapse
|