1
|
Isonne C, Iera J, Sciurti A, Renzi E, De Blasiis MR, Marzuillo C, Villari P, Baccolini V. How well does vaccine literacy predict intention to vaccinate and vaccination status? A systematic review and meta-analysis. Hum Vaccin Immunother 2024; 20:2300848. [PMID: 38174706 PMCID: PMC10773666 DOI: 10.1080/21645515.2023.2300848] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
This review quantified the association of vaccine literacy (VL) and vaccination intention and status. PubMed, Scopus, and Web of Science were searched. Any study, published until December 2022, that investigated the associations of interest were eligible. For each outcome, articles were grouped according to the vaccine administrated and results were narratively synthesized. Inverse-variance random-effect models were used to compare standardized mean values in VL domain(s) between the two groups: individuals willing vs. unwilling to get vaccinated, and individuals vaccinated vs. unvaccinated. This review of 18 studies shows that VL strongly predicts the vaccination intention while its association with vaccination status is attenuated and barely significant, suggesting that other factors influence the actual vaccination uptake. However, given the scarce evidence available, the heterogeneity in the methods applied and some limitations of the studies included, further research should be conducted to confirm the role of VL in the vaccination decision-making process.
Collapse
Affiliation(s)
- Claudia Isonne
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Jessica Iera
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Antonio Sciurti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Erika Renzi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Carolina Marzuillo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Paolo Villari
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Valentina Baccolini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Zhao YC, Sun ZH, Xiao MX, Li JK, Liu HY, Cai HL, Cao W, Feng Y, Zhang BK, Yan M. Analyzing the correlation between quinolone-resistant Escherichia coli resistance rates and climate factors: A comprehensive analysis across 31 Chinese provinces. ENVIRONMENTAL RESEARCH 2024; 245:117995. [PMID: 38145731 DOI: 10.1016/j.envres.2023.117995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND The increasing problem of bacterial resistance, particularly with quinolone-resistant Escherichia coli (QnR eco) poses a serious global health issue. METHODS We collected data on QnR eco resistance rates and detection frequencies from 2014 to 2021 via the China Antimicrobial Resistance Surveillance System, complemented by meteorological and socioeconomic data from the China Statistical Yearbook and the China Meteorological Data Service Centre (CMDC). Comprehensive nonparametric testing and multivariate regression models were used in the analysis. RESULT Our analysis revealed significant regional differences in QnR eco resistance and detection rates across China. Along the Hu Huanyong Line, resistance rates varied markedly: 49.35 in the northwest, 54.40 on the line, and 52.30 in the southeast (P = 0.001). Detection rates also showed significant geographical variation, with notable differences between regions (P < 0.001). Climate types influenced these rates, with significant variability observed across different climates (P < 0.001). Our predictive model for resistance rates, integrating climate and healthcare factors, explained 64.1% of the variance (adjusted R-squared = 0.641). For detection rates, the model accounted for 19.2% of the variance, highlighting the impact of environmental and healthcare influences. CONCLUSION The study found higher resistance rates in warmer, monsoon climates and areas with more public health facilities, but lower rates in cooler, mountainous, or continental climates with more rainfall. This highlights the strong impact of climate on antibiotic resistance. Meanwhile, the predictive model effectively forecasts these resistance rates using China's diverse climate data. This is crucial for public health strategies and helps policymakers and healthcare practitioners tailor their approaches to antibiotic resistance based on local environmental conditions. These insights emphasize the importance of considering regional climates in managing antibiotic resistance.
Collapse
Affiliation(s)
- Yi-Chang Zhao
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, PR China
| | - Zhi-Hua Sun
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, PR China; China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Ming-Xuan Xiao
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, PR China; China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Jia-Kai Li
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, PR China
| | - Huai-Yuan Liu
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, PR China; China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Hua-Lin Cai
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, PR China
| | - Wei Cao
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; Department of Medical Laboratory, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Yu Feng
- China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Bi-Kui Zhang
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, PR China.
| | - Miao Yan
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, PR China.
| |
Collapse
|
3
|
Tsuzuki S, Murata F, Maeda M, Asai Y, Koizumi R, Ohmagari N, Fukuda H. Association between seasonal influenza vaccination and antimicrobial use in Japan from the 2015-16 to 2020-21 seasons: from the VENUS study. J Antimicrob Chemother 2023; 78:2976-2982. [PMID: 37897719 PMCID: PMC10689917 DOI: 10.1093/jac/dkad340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/13/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Seasonal influenza vaccination might be considered an antimicrobial resistance (AMR) countermeasure because it can reduce unnecessary antimicrobial use for acute respiratory infection by mitigating the burden of such diseases. OBJECTIVES To examine the association between seasonal influenza vaccination and antimicrobial use (AMU) in Japan at the community level and to examine the impact of influenza vaccination on the frequency of unnecessary antimicrobial prescription for upper respiratory infection. METHODS For patients who visited any healthcare facility in one of the 23 wards of Tokyo, Japan, due to upper respiratory infection and who were aged 65 years or older, we extracted data from the Vaccine Effectiveness, Networking, and Universal Safety (VENUS) study database, which includes all claims data and vaccination records from the 2015-16 to 2020-21 seasons. We used the average treatment effect (ATE) with 1:1 propensity score matching to examine the association of vaccination status with frequency of antibiotic prescription, frequency of healthcare facility consultation, risk of admission and risk of death in the follow-up period of the same season (from 1 January to 31 March). RESULTS In total, 244 642 people were enrolled. Matched data included 101 734 people in each of the unvaccinated and vaccinated groups. The ATE of vaccination was -0.004 (95% CI -0.006 to -0.002) for the frequency of antibiotic prescription, -0.005 (-0.007 to -0.004) for the frequency of healthcare facility consultation, -0.001 (-0.002 to -0.001) for the risk of admission and 0.00 (0.00 to 0.00) for the risk of death. CONCLUSIONS Our results suggest that seasonal influenza vaccination is associated with lower frequencies of unnecessary antibiotic prescription and of healthcare facility consultation.
Collapse
Affiliation(s)
- Shinya Tsuzuki
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Fumiko Murata
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Megumi Maeda
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Asai
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ryuji Koizumi
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Haruhisa Fukuda
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Fu Y, Dou Q, Smalla K, Wang Y, Johnson TA, Brandt KK, Mei Z, Liao M, Hashsham SA, Schäffer A, Smidt H, Zhang T, Li H, Stedtfeld R, Sheng H, Chai B, Virta M, Jiang X, Wang F, Zhu Y, Tiedje JM. Gut microbiota research nexus: One Health relationship between human, animal, and environmental resistomes. MLIFE 2023; 2:350-364. [PMID: 38818274 PMCID: PMC10989101 DOI: 10.1002/mlf2.12101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 06/01/2024]
Abstract
The emergence and rapid spread of antimicrobial resistance is of global public health concern. The gut microbiota harboring diverse commensal and opportunistic bacteria that can acquire resistance via horizontal and vertical gene transfers is considered an important reservoir and sink of antibiotic resistance genes (ARGs). In this review, we describe the reservoirs of gut ARGs and their dynamics in both animals and humans, use the One Health perspective to track the transmission of ARG-containing bacteria between humans, animals, and the environment, and assess the impact of antimicrobial resistance on human health and socioeconomic development. The gut resistome can evolve in an environment subject to various selective pressures, including antibiotic administration and environmental and lifestyle factors (e.g., diet, age, gender, and living conditions), and interventions through probiotics. Strategies to reduce the abundance of clinically relevant antibiotic-resistant bacteria and their resistance determinants in various environmental niches are needed to ensure the mitigation of acquired antibiotic resistance. With the help of effective measures taken at the national, local, personal, and intestinal management, it will also result in preventing or minimizing the spread of infectious diseases. This review aims to improve our understanding of the correlations between intestinal microbiota and antimicrobial resistance and provide a basis for the development of management strategies to mitigate the antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) Federal Research Centre for Cultivated PlantsBraunschweigGermany
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Kristian K. Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
- Sino‐Danish Center (SDC)BeijingChina
| | - Zhi Mei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Maoyuan Liao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Syed A. Hashsham
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
- Department of Civil and Environmental EngineeringMichigan State UniversityMichiganUSA
| | - Andreas Schäffer
- Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
| | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil EngineeringThe University of Hong KongPokfulamHong KongChina
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| | - Robert Stedtfeld
- Department of Civil and Environmental EngineeringMichigan State UniversityMichiganUSA
| | - Hongjie Sheng
- Institute of Agricultural Resources and EnvironmentJiangsu Academy of Agricultural SciencesNanjingChina
| | - Benli Chai
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| | - Marko Virta
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong‐Guan Zhu
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- State Key Laboratory of Urban and Regional EcologyChinese Academy of SciencesBeijingChina
| | - James M. Tiedje
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| |
Collapse
|
5
|
Maugeri A, Barchitta M, Agodi A. Association between quality of governance, antibiotic consumption, and antimicrobial resistance: an analysis of Italian regions. Antimicrob Resist Infect Control 2023; 12:130. [PMID: 37990283 PMCID: PMC10662482 DOI: 10.1186/s13756-023-01337-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Emerging research has provided evidence suggesting the potential influence of governance on the development and spread of antimicrobial resistance (AMR), accounting for significant disparities observed both between and within countries. In our study, we conducted an ecological analysis to investigate the relationship between governance quality, antibiotic consumption, and AMR across Italian regions. METHODS By leveraging data from three distinct sources at the regional level, we compiled a comprehensive dataset comprising: AMR proportions for three specific pathogen-antibiotic combinations in the year 2021, antibiotic consumption data for systemic use in the year 2020, and the 2021 European Quality of Government Index (EQI) and its corresponding pillars. Employing mediation analysis, we investigated the potential mediating role of antibiotic consumption in the association between the EQI and an average measure of AMR. RESULTS Our analysis revealed substantial variation in the percentages of AMR across different regions in Italy, demonstrating a discernible North-to-South gradient concerning both antibiotic usage and governance quality. The EQI exhibited a statistically significant negative correlation with both antibiotic consumption and AMR percentages, encompassing both specific combinations and their average value. Regions characterized by higher levels of governance quality consistently displayed lower values of antibiotic consumption and AMR, while regions with lower governance quality tended to exhibit higher levels of antibiotic use and AMR. Furthermore, we observed a significant total effect of the EQI on average AMR (β = - 0.97; CI - 1.51; - 0.43). Notably, this effect was found to be mediated by antibiotic consumption, as evidenced by a significant indirect effect (β = - 0.89; CI - 1.45; - 0.32). CONCLUSIONS These findings draw attention to the regional disparities observed in AMR levels, antibiotic consumption patterns, and governance quality in Italy. Our study also highlights the mediating role of antibiotic consumption in the relationship between governance quality and AMR. This underscores the significance of implementing focused interventions and policies aimed at improving governance quality and promoting responsible antibiotic use.
Collapse
Affiliation(s)
- Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia 87, 95123, Catania, Italy
| | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia 87, 95123, Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia 87, 95123, Catania, Italy.
| |
Collapse
|
6
|
Maugeri A, Barchitta M, Magnano San Lio R, Agodi A. Socioeconomic and Governance Factors Disentangle the Relationship between Temperature and Antimicrobial Resistance: A 10-Year Ecological Analysis of European Countries. Antibiotics (Basel) 2023; 12:antibiotics12040777. [PMID: 37107139 PMCID: PMC10135271 DOI: 10.3390/antibiotics12040777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Although previous studies showed that warmer temperatures may be associated with increased antimicrobial resistance (AMR) rates, unmeasured factors may explain the observed relationship. We conducted a ten-year ecological analysis to evaluate whether temperature change was associated with AMR across 30 European countries, considering predictors that can determine a geographical gradient. Using four data sources, we created a dataset of: annual temperature change (FAOSTAT database); AMR proportions for ten pathogen-antibiotic combinations (ECDC atlas); consumption of antibiotics for systemic use in the community (ESAC-Net database); population density, gross domestic product (GDP) per capita, and governance indicators (World Bank DataBank). Data were obtained for each country and year (2010-2019) and analyzed through multivariable models. We found evidence of a positive linear association between temperature change and AMR proportion across all countries, years, pathogens, and antibiotics (β = 0.140; 95%CI = 0.039; 0.241; p = 0.007), adjusting for the effect of covariates. However, when GDP per capita and the governance index were included in the multivariable model, temperature change was no longer associated with AMR. Instead, the main predictors were antibiotic consumption (β = 0.506; 95%CI = 0.366; 0.646; p < 0.001), population density (β = 0.143; 95%CI = 0.116; 0.170; p < 0.001), and the governance index (β = -1.043; 95%CI = -1.207; -0.879; p < 0.001). Ensuring the appropriate use of antibiotics and improving governance efficiency are the most effective ways of counteracting AMR. It is necessary to conduct further experimental studies and obtain more detailed data to investigate whether climate change affects AMR.
Collapse
Affiliation(s)
- Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Roberta Magnano San Lio
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| |
Collapse
|
7
|
Li W, Liu C, Ho HC, Shi L, Zeng Y, Yang X, Xia H, Zhang W, Huang C, Yang L. Estimating the effect of increasing ambient temperature on antimicrobial resistance in China: A nationwide ecological study with the difference-in-differences approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163518. [PMID: 37080321 DOI: 10.1016/j.scitotenv.2023.163518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Antimicrobial resistance (AMR) and the possible consequences of rising ambient temperatures brought on by global warming have been extensively discussed. However, the epidemiological evidence on the effects of temperature on AMR is rare and little is known about the role of socioeconomic inequities. This ecological study obtained 31 provinces AMR data of Escherichia Coli (E. coli) from the China Antimicrobial Resistance Surveillance System (CARSS) over the period from 2014 to 2020, which were linked to the meteorological and socioeconomic data published in the China Statistical Yearbook. Modified difference-in-differences (DID) analyses were performed to estimate the effect of ambient temperature on AMR of E. coli to third-generation cephalosporins (ceftriaxone and cefotaxime), carbapenems, and quinolones, adjusting for variations in meteorological and socioeconomic factors. We estimated that every 1 °C increase in average ambient temperature was associated with 2.71 % (95 % confidence interval [CI]: 1.20-4.24), 32.92 % (95 % CI: 15.62-52.81), and 1.81 % (95 % CI: 0.47-3.16) increase in the prevalence of E. coli resistance to third-generation cephalosporins (ceftriaxone and cefotaxime), carbapenems and quinolones, respectively. The link was more profound in the regions with lower temperature and a median level of average humidity, and the regions with lower income, lower expenditure (in economics), lower health resources, and lower hospital admissions. Neither the replacement of the temperature variable nor the alternative approaches for confounding adjustment changed the positive association between ambient temperature and AMR. In general, there exists a positive association between ambient temperature and AMR, although the strength of such an association varies by socioeconomic and health services factors. The association is possibly nonlinear, especially for E. coli resistance to third-generation cephalosporins. The findings suggest that AMR control programs should explicitly incorporate weather patterns to increase their effectiveness.
Collapse
Affiliation(s)
- Weibin Li
- Department of Health Management, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chaojie Liu
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Hung Chak Ho
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Lin Shi
- Department of Health Management, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingchao Zeng
- Department of Health Management, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xinyi Yang
- Department of Health Management, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Haohai Xia
- Department of Health Management, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Lianping Yang
- Department of Health Management, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Magnano San Lio R, Favara G, Maugeri A, Barchitta M, Agodi A. How Antimicrobial Resistance Is Linked to Climate Change: An Overview of Two Intertwined Global Challenges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1681. [PMID: 36767043 PMCID: PMC9914631 DOI: 10.3390/ijerph20031681] [Citation(s) in RCA: 192] [Impact Index Per Article: 192.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 05/13/2023]
Abstract
Globally, antimicrobial resistance (AMR) and climate change (CC) are two of the top health emergencies, and can be considered as two interlinked public health priorities. The complex commonalities between AMR and CC should be deeply investigated in a One Health perspective. Here, we provided an overview of the current knowledge about the relationship between AMR and CC. Overall, the studies included pointed out the need for applying a systemic approach to planetary health. Firstly, CC increasingly brings humans and animals into contact, leading to outbreaks of zoonotic and vector-borne diseases with pandemic potential. Although it is well-established that antimicrobial use in human, animal and environmental sectors is one of the main drivers of AMR, the COVID-19 pandemic is exacerbating the current scenario, by influencing the use of antibiotics, personal protective equipment, and biocides. This also results in higher concentrations of contaminants (e.g., microplastics) in natural water bodies, which cannot be completely removed from wastewater treatment plants, and which could sustain the AMR spread. Our overview underlined the lack of studies on the direct relationship between AMR and CC, and encouraged further research to investigate the multiple aspects involved, and its effect on human health.
Collapse
Affiliation(s)
| | | | | | | | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy
| |
Collapse
|