1
|
Bektas CK, Luo J, Conley B, Le KPN, Lee KB. 3D bioprinting approaches for enhancing stem cell-based neural tissue regeneration. Acta Biomater 2025:S1742-7061(25)00013-3. [PMID: 39793745 DOI: 10.1016/j.actbio.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Three-dimensional (3D) bioprinting holds immense promise for advancing stem cell research and developing novel therapeutic strategies in the field of neural tissue engineering and disease modeling. This paper critically analyzes recent breakthroughs in 3D bioprinting, specifically focusing on its application in these areas. We comprehensively explore the advantages and limitations of various 3D printing methods, the selection and formulation of bioink materials tailored for neural stem cells, and the incorporation of nanomaterials with dual functionality, enhancing the bioprinting process and promoting neurogenesis pathways. Furthermore, the paper reviews the diverse range of stem cells employed in neural bioprinting research, discussing their potential applications and associated challenges. We also introduce the emerging field of 4D bioprinting, highlighting current efforts to develop time-responsive constructs that improve the integration and functionality of bioprinted neural tissues. In short, this manuscript aims to provide a comprehensive understanding of this rapidly evolving field. It underscores the transformative potential of 3D and 4D bioprinting technologies in revolutionizing stem cell research and paving the way for novel therapeutic solutions for neurological disorders and injuries, ultimately contributing significantly to the advancement of regenerative medicine. STATEMENT OF SIGNIFICANCE: This comprehensive review critically examines the current bioprinting research landscape, highlighting efforts to overcome key limitations in printing technologies-improving cell viability post-printing, enhancing resolution, and optimizing cross-linking efficiencies. The continuous refinement of material compositions aims to control the spatiotemporal delivery of therapeutic agents, ensuring better integration of transplanted cells with host tissues. Specifically, the review focuses on groundbreaking advancements in neural tissue engineering. The development of next-generation bioinks, hydrogels, and scaffolds specifically designed for neural regeneration complexities holds the potential to revolutionize treatments for debilitating neural conditions, especially when nanotechnologies are being incorporated. This review offers the readers both a comprehensive analysis of current breakthroughs and an insightful perspective on the future trajectory of neural tissue engineering.
Collapse
Affiliation(s)
- Cemile Kilic Bektas
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Jeffrey Luo
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Brian Conley
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Kim-Phuong N Le
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
2
|
Crook BS, Cullen MM, Pidgeon TS. The Role of Tissue Engineering and Three-Dimensional-Filled Conduits in Bridging Nerve Gaps: A Review of Recent Advancements. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:700-704. [PMID: 39381400 PMCID: PMC11456632 DOI: 10.1016/j.jhsg.2024.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/20/2024] [Indexed: 10/10/2024] Open
Abstract
Tissue-engineered nerve guidance conduits (NGCs) are an area of research interest and investment. Currently, two separate three-dimensional, filled NGCs have Food and Drug Administration approval in the management of nerve gaps up to 3 cm in length, with more on the horizon. Future NGC options will leverage increasingly intricate designs to mimic the natural biology and architecture of native nerve tissue. To enhance the development of next-generation NGCs, experimental protocols and models should be standardized. For the NGCs currently on the market, more clinical data and randomized comparative studies are needed.
Collapse
Affiliation(s)
- Bryan S. Crook
- Department of Orthopaedic Surgery, Duke University Hospital, Durham, NC
| | - Mark M. Cullen
- Department of Orthopaedic Surgery, Duke University Hospital, Durham, NC
| | - Tyler S. Pidgeon
- Department of Orthopaedic Surgery, Duke University Hospital, Durham, NC
| |
Collapse
|
3
|
Krsek A, Jagodic A, Baticic L. Nanomedicine in Neuroprotection, Neuroregeneration, and Blood-Brain Barrier Modulation: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1384. [PMID: 39336425 PMCID: PMC11433843 DOI: 10.3390/medicina60091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Nanomedicine is a newer, promising approach to promote neuroprotection, neuroregeneration, and modulation of the blood-brain barrier. This review includes the integration of various nanomaterials in neurological disorders. In addition, gelatin-based hydrogels, which have huge potential due to biocompatibility, maintenance of porosity, and enhanced neural process outgrowth, are reviewed. Chemical modification of these hydrogels, especially with guanidine moieties, has shown improved neuron viability and underscores tailored biomaterial design in neural applications. This review further discusses strategies to modulate the blood-brain barrier-a factor critically associated with the effective delivery of drugs to the central nervous system. These advances bring supportive solutions to the solving of neurological conditions and innovative therapies for their treatment. Nanomedicine, as applied to neuroscience, presents a significant leap forward in new therapeutic strategies that might help raise the treatment and management of neurological disorders to much better levels. Our aim was to summarize the current state-of-knowledge in this field.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Ana Jagodic
- Department of Family Medicine, Community Health Center Krapina, 49000 Krapina, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
4
|
Sardari S, Hheidari A, Ghodousi M, Rahi A, Pishbin E. Nanotechnology in tissue engineering: expanding possibilities with nanoparticles. NANOTECHNOLOGY 2024; 35:392002. [PMID: 38941981 DOI: 10.1088/1361-6528/ad5cfb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Tissue engineering is a multidisciplinary field that merges engineering, material science, and medical biology in order to develop biological alternatives for repairing, replacing, maintaining, or boosting the functionality of tissues and organs. The ultimate goal of tissue engineering is to create biological alternatives for repairing, replacing, maintaining, or enhancing the functionality of tissues and organs. However, the current landscape of tissue engineering techniques presents several challenges, including a lack of suitable biomaterials, inadequate cell proliferation, limited methodologies for replicating desired physiological structures, and the unstable and insufficient production of growth factors, which are essential for facilitating cell communication and the appropriate cellular responses. Despite these challenges, there has been significant progress made in tissue engineering techniques in recent years. Nanoparticles hold a major role within the realm of nanotechnology due to their unique qualities that change with size. These particles, which provide potential solutions to the issues that are met in tissue engineering, have helped propel nanotechnology to its current state of prominence. Despite substantial breakthroughs in the utilization of nanoparticles over the past two decades, the full range of their potential in addressing the difficulties within tissue engineering remains largely untapped. This is due to the fact that these advancements have occurred in relatively isolated pockets. In the realm of tissue engineering, the purpose of this research is to conduct an in-depth investigation of the several ways in which various types of nanoparticles might be put to use. In addition to this, it sheds light on the challenges that need to be conquered in order to unlock the maximum potential of nanotechnology in this area.
Collapse
Affiliation(s)
- Sohrab Sardari
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran 13114-16846, Iran
| | - Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research branch, Tehran, Iran
| | - Maryam Ghodousi
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, United States of America
| | - Amid Rahi
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Esmail Pishbin
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
5
|
Huang WH, Ding SL, Zhao XY, Li K, Guo HT, Zhang MZ, Gu Q. Collagen for neural tissue engineering: Materials, strategies, and challenges. Mater Today Bio 2023; 20:100639. [PMID: 37197743 PMCID: PMC10183670 DOI: 10.1016/j.mtbio.2023.100639] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023] Open
Abstract
Neural tissue engineering (NTE) has made remarkable strides in recent years and holds great promise for treating several devastating neurological disorders. Selecting optimal scaffolding material is crucial for NET design strategies that enable neural and non-neural cell differentiation and axonal growth. Collagen is extensively employed in NTE applications due to the inherent resistance of the nervous system against regeneration, functionalized with neurotrophic factors, antagonists of neural growth inhibitors, and other neural growth-promoting agents. Recent advancements in integrating collagen with manufacturing strategies, such as scaffolding, electrospinning, and 3D bioprinting, provide localized trophic support, guide cell alignment, and protect neural cells from immune activity. This review categorises and analyses collagen-based processing techniques investigated for neural-specific applications, highlighting their strengths and weaknesses in repair, regeneration, and recovery. We also evaluate the potential prospects and challenges of using collagen-based biomaterials in NTE. Overall, this review offers a comprehensive and systematic framework for the rational evaluation and applications of collagen in NTE.
Collapse
Affiliation(s)
- Wen-Hui Huang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
| | - Sheng-Long Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
| | - Xi-Yuan Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
| | - Kai Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
| | - Hai-Tao Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
| | - Ming-Zhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
- Corresponding author.
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
- Corresponding author. Institute of Zoology, Chinese Academy of Sciences, No. 5 of Courtyard 1, Beichen West Road, Chaoyang District, Beijing 100101, PR China.
| |
Collapse
|
6
|
Li X, Zhang X, Hao M, Wang D, Jiang Z, Sun L, Gao Y, Jin Y, Lei P, Zhuo Y. The application of collagen in the repair of peripheral nerve defect. Front Bioeng Biotechnol 2022; 10:973301. [PMID: 36213073 PMCID: PMC9542778 DOI: 10.3389/fbioe.2022.973301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Collagen is a natural polymer expressed in the extracellular matrix of the peripheral nervous system. It has become increasingly crucial in peripheral nerve reconstruction as it was involved in regulating Schwann cell behaviors, maintaining peripheral nerve functions during peripheral nerve development, and being strongly upregulated after nerve injury to promote peripheral nerve regeneration. Moreover, its biological properties, such as low immunogenicity, excellent biocompatibility, and biodegradability make it a suitable biomaterial for peripheral nerve repair. Collagen provides a suitable microenvironment to support Schwann cells’ growth, proliferation, and migration, thereby improving the regeneration and functional recovery of peripheral nerves. This review aims to summarize the characteristics of collagen as a biomaterial, analyze its role in peripheral nerve regeneration, and provide a detailed overview of the recent advances concerning the optimization of collagen nerve conduits in terms of physical properties and structure, as well as the application of the combination with the bioactive component in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xiaolan Li
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Hao
- School of Acupuncture-Moxi Bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ye Jin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Peng Lei, ; Yue Zhuo,
| | - Yue Zhuo
- School of Acupuncture-Moxi Bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Peng Lei, ; Yue Zhuo,
| |
Collapse
|
7
|
Closing the Gap: Bridging Peripheral Sensory Nerve Defects with a Chitosan-Based Conduit a Randomized Prospective Clinical Trial. J Pers Med 2022; 12:jpm12060900. [PMID: 35743685 PMCID: PMC9224872 DOI: 10.3390/jpm12060900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: If tensionless nerve coaptation is not possible, bridging the resulting peripheral nerve defect with an autologous nerve graft is still the current gold standard. The concept of conduits as an alternative with different materials and architectures, such as autologous vein conduits or bioartificial nerve conduits, could not replace the nerve graft until today. Chitosan, as a relatively new biomaterial, has recently demonstrated exceptional biocompatibility and material stability with neural lineage cells. The purpose of this prospective randomized clinical experiment was to determine the efficacy of chitosan-based nerve conduits in regenerating sensory nerves in the hand. Materials and methods: Forty-seven patients with peripheral nerve defects up to 26 mm distal to the carpal tunnel were randomized to receive either a chitosan conduit or an autologous nerve graft with the latter serving as the control group. Fifteen patients from the conduit group and seven patients from the control group were available for a 12-month follow-up examination. The primary outcome parameter was tactile gnosis measured with two-point discrimination. The secondary outcome parameters were Semmens Weinstein Monofilament Testing, self-assessed pain, and patient satisfaction. Results: Significant improvement (in static two-point discrimination) was observed six months after trauma (10.7 ± 1.2 mm; p < 0.05) for chitosan-based nerve conduits, but no further improvement was observed after 12 months of regeneration (10.9 ± 1.3 mm). After six months and twelve months, the autologous nerve graft demonstrated comparable results to the nerve conduit, with a static two-point discrimination of 11.0 ± 2.0 mm and 7.9 ± 1.1 mm. Semmes Weinstein Filament Testing in the nerve conduit group showed a continuous improvement over the regeneration period by reaching from 3.1 ± 0.3 after three months up to 3.7 ± 0.4 after twelve months. Autologous nerve grafts presented similar results: 3.3 ± 0.4 after three months and 3.7 ± 0.5 after twelve months. Patient satisfaction and self-reported pain levels were similar between the chitosan nerve conduit and nerve graft groups. One patient required revision surgery due to complications associated with the chitosan nerve tube. Conclusion: Chitosan-based nerve conduits are safe and suitable for bridging nerve lesions up to 26 mm in the hand. Tactile gnosis improved significantly during the early regeneration period, and functional outcomes were similar to those obtained with an autologous nerve graft. Thus, chitosan appears to be a sufficient substitute for autologous nerve grafts in the treatment of small nerve defects in the hand.
Collapse
|
8
|
Characterization of a Novel Aspect of Tissue Scarring Following Experimental Spinal Cord Injury and the Implantation of Bioengineered Type-I Collagen Scaffolds in the Adult Rat: Involvement of Perineurial-like Cells? Int J Mol Sci 2022; 23:ijms23063221. [PMID: 35328642 PMCID: PMC8954100 DOI: 10.3390/ijms23063221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous intervention strategies have been developed to promote functional tissue repair following experimental spinal cord injury (SCI), including the bridging of lesion-induced cystic cavities with bioengineered scaffolds. Integration between such implanted scaffolds and the lesioned host spinal cord is critical for supporting regenerative growth, but only moderate-to-low degrees of success have been reported. Light and electron microscopy were employed to better characterise the fibroadhesive scarring process taking place after implantation of a longitudinally microstructured type-I collagen scaffold into unilateral mid-cervical resection injuries of the adult rat spinal cord. At long survival times (10 weeks post-surgery), sheets of tightly packed cells (of uniform morphology) could be seen lining the inner surface of the repaired dura mater of lesion-only control animals, as well as forming a barrier along the implant–host interface of the scaffold-implanted animals. The highly uniform ultrastructural features of these scarring cells and their anatomical continuity with the local, reactive spinal nerve roots strongly suggest their identity to be perineurial-like cells. This novel aspect of the cellular composition of reactive spinal cord tissue highlights the increasingly complex nature of fibroadhesive scarring involved in traumatic injury, and particularly in response to the implantation of bioengineered collagen scaffolds.
Collapse
|
9
|
Jana S, Das P, Mukherjee J, Banerjee D, Ghosh PR, Kumar Das P, Bhattacharya RN, Nandi SK. Waste-derived biomaterials as building blocks in the biomedical field. J Mater Chem B 2022; 10:489-505. [PMID: 35018942 DOI: 10.1039/d1tb02125g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent developments in the biomedical arena have led to the fabrication of innovative biomaterials by utilizing bioactive molecules obtained from biological wastes released from fruit and beverage processing industries, and fish, meat, and poultry industries. These biological wastes that end up in water bodies as well as in landfills are an affluent source of animal- and plant-derived proteins, bio ceramics and polysaccharides such as collagens, gelatins, chitins, chitosans, eggshell membrane proteins, hydroxyapatites, celluloses, and pectins. These bioactive molecules have been intricately designed into scaffolds and dressing materials by utilizing advanced technologies for drug delivery, tissue engineering, and wound healing relevance. These biomaterials are environment-friendly, biodegradable, and biocompatible, and show excellent tissue regeneration attributes. Additionally, being cost-effective they can reduce the burden on the healthcare system as well as provide a sustainable solution to waste management. In this review, the current trends in the utilization of plant and animal waste-derived biomaterials in various biomedical fields are considered along with a separate section on their applications as xenografts.
Collapse
Affiliation(s)
- Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Piyali Das
- Department of Microbiology, School of Life Sciences and Biotechnology, Adamas University, Barasat, West Bengal 700126, India
| | - Joydip Mukherjee
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Dipak Banerjee
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Prabal Ranjan Ghosh
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Pradip Kumar Das
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | | | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India.
| |
Collapse
|
10
|
Li Y, Fraser D, Mereness J, Van Hove A, Basu S, Newman M, Benoit DSW. Tissue Engineered Neurovascularization Strategies for Craniofacial Tissue Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:20-39. [PMID: 35014834 PMCID: PMC9016342 DOI: 10.1021/acsabm.1c00979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Craniofacial tissue injuries, diseases, and defects, including those within bone, dental, and periodontal tissues and salivary glands, impact an estimated 1 billion patients globally. Craniofacial tissue dysfunction significantly reduces quality of life, and successful repair of damaged tissues remains a significant challenge. Blood vessels and nerves are colocalized within craniofacial tissues and act synergistically during tissue regeneration. Therefore, the success of craniofacial regenerative approaches is predicated on successful recruitment, regeneration, or integration of both vascularization and innervation. Tissue engineering strategies have been widely used to encourage vascularization and, more recently, to improve innervation through host tissue recruitment or prevascularization/innervation of engineered tissues. However, current scaffold designs and cell or growth factor delivery approaches often fail to synergistically coordinate both vascularization and innervation to orchestrate successful tissue regeneration. Additionally, tissue engineering approaches are typically investigated separately for vascularization and innervation. Since both tissues act in concert to improve craniofacial tissue regeneration outcomes, a revised approach for development of engineered materials is required. This review aims to provide an overview of neurovascularization in craniofacial tissues and strategies to target either process thus far. Finally, key design principles are described for engineering approaches that will support both vascularization and innervation for successful craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - David Fraser
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Jared Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Amy Van Hove
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Sayantani Basu
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Maureen Newman
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
11
|
Weis J, Katona I, Nikolin S, Nobbio L, Prada V, Grandis M, Schenone A. Techniques for the standard histological and ultrastructural assessment of nerve biopsies. J Peripher Nerv Syst 2021; 26 Suppl 2:S3-S10. [PMID: 34768314 DOI: 10.1111/jns.12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 11/27/2022]
Abstract
It is always a challenge to acquire a clear picture of the pathological processes and changes in any disease. For this purpose, it is advantageous to directly examine the affected organ. Nerve biopsy has been a method of choice for decades to classify peripheral neuropathies and to find clues to uncover their etiology. The histologic examination of the peripheral nerve provides information on axonal or myelin pathology as well as on the surrounding connective tissue and vascularization of the nerve. Minimal requirements of the workup include paraffin histology as well as resin semithin section histology. Cryostat sections, teased fiber preparations and electron microscopy are potentially useful in a subset of cases. Here we describe our standard procedures for the workup of the tissue sample and provide examples of diagnostically relevant findings.
Collapse
Affiliation(s)
- Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Stefan Nikolin
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Lucilla Nobbio
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genova, Genova, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Valeria Prada
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genova, Genova, Italy
| | - Marina Grandis
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genova, Genova, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genova, Genova, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
12
|
Elkhoury K, Morsink M, Sanchez-Gonzalez L, Kahn C, Tamayol A, Arab-Tehrany E. Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications. Bioact Mater 2021; 6:3904-3923. [PMID: 33997485 PMCID: PMC8080408 DOI: 10.1016/j.bioactmat.2021.03.040] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/05/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Natural hydrogels are one of the most promising biomaterials for tissue engineering applications, due to their biocompatibility, biodegradability, and extracellular matrix mimicking ability. To surpass the limitations of conventional fabrication techniques and to recapitulate the complex architecture of native tissue structure, natural hydrogels are being constructed using novel biofabrication strategies, such as textile techniques and three-dimensional bioprinting. These innovative techniques play an enormous role in the development of advanced scaffolds for various tissue engineering applications. The progress, advantages, and shortcomings of the emerging biofabrication techniques are highlighted in this review. Additionally, the novel applications of biofabricated natural hydrogels in cardiac, neural, and bone tissue engineering are discussed as well.
Collapse
Affiliation(s)
| | - Margaretha Morsink
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, 7500AE, the Netherlands
| | | | - Cyril Kahn
- LIBio, Université de Lorraine, Nancy, F-54000, France
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | | |
Collapse
|
13
|
'EngNT' - Engineering live neural tissue for nerve replacement. Emerg Top Life Sci 2021; 5:699-703. [PMID: 34297065 PMCID: PMC8726050 DOI: 10.1042/etls20210085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
Peripheral nerve injury can result in severe long-term disability and current clinical approaches for repairing large gaps rely on the nerve autograft. Engineered Neural Tissue (EngNT) has been developed to provide living aligned therapeutic cells in a stabilised collagen hydrogel, mimicking the key features of the autograft. This Perspective article will introduce the field and discuss the current stage of translation, highlighting the key opportunities for commercial and clinical development.
Collapse
|
14
|
Zheng X, Zhang P, Fu Z, Meng S, Dai L, Yang H. Applications of nanomaterials in tissue engineering. RSC Adv 2021; 11:19041-19058. [PMID: 35478636 PMCID: PMC9033557 DOI: 10.1039/d1ra01849c] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Recent advancement in nanotechnology has brought prominent benefits in tissue engineering, which has been used to repair or reconstruct damaged tissues or organs and design smart drug delivery systems. With numerous applications of nanomaterials in tissue engineering, it is vital to choose appropriate nanomaterials for different tissue engineering applications because of the tissue heterogeneity. Indeed, the use of nanomaterials in tissue engineering is directly determined by the choice. In this review, we mainly introduced the use of nanomaterials in tissue engineering. First, the basic characteristics, preparation and characterization methods of the types of nanomaterials are introduced briefly, followed by a detailed description of the application and research progress of nanomaterials in tissue engineering and drug delivery. Finally, the existing challenges and prospects for future applications of nanomaterials in tissue engineering are discussed.
Collapse
Affiliation(s)
- Xinmin Zheng
- School of Life Sciences, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Pan Zhang
- School of Life Sciences, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Zhenxiang Fu
- Institute of Medical Research, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Siyu Meng
- Institute of Medical Research, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Liangliang Dai
- Institute of Medical Research, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
15
|
Tupone MG, d'Angelo M, Castelli V, Catanesi M, Benedetti E, Cimini A. A State-of-the-Art of Functional Scaffolds for 3D Nervous Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:639765. [PMID: 33816451 PMCID: PMC8012845 DOI: 10.3389/fbioe.2021.639765] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Exploring and developing multifunctional intelligent biomaterials is crucial to improve next-generation therapies in tissue engineering and regenerative medicine. Recent findings show how distinct characteristics of in situ microenvironment can be mimicked by using different biomaterials. In vivo tissue architecture is characterized by the interconnection between cells and specific components of the extracellular matrix (ECM). Last evidence shows the importance of the structure and composition of the ECM in the development of cellular and molecular techniques, to achieve the best biodegradable and bioactive biomaterial compatible to human physiology. Such biomaterials provide specialized bioactive signals to regulate the surrounding biological habitat, through the progression of wound healing and biomaterial integration. The connection between stem cells and biomaterials stimulate the occurrence of specific modifications in terms of cell properties and fate, influencing then processes such as self-renewal, cell adhesion and differentiation. Recent studies in the field of tissue engineering and regenerative medicine have shown to deal with a broad area of applications, offering the most efficient and suitable strategies to neural repair and regeneration, drawing attention towards the potential use of biomaterials as 3D tools for in vitro neurodevelopment of tissue models, both in physiological and pathological conditions. In this direction, there are several tools supporting cell regeneration, which associate cytokines and other soluble factors delivery through the scaffold, and different approaches considering the features of the biomaterials, for an increased functionalization of the scaffold and for a better promotion of neural proliferation and cells-ECM interplay. In fact, 3D scaffolds need to ensure a progressive and regular delivery of cytokines, growth factors, or biomolecules, and moreover they should serve as a guide and support for injured tissues. It is also possible to create scaffolds with different layers, each one possessing different physical and biochemical aspects, able to provide at the same time organization, support and maintenance of the specific cell phenotype and diversified ECM morphogenesis. Our review summarizes the most recent advancements in functional materials, which are crucial to achieve the best performance and at the same time, to overcome the current limitations in tissue engineering and nervous tissue regeneration.
Collapse
Affiliation(s)
- Maria Grazia Tupone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Center for Microscopy, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
16
|
Roy HS, Singh R, Ghosh D. SARS-CoV-2 and tissue damage: current insights and biomaterial-based therapeutic strategies. Biomater Sci 2021; 9:2804-2824. [PMID: 33666206 DOI: 10.1039/d0bm02077j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The effect of SARS-CoV-2 infection on humanity has gained worldwide attention and importance due to the rapid transmission, lack of treatment options and high mortality rate of the virus. While scientists across the world are searching for vaccines/drugs that can control the spread of the virus and/or reduce the risks associated with infection, patients infected with SARS-CoV-2 have been reported to have tissue/organ damage. With most tissues/organs having limited regenerative potential, interventions that prevent further damage or facilitate healing would be helpful. In the past few decades, biomaterials have gained prominence in the field of tissue engineering, in view of their major role in the regenerative process. Here we describe the effect of SARS-CoV-2 on multiple tissues/organs, and provide evidence for the positive role of biomaterials in aiding tissue repair. These findings are further extrapolated to explore their prospects as a therapeutic platform to address the tissue/organ damage that is frequently observed during this viral outbreak. This study suggests that the biomaterial-based approach could be an effective strategy for regenerating tissues/organs damaged by SARS-CoV-2.
Collapse
Affiliation(s)
- Himadri Shekhar Roy
- Department of Biological Science, Institute of Nanoscience and Technology (INST), Habitat Centre, Sector 64, Phase 10, Mohali-160062, Punjab, India.
| | - Rupali Singh
- Department of Biological Science, Institute of Nanoscience and Technology (INST), Habitat Centre, Sector 64, Phase 10, Mohali-160062, Punjab, India.
| | - Deepa Ghosh
- Department of Biological Science, Institute of Nanoscience and Technology (INST), Habitat Centre, Sector 64, Phase 10, Mohali-160062, Punjab, India.
| |
Collapse
|
17
|
Fundamentals and Current Strategies for Peripheral Nerve Repair and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:173-201. [PMID: 32602098 DOI: 10.1007/978-981-15-3258-0_12] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A body of evidence indicates that peripheral nerves have an extraordinary yet limited capacity to regenerate after an injury. Peripheral nerve injuries have confounded professionals in this field, from neuroscientists to neurologists, plastic surgeons, and the scientific community. Despite all the efforts, full functional recovery is still seldom. The inadequate results attained with the "gold standard" autograft procedure still encourage a dynamic and energetic research around the world for establishing good performing tissue-engineered alternative grafts. Resourcing to nerve guidance conduits, a variety of methods have been experimentally used to bridge peripheral nerve gaps of limited size, up to 30-40 mm in length, in humans. Herein, we aim to summarize the fundamentals related to peripheral nerve anatomy and overview the challenges and scientific evidences related to peripheral nerve injury and repair mechanisms. The most relevant reports dealing with the use of both synthetic and natural-based biomaterials used in tissue engineering strategies when treatment of nerve injuries is envisioned are also discussed in depth, along with the state-of-the-art approaches in this field.
Collapse
|
18
|
Wang H, Spinner RJ. Commentary: Allograft Nerve Repair Reduces Postoperative Neuropathic Pain Following Nerve Biopsy. Neurosurgery 2020; 87:E646-E647. [DOI: 10.1093/neuros/nyaa287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 11/14/2022] Open
|
19
|
Meena P, Kakkar A, Kumar M, Khatri N, Nagar RK, Singh A, Malhotra P, Shukla M, Saraswat SK, Srivastava S, Datt R, Pandey S. Advances and clinical challenges for translating nerve conduit technology from bench to bed side for peripheral nerve repair. Cell Tissue Res 2020; 383:617-644. [PMID: 33201351 DOI: 10.1007/s00441-020-03301-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Injuries to the peripheral nervous system remain a large-scale clinical problem. These injuries often lead to loss of motor and/or sensory function that significantly affects patients' quality of life. The current neurosurgical approach for peripheral nerve repair involves autologous nerve transplantation, which often leads to clinical complications. The most pressing need is to increase the regenerative capacity of existing tubular constructs in the repair of large nerve gaps through development of tissue-engineered approaches that can surpass the performance of autografts. To fully realize the clinical potential of nerve conduit technology, there is a need to reconsider design strategies, biomaterial selection, fabrication techniques and the various potential modifications to optimize a conduit microenvironment that can best mimic the natural process of regeneration. In recent years, a significant progress has been made in the designing and functionality of bioengineered nerve conduits to bridge long peripheral nerve gaps in various animal models. However, translation of this work from lab to commercial scale has not been achieve. The current review summarizes recent advances in the development of tissue engineered nerve guidance conduits (NGCs) with regard to choice of material, novel fabrication methods, surface modifications and regenerative cues such as stem cells and growth factors to improve regeneration performance. Also, the current clinical potential and future perspectives to achieve therapeutic benefits of NGCs will be discussed in context of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Poonam Meena
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Anupama Kakkar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Mukesh Kumar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Nitin Khatri
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Rakesh Kumar Nagar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Aarti Singh
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Poonam Malhotra
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Manish Shukla
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Sumit Kumar Saraswat
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Supriya Srivastava
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Rajan Datt
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Siddharth Pandey
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India.
| |
Collapse
|
20
|
Akhtar A, Andleeb A, Waris TS, Bazzar M, Moradi AR, Awan NR, Yar M. Neurodegenerative diseases and effective drug delivery: A review of challenges and novel therapeutics. J Control Release 2020; 330:1152-1167. [PMID: 33197487 DOI: 10.1016/j.jconrel.2020.11.021] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
The central nervous system (CNS) encompasses the brain and spinal cord and is considered the processing center and the most vital part of human body. The central nervous system (CNS) barriers are crucial interfaces between the CNS and the periphery. Among all these biological barriers, the blood-brain barrier (BBB) strongly impede hurdle for drug transport to brain. It is a semi-permeable diffusion barrier against the noxious chemicals and harmful substances present in the blood stream and regulates the nutrients delivery to the brain for its proper functioning. Neurological diseases owing to the existence of the BBB and the blood-spinal cord barrier have been terrible and threatening challenges all over the world and can rarely be directly mediated. In fact, drug delivery to brain remained a challenge in the treatment of neurodegenerative (ND) disorders, for these different approaches have been proposed. Nano-fabricated smart drug delivery systems and implantable drug loaded biomaterials for brain repair are among some of these latest approaches. In current review, modern approaches developed to deal with the challenges associated with transporting drugs to the CNS are included. Recent studies on neural drug discovery and injectable hydrogels provide a potential new treatment option for neurological disorders. Moreover, induced pluripotent stem cells used to model ND diseases are discussed to evaluate drug efficacy. These protocols and recent developments will enable discovery of more effective drug delivery systems for brain.
Collapse
Affiliation(s)
- Amna Akhtar
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan; Department of Chemical Engineering, COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| | - Anisa Andleeb
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| | - Tayyba Sher Waris
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| | - Masoomeh Bazzar
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Ali-Reza Moradi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran; School of Nano Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran 19395, Iran
| | - Nasir Raza Awan
- Department of Neurosciences, Sharif Medical and Dental College, Lahore, Pakistan; Spinacure, 63-A Block E1, Gulberg III, Lahore, Pakistan
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan.
| |
Collapse
|
21
|
Dietzmeyer N, Förthmann M, Grothe C, Haastert-Talini K. Modification of tubular chitosan-based peripheral nerve implants: applications for simple or more complex approaches. Neural Regen Res 2020; 15:1421-1431. [PMID: 31997801 PMCID: PMC7059590 DOI: 10.4103/1673-5374.271668] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/02/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
Surgical treatment of peripheral nerve injuries is still a major challenge in human clinic. Up to now, none of the well-developed microsurgical treatment options is able to guarantee a complete restoration of nerve function. This restriction is also effective for novel clinically approved artificial nerve guides. In this review, we compare surgical repair techniques primarily for digital nerve injuries reported with relatively high prevalence to be valuable attempts in clinical digital nerve repair and point out their advantages and shortcomings. We furthermore discuss the use of artificial nerve grafts with a focus on chitosan-based nerve guides, for which our own studies contributed to their approval for clinical use. In the second part of this review, very recent future perspectives for the enhancement of tubular (commonly hollow) nerve guides are discussed in terms of their clinical translatability and ability to form three-dimensional constructs that biomimick the natural nerve structure. This includes materials that have already shown their beneficial potential in in vivo studies like fibrous intraluminal guidance structures, hydrogels, growth factors, and approaches of cell transplantation. Additionally, we highlight upcoming future perspectives comprising co-application of stem cell secretome. From our overview, we conclude that already simple attempts are highly effective to increase the regeneration supporting properties of nerve guides in experimental studies. But for bringing nerve repair with bioartificial nerve grafts to the next level, e.g. repair of defects > 3 cm in human patients, more complex intraluminal guidance structures such as innovatively manufactured hydrogels and likely supplementation of stem cells or their secretome for therapeutic purposes may represent promising future perspectives.
Collapse
Affiliation(s)
- Nina Dietzmeyer
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Maria Förthmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| |
Collapse
|
22
|
Pharmaceutical applications of silk sericin. ANNALES PHARMACEUTIQUES FRANÇAISES 2020; 78:469-486. [PMID: 32569621 DOI: 10.1016/j.pharma.2020.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 01/01/2023]
Abstract
Silk sericin is an applicable protein extracted from dried silk cocoons, which are composed of a polar amino acid chain with hydroxyl, carboxyl, and amino functional groups. It anticipated that the functionality present in sericin provides excellent assets such as stability, release-modifying capacity, interaction with molecules, etc. It has various significant properties like biocompatibility, biodegradability, non-toxicity, hydrophilicity, etc. Besides, sericin exhibits the capability to form gels, nanoparticles, micro-particles, and keen bioengineered materials. Sericin also offers stability by strong affinity to the drug substance/molecules. Currently, sericin reconnoitered for a variety of pharmaceutical applications including solubility enhancement, release modifications, formulation stabilization, and as a drug carrier, etc. The focus of the review is to deliver an impression of the sericin based pharmaceutical applications including nanocrystal and nanoparticle stabilization, inhibition of devitrification, solubility enhancement, controlled and the extended-release formulation, targeted drug delivery, wound healing applications and as a suitable carrier.
Collapse
|
23
|
Küenzlen L, Nasim S, van Neerven S, Kühn S, Burger AE, Sohn M, Rieger UM, Bozkurt A. Multimodal Evaluation of Functional Nerve Regeneration in Transgender Individuals After Phalloplasty With a Free Radial Forearm Flap. J Sex Med 2020; 17:1012-1024. [DOI: 10.1016/j.jsxm.2020.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
|
24
|
Pawar K, Welzel G, Haynl C, Schuster S, Scheibel T. Recombinant Spider Silk and Collagen-Based Nerve Guidance Conduits Support Neuronal Cell Differentiation and Functionality in Vitro. ACS APPLIED BIO MATERIALS 2019; 2:4872-4880. [DOI: 10.1021/acsabm.9b00628] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kiran Pawar
- Department for Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, 95447 Bayreuth, Germany
| | | | - Christian Haynl
- Department for Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, 95447 Bayreuth, Germany
| | | | - Thomas Scheibel
- Department for Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, 95447 Bayreuth, Germany
| |
Collapse
|
25
|
Li G, Chen K, You D, Xia M, Li W, Fan S, Chai R, Zhang Y, Li H, Sun S. Laminin-Coated Electrospun Regenerated Silk Fibroin Mats Promote Neural Progenitor Cell Proliferation, Differentiation, and Survival in vitro. Front Bioeng Biotechnol 2019; 7:190. [PMID: 31448271 PMCID: PMC6691020 DOI: 10.3389/fbioe.2019.00190] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022] Open
Abstract
Neural progenitor cell (NPC) transplantation is a promising technique for central nervous system (CNS) reconstruction and regeneration. Biomaterial scaffolds, frameworks, and platforms can support NPC proliferation and differentiation in vitro as well as serve as a temporary extracellular matrix after transplantation. However, further applications of biomaterials require improved biological attributes. Silk fibroin (SF), which is produced by Bombyx mori, is a widely used and studied protein polymer for biomaterial application. Here, we prepared aligned and random eletrospun regenerated SF (RSF) scaffolds, and evaluated their impact on the growth of NPCs. First, we isolated NPCs and then cultured them on either laminin-coated RSF mats or conventional laminin-coated coverslips for cell assays. We found that aligned and random RSF led to increases in NPC proliferation of 143.8 ± 13.3% and 156.3 ± 14.7%, respectively, compared to controls. Next, we investigated neuron differentiation and found that the aligned and the random RSF led to increases in increase in neuron differentiation of about 93.2 ± 6.4%, and 3167.1 ± 4.8%, respectively, compared to controls. Furthermore, we measured the survival of NPCs and found that RSF promoted NPC survival, and found there was no difference among those three groups. Finally, signaling pathways in cells cultured on RSF mats were studied for their contributions in neural cell differentiation. Our results indicate that RSF mats provide a functional microenvironment and represent a useful scaffold for the development of new strategies in neural engineering research.
Collapse
Affiliation(s)
- Guangfei Li
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China
| | - Kai Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Dan You
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China
| | - Mingyu Xia
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China
| | - Wen Li
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Renjie Chai
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Huawei Li
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China.,Collaborative Innovation Center for Brain Science, Institute of Biomedical Sciences, Institute of Brain Science, Fudan University, Shanghai, China
| | - Shan Sun
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Altinova H, Hammes S, Palm M, Gerardo-Nava J, Achenbach P, Deumens R, Hermans E, Führmann T, Boecker A, van Neerven SGA, Bozkurt A, Weis J, Brook GA. Fibroadhesive scarring of grafted collagen scaffolds interferes with implant-host neural tissue integration and bridging in experimental spinal cord injury. Regen Biomater 2019; 6:75-87. [PMID: 30967962 PMCID: PMC6447003 DOI: 10.1093/rb/rbz006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/06/2019] [Indexed: 02/06/2023] Open
Abstract
Severe traumatic spinal cord injury (SCI) results in a devastating and permanent loss of function, and is currently an incurable condition. It is generally accepted that future intervention strategies will require combinational approaches, including bioengineered scaffolds, to support axon growth across tissue scarring and cystic cavitation. Previously, we demonstrated that implantation of a microporous type-I collagen scaffold into an experimental model of SCI was capable of supporting functional recovery in the absence of extensive implant–host neural tissue integration. Here, we demonstrate the reactive host cellular responses that may be detrimental to neural tissue integration after implantation of collagen scaffolds into unilateral resection injuries of the adult rat spinal cord. Immunohistochemistry demonstrated scattered fibroblast-like cell infiltration throughout the scaffolds as well as the presence of variable layers of densely packed cells, the fine processes of which extended along the graft–host interface. Few reactive astroglial or regenerating axonal profiles could be seen traversing this layer. Such encapsulation-type behaviour around bioengineered scaffolds impedes the integration of host neural tissues and reduces the intended bridging role of the implant. Characterization of the cellular and molecular mechanisms underpinning this behaviour will be pivotal in the future design of collagen-based bridging scaffolds intended for regenerative medicine.
Collapse
Affiliation(s)
- Haktan Altinova
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany.,Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany.,Police Headquarters Berlin, Medical Commission, Berlin, Germany
| | - Sebastian Hammes
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Moniek Palm
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jose Gerardo-Nava
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Pascal Achenbach
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Ronald Deumens
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany.,Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Emmanuel Hermans
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Tobias Führmann
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | - Arne Boecker
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Centre Trauma Centre, BG Trauma Centre Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany.,Department of Plastic, Reconstructive and Hand Surgery, Burn Centre, RWTH Aachen University Hospital, Aachen, Germany
| | - Sabien Geraldine Antonia van Neerven
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.,Department of Plastic, Reconstructive and Hand Surgery, Burn Centre, RWTH Aachen University Hospital, Aachen, Germany
| | - Ahmet Bozkurt
- Department of Plastic, Reconstructive and Hand Surgery, Burn Centre, RWTH Aachen University Hospital, Aachen, Germany.,Department of Plastic, Aesthetic, Hand and Burn Surgery, Helios University Hospital Wuppertal, University Witten/Herdecke, Wuppertal, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Gary Anthony Brook
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
27
|
Kou YH, Jiang BG, Yu F, Yu YL, Niu SP, Zhang PX, Yin XF, Han N, Zhang YJ, Zhang DY. Repair of long segmental ulnar nerve defects in rats by several different kinds of nerve transposition. Neural Regen Res 2019; 14:692-698. [PMID: 30632510 PMCID: PMC6352591 DOI: 10.4103/1673-5374.247473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multiple regeneration of axonal buds has been shown to exist during the repair of peripheral nerve injury, which confirms a certain repair potential of the injured peripheral nerve. Therefore, a systematic nerve transposition repair technique has been proposed to treat severe peripheral nerve injury. During nerve transposition repair, the regenerated nerve fibers of motor neurons in the anterior horn of the spinal cord can effectively grow into the repaired distal nerve and target muscle tissues, which is conducive to the recovery of motor function. The aim of this study was to explore regeneration and nerve functional recovery after repairing a long-segment peripheral nerve defect by transposition of different donor nerves. A long-segment (2 mm) ulnar nerve defect in Sprague-Dawley rats was repaired by transposition of the musculocutaneous nerve, medial pectoral nerve, muscular branches of the radial nerve and anterior interosseous nerve (pronator quadratus muscle branch). In situ repair of the ulnar nerve was considered as a control. Three months later, wrist flexion function, nerve regeneration and innervation muscle recovery in rats were assessed using neuroelectrophysiological testing, osmic acid staining and hematoxylin-eosin staining, respectively. Our findings indicate that repair of a long-segment ulnar nerve defect with different donor nerve transpositions can reinnervate axonal function of motor neurons in the anterior horn of spinal cord and restore the function of affected limbs to a certain extent.
Collapse
|
28
|
Boni R, Ali A, Shavandi A, Clarkson AN. Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci 2018; 25:90. [PMID: 30572957 PMCID: PMC6300901 DOI: 10.1186/s12929-018-0491-8] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
The nervous system is a crucial component of the body and damages to this system, either by of injury or disease, can result in serious or potentially lethal consequences. Restoring the damaged nervous system is a great challenge due to the complex physiology system and limited regenerative capacity.Polymers, either synthetic or natural in origin, have been extensively evaluated as a solution for restoring functions in damaged neural tissues. Polymers offer a wide range of versatility, in particular regarding shape and mechanical characteristics, and their biocompatibility is unmatched by other biomaterials, such as metals and ceramics. Several studies have shown that polymers can be shaped into suitable support structures, including nerve conduits, scaffolds, and electrospun matrices, capable of improving the regeneration of damaged neural tissues. In general, natural polymers offer the advantage of better biocompatibility and bioactivity, while synthetic or non-natural polymers have better mechanical properties and structural stability. Often, combinations of the two allow for the development of polymeric conduits able to mimic the native physiological environment of healthy neural tissues and, consequently, regulate cell behaviour and support the regeneration of injured nervous tissues.Currently, most of neural tissue engineering applications are in pre-clinical study, in particular for use in the central nervous system, however collagen polymer conduits aimed at regeneration of peripheral nerves have already been successfully tested in clinical trials.This review highlights different types of natural and synthetic polymers used in neural tissue engineering and their advantages and disadvantages for neural regeneration.
Collapse
Affiliation(s)
- Rossana Boni
- Bioengineering Research Team, Centre for Bioengineering and Nanomedicine, Department of Food Science, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
| | - Azam Ali
- Bioengineering Research Team, Centre for Bioengineering and Nanomedicine, Department of Food Science, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
| | - Amin Shavandi
- Bioengineering Research Team, Centre for Bioengineering and Nanomedicine, Department of Food Science, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
- BioMatter-Biomass Transformation Lab (BTL), École interfacultaire de Bioingénieurs (EIB), École polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
| |
Collapse
|
29
|
Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther 2018; 12:3117-3145. [PMID: 30288019 PMCID: PMC6161720 DOI: 10.2147/dddt.s165440] [Citation(s) in RCA: 395] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the last half-century, the development of biodegradable polymeric materials for biomedical applications has advanced significantly. Biodegradable polymeric materials are favored in the development of therapeutic devices, including temporary implants and three-dimensional scaffolds for tissue engineering. Further advancements have occurred in the utilization of biodegradable polymeric materials for pharmacological applications such as delivery vehicles for controlled/sustained drug release. These applications require particular physicochemical, biological, and degradation properties of the materials to deliver effective therapy. As a result, a wide range of natural or synthetic polymers able to undergo hydrolytic or enzymatic degradation is being studied for biomedical applications. This review outlines the current development of biodegradable natural and synthetic polymeric materials for various biomedical applications, including tissue engineering, temporary implants, wound healing, and drug delivery.
Collapse
Affiliation(s)
- Richard Song
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA,
| | - Maxwell Murphy
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA,
| | - Chenshuang Li
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA,
| | - Kang Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA,
- UCLA Department of Surgery and Department of Orthopaedic Surgery and The Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, USA,
- UCLA Department of Bioengineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chia Soo
- UCLA Department of Surgery and Department of Orthopaedic Surgery and The Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, USA,
| | - Zhong Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA,
| |
Collapse
|
30
|
Zhang B, Yan W, Zhu Y, Yang W, Le W, Chen B, Zhu R, Cheng L. Nanomaterials in Neural-Stem-Cell-Mediated Regenerative Medicine: Imaging and Treatment of Neurological Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705694. [PMID: 29543350 DOI: 10.1002/adma.201705694] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/17/2017] [Indexed: 05/24/2023]
Abstract
Patients are increasingly being diagnosed with neuropathic diseases, but are rarely cured because of the loss of neurons in damaged tissues. This situation creates an urgent clinical need to develop alternative treatment strategies for effective repair and regeneration of injured or diseased tissues. Neural stem cells (NSCs), highly pluripotent cells with the ability of self-renewal and potential for multidirectional differentiation, provide a promising solution to meet this demand. However, some serious challenges remaining to be addressed are the regulation of implanted NSCs, tracking their fate, monitoring their interaction with and responsiveness to the tissue environment, and evaluating their treatment efficacy. Nanomaterials have been envisioned as innovative components to further empower the field of NSC-based regenerative medicine, because their unique physicochemical characteristics provide unparalleled solutions to the imaging and treatment of diseases. By building on the advantages of nanomaterials, tremendous efforts have been devoted to facilitate research into the clinical translation of NSC-based therapy. Here, recent work on emerging nanomaterials is highlighted and their performance in the imaging and treatment of neurological diseases is evaluated, comparing the strengths and weaknesses of various imaging modalities currently used. The underlying mechanisms of therapeutic efficacy are discussed, and future research directions are suggested.
Collapse
Affiliation(s)
- Bingbo Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| | - Wei Yan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Yanjing Zhu
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| | - Weitao Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
| | - Wenjun Le
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
| | - Bingdi Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
| | - Rongrong Zhu
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| | - Liming Cheng
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| |
Collapse
|
31
|
Petcu EB, Midha R, McColl E, Popa-Wagner A, Chirila TV, Dalton PD. 3D printing strategies for peripheral nerve regeneration. Biofabrication 2018; 10:032001. [DOI: 10.1088/1758-5090/aaaf50] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|