1
|
Komal, Diksha, Patil NS, Singh A. Guardians of Health: Navigating Nipah Virus Challenges in India. Infect Disord Drug Targets 2025; 25:e080424228794. [PMID: 38591216 DOI: 10.2174/0118715265292757240320081250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Affiliation(s)
- Komal
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Diksha
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Niraj S Patil
- Department of Regulatory Affairs, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Amandeep Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
2
|
Al Balawi AN, Eldiasty JG, Mosallam SAER, El-Alosey AR, Elmetwalli A. Assessing multi-target antiviral and antioxidant activities of natural compounds against SARS-CoV-2: an integrated in vitro and in silico study. BIORESOUR BIOPROCESS 2024; 11:108. [PMID: 39604740 PMCID: PMC11602940 DOI: 10.1186/s40643-024-00822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
There is an urgent need for preventive and therapeutic drugs to effectively treat and prevent viral diseases from resurfacing as they emerge during the COVID-19 pandemic. This study aims to assess the antiviral effects of four natural compounds commonly used in traditional medicine to treat SARS-CoV-2 infection. A cytotoxicity, dose-dependent, and plaque reduction assay was performed on Vero CCL-81 cells to figure out their effects on the cells. Quantification of cytokines was assessed. In silico analysis for the selected compound was also evaluated. Results revealed that the compounds could disrupt the viral replication cycle through direct inhibition of the virus or immune system stimulation. The cytotoxicity assay results revealed that the compounds were well tolerated by the cells, indicating that the compounds were not toxic to the cells. This study evaluated the antioxidant capacities of propolis, curcumin, quercetin, and ginseng using ABTS, FRAP, and CUPRAC assays, revealing that propolis exhibited the highest antioxidant activity of ABTS with 1250.40 ± 17.10 μmol Trolox eq/g, with FRAP values reaching 1200.55 ± 15.90 μmol Fe2⁺ eq/g and CUPRAC values of 1150.80 ± 14.20 μmol Trolox eq/g at 1000 µg/mL, highlighting its potential as a potent natural antioxidant. The results of the plaque reduction assay revealed that the compounds could reduce the size and number of plaques, indicating that the compounds could inhibit the virus replication cycle. Subsequently, using molecular docking to analyze the effect of propolis, curcumin, quercetin, and ginseng as inhibitors, it was unveiled that the four compounds are likely to have the potential to inhibit the protease activity, spike protein S1, and RNA polymerase of SARS-CoV-2 and the virus titer was reduced by 100% after post-infection using propolis as an inhibitor control.
Collapse
Affiliation(s)
- Aisha Nawaf Al Balawi
- Biology Department, University College of Haql, "University of Tabuk", Tabuk, Saudi Arabia.
| | - Jayda G Eldiasty
- Biology Department, University College of Haql, "University of Tabuk", Tabuk, Saudi Arabia
| | | | - Alaa R El-Alosey
- Department of Mathematics, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
- Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| |
Collapse
|
3
|
Pang Y, Ding Q, Xu L. A novel surface-enhanced Raman based molecular identification platform for multiplexed and highly accurate clinical diagnosis of viral diseases. J Mater Chem B 2024; 12:7461-7462. [PMID: 38988224 DOI: 10.1039/d4tb00796d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
During the infection process, the interactions among respiratory viruses impact the dynamics of transmission and clinical outcomes. Therefore, efficient molecular detection methods provide a basis for rational drug use and effective health management. Surface-enhanced Raman scattering (SERS) is an ultra-sensitive spectroscopic technique capable of generating extremely narrow spectra (∼1-2 cm-1), enabling simultaneous detection of multiple targets. By judiciously designing plasmonic nanostructures as SERS substrates, Raman signals can be amplified by several orders of magnitude (∼105-1015), facilitating the detection of trace biomolecules. In this highlight, we highlight the work about a novel SERS platform for the high-precision multi-virus molecular identification. This may offer a highly sensitive, specific, and accurate method for the detection of multiple viruses.
Collapse
Affiliation(s)
- Yida Pang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Lin Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China
| |
Collapse
|
4
|
Park J, Nguyen T, Park S, Hill B, Shadgan B, Gandjbakhche A. Two-Stream Convolutional Neural Networks for Breathing Pattern Classification: Real-Time Monitoring of Respiratory Disease Patients. Bioengineering (Basel) 2024; 11:709. [PMID: 39061791 PMCID: PMC11273486 DOI: 10.3390/bioengineering11070709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
A two-stream convolutional neural network (TCNN) for breathing pattern classification has been devised for the continuous monitoring of patients with infectious respiratory diseases. The TCNN consists of a convolutional neural network (CNN)-based autoencoder and classifier. The encoder of the autoencoder generates deep compressed feature maps, which contain the most important information constituting data. These maps are concatenated with feature maps generated by the classifier to classify breathing patterns. The TCNN, single-stream CNN (SCNN), and state-of-the-art classification models were applied to classify four breathing patterns: normal, slow, rapid, and breath holding. The input data consisted of chest tissue hemodynamic responses measured using a wearable near-infrared spectroscopy device on 14 healthy adult participants. Among the classification models evaluated, random forest had the lowest classification accuracy at 88.49%, while the TCNN achieved the highest classification accuracy at 94.63%. In addition, the proposed TCNN performed 2.6% better in terms of classification accuracy than an SCNN (without an autoencoder). Moreover, the TCNN mitigates the issue of declining learning performance with increasing network depth, as observed in the SCNN model. These results prove the robustness of the TCNN in classifying breathing patterns despite using a significantly smaller number of parameters and computations compared to state-of-the-art classification models.
Collapse
Affiliation(s)
- Jinho Park
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Dr., Bethesda, MD 20894, USA; (J.P.); (T.N.); (S.P.); (B.H.)
| | - Thien Nguyen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Dr., Bethesda, MD 20894, USA; (J.P.); (T.N.); (S.P.); (B.H.)
| | - Soongho Park
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Dr., Bethesda, MD 20894, USA; (J.P.); (T.N.); (S.P.); (B.H.)
- National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Dr., Bethesda, MD 20892, USA
| | - Brian Hill
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Dr., Bethesda, MD 20894, USA; (J.P.); (T.N.); (S.P.); (B.H.)
| | - Babak Shadgan
- Implantable Biosensing Laboratory, International Collaboration on Repair Discoveries, Vancouver, BC V5Z 1M9, Canada;
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Amir Gandjbakhche
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Dr., Bethesda, MD 20894, USA; (J.P.); (T.N.); (S.P.); (B.H.)
| |
Collapse
|
5
|
Li J, Guan R, Wuethrich A, Yan M, Cheng J, Liu G, Zhan J, Trau M, Sun Y. High Accuracy of Clinical Verification of Electrohydrodynamic-Driven Nanobox-on-Mirror Platform for Molecular Identification of Respiratory Viruses. Anal Chem 2024; 96:4495-4504. [PMID: 38445954 DOI: 10.1021/acs.analchem.3c05120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The molecular detection of multiple respiratory viruses provides evidence for the rational use of drugs and effective health management. Herein, we developed and tested the clinical performance of an electrohydrodynamic-driven nanobox-on-mirror platform (E-NoM) for the parallel, accurate, and sensitive detection of four respiratory viral antigens. The E-NoM platform uses gold-silver alloy nanoboxes as the core material with the deposition of a silver layer as a shell on the core surfaces to amplify and enable a reproducible Raman signal readout that facilitates accurate detection. Additionally, the E-NoM platform employs gold microelectrode arrays as the mirror with electrohydrodynamics to manipulate the fluid flow and enhance molecular interactions for an improved biosensing response. The presence of viral antigens binds the nanobox-based core-shell nanostructure on the gold microelectrode and creates the nanocavity with extremely strong "hot spots" to benefit sensitive analysis. Significantly, in a large clinical cohort with 227 patients, the designed E-NoM platform demonstrates the capability of screening respiratory infection with achieved clinical specificity, sensitivity, and accuracy of 100.0, 96.48, and 96.91%, respectively. It is anticipated that the E-NoM platform can find a position in clinical usage for respiratory disease diagnosis.
Collapse
Affiliation(s)
- Junrong Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Rui Guan
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mingzhe Yan
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, P. R. China
| | - Jing Cheng
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430072, P. R. China
| | - Guorong Liu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jianbo Zhan
- Institute of Health Inspection and Testing Hubei Provincial Center for Disease Control and Prevention, Wuhan 430072, P. R. China
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yao Sun
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
6
|
Ahmadi M, Shahbahrami R, Khajeh F, Khodaeivandi S, Kakavandi E, Raziabad RH, Ghanati K. Aflatoxin B1 and viruses' combined pathogenesis: A mini systematics review of invitro and invivo studies. Acta Histochem 2024; 126:152116. [PMID: 38101290 DOI: 10.1016/j.acthis.2023.152116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION The combined pathogenesis of Aflatoxin B1 (AFB1) and several viruses such as HBV, EBV and influenza virus have been investigated yet the molecular mechanism of their interaction and possible synergistic effects is not fully understood. OBJECTIVES The aim of the current systematic review was to review in-vitro and in-vivo studies investigating the combined pathogenesis of aflatoxins and viruses. METHODS This systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. PECO (Population, Exposure, Comparator, and Outcome) criteria for invitro and invivo studies were used to evaluate the eligibility of the studies for systematic review. RESULTS 21 studies were eligible for qualitative analysis based on the inclusion criteria. Of all the included studies, 9 (42.9 %) were invivo, 7 (33.3 %) were invitro-invivo and 5(23.8) articles conducted only invitro assay. Furthermore 14 (66.6 %) article explored hepatitis B virus (HBV) combination with AFB1, 4 (19 %) studied influenza A virus (SIV), 2 (9.7 %) were about Epstein-Barr virus (EBV) and only 1 (4.7 %) included hepatitis C virus (HCV). CONCLUSION The limited collected evidence suggests that AFB1 enhanced EBV and influenza virus pathogenesis. AFB1 also operated as a cofactor for HBV and EBV-mediated carcinogenesis. On the other hand HBV and HCV also induced AFB-1 carcinogenesis. Due to the limited amount of included studies and the inconsistency of their results further studies especially on HBV and SIV are essential for better understanding of their combined mechanisms.
Collapse
Affiliation(s)
- Mehdi Ahmadi
- Student Research Committee, (Department and Faculty of Nutrition Sciences and Food Technology), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Shahbahrami
- Department of Medical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khajeh
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Khodaeivandi
- Department of Food Science and Technology, Afagh Higher Education institute, Urmia, Iran
| | - Ehsan Kakavandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Hazrati Raziabad
- Student Research Committee, (Department and Faculty of Nutrition Sciences and Food Technology), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiandokht Ghanati
- Student Research Committee, (Department and Faculty of Nutrition Sciences and Food Technology), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Yang Y, Wang C, Shi H, Guo X, Liu W, Li J, Li L, Zhao J, Zhang G, Song H, Hao R, Zhao R. Multiplexed on-site sample-in-result-out test through microfluidic real-time PCR (MONITOR) for the detection of multiple pathogens causing influenza-like illness. Microbiol Spectr 2023; 11:e0232023. [PMID: 37889044 PMCID: PMC10714808 DOI: 10.1128/spectrum.02320-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/08/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE This study combines quantitative polymerase chain reaction (qPCR) and microfluidics to introduce MONITOR, a portable field detection system for multiple pathogens causing influenza-like illness. MONITOR can be rapidly deployed to enable simultaneous sample-in-result-out detection of eight common influenza-like illness (ILI) pathogens with heightened sensitivity and specificity. It is particularly well suited for communities and regions without centralized laboratories, offering robust technical support for the prompt and accurate monitoring and detection of ILI. It holds the potential to be a potent tool in the early detection and prevention of infectious diseases.
Collapse
Affiliation(s)
- Yi Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Chao Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hua Shi
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xudong Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Wanying Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jinhui Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Lizhong Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jun Zhao
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Guohao Zhang
- Beijing Baicare Biotechnology Co., Ltd., Beijing, China
| | - Hongbin Song
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Rongzhang Hao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Rongtao Zhao
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
8
|
Singh B, Arora S, Sandhu N. Emerging trends and insights in acute flaccid myelitis: a comprehensive review of neurologic manifestations. Infect Dis (Lond) 2023; 55:653-663. [PMID: 37368373 DOI: 10.1080/23744235.2023.2228407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023] Open
Abstract
Acute Flaccid Myelitis (AFM) is a neurological condition in the anterior portion of the spinal cord and can be characterised as paraplegia (paralysis of the lower limbs), and cranial nerve dysfunction. These lesions are caused by the infection due to Enterovirus 68 (EV-D68); a member of the Enterovirus (EV) family belongs to the Enterovirus species within the Picornavirus family and a Polio-like virus. In many cases, the facial, axial, bulbar, respiratory, and extraocular muscles were affected, hence reducing the overall quality of the patient's life. Moreover, severe pathological conditions demand hospitalisation and can cause mortality in a few cases. The data from previous case studies and literature suggest that the prevalence is high in paediatric patients, but careful clinical assessment and management can decrease the risk of mortality and paraplegia. Moreover, the clinical and laboratory diagnosis can be performed by Magnetic resonance imaging (MRI) of the spinal cord followed by Reverse transcription polymerase chain reaction (rRT-PCR) and VP1 seminested PCR assay of the cerebrospinal fluid (CSF), stool, and serum samples can reveal the disease condition to an extent. The primary measure to control the outbreak is social distancing as advised by public health administrations, but more effective ways are yet to discover. Nonetheless, vaccines in the form of the whole virus, live attenuated, sub-viral particles, and DNA vaccines can be an excellent choice to treat these conditions. The review discusses a variety of topics, such as epidemiology, pathophysiology, diagnosis/clinical features, hospitalisation/mortality, management/treatment, and potential future developments.
Collapse
Affiliation(s)
- Baljinder Singh
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, Australia
| | - Sanchit Arora
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Navjot Sandhu
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, India
| |
Collapse
|
9
|
Preston HE, Bayliss R, Temperton N, Neto MM, Brewer J, Parker AL. Capture and inactivation of viral particles from bioaerosols by electrostatic precipitation. iScience 2023; 26:107567. [PMID: 37664619 PMCID: PMC10470311 DOI: 10.1016/j.isci.2023.107567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/11/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Infectious viral particles in bioaerosols generated during laparoscopic surgery place staff and patients at significant risk of infection and contributed to the postponement of countless surgical procedures during the COVID-19 pandemic causing excess deaths. The implementation of devices that inactivate viral particles from bioaerosols aid in preventing nosocomial viral spread. We evaluated whether electrostatic precipitation (EP) is effective in capturing and inactivating aerosolized enveloped and non-enveloped viruses. Using a closed-system model mimicking release of bioaerosols during laparoscopic surgery, known concentrations of each virus were aerosolized, exposed to EP and collected for analysis. We demonstrate that both enveloped and non-enveloped viral particles were efficiently captured and inactivated by EP, which was enhanced by increasing the voltage to 10 kV or using two discharge electrodes together at 8 kV. This study highlights EP as an effective means for capturing and inactivating viral particles in bioaerosols, which may enable continued surgical procedures during future pandemics.
Collapse
Affiliation(s)
- Hannah E. Preston
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Rebecca Bayliss
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Central Avenue, Chatham ME4 4BF, UK
| | - Martin Mayora Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Central Avenue, Chatham ME4 4BF, UK
| | - Jason Brewer
- Alesi Surgical Ltd, Medicentre, Heath Park Way, Cardiff CF14 4UJ, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
10
|
Charostad J, Rezaei Zadeh Rukerd M, Mahmoudvand S, Bashash D, Hashemi SMA, Nakhaie M, Zandi K. A comprehensive review of highly pathogenic avian influenza (HPAI) H5N1: An imminent threat at doorstep. Travel Med Infect Dis 2023; 55:102638. [PMID: 37652253 DOI: 10.1016/j.tmaid.2023.102638] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/13/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Avian influenza viruses (AIVs) are globally challenging due to widespread circulation and high mortality rates. Highly pathogenic avian influenza (HPAI) strains like H5N1 have caused significant outbreaks in birds. Since 2003 to 14 July 2023, the World Health Organization (WHO) has documented 878 cases of HPAI H5N1 infection in humans and 458 (52.16%) fatalities in 23 countries. Recent outbreaks in wild birds, domestic birds, sea lions, minks, and etc., and the occurrence of genetic variations among HPAI H5N1 strains raise concerns about potential transmission and public health risks. This paper aims to provide a comprehensive overview of the current understanding and new insights into HPAI H5N1. It begins with an introduction to the significance of studying this virus and highlighting the need for updated knowledge. The origin and evaluation of HPAI H5N1 are examined, shedding light on its emergence, and spread across different geographic regions. The genome organization and structural biology of the H5N1 virus are explored, providing insights into its molecular composition and key structural features. This manuscript also delves into the phylogeny, evolution, mutational trends, reservoirs, and transmission routes of HPAI H5N1. The immune response against HPAI H5N1 and its implications for vaccine development are analyzed, along with an exploration of the pathogenesis and clinical manifestations of HPAI H5N1 in human cases. Furthermore, diagnostic tools and preventive and therapeutic strategies are discussed, highlighting the current approaches and potential future directions for better management of the potential pandemic.
Collapse
Affiliation(s)
- Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoghi University of Medical Science, Yazd, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shahab Mahmoudvand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Virology, School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Keivan Zandi
- Arrowhead Pharmaceuticals, San Diego, CA, USA; Tropical Infectious Diseases Research and Education Center (TIDREC), University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Yarovaya OI, Baranova DV, Sokolova AS, Nemolochnova AG, Sal’nikova OP, Fat’anova AV, Rogachev AD, Volobueva AS, Zarubaev VV, Pokrovsky AG, Salakhutdinov NF. Synthesis of N-heterocyclic amides based on (+)-camphoric acid and study of their antiviral activity and pharmacokinetics. Russ Chem Bull 2023; 72:807-818. [PMID: 37089866 PMCID: PMC10105540 DOI: 10.1007/s11172-023-3845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 04/25/2023]
Abstract
Efficient conditions for the synthesis of nitrogen-containing heterocyclic derivatives of (1R,3S)(+)-camphoric acid were selected. A series of heterocyclic compounds based on (+)-camphoric acid bearing pharmacophoric fragments was synthesized using the developed methodology. The compounds were tested for their antiviral activity against SARS-CoV-2 and H1N1 influenza viruses, and efficient inhibitors were identified that are of significant interest for further studies. The stability of the compounds and pharmaco-kinetics of the leader compound were studied when administered intragastrically and intramuscularly to mice at a dose of 200 mg kg-1 using the HPLC-MS/MS method.
Collapse
Affiliation(s)
- O. I. Yarovaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akademika Lavrent’eva, 630090 Novosibirsk, Russian Federation
- Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - D. V. Baranova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akademika Lavrent’eva, 630090 Novosibirsk, Russian Federation
| | - A. S. Sokolova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akademika Lavrent’eva, 630090 Novosibirsk, Russian Federation
| | - A. G. Nemolochnova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akademika Lavrent’eva, 630090 Novosibirsk, Russian Federation
- Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - O. P. Sal’nikova
- Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - A. V. Fat’anova
- Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - A. D. Rogachev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akademika Lavrent’eva, 630090 Novosibirsk, Russian Federation
- Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - A. S. Volobueva
- Pasteur Institute of Epidemiology and Microbiology, 14 ul. Mira, 197101 St. Petersburg, Russian Federation
| | - V. V. Zarubaev
- Pasteur Institute of Epidemiology and Microbiology, 14 ul. Mira, 197101 St. Petersburg, Russian Federation
| | - A. G. Pokrovsky
- Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - N. F. Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akademika Lavrent’eva, 630090 Novosibirsk, Russian Federation
| |
Collapse
|