1
|
Lin D, Hu G, Li H, Wu F, Li L, Yang G, Zhuang L, Gong Y. Green remediation of mercury-contaminated soil using iron sulfide nanoparticles: Immobilization performance and mechanisms, effects on soil properties, and life cycle assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173928. [PMID: 38871308 DOI: 10.1016/j.scitotenv.2024.173928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/24/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Mercury (Hg) pollution in soil has grown into a severe environmental issue. Effective in situ immobilization techniques are crucially demanded. In this study, we explored the application of carboxymethyl cellulose stabilized iron sulfide nanoparticles (CMC-FeS) for in situ immobilization of Hg in soil. CMC-FeS (a CMC-to-FeS molar ratio of 0.0004) was prepared via the reaction between FeSO4 and Na2S using CMC as a stabilizer. Remedying the Hg-polluted soil using 0.03 % CMC-FeS via batch experiments effectively reduced the acid leachable Hg by 97.5 % upon equilibrium after 71 days. Column elution tests demonstrated that the addition of CMC-FeS decreased the peak Hg concentration by 89.9 % and the total Hg mass eluted by 94.9 % after 523 pore volumes. CMC-FeS immobilized Hg in soil via chemical precipitation, ion exchange, and surface complexation. After the CMC-FeS treatment, Hg was transformed from more available exchangeable, carbonate-bound, and organic material-bound forms into the less available residual fraction, reducing the environmental risk of soil Hg from medium to low. The application of CMC-FeS boosted the soil enzyme activities and enhanced the soil bacterial diversity whereas decreased the production of methylmercury. CMC-FeS also facilitated long-term immobilization of Hg in soil. The acid leachable Hg and relative Hg bioaccessibility was decreased. Lift cycle assessment indicated that the preparation and application of CMC-FeS for in situ Hg remediation in soil met green chemistry principles. The present study confirms that CMC-FeS can be applied as an efficient and "green" amending agent for long-term Hg immobilization in soil/sediment.
Collapse
Affiliation(s)
- Dongjiao Lin
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Guanzhao Hu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Fan Wu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Liang Li
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Guiqin Yang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Li Zhuang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Yanyan Gong
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
2
|
Ghaedi M, Bijanzadeh E, Behpouri A, Najafi-Ghiri M. Biochar application affected biochemical properties, yield and nutrient content of safflower under water stress. Sci Rep 2024; 14:20228. [PMID: 39215054 PMCID: PMC11364633 DOI: 10.1038/s41598-024-71131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
A two-year field trial was set up to investigate the effects of applying 3 tons ha-1 of wheat (3WB) and cotton biochar (3CB) alone or in combination with chemical nitrogen (N) and phosphorus (P) fertilizers on biochemical properties, yield and nutrient content of safflower under normal irrigation and water stress (irrigation cut-off at flowering stage) conditions. The total water applied in the chemical treatments [150 kg ha-1 N + 50 kg ha-1 P (100% of the recommended dose) and 112.5N + 37.5P (75% of the recommended dose)] under water stress, was significantly higher than other treatments. Application of 112.5N + 37.5P + 3CB increased RWC from 57.5 to 59.4% and the total chlorophyll content from 80.7 to 128.1%, compared to the control. The carotenoid content, catalase and peroxidase in 112.5N + 37.5P + 3CB were lower than chemical fertilizers. Under water stress, the seed yield of 112.5N + 37.5P + 3CB was 10.2-12.6% higher than 112.5N + 37.5P + 3WB. The higher chlorophyll content, RWC, remobilization efficiency and nutrient content in 112.5N + 37.5P + 3CB compared to other treatments was associated with seed yield enhancement. The findings indicate that the combination of CB with 75% recommended dosage of N and P, may be the optimal approach for enhancing safflower production under water stress conditions.
Collapse
Affiliation(s)
- Marzieh Ghaedi
- Department of Agroecology, College of Agriculture and Natural Resources of Darab, Shiraz University, BOX: 7459117666, Darab, Iran
| | - Ehsan Bijanzadeh
- Department of Agroecology, College of Agriculture and Natural Resources of Darab, Shiraz University, BOX: 7459117666, Darab, Iran.
| | - Ali Behpouri
- Department of Agroecology, College of Agriculture and Natural Resources of Darab, Shiraz University, BOX: 7459117666, Darab, Iran.
| | - Mahdi Najafi-Ghiri
- Department of Soil Science, College of Agriculture and Natural Resources of Darab, Shiraz University, Darab, Iran
| |
Collapse
|
3
|
Afzal S, Alghanem SMS, Alsudays IM, Malik Z, Abbasi GH, Ali A, Noreen S, Ali M, Irfan M, Rizwan M. Effect of biochar, zeolite and bentonite on physiological and biochemical parameters and lead and zinc uptake by maize (Zea mays L.) plants grown in contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133927. [PMID: 38447373 DOI: 10.1016/j.jhazmat.2024.133927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Heavy metals (HMs) are common contaminants with major concern of severe environmental and health problems. This study evaluated the effects of organo-mineral amendments (mesquite biochar (MB), zeolite (ZL) and bentonite (BN) alone and in combination) applied at different rates to promote the maize (Zea mays L.) growth by providing essential nutrient and improving the soil physio-chemical properties under zinc (Zn) and lead (Pb) contamination. Result revealed that the incorporation of organo-mineral amendments had significantly alleviated Pb and Zn contamination by maize plants and improved the physiological and biochemical attributes of plants. Combined application of organo-mineral amendments including BMA-1, BMA-2 and BMA-3 performed excellently in terms of reducing Pb and Zn concentrations in both leaves (19-60%, 43-75%, respectively) and roots (24-59%, 42-68%, respectively) of maize. The amendments decreased the extractable, reducible, oxidisable and residual fractions of metals in soil and significantly reduced the soil DTPA-extractable Pb and Zn. BMA-1 substantially improved antioxidant enzyme activities in metal-stressed plants. This study indicated that combined use of organo-mineral amendments can effectively reduce the bioavailability and mobility of Pb and Zn in co-contaminated soils. Combined application of organo-mineral amendments could be viable remediation technology for immobilization and metal uptake by plants in polluted soils.
Collapse
Affiliation(s)
- Sobia Afzal
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | | | | - Zaffar Malik
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Ghulam Hassan Abbasi
- Institute of Agro-Industry and Environment, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ahmad Ali
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sana Noreen
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Ali
- Institute of Agro-Industry and Environment, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Irfan
- Institute of Agro-Industry and Environment, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| |
Collapse
|
4
|
Das S, Sengupta S, Patra PK, Dey P. Limestone and yellow gypsum can reduce cadmium accumulation in groundnut (Arachis hypogaea): A study from a three-decade old landfill site. CHEMOSPHERE 2024; 353:141645. [PMID: 38452977 DOI: 10.1016/j.chemosphere.2024.141645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/18/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024]
Abstract
Cadmium (Cd) toxicity has cropped up as an important menace in the soil-plant system. The use of industrial by-products to immobilise Cd in situ in polluted soils is an interesting remediation strategy. In the current investigation, two immobilizing amendments of Cd viz., Limestone (traditionally used) and Yellow gypsum (industrial by-product) have been used through a green-house pot culture experiment. Soil samples were collected from four locations based on four graded levels of DTPA extractable Cd as Site 1 (0.43 mg kg-1), Site 2 (0.92 mg kg-1), Site 3 (1.77 mg kg-1) and Site 4 (4.48 mg kg-1). The experiment was laid out in a thrice replicated Factorial Complete Randomized Design, with one factor as limestone (0, 250, 500 mg kg-1) and the other being yellow gypsum (0, 250, 500 mg kg-1) on the collected soils and groundnut was grown as a test crop. Results revealed that the DTPA-extractable Cd content in soil and Cd concentration in plants decreased significantly with the increasing doses of amendments irrespective of initial soil available Cd and types of amendment used. The effect of amendment was soil specific and in case of Site 1 (low initial Cd) the effect was more prominent. The reduction in DTPA-extractable Cd in combined application of limestone and yellow gypsum @500 mg kg-1 over the absolute control in soil under groundnut for the sites was by far the highest with the values of 83.72%, 77.17%, 48.59% and 40.63% respectively. With the combined application, Target Cancer Risk (TCR) of Cd was also reduced. Hence, combined application of limestone and yellow gypsum can be beneficial in the long run for mitigating Cd pollution.
Collapse
Affiliation(s)
- Shreya Das
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, Nadia, West Bengal, India; ICAR-Agricultural Technology Application Research Institute (ATARI) Kolkata, Sector III, Salt Lake, Kolkata, 700097, West Bengal, India
| | - Sudip Sengupta
- School of Agriculture, Swami Vivekananda University, Barrackpore, 700121, West Bengal, India
| | - Prasanta Kumar Patra
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, Nadia, West Bengal, India
| | - Pradip Dey
- ICAR-Agricultural Technology Application Research Institute (ATARI) Kolkata, Sector III, Salt Lake, Kolkata, 700097, West Bengal, India.
| |
Collapse
|
5
|
Maqbool Z, Shahbaz Farooq M, Rafiq A, Uzair M, Yousuf M, Ramzan Khan M, Huo S. Unlocking the potential of biochar in the remediation of soils contaminated with heavy metals for sustainable agriculture. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23257. [PMID: 38310926 DOI: 10.1071/fp23257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
Agricultural soils contaminated with heavy metals (HMs) impose a threat to the environmental and to human health. Amendment with biochar could be an eco-friendly and cost-effective option to decrease HMs in contaminated soil. This paper reviews the application of biochar as a soil amendment to immobilise HMs in contaminated soil. We discuss the technologies of its preparation, their specific properties, and effect on the bioavailability of HMs. Biochar stabilises HMs in contaminated soil, enhance the overall quality of the contaminated soil, and significantly reduce HM uptake by plants, making it an option in soil remediation for HM contamination. Biochar enhances the physical (e.g. bulk density, soil structure, water holding capacity), chemical (e.g. cation exchange capacity, pH, nutrient availability, ion exchange, complexes), and biological properties (e.g. microbial abundance, enzymatic activities) of contaminated soil. Biochar also enhances soil fertility, improves plant growth, and reduces the plant availability of HMs. Various field studies have shown that biochar application reduces the bioavailability of HMs from contaminated soil while increasing crop yield. The review highlights the positive effects of biochar by reducing HM bioavailability in contaminated soils. Future work is recommended to ensure that biochars offer a safe and sustainable solution to remediate soils contaminated with HMs.
Collapse
Affiliation(s)
- Zubaira Maqbool
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Department of Soil Science and Environmental Science, Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Shahbaz Farooq
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Rice Research Program, Crop Sciences Institute (CSI), National Agricultural Research Centre (NARC), Park Road, Islamabad 44000, Pakistan
| | - Anum Rafiq
- Institute Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Uzair
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Muhammad Yousuf
- Pakistan Agriculture Research Council (PARC), G5, Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Shuhao Huo
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
6
|
Huang H, Ge L, Zhang X, Chen H, Shen Y, Xiao J, Lu H, Zhu Y, Han J, Li R. Rice straw biochar and lime regulate the availability of heavy metals by managing colloid-associated- but dissolved-heavy metals. CHEMOSPHERE 2024; 349:140813. [PMID: 38040254 DOI: 10.1016/j.chemosphere.2023.140813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Heavy metal (HM) pollution has extensively spread in agricultural soils, posing potential threats to food safety and human health. Biochar and lime are two amendments used to remediate the soils contaminated with HMs. However, colloids have been shown to increase the mobility of HMs in paddy soils. Nevertheless, limited investigations have been made into the impact of biochar and lime on the formation of colloid-associated (colloidal) HMs in paddy soils. In this study, column and microcosm incubation experiments were conducted to examine how biochar and lime affected the availability of HMs (arsenic, cadmium, copper, iron, manganese, lead, and zinc) in different layers of paddy soils. The results revealed that biochar significantly inhibited the formation of colloidal HMs in the soil flooding phase, whereas the lime increased the colloidal HMs. These colloids containing HMs were identified as poorly dissolved metal sulfides. When the soil was drained, colloidal HMs transformed into dissolved forms, thereby improving the availability of HMs. Biochar decreased HM availability by reducing colloidal- but dissolved- HMs, whereas lime had the opposite effect. Hence, biochar demonstrated a stable and reliable remediation ability to decrease HM availability in paddy soil during flooding and drainage processes. In conclusion, this study highlighted that biochar efficiently reduced HM availability by mitigating the formation of colloidal HMs during flooding and their transformation into dissolved HMs during drainage in paddy soils.
Collapse
Affiliation(s)
- Hui Huang
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China.
| | - Liang Ge
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Xiaowei Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Hangyu Chen
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Yu Shen
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Jian Xiao
- School of Applied Meteorology and Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 210044, China.
| | - Haiying Lu
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Yongli Zhu
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Jiangang Han
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China.
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China.
| |
Collapse
|
7
|
Jothinathan H, Singh AP. Fecal sludge characterization, treatment, and resource recovery options: a state-of-the-art review on fecal sludge management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119549-119567. [PMID: 37945951 DOI: 10.1007/s11356-023-30539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
A rise in population and urbanization demanded that a robust fecal sludge management (FSM) value chain be used to restructure the sanitation system throughout the world securely. A significant global need exists to adopt efficient and sustainable FSM. On-site sanitation systems (OSS) produce fecal sludge (FS). FS is produced when excreta and blackwater are combined and stored or treated, either alone or in combination with greywater. FS can be semisolid or slurry and raw or partially digested. Critical examination of FS characteristics, i.e., biochemical oxygen demand (BOD), chemical oxygen demand (COD), total solids (TS), and pathogen count, varies from 600-56,836 mg/l, 6656 to 201,200 mg/l, 830-123,000 mg/l, and 105 to 109 E. coli/l of FS respectively. Helminth eggs range from 2500-25,000/l of FS. Public health and the environment are negatively impacted by septic tank overflows and the careless discharge of FS into open spaces affecting groundwater quality, water bodies, irrigation fields, open drains, places outside villages, etc. Thus, deciding on a proper treatment technology for FS before discharging it into open land or reusing FS is essential to create a pollution-free environment. This paper highlights the practices adopted for FSM under its different processes, such as collecting, characterization, treating, and reusing of on-site FS and bibliometric analysis on documents on fecal sludge. A thorough analysis has been carried out by reviewing all important literature available globally.
Collapse
Affiliation(s)
- Harishvar Jothinathan
- Civil Engineering Department, Birla Institute of Technology and Science, Pilani, 333031, India
| | - Ajit Pratap Singh
- Civil Engineering Department, Birla Institute of Technology and Science, Pilani, 333031, India.
| |
Collapse
|
8
|
Zhou R, Zhang Y, Hao D, Zhang Y, Luo J, Li T. Effects of different remediation methods on phosphorus transformation and availability. CHEMOSPHERE 2023; 340:139902. [PMID: 37607600 DOI: 10.1016/j.chemosphere.2023.139902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/04/2023] [Accepted: 08/19/2023] [Indexed: 08/24/2023]
Abstract
The effects of different heavy metal pollution remediation methods on soil nutrient transformation and soil health remain unclear. In this study, the effects of phytoextraction (PE) and passivation remediation (PR) on Cd-polluted soil phosphorus transformation and availability were compared by pot experiment. The results showed that PE significantly reduced the concentrations of total and available Cd (both H2O-Cd and DTPA-Cd) in soil, PR also decreased available Cd content but had no significant effect on total Cd content. PE slightly increased soil pH and NH4+-N content, while PR significantly increased soil pH, NO3--N and AK content. PE promoted the conversion of stable P (including HCl-Pi and residual-Pt), and increased the content of labile P (including H2O-Pi, NaHCO3-Pi and NaHCO3-Po) and the proportion of moderately labile P (including NaOH-Pi and NaOH-Po), while PR showed the opposite trend. PE showed a higher soil phoC gene abundance and acid phosphatase (ACP) activity, while PR showed a higher phoD gene copies and alkaline phosphatase (ALP) activity. Soil bacteria and phoD-harboring bacteria community was significantly affected by remediation methods and soil types. Compared with PR, PE reduced phoD-harboring bacterial diversity but significantly increased the abundance of genera associated with P dissolution (Streptomyces) and P conversion (Bradyrhizobium and Frankia), both of which were significantly positively correlated with labile P or moderately labile P. In general, compared with PR, PE can effectively remove soil Cd pollution, while maintaining a higher content of labile P and a higher proportion of moderately labile P, which can be considered as a green and sustainable remediation strategy conducive to soil quality.
Collapse
Affiliation(s)
- Runhui Zhou
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Zhang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dian Hao
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxuan Zhang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Lataf A, Carleer R, Yperman J, Schreurs S, D'Haen J, Cuypers A, Vandamme D. The screening of various biochars for Cd 2+ removal at relevant soil pH. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:376-385. [PMID: 37348380 DOI: 10.1016/j.wasman.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Fourteen biochars from seven biomass sources were investigated on their long-term Cd2+ removal. The experiments consisted of a ten-day batch Cd2+ adsorption in a pH-buffered solution (pH = 6) to minimise pH effects. Insect frass, spent peat and chicken manure-derived biochars are promising Cd2+ adsorbents. Pyrolysis temperature was crucial for optimising Cd2+ removal by insect frass and spent peat-derived biochars. For these biochars, a pyrolysis temperature of 450 °C was optimal. In contrast, the Cd2+ removal by chicken manure biochars was independent of pyrolysis temperature. The Cd2+ removal by insect-frass and spent peat-derived biochars was associated with chemisorption on surface functionalities, while using chicken manure biochars was more associated with Cd2+ precipitation. The kinetics of Cd2+ removal over the course of ten days showed that insect frass biochar (450 °C) showed a gradual increase from 36 to 75 % Cd2+ removal, while chicken manure and spent peat-derived biochar (450 °C) already showed a higher Cd2+ removal (72 - 89 %) after day 1. This evidences that a long-term Cd2+ removal effect can be expected for some biochars. This should certainly be taken into consideration in future soil-based experiments.
Collapse
Affiliation(s)
- A Lataf
- Analytical and Circular Chemistry, IMO, CMK, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - R Carleer
- Analytical and Circular Chemistry, IMO, CMK, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - J Yperman
- Analytical and Circular Chemistry, IMO, CMK, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - S Schreurs
- NuTeC, CMK, Hasselt University, Agoralaan Building H, 3590 Diepenbeek, Belgium
| | - J D'Haen
- Institute for Materials Research and Imec division Imomec (IMO-IMOMEC), Hasselt University, 3590 Diepenbeek, Belgium
| | - A Cuypers
- Environmental Biology, CMK, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - D Vandamme
- Analytical and Circular Chemistry, IMO, CMK, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
10
|
Zulfiqar U, Haider FU, Ahmad M, Hussain S, Maqsood MF, Ishfaq M, Shahzad B, Waqas MM, Ali B, Tayyab MN, Ahmad SA, Khan I, Eldin SM. Chromium toxicity, speciation, and remediation strategies in soil-plant interface: A critical review. FRONTIERS IN PLANT SCIENCE 2023; 13:1081624. [PMID: 36714741 PMCID: PMC9880494 DOI: 10.3389/fpls.2022.1081624] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
In recent decades, environmental pollution with chromium (Cr) has gained significant attention. Although chromium (Cr) can exist in a variety of different oxidation states and is a polyvalent element, only trivalent chromium [Cr(III)] and hexavalent chromium [Cr(VI)] are found frequently in the natural environment. In the current review, we summarize the biogeochemical procedures that regulate Cr(VI) mobilization, accumulation, bioavailability, toxicity in soils, and probable risks to ecosystem are also highlighted. Plants growing in Cr(VI)-contaminated soils show reduced growth and development with lower agricultural production and quality. Furthermore, Cr(VI) exposure causes oxidative stress due to the production of free radicals which modifies plant morpho-physiological and biochemical processes at tissue and cellular levels. However, plants may develop extensive cellular and physiological defensive mechanisms in response to Cr(VI) toxicity to ensure their survival. To cope with Cr(VI) toxicity, plants either avoid absorbing Cr(VI) from the soil or turn on the detoxifying mechanism, which involves producing antioxidants (both enzymatic and non-enzymatic) for scavenging of reactive oxygen species (ROS). Moreover, this review also highlights recent knowledge of remediation approaches i.e., bioremediation/phytoremediation, or remediation by using microbes exogenous use of organic amendments (biochar, manure, and compost), and nano-remediation supplements, which significantly remediate Cr(VI)-contaminated soil/water and lessen possible health and environmental challenges. Future research needs and knowledge gaps are also covered. The review's observations should aid in the development of creative and useful methods for limiting Cr(VI) bioavailability, toxicity and sustainably managing Cr(VI)-polluted soils/water, by clear understanding of mechanistic basis of Cr(VI) toxicity, signaling pathways, and tolerance mechanisms; hence reducing its hazards to the environment.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Muhammad Mohsin Waqas
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | | | - Syed Amjad Ahmad
- Department of Mechanical Engineering, NFC IEFR, Faisalabad, Pakistan
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Sayed M. Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo, Egypt
| |
Collapse
|
11
|
The Various Forms of Cow Manure Waste as Adsorbents of Heavy Metals. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In recent years, the application of cow manure waste as an adsorbent of heavy metals in water and soil has increased. The analysis of the most effective adsorbents from cow manure as materials that can reduce heavy metals, while being low-cost and easy to produce, is important in the agricultural field. This study investigated adsorbents from cow manure, such as compost, biochar and humic acid, and analyzed the capability of the adsorption mechanisms of Cr, Pb and Cd. The experiments were performed as a function of pH, adsorbent dose, initial metal ion concentration, and contact time. To investigate the mechanism of the adsorption process, the Langmuir and Freundlich models were used. The results showed that the optimum conditions of Cr, Cd and Pb ions were achieved by compost, biochar and humic acid with 83–99% removal. An adsorption isotherm model for compost, biochar and humic acid generally followed the Langmuir and Freundlich models. This study ranks the different forms of cow manure waste in the following order based on their ease of production, high adsorption capacity, and low cost: biochar > compost > humic acid.
Collapse
|
12
|
Ejaz A, Khan ZI, Ahmad K, Muhammad FG, Akhtar S, Hussain MI. Appraising growth, daily intake, health risk index, and pollution load of Zn in wheat (Triticum aestivum L.) grown in soil differentially spiked with zinc. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34685-34700. [PMID: 35040053 DOI: 10.1007/s11356-021-18130-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Zinc (Zn) is a vital nutrient element required for plants normal growth and development. It performs imperative functions in numerous metabolic pathways in the plants. However, potentially noxious levels of Zn in terrestrial environment can lead to inhibited photosynthesis, growth, respiratory rate and imbalanced mineral nutrition. In micronutrient malnutrition, Zn deficiency is a global human health problem owing to the human dependence on cereals grains especially wheat-based diet. Therefore, this study investigated the Zn uptake efficacy in Triticum aestivum that is grown under two different doses (100 g/kg or 200 g/kg) of various soil amendments in both pot and field experimentation. Results of this study revealed that mean Zn concentration in different wheat varieties and treatments were varied from 1.53 to 6.03 mg/kg, 11.27 to 40.65 mg/kg, 11.28 to 39.93 mg/kg, and 11.32 to 37.70 mg/kg in amended soil, root, shoot, and grains, respectively. All observed Zn values in soil and wheat parts were lower than the FAO/WHO standards. Zinc values observed for pollution load index (0.034-0.134 mg/kg), daily intake (0.00492-0.01533 mg/kg), and health risk (0.0164-0.0570 mg/kg) index were lower than 1 except bio-concentration factor. Bio-concentration factor (5.076-10.165 mg/kg) revealed that DHARABI-11 variety showed maximum Zn uptake efficacy in farmyard manure treatment. The daily intake and health risk index values also showed that Zn level in grains is safe for inhabitants consumption. Overall, study recommended that these organic amendments are a good source of fertilizers, essentially required for the sustainable management of soil and increases the Zn accumulation in wheat grains which can ultimately reduce the Zn malnutrition in human food chain.
Collapse
Affiliation(s)
- Abid Ejaz
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Zafar Iqbal Khan
- Department of Botany, University of Sargodha, Sargodha, Pakistan.
| | - Kafeel Ahmad
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | | | - Shahzad Akhtar
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Iftikhar Hussain
- Department of Plant Biology & Soil Science, Universidad de Vigo, Campus Lagoas Marcosende, 36310, Vigo, Spain
| |
Collapse
|
13
|
Farooqi ZUR, Murtaza G, Bibi S, Sabir M, Owens G, Ahmad I, Zeeshan N. Immobilization of cadmium in soil-plant system through soil and foliar applied silicon. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1193-1204. [PMID: 34995161 DOI: 10.1080/15226514.2021.2024133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We conducted a pot experiment to evaluate the potential for soil- and foliar-applied silicon (Si), alone and in combination, to a Cd-contaminated soil in order to evaluate the effects on such amendments on the Cd translocation from soil to wheat root, shoot and grains. Five treatments were used, T1) control with no external factor added, T2 received only Cd, while T3-T5 treatments received Cd in combination with soil, foliar and soil plus foliar applied Si. Except control (T1), soil was contaminated with Cd at 10 mg kg-1 in all the treatments and 1% solution of Si as an amendment was used for soil and/or foliar application or their combination. Overall, while Si application improved both plant growth and yield in Cd-contaminated soil. Control and combined soil- and foliar-applied Si in Cd contaminated treatments showed equally positive (2.5%) increase in plant height over Cd contaminated treatment. Grain yield was also highest in the treatment receiving Cd plus soil-applied Si (29%) followed by control (26%). It was concluded that Si can alleviate Cd toxicity in wheat irrespective of whether the Si was soil-applied or applied via a foliar method, but soil applied Si proved the best in this regard.Novelty statement Immobilization of metals i.e., cadmium (Cd) with soil-applied amendments like biomaterials and organic manure to decrease Cd concentration in plants have already been widely investigated. Silicon (Si) is a cheap in-organic and readily available element in the nature and also used for the same purpose. It can be applied both in soil as well as by foliar and soil + foliar application to decrease the metals concentration in soil and plants. However, comparative effectiveness of these three methods have not been checked simultaneously. In this study, we have studied the comparative effectiveness of Si application to soil, foliar and their combination (soil + foliar) to decrease Cd concentration during wheat crop.
Collapse
Affiliation(s)
- Zia Ur Rahman Farooqi
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Ghulam Murtaza
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sadia Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sabir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, Australia
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University, Vehari, Pakistan
| | - Nukshab Zeeshan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
14
|
Wang Y, Zou Z, Su X, Wan F, Zhou Y, Lei Z, Yi L, Dai Z, Li J. Physiological of biochar and α-Fe 2O 3 nanoparticles as amendments of Cd accumulation and toxicity toward muskmelon grown in pots. J Nanobiotechnology 2021; 19:442. [PMID: 34930295 PMCID: PMC8690976 DOI: 10.1186/s12951-021-01187-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Due to the severe cadmium (Cd) pollution of farmland soil, effective measures need to be taken to reduce the Cd content in agricultural products. In this study, we added α-Fe2O3 nanoparticles (NPs) and biochar into Cd-contaminated soil to investigate physiological responses of muskmelon in the whole life cycle. RESULTS The results showed that Cd caused adverse impacts on muskmelon (Cucumis melo) plants. For instance, the chlorophyll of muskmelon leaves in the Cd alone treatment was reduced by 8.07-32.34% in the four periods, relative to the control. The treatments with single amendment, α-Fe2O3 NPs or 1% biochar or 5% biochar, significantly reduced the soil available Cd content, but the co-exposure treatments (α-Fe2O3 NPs and biochar) had no impact on the soil available Cd content. All treatments could reduce the Cd content by 47.64-74.60% and increase the Fe content by 15.15-95.27% in fruits as compared to the Cd alone treatment. The KEGG enrichment results of different genes in different treatments indicated that single treatments could regulate genes related to anthocyanin biosynthesis, glutathione metabolism and MAPK signal transduction pathways to reduce the Cd toxicity. CONCLUSIONS Overall the combination of biochar and α-Fe2O3 NPs can alleviate Cd toxicity in muskmelon. The present study could provide new insights into Cd remediation in soil using α-Fe2O3 NPs and biochar as amendments.
Collapse
Affiliation(s)
- Yunqiang Wang
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Sience, Wuhan, 430064, People's Republic of China
| | - Zhengkang Zou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Xinliang Su
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Fengting Wan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Ying Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Zhen Lei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Licong Yi
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Sience, Wuhan, 430064, People's Republic of China
| | - Zhaoyi Dai
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Sience, Wuhan, 430064, People's Republic of China
| | - Junli Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
15
|
Yin F, Li YJ, Zhao Q, Li C, Li J, Tian SL. Experimental and Model Predictive Investigation into the Relationship of pH Alternation with Addition of Lime in Acid Tin Tailing Treatments. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:1202-1207. [PMID: 34291316 DOI: 10.1007/s00128-021-03299-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Lime is one of the commonly used amendments for acidic soils. The reasonable application of lime can effectively improve the current status of acid tailings and reduce harm to the environment. In this study, we analyzed the pH alternation of acid tin tailing as a function of lime dose based on three methods-single titration method, K-bicarbonate titration method, and buffer curve method-to predict the accurate lime requirement (LR) in acid tin tailing treatments. Of these prediction methods, the buffer curve method was best suited for the prediction of lime dose, and the prediction values agreed with the experimental data by factors of 1.0‒1.4. Thus, we determined that the buffer curve method was more suitable for predicting the lime requirement of acid tailings. This study of acid tailings lime requirement provides scientific research for the subsequent modification of tailings.
Collapse
Affiliation(s)
- Feng Yin
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Ying-Jie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Chen Li
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Sen-Lin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
16
|
Biochar Derived from Domestic Sewage Sludge: Influence of Temperature Pyrolysis on Biochars’ Chemical Properties and Phytotoxicity. J CHEM-NY 2021. [DOI: 10.1155/2021/1818241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The pyrolytic conversion of domestic sewage sludge (SS) into biochar is a promising method to reduce its large volume and recycle its high-value fuel gas as renewable energy and the use of its chemicals as soil fertilizers. Even though the effects of pyrolysis temperature on energy recovery have been extensively studied, little information has been found on nutrient recovery and biochar’s phytotoxicity before its reuse as a soil amendment. This study aims to investigate the ideal pyrolysis temperature that guarantees higher fertility levels as well as meeting quality standards for land disposal. Accordingly, air-dried domestic sewage sludge has been pyrolyzed at 260°C (PSS1), at 420°C (PSS2), and at 610°C (PSS3) with a residence time of 20, 40, and 60 minutes, respectively. The raw sewage sludge and the produced biochars have been analyzed to determine their volatile organic matter (VOM), mineral content (MC), nutrients’ level (total nitrogen TN, available phosphorus P, and potassium K), alkalinity (pH), and salinity (electrical conductivity EC and Na). The toxic effect of biochars derived from SS has been evaluated through the analysis of trace metals (Pb, Cr, Cd, Cu, and Zn) and their toxicity by measuring root elongation inhibition (REI). As expected, pyrolysis temperature has a significant impact on the biochars’ characteristics. This has been justified by higher VOM, TN, and P in the sewage sludge (SS) and the biochar (PSS1) produced at low temperature (260°C). However, higher pH, EC, Na, and K have been found in the biochars (PSS2 and PSS3) produced at higher temperature (420 and 610°C). The effect of pyrolysis temperature on trace metals concentrations has shown different patterns from one element to another, which indicates lower levels in the biochar (PSS2) produced at 420°C. As a result, the lowest REI has been observed in PSS2 compared to that in SS, PSS1, and PSS3, which highlights that 420°C is the ideal pyrolysis temperature for the safe reuse of SS as a soil amendment.
Collapse
|
17
|
Laboratory Study on the Effectiveness of Limestone and Cementitious Industrial Products for Acid Mine Drainage Remediation. MINERALS 2021. [DOI: 10.3390/min11040413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acid mine tailings may affect several environmental matrices. Here, we aimed to stabilize acid-generated mine tailings using several alkaline and cementitious amendments, which were tested in columns for 361 days. The alkaline amendments consisted of 10 and 20 wt.% limestone, while the cementitious amendments consisted of different binders at a total dosage of 5 wt.% binder. The different formulations for the cementitious amendments were: 50% Kruger fly ash and 50% class F fly ash; 20% ordinary Portland cement, 40% Kruger fly ash, and 40% class F fly ash; 80% ordinary Portland cement and 20% Kruger fly ash; and 20% ordinary Portland cement, 40% Kruger fly ash, and 40% fly ash. Kinetic testing on the amendment formulations showed that the pH values increased from <2.5 to circumneutral values (~7.5). The mobility of various chemical species was greatly reduced. Cumulative Fe released from the unamended tailings was ~342.5 mg/kg, and was <22 mg/kg for the amended tailings. The main mechanisms responsible for metal(loid) immobilization were the precipitation of secondary phases, such as Fe-oxyhydroxides, physical trapping, and tailing impermeabilization.
Collapse
|
18
|
Kameyama K, Miyamoto T, Iwata Y. Comparison of plant Cd accumulation from a Cd-contaminated soil amended with biochar produced from various feedstocks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12699-12706. [PMID: 33089459 DOI: 10.1007/s11356-020-11249-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
The bioavailability of cadmium (Cd) in agricultural soils is a significant health concern due to the potential risk of human exposure via foods grown in Cd-contaminated fields. Biochar has been known to have a highly porous structure and high pH, as well as containing various functional groups; as such, it can immobilize heavy metals. Although it has found that biochar amendment in Cd-contaminated agricultural soils could be effective in reducing Cd bioavailability in previous studies, differences in plant Cd accumulation from Cd-contaminated soils amended with biochars produced from various types of biomass have not been fully discussed yet; we aimed to address this shortcoming in the present work. The soil investigated was an acid soil (pH 5.1) and had an elevated concentration of Cd (total Cd: 3.3 mg kg-DW-1). Six kinds of biochar were produced, i.e., from woodchips (Japanese cedar [CE] and Japanese cypress [CY]), moso bamboo (MB), rice husk (RH), poultry manure (PM), and wastewater sludge (WS), at a pyrolysis temperature of 600 °C. Biochars were incorporated into the Cd-contaminated soil at 3% (w/w) and pot experiments using Brassica rapa var. perviridis were conducted for 28 days in a growth chamber. The Cd concentrations in the above-ground portion of the plants were significantly decreased as a result of the incorporation of all biochars compared to the unamended soil, with reduction ratios following the order PM (78%) > > WS (31%) ≈ RH (29%) ≈ MB (28%) ≈ CY (26%) > CE (19%). Among all biochar-amended soils, soil pH and shoot biomass were highest for those amended with PM-derived biochar. These results suggest that in Cd-contaminated soils, PM-derived biochar may offer significant potential in reducing plant Cd accumulation due to the immobilization of soil Cd and an effect of dilution resulting from enhanced plant shoot biomass.
Collapse
Affiliation(s)
- Koji Kameyama
- Institute for Rural Engineering, National Agricultural and Food Research Organization (NARO), 2-1-6 Kannondai, Tsukuba, Ibaraki, 305-8609, Japan.
| | - Teruhito Miyamoto
- Institute for Rural Engineering, National Agricultural and Food Research Organization (NARO), 2-1-6 Kannondai, Tsukuba, Ibaraki, 305-8609, Japan
| | - Yukiyoshi Iwata
- Institute for Rural Engineering, National Agricultural and Food Research Organization (NARO), 2-1-6 Kannondai, Tsukuba, Ibaraki, 305-8609, Japan
| |
Collapse
|
19
|
G. Tsadik YK, Hailu AM, Asfaw SL, Mekonnen YS. The effect of brewery sludge biochar on immobilization of bio-available cadmium and growth of Brassica carinata. Heliyon 2020; 6:e05573. [PMID: 33305046 PMCID: PMC7711143 DOI: 10.1016/j.heliyon.2020.e05573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/09/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
Biochar has gained an attention in reducing the bio-availability of toxic heavy metals and minimize threat of entering into food chain from contaminated soil. This study was aimed at evaluating the potential use of brewery sludge biochar (BSB) as a soil amendment for reducing cadmium bio-availability and uptake by Brassica carinata in a pot experiment. In this pot experiment, artificially cadmium spiked, moderately fertile, and slightly basic silty-loam soil was used. The biochar was produced by pyrolyzing of the brewery sludge at 500 °C. The obtained biochar was sieved with 0.5 mm mesh size and applied at the rate of 4 % (w/w) on the Brassica carinata grown cadmium spiked soil. The additions of BSB to the soil contributed a significant reduction of the bio-availability of cadmium in the soil and its accumulation in the shoot of Brassica carinata by 86% and 93%, respectively. Besides, it remarkably increased the dry weight of the edible part of Brassica carinata by 228%. The results revealed that BSB is very effective additive in cadmium immobilization, in turn, significantly (p-value = 0.00) promoting vegetable (Brassica carinata) growth. Therefore, BSB can be used as agricultural soil remedy for cadmium contamination and as safe disposal of brewery sludge.
Collapse
Affiliation(s)
- Yordanos Kiros G. Tsadik
- Center for Environmental Science, College of Natural and Computational Sciences, Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Abrha Mulu Hailu
- Center for Environmental Science, College of Natural and Computational Sciences, Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
- Department of Chemistry, College of Natural and Computational Sciences, Aksum University, P.O. Box 1010, Axum, Ethiopia
| | - Seyoum Leta Asfaw
- Center for Environmental Science, College of Natural and Computational Sciences, Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Yedilfana Setarge Mekonnen
- Center for Environmental Science, College of Natural and Computational Sciences, Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
20
|
Halim MA, Rahman MM, Megharaj M, Naidu R. Cadmium Immobilization in the Rhizosphere and Plant Cellular Detoxification: Role of Plant-Growth-Promoting Rhizobacteria as a Sustainable Solution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13497-13529. [PMID: 33170689 DOI: 10.1021/acs.jafc.0c04579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Food is the major cadmium (Cd)-exposure pathway from agricultural soils to humans and other living entities and must be reduced in an effective way. A plant can select beneficial microbes, like plant-growth-promoting rhizobacteria (PGPR), depending upon the nature of root exudates in the rhizosphere, for its own benefits, such as plant growth promotion as well as protection from metal toxicity. This review intends to seek out information on the rhizo-immobilization of Cd in polluted soils using the PGPR along with plant nutrient fertilizers. This review suggests that the rhizo-immobilization of Cd by a combination of PGPR and nanohybrid-based plant nutrient fertilizers would be a potential and sustainable technology for phytoavailable Cd immobilization in the rhizosphere and plant cellular detoxification, by keeping the plant nutrition flow and green dynamics of plant nutrition and boosting the plant growth and development under Cd stress.
Collapse
Affiliation(s)
- Md Abdul Halim
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
21
|
Assessing the Influence of Compost and Biochar Amendments on the Mobility and Uptake of Heavy Metals by Green Leafy Vegetables. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17217861. [PMID: 33121066 PMCID: PMC7662399 DOI: 10.3390/ijerph17217861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/28/2023]
Abstract
Municipal green-waste compost and wheat straw biochar amendments were assessed for their assistance in regulating the mobility of Cu, Pb, Zn, Cd, Cr and Ni and the uptake of these metals by five commonly grown green leafy vegetables (radish, lettuce, dill, spinach and parsley). The amendments were applied alone or combination of both in 5% and 10% (v/w) doses to soil contaminated with heavy metals. Vegetables were grown for eight weeks under greenhouse conditions, and in collected samples plant uptake and metal speciation in soil after sequential extraction procedure (BCR) were analyzed by Microwave Plasma Atomic Emission Spectrometer (MP-AES). The results of our study show that organic amendments noticeably reduced the uptake of heavy metals by various leafy vegetables, with the best result of reduced leaf accumulation for single biochar and biochar–compost mix application at higher dose. Single application of green-waste municipal compost may have adverse effects on heavy metal uptake, increasing the risk of vegetable contamination with Zn, Pb and Cr. This study recommends careful selection of vegetables for cultivation when organic fertilizers are applied to soil with elevated contents of trace elements or co-application of compost in mix with biochar to mitigate possible negative effects and human health risk.
Collapse
|
22
|
Assessing the Effects of Biochar on the Immobilization of Trace Elements and Plant Development in a Naturally Contaminated Soil. SUSTAINABILITY 2020. [DOI: 10.3390/su12156025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Soil contamination with trace elements is an important and global environmental concern. This study examined the potential of biochars derived from rice husk (RHB), olive pit (OPB), and a certified biochar produced from wood chips (CWB) to immobilize copper (Cu2+) and lead (Pb2+) in aqueous solution to avoid its leaching and in a pot experiment with acidic Xerofluvent soils multicontaminated with trace elements. After assessing the adsorption potential of Cu2+ and Pb2+ from an aqueous solution of the three studied biochars, the development of Brassica rapa pekinensis plants was monitored on polluted soils amended with the same biochars, to determine their capability to boost plant growth in a soil contaminated with several trace elements. RHB and CWB removed the maximum amounts of Cu2+ and Pb2+ from aqueous solution in the adsorption experiment. The adsorption capacity increased with initial metal concentrations for all biochars. The efficiency in the adsorption of cationic metals by biochars was clearly affected by biochar chemical properties, whereas total specific surface area seemed to not correlate with the adsorption capacity. Among the isotherm models, the Langmuir model was in the best agreement with the experimental data for both cations for CWB and RHB. The maximum adsorption capacity of Cu2+ was 30.77 and 58.82 mg g−1 for RHB and CWB, respectively, and of Pb2+ was 19.34 and 77.52 mg g−1 for RHB and CWB, respectively. The application of 5% of RHB and CWB to the acidic polluted soils improved soil physico-chemical properties, which permitted the development of Brassica rapa pekinensis plants. RHB and CWB have been shown to be effective for the removal of Cu2+ and Pb2+, and the results obtained regarding plant development in the soils contaminated with trace elements indicated that the soil amendments have promising potential for the recovery of land polluted with heavy metals.
Collapse
|
23
|
El Rasafi T, Haddioui A. Growth, Survival and Biomass Production of Barley in a Polluted Mine Soil Amended with Biochar and Animal Manure. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:155-165. [PMID: 32556374 DOI: 10.1007/s00128-020-02914-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
In the present study, sheep manure (0%, 10% and 20% w/w) and biochar derived from coniferous tree woods (0%, 2.5% and 5% w/w) were incorporated into a multi-MTE contaminated soil from a former iron mine site and incubated for 10 days. A seeds of barley were grown in the amended soil and different morphological traits were measured after 30 days. Results indicated that MTE stress reduced the shoot length, stem diameter, leaf area, number of leaves and dry biomass as compared to the control. Organic amendments application increased soil pH and was found to affect significantly almost all the measured parameters. Animal manure was found effective in improvement of the morphological characteristics of barley plants comparing to biochar amendments. Our results suggested that animal manure could be used for reducing the effect of MTE on the morphological proprieties of barley grown in a former iron mine soil.
Collapse
Affiliation(s)
- Taoufik El Rasafi
- Laboratory of Biotechnology and Valorization of Phytogenetic Resources, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco.
| | - Abdelmajid Haddioui
- Laboratory of Biotechnology and Valorization of Phytogenetic Resources, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco
| |
Collapse
|
24
|
Maddela NR, Kakarla D, García LC, Chakraborty S, Venkateswarlu K, Megharaj M. Cocoa-laden cadmium threatens human health and cacao economy: A critical view. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137645. [PMID: 32146410 DOI: 10.1016/j.scitotenv.2020.137645] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/10/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
In the recent decades, Cd burden in cocoa-based products threatened global food safety, human health and the future of chocolateries. Increased Cd bioavailability is an acute problem in cacao-based horticulture. Poverty, poor maintenance, unjustified traditional farming, and paucity of knowledge on Cd-binding propensity in cacao discourage the application of risk-mitigation measures. Progressive accumulation of Cd, with a half-life of 10-30 years, in the human body even at ultra-trace levels may lead to serious health complications. If Cd accumulates in the food chain through cocoa products, consequences in children, who are the primary consumers of chocolates, include morbidity and mortality that may result in a significant demographic transition by the year 2050. Developing cacao clones with an innate capability of taking up low Cd levels from soils, and site-specific Cd-cacao research might contribute to limiting the trophic transfer of Cd. This review highlights the possible routes for Cd uptake in cacao plants and discusses the measures to rescue the chocolateries from Cd pollution to promote "healthy" cacao farming. The potential human health risks of chocolate-laden Cd and mitigation strategies to minimize Cd burden in the human body are also presented. The challenges and prospects in Cd-cacao research are discussed as well.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador; Facultad la Ciencias la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| | - Dhatri Kakarla
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luz Cecilia García
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador; Facultad de Agronomía, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| | - Sagnik Chakraborty
- Hebei University of Technology, School of Energy & Environmental Engineering, Beichen, Tianjin, PR China
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
25
|
The Immobilization of Soil Cadmium by the Combined Amendment of Bacteria and Hydroxyapatite. Sci Rep 2020; 10:2189. [PMID: 32041971 PMCID: PMC7010816 DOI: 10.1038/s41598-020-58259-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/13/2020] [Indexed: 11/25/2022] Open
Abstract
The remediation of heavy metal-contaminated soils has attracted increased attention worldwide. The immobilization of metals to prevent their uptake by plants is an efficient way to remediate contaminated soils. This work aimed to seek the immobilization of cadmium in contaminated soils via a combination method. Flask experiments were performed to investigate the effects of hydroxyapatite (HAP) and the Cupriavidus sp. strain ZSK on soil pH and DTPA-extractable cadmium. Pot experiments were carried out to study the effects of the combined amendment on three plant species. The results showed that HAP has no obvious influence on the growth of the strain. With increasing concentrations of HAP, the soil pH increased, and the DTPA-extractable Cd decreased. Via the combined amendment of the strain and HAP (SH), the DTPA-extractable Cd in the soil decreased by 58.2%. With the combined amendment of the SH, the cadmium accumulation in ramie, dandelion, and daisy decreased by 44.9%, 51.0%, and 38.7%, respectively. Moreover, the combined amendment somewhat benefitted the growth of the three plant species and significantly decreased the biosorption of cadmium. These results suggest that the immobilization by the SH combination is a potential method to decrease the available cadmium in the soil and the cadmium accumulation in plants.
Collapse
|
26
|
Krueger BC, Fowler GD, Templeton MR, Moya B. Resource recovery and biochar characteristics from full-scale faecal sludge treatment and co-treatment with agricultural waste. WATER RESEARCH 2020; 169:115253. [PMID: 31707178 PMCID: PMC6961206 DOI: 10.1016/j.watres.2019.115253] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Unsafe disposal of faecal sludge from onsite sanitation in low-income countries has detrimental effects on public health and the environment. The production of biochar from faecal sludge offers complete destruction of pathogens and a value-added treatment product. To date, research has been limited to the laboratory. This study evaluates the biochars produced from the co-treatment of faecal sludge from septic tanks and agricultural waste at two full-scale treatment plants in India by determining their physical and chemical properties to establish their potential applications. The process yielded macroporous, powdery biochars that can be utilised for soil amendment or energy recovery. Average calorific values reaching 14.9 MJ/kg suggest use as solid fuel, but are limited by a high ash content. Phosphorus and potassium are enriched in the biochar but their concentrations are restricted by the nutrient-depleted nature of septic tank faecal sludge. High concentrations of calcium and magnesium led to a liming potential of up to 20.1% calcium carbonate equivalents, indicating suitability for use on acidic soils. Heavy metals present in faecal sludge were concentrated in the biochar and compliance for soil application will depend on local regulations. Nevertheless, heavy metal mobility was considerably reduced, especially for Cu and Zn, by 51.2-65.2% and 48.6-59.6% respectively. Co-treatment of faecal sludge with other carbon-rich waste streams can be used to influence desired biochar properties. In this case, the addition of agricultural waste increased nutrient and fixed carbon concentrations, as well as providing an additional source of energy. This study is a proof of concept for biochar production achieving full-scale faecal sludge treatment. The findings will help inform appropriate use of the treatment products as this technology becomes more commonly applied.
Collapse
Affiliation(s)
- Benedict C Krueger
- Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ, UK.
| | - Geoffrey D Fowler
- Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ, UK
| | - Michael R Templeton
- Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ, UK
| | | |
Collapse
|
27
|
Abdin Y, Usman A, Ok YS, Tsang YF, Al-Wabel M. Competitive sorption and availability of coexisting heavy metals in mining-contaminated soil: Contrasting effects of mesquite and fishbone biochars. ENVIRONMENTAL RESEARCH 2020; 181:108846. [PMID: 31740040 DOI: 10.1016/j.envres.2019.108846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/19/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Mesquite and fishbone were pyrolyzed to produce biochar (MBC and FBC, respectively) at different temperatures. The effects of the MBC and FBC on the removal of single and competitive metals (Cd, Pb, Zn, and Cu) from aqueous solutions were evaluated. A greenhouse pot experiment was also conducted using wheat plants with the mining-contaminated soils. In the presence of MBC or FBC (dosages of 15 and 30 g kg-1), the bioavailability of co-existing Cd, Pb, Zn, Cu, Mn, and Fe were assessed. The results clearly indicated competitive adsorption among metals with the highest adsorption preference toward Pb. The removal efficiency and partition coefficient (PC) values of heavy metals for FBCs were higher than those for MBCs. These two values increased with MBC pyrolysis temperature under both single- and multi-metals adsorption conditions. Applying FBC to mining soil resulted in the highest reduction in most NH4NO3-extractable heavy metals, reducing their availability to wheat plants. At the highest application dosage of 30 g kg-1, the highest metal immobilization, which accounted for 40.0% and 43.0% for Pb, 61.7% and 66.2% for Cu, 48.3% and 55.6% for Zn, and 32.7% and 33.8% for Cd, was achieved following the application of FBC400 and FBC600, respectively. However, applying MBC lead to a significant reduction in the availability of Cu and Pb but not that of Zn and Cd. FBC is thus more effective in removing heavy metal from aqueous solutions, as well as in immobilizing co-existing heavy metals in contaminated mining soil. It could, therefore, be an effective sorbent and immobilizing agent.
Collapse
Affiliation(s)
- Yassir Abdin
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Adel Usman
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong, China
| | - Mohammad Al-Wabel
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong, China.
| |
Collapse
|
28
|
Ramtahal G, Umaharan P, Hanuman A, Davis C, Ali L. The effectiveness of soil amendments, biochar and lime, in mitigating cadmium bioaccumulation in Theobroma cacao L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133563. [PMID: 31362218 DOI: 10.1016/j.scitotenv.2019.07.369] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Cocoa (Theobroma cacao L.) is an important neotropical tree crop grown for its seeds or beans used in global chocolate and confectionary industries. Following studies showing ill effects of long-term dietary exposure of cadmium (Cd) on human health, a number of countries including the European Union (EU) have developed stringent regulations to protect consumers from exposure to cadmium. Cocoa is capable of bioaccumulating Cd in the cocoa beans when grown in soils high in cadmium and hence livelihood of cocoa farmers can be at risk if methods to mitigate the bioaccumulation of Cd are not developed. In vitro, greenhouse and field experiments were established with four, three and three replications respectively to evaluate the effectiveness of soil amendments, biochar and lime, at various application rates (0, 0.5×, 1×, 1.5× and 2× of the recommended rate), on soil pH, Cd phytoavailability and Cd bioaccumulation in Theobroma cacao L. For the in vitro study, Cd-containing soil was amended with 5 levels of biochar and lime, while for the greenhouse and field study four application rates were tested. The study showed that while lower rates were effective under in vitro conditions as you progressed from in vitro to greenhouse to field conditions the application rates and application frequency had to be increased, as the effectiveness and longevity of the treatments were compromised by environmental factors. Our study implies that the two amendments were complementary in their action and can be used in the recommended rated to reduce Cd bioaccumulation. However further studies are required on the placement of amendments to improve their effectiveness and longevity particularly under field conditions.
Collapse
Affiliation(s)
- Gideon Ramtahal
- Cocoa Research Centre, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| | - Pathmanathan Umaharan
- Cocoa Research Centre, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Anand Hanuman
- Cocoa Research Centre, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Carisa Davis
- Cocoa Research Centre, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Leon Ali
- Cocoa Research Centre, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
29
|
Samsuri AW, Fahmi AH, Jol H, Daljit S. Particle size and rate of biochar affected the phytoavailability of Cd and Pb by mustard plants grown in contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:567-577. [PMID: 31744301 DOI: 10.1080/15226514.2019.1687423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various amendments are used to reduce the phytoavailability of heavy metals in contaminated soils, but recently the use of biochar is receiving serious attention. In this study, two particle sizes of an oil palm empty fruit bunch biochar (EFBB); <50 µm (F-EFBB) and >2 mm (C-EFBB) were applied at either 0, 0.5, or 1% (w/w) to soils contaminated with either Cd or Pb and the phytoavailability of these metals by mustard plants grown on the soils was evaluated. Results revealed that the application of EFBB at 1% significantly increased plant growth parameters as compared with the control in Cd-soil. However, there was no significant effect of EFBB application rate on plant growth parameters in Pb-soil. There was a significant difference in the concentrations of Cd and Pb in the plant root and shoot between soils receiving different particle sizes of EFBB. The treatment of 1% F-EFBB gave the lowest concentration of the Cd concentration in the shoot (115.200 mgkg-1) and Pb concentration in the root and shoot (4196.000 and 78.467 mgkg-1, respectively) as compared with the other treatments. Therefore, F-EFBB application at high rates can be recommended for reducing the phytoavailability of Cd and Pb in contaminated soils.
Collapse
Affiliation(s)
- Abd Wahid Samsuri
- Department of Land Management, Malaysia Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| | - Alaa Hasan Fahmi
- Department of Land Management, Malaysia Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Soil Science and Water Resources, College of Agriculture, University of Diyala, Diyala, Iraq
| | - Hamdan Jol
- Department of Land Management, Malaysia Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| | - Singh Daljit
- Department of Land Management, Malaysia Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
30
|
Antonangelo JA, Zhang H. Heavy metal phytoavailability in a contaminated soil of northeastern Oklahoma as affected by biochar amendment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33582-33593. [PMID: 31586315 DOI: 10.1007/s11356-019-06497-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
High concentrations of heavy metals (HM) in soils have negative impacts on plants, human health, and the environmental quality. The purpose of this study was to evaluate the effects of biochars on the bioaccessibility of Zn, Pb, and Cd in a contaminated soil in the Tar Creek area of NE Oklahoma, as well as on the growth and uptake of these elements by perennial ryegrass (Lolium perenne). Biochars were produced from switchgrass (SGB) and poultry litter (PLB) feedstocks at 700 °C and applied to the soil at 0.0, 0.5, 1.0, 2.0, and 4.0% (w/w), with three replications. Regardless of the feedstock, both soil organic carbon (SOC or OC) and pH increased as the rates of biochars increased, which significantly decreased the HM bioaccessibility (p < 0.01). The Zn and Cd extracted by DTPA were highly correlated (p < 0.0001) with their concentration in ryegrass shoots and roots. Except for some significant positive correlations (p < 0.05), HM concentrations in ryegrass shoots and roots were not correlated with their biomass (p > 0.05). Both bioconcentration factor (BCF) and transfer factor decreased as the rates of biochars applied increased, especially for Pb and Cd (p < 0.01). Our results suggest it is beneficial to use biochars at Tar Creek as a soil amendment to reduce HM bioaccessibility and metal uptake by ryegrass.
Collapse
Affiliation(s)
- João Arthur Antonangelo
- Department of Plant and Soil Sciences, Oklahoma State University, 371 Agricultural Hall, Stillwater, OK, 74078, USA.
| | - Hailin Zhang
- Department of Plant and Soil Sciences, Oklahoma State University, 371 Agricultural Hall, Stillwater, OK, 74078, USA
| |
Collapse
|
31
|
Al-Wabel MI, Usman ARA, Al-Farraj AS, Ok YS, Abduljabbar A, Al-Faraj AI, Sallam AS. Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1705-1722. [PMID: 28424945 DOI: 10.1007/s10653-017-9955-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
A 30-day incubation experiment was conducted using a heavy metal-contaminated mined soil amended with date palm feedstock (FS) and its derivative biochars (BCs) at three pyrolysis temperatures of 300 (BC-300), 500 (BC-500), and 700 °C (BC-700) with different application rates (0.0, 5, 15, and 30 g kg-1) to investigate their short-term effects on soil respiration (CO2-C efflux), microbial biomass carbon (MBC), soil organic carbon (SOC), mobile fraction of heavy metals (Cd, Cu, Pb, Zn, Mn, and Fe), pH, and electrical conductivity (EC). The results showed that FS and BC-300 with increasing addition rate significantly reduced soil pH, whereas SOC, CO2-C efflux, and soil MBC were increased compared to the control. On the contrary, BC-500 and BC-700 increased soil pH at early stage of incubation and have small or no effects on SOC, CO2-C efflux, and MBC. Based on the results, the date palm biochars exhibited much lower cumulative CO2-C efflux than feedstock, even with low-temperature biochar, indicating that BCs have C sequestration potential. Applying BC-700 at 15 and 30 g kg-1 significantly reduced cumulative CO2-C efflux by 21.8 and 45.4% compared to the control, respectively. The incorporation of FS into contaminated soil significantly increased the mobile content of Cd and Mn, but decreased the mobile content of Cu. However, BC-300 significantly reduced the mobile content of Cd, Cu, Pb, and Zn. It could be concluded that low-temperature biochar could be used as a soil amendment for reducing heavy metal mobility in mining contaminated soil in addition to minimize soil CO2-C efflux.
Collapse
Affiliation(s)
- Mohammad I Al-Wabel
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| | - Adel Rabie A Usman
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
- Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Abdullah S Al-Farraj
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Yong Sik Ok
- Korea Biochar Research Center, School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Adel Abduljabbar
- Industrial Psychology, College of Education, King Saud University, Riyadh, Saudi Arabia
| | - Abdulelah I Al-Faraj
- Agriculture Engineering Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdelazeem S Sallam
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
32
|
Azhar M, Zia Ur Rehman M, Ali S, Qayyum MF, Naeem A, Ayub MA, Anwar Ul Haq M, Iqbal A, Rizwan M. Comparative effectiveness of different biochars and conventional organic materials on growth, photosynthesis and cadmium accumulation in cereals. CHEMOSPHERE 2019; 227:72-81. [PMID: 30981972 DOI: 10.1016/j.chemosphere.2019.04.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/30/2019] [Accepted: 04/06/2019] [Indexed: 05/27/2023]
Abstract
Although biochar and conventional organic materials have been widely studied for lowering cadmium (Cd) uptake by plants but information regarding their comparative effectiveness is lacking. In this study, biochars from different feedstocks viz. rice husk biochar (RHB), cotton sticks biochar (CSB) and wheat straw biochar (WSB) were compared with conventional organic materials viz. farm manure (FM), poultry manure (PM) and press mud (PrMd) for their effectiveness to promote plant growth and to reduce Cd uptake by wheat and rice plants grown rotationally in a Cd-spiked (50 mg kg-1) soil. Each amendment was applied at the rate of 2% (w/w) in three replicates. Results showed that the application of amendments improved the soil properties and plant growth, by retaining Cd in the soil and restricting its uptake by plants. The amendments decreased the ammonium bicarbonate diethylene penta acetic acid extractable soil Cd, and improved soil organic carbon (SOC) and cation exchange capacity (CEC) as compared to only Cd-contaminated soil. The highest SOC content of 2.68 and 1.68% and CEC of 8.77 and 9.39 cmolc kg-1 were found in RHB treated post-wheat and post-rice soil, respectively. Amendments treated soil showed lower concentrations of bioavailable Cd and the maximum reduction was recorded in RHB and PrMd amended soil. Similarly, bioaccumulation of Cd was decreased with the application of all amendments; the maximum decrease was recorded in RHB and PrMd treated soil. Our results suggested that RHB and PrMd could be used for reducing the bioaccumulation of Cd in cereal grains in alkaline soils.
Collapse
Affiliation(s)
- Muhammad Azhar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Muhammad Farooq Qayyum
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Asif Naeem
- Soil and Environmental Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Muhammad Ashar Ayub
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Anwar Ul Haq
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Akhtar Iqbal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan.
| |
Collapse
|
33
|
Li S, Chen G. Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and biochar derived at different pyrolysis temperatures. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 78:198-207. [PMID: 32559905 DOI: 10.1016/j.wasman.2018.05.048] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 06/11/2023]
Abstract
Biochar is a promising biomass product for soil amendment, remediation, and carbon sequestration. In this study, the effect of pyrolysis temperature and feedstock type on biochar physiochemical properties including stability, recalcitrance, and surface functionality were investigated through thermogravimetric, thermochemical, and infrared spectral analyses. It is concluded in this research that pyrolysis temperature was the dominating factor determining the inherent characteristics of the derived biochar. High-temperature pyrolysis (≥600 °C) derived the biochar with a high pH, stability, recalcitrance, and higher heating value (HHV). On the other hand, the biochar produced from low-temperature pyrolysis (≤400 °C) had a larger mass yield, energy recovery, more volatile content, and diverse surface functional groups. The different biochar characteristics will lead to different agricultural and environmental applications. Also in this research, a carbon-based recalcitrance index (R50,C) based on a novel multi-element scanning thermal analysis (MESTA) was proposed to improve the current recalcitrance index (R50) based on the conventional thermogravimetric analysis (TGA) for the evaluation of biochar's carbon sequestration potential. The direct comparison of the two indexes, as well as the results from the infrared spectral analysis and ultimate analysis, indicated that R50,C was better at characterizing biochar's recalcitrance, especially when the mineral content of the feedstock was high. In addition, the cost breakdown indicated that the pretreatment of feedstock was the costliest process during biochar production.
Collapse
Affiliation(s)
- Simeng Li
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA.
| | - Gang Chen
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA
| |
Collapse
|
34
|
Liu C, Wang L, Yin J, Qi L, Feng Y. Combined Amendments of Nano-hydroxyapatite Immobilized Cadmium in Contaminated Soil-Potato (Solanum tuberosum L.) System. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:581-587. [PMID: 29497788 DOI: 10.1007/s00128-018-2299-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
The toxicity of cadmium (Cd) has posed major public health concern in crops grown in the Cd-contaminated soils. The effects of five amendments, nano-hydroxyapatite (n-HA) and it combined with lime, zeolite, bone mill and fly ash on Cd immobilization in soils and uptake in potatoes, were investigated in a contaminated soil by pot experiments. The result showed that the applications of combined amendments significantly decreased the bioavailable Cd concentrations extracted by TCLP, DTPA-TEA and MgCl2 in the contaminated soils, and changed the soluble and exchangeable and specifically sorbed fractions to oxide-bound and organic-bound fractions. Compared to the control group, the concentrations of Cd in the potato tubers grown in n-HA, n-HA + Fly ash, n-HA + Lime, n-HA + Bone mill and n-HA + Zeolite soil were reduced 17.4%, 20.7%, 15.2%, 32.6% and 39.1%, respectively. Nano-hydroxyapatite combined amendments was more effective in reducing bioavailable Cd concentrations and Cd accumulations in potatoes, especially for n-HA + Z.
Collapse
Affiliation(s)
- Chang Liu
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou, 075031, Hebei, China
| | - Lei Wang
- Potato Research Center, Hebei North University, No. 11 South Zuanshi Road, Zhangjiakou, 075031, Hebei, China.
| | - Jiang Yin
- Potato Research Center, Hebei North University, No. 11 South Zuanshi Road, Zhangjiakou, 075031, Hebei, China
| | - Lipan Qi
- Potato Research Center, Hebei North University, No. 11 South Zuanshi Road, Zhangjiakou, 075031, Hebei, China
| | - Yan Feng
- Potato Research Center, Hebei North University, No. 11 South Zuanshi Road, Zhangjiakou, 075031, Hebei, China
| |
Collapse
|
35
|
Sodango TH, Li X, Sha J, Bao Z. Review of the Spatial Distribution, Source and Extent of Heavy Metal Pollution of Soil in China: Impacts and Mitigation Approaches. J Health Pollut 2018; 8:53-70. [PMID: 30524849 PMCID: PMC6221442 DOI: 10.5696/2156-9614-8.17.53] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/07/2017] [Indexed: 04/23/2023]
Abstract
BACKGROUND China has undergone a rapid industrial revolution and urbanization during the past three decades. This expansion is largely responsible for the release of a large amount of heavy metals into soils and is increasingly raising concerns over the potential effects on human health and the environment. The problem is drawing increasing attention, especially after an extensive nationwide soil survey report in 2014. A number of studies have examined soil contamination by heavy metals in China. However, most of these studies have been small in scale and it is therefore challenging to get a general overview of the level of contamination across the entire country. OBJECTIVES The present study is aimed at presenting a synthesized overview of the extent, pattern, and impact of heavy metal contamination of soils in China, including mitigation approaches. METHODS Eighty-six journal articles and other literature such as reports, internet sources, and statistical yearbooks were narratively and critically synthesized to compile a holistic summary of sources of heavy metals, the extent of pollution, spatial distribution and impact of heavy metal contamination in China. The major findings from these studies are presented, along with mitigation approaches applicable to China. DISCUSSION A synthesis of major findings from recent scientific journals shows that about 10.18% of farmland soils which supports 13.86% of grain production in China is affected by heavy metals. The main sources of pollution are anthropogenic activities. Even though the spatial distribution of pollution is highly variable owing to natural and human factors, provinces with intensive industrial activities such as Henan, Shandong, and Sichuan are more highly polluted than others. These regions are top grain producing areas and hence require close follow-up for development of feasible approaches to mitigating crop contamination and associated health risks emerging in parts of China. The government recently launched a program aimed at determining sound reclamation strategies. CONCLUSION Mitigation of heavy metal contamination in China requires coordination of different actors and integration of all feasible reclamation approaches. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Terefe Hanchiso Sodango
- Fujian Normal University, College of Geographical Sciences, State Key Laboratory of Mountain Ecology, Department of GIS and Cartography, Fuzhou, China
| | - Xiaomei Li
- Fujian Normal University, College of Environmental Science and Engineering, Fuzhou, China
| | - Jinming Sha
- Fujian Normal University, College of Geographical Sciences, State Key Laboratory of Mountain Ecology, Department of GIS and Cartography, Fuzhou, China
| | - Zhongcong Bao
- Fujian Normal University, College of Geographical Sciences, State Key Laboratory of Mountain Ecology, Department of GIS and Cartography, Fuzhou, China
| |
Collapse
|
36
|
Tan Z, Wang Y, Zhang L, Huang Q. Study of the mechanism of remediation of Cd-contaminated soil by novel biochars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24844-24855. [PMID: 28914413 DOI: 10.1007/s11356-017-0109-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
This article used novel non-magnetized and magnetized biochars prepared under a CO2 atmosphere returned to Cd-contaminated soil and compared these to the effects of conventional biochars prepared under a N2 atmosphere with regard to Cd-contaminated soil remediation. A pot experiment with lettuce (Lactuca sativa) was conducted to investigate the relative soil remediation effects of these biochars. The soil used for the pot experiment was spiked with 20 mg kg-1 Cd and amended with 5% of a biochar before sowing. Through these research works, some important results were obtained as follows: (1) applying biochar treated by pyrolysis under a CO2 atmosphere can obtain the best remediation effect of Cd-contaminated soil that the content of cadmium in the lettuce roots, stems, and leaves was reduced 67, 62, and 63%, respectively; (2) the magnetic biochar aggregation for the soil is weak, so the heavy metal cadmium in the soil could not be immobilized well by the magnetic biochar; (3) The remediation mechanism of novel biochars is that biochar includes a large number of organic functional groups (-C-OH, -C=O, COO-) that can act in a complexing reaction with heavy metal Cd(II) and the inorganic salt ions (Si, S, Cl, etc.) that can combine with cadmium and generate a stable combination.
Collapse
Affiliation(s)
- Zhongxin Tan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Yuanhang Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Limei Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qiaoyun Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
37
|
Rizwan M, Ali S, Adrees M, Ibrahim M, Tsang DCW, Zia-Ur-Rehman M, Zahir ZA, Rinklebe J, Tack FMG, Ok YS. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. CHEMOSPHERE 2017; 182:90-105. [PMID: 28494365 DOI: 10.1016/j.chemosphere.2017.05.013] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) accumulation in vegetables is an important environmental issue that threatens human health globally. Understanding the response of vegetables to Cd stress and applying management strategies may help to reduce the Cd uptake by vegetables. The aim of the present review is to summarize the knowledge concerning the uptake and toxic effects of Cd in vegetables and the different management strategies to combat Cd stress in vegetables. Leafy vegetables grown in Cd contaminated soils potentially accumulate higher concentrations of Cd, posing a threat to food commodities. The Cd toxicity decreases seed germination, growth, biomass and quality of vegetables. This reduces the photosynthesis, stomatal conductance and alteration in mineral nutrition. Toxicity of Cd toxicity also interferes with vegetable biochemistry causing oxidative stress and resulting in decreased antioxidant enzyme activities. Several management options have been employed for the reduction of Cd uptake and toxicity in vegetables. The exogenous application of plant growth regulators, proper mineral nutrition, and the use of organic and inorganic amendments might be useful for reducing Cd toxicity in vegetables. The use of low Cd accumulating vegetable cultivars in conjunction with insolubilizing amendments and proper agricultural practices might be a useful technique for reducing Cd exposure in the food chain.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Muhammad Ibrahim
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment and Energy, Sejong University, 98 Gunja-dong, Gwnagjin-gu, Seoul, 143-747, South Korea
| | - Filip M G Tack
- Department of Applied Analytical and Physical Chemistry, Ghent University, Gent, Belgium
| | - Yong Sik Ok
- O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Rehman MZU, Khalid H, Akmal F, Ali S, Rizwan M, Qayyum MF, Iqbal M, Khalid MU, Azhar M. Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:560-568. [PMID: 28501770 DOI: 10.1016/j.envpol.2017.05.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/01/2017] [Indexed: 05/23/2023]
Abstract
Cadmium (Cd) uptake and accumulation in crop plants, especially in wheat (Triticum aestivum) and rice (Oryza sativa) is one of the main concerns for food security worldwide. A field experiment was done to investigate the effects of limestone, lignite, and biochar on growth, physiology and Cd uptake in wheat and rice under rotation irrigated with raw effluents. Initially, each treatment was applied alone at 0.1% and combined at 0.05% each and wheat was grown in the field and then, after wheat harvesting, rice was grown in the same field without additional application of amendments. Results showed that the amendments applied increased the grain and straw yields as well as gas exchange attributes compared to the control. In both crops, highest Cd concentrations in straw and grains and total uptake were observed in control treatments while lowest Cd concentrations was observed in limestone + biochar treatment. No Cd concentrations were detected in wheat grains with the application of amendments except limestone (0.1%). The lowest Cd harvest index was observed in limestone + biochar and lignite + biochar treatments for wheat and rice respectively. Application of amendments decreased the AB-DTPA extractable Cd in the soil while increasing the Cd immobilization index after each crop harvest. The benefit-cost ratio and Cd contents in plants revealed that limestone + biochar treatment might be an effective amendment for increasing plant growth with lower Cd concentrations.
Collapse
Affiliation(s)
- Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Hinnan Khalid
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Fatima Akmal
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan.
| | - Muhammad Farooq Qayyum
- Department of Soil Science, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Iqbal
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Usman Khalid
- Department of Zoology, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Azhar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| |
Collapse
|
39
|
Yasmin Khan K, Ali B, Cui X, Feng Y, Yang X, Joseph Stoffella P. Impact of different feedstocks derived biochar amendment with cadmium low uptake affinity cultivar of pak choi (Brassica rapa ssb. chinensis L.) on phytoavoidation of Cd to reduce potential dietary toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:129-138. [PMID: 28324819 DOI: 10.1016/j.ecoenv.2017.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/11/2017] [Accepted: 03/14/2017] [Indexed: 05/20/2023]
Abstract
Biochar has become eco-friendly amendment used for phytoavoidation with low cadmium (Cd) accumulating cultivars of crops to ensure food safety in Cd contaminated soils. In this study, biochar with different waste feedstock material were evaluated for their effectiveness on essential trace metals mobility, Cd bioavailability and its accumulation in two contrasting Cd accumulating cultivars of pak choi (Brassica rapa ssp. chinensis L.) grown in Cd contaminated Mollisol soil. A greenhouse experiment was conducted with plants grown in Cd contaminated soil that had been amended with biochar derived from barley straw, tomato green waste, chicken manure, duck manure and swine manure at application rate of 0%, 2.5% and 5.0% (w/w). The results showed that soil pH was significantly increased by all treatments. Biochar increased plant dry biomass, micronutrients bioavailability with significant differences in the Cd sorption capacity, with the effectiveness higher with increasing biochar application rate. However, tomato green waste (TGW) and chicken manure (CM) derived biochar were more effective than the other biochar in reducing Cd mobilization in soil by 35-54% and 26-43% and reduced its accumulation in shoots of pak choi cultivars by 34-76% and 33-72% in low Cd accumulator cultivar and 64-85% and 55-80% in high Cd accumulator cultivar than the control. Overall, results indicate that TGW and CM biochar can efficiently immobilize Cd, thereby reducing bioavailability in Cd contaminated Mollisol soil to ensure food safety.
Collapse
Affiliation(s)
- Kiran Yasmin Khan
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Barkat Ali
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Agricultural Research Centre, Islamabad 45500, Pakistan
| | - Xiaoqiang Cui
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Peter Joseph Stoffella
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida 34945, United States
| |
Collapse
|
40
|
Zheng R, Sun G, Li C, Reid BJ, Xie Z, Zhang B, Wang Q. Mitigating cadmium accumulation in greenhouse lettuce production using biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:6532-6542. [PMID: 28074369 DOI: 10.1007/s11356-016-8282-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 12/18/2016] [Indexed: 05/16/2023]
Abstract
Greenhouse experiments were conducted to investigate the influence of rice straw biochar (RSB) on soil cadmium (Cd) availability and accumulation in lettuce. The RSB was applied either in bands or broadcast in the test site of four greenhouses with soil Cd concentrations ranging from 1.70-3.14 μg g-1. Biochar doses applied in bands were half of those broadcast. The Cd levels in the shoots of lettuce were observed to be reduced by up to 57% with increasing RSB application rate (0, 6, 12, 18 t ha-1). Following RSB application, shoot Cd concentrations of lettuce were reduced to below the Chinese threshold value set for food, and hazard quotients for Cd associated with vegetable consumption were reduced from 0.70-1.11 to 0.42-0.65. A decrease in soil bulk density (11%) and increases in water holding capacity (16%), available phosphorus (30%), available potassium (197%), and lettuce yield (15%) were observed after RSB application. Multiple linear regression analysis suggested that the soil extractable Cd level (but not biomass dilution) and soil bulk density, as influenced by RSB addition, were the dominant contributors to the shoot Cd levels in lettuce and lettuce yield, respectively. These results highlight the potential for RSB to mitigate the phytoaccumulation of Cd and thereby to reduce human exposure from vegetable consumption. Application of biochar in band, rather than broadcasting over the entire area, represents an opportunity to halve the biochar cost while retaining a good remediation effect.
Collapse
Affiliation(s)
- Ruilun Zheng
- Research and Development Center for Grasses and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Guoxin Sun
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Cui Li
- Research and Development Center for Grasses and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Brian J Reid
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Zubin Xie
- State Key Laboratory of Soil and Sustainable Agriculture, Jiangsu Biochar Engineering Center, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Bo Zhang
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Qinghai Wang
- Research and Development Center for Grasses and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| |
Collapse
|