1
|
Rahman MH, Chen T, Yeasmin SM, Khan MHR, Chakraborty TK, Rahaman MH, Rahman MA. Receptor model-based sources and risk assessment of metals in sediment of the coastal construction-oriented aquatic system in Bangladesh. MARINE POLLUTION BULLETIN 2024; 202:116383. [PMID: 38677105 DOI: 10.1016/j.marpolbul.2024.116383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
Metal pollution in sediment from construction areas raises ecological and health concerns, yet source-based sediment pollution in Bangladesh remains understudied. Our investigation focused on fifteen locations in the Kohelia River and the coastal regions near the Matarbari projects (Matarbari Power Plant, Matarbari Deep Seaport), assessing metal concentrations' sources and impacts on ecology and human well-being. Sediment quality indices indicated high Cd and Cr contamination, with sites near Matarbari projects being the most polluted. The positive matrix factorization model identified three anthropogenic sources and mixed sources. Matarbari projects contributed significantly to As (67.9 %), Mn (50.25 %), Cd (48.35 %), and Cr (41.0 %), while ship-breaking yards contributed Fe (58.0 %), Zn (55.5 %), Pb (53.8 %), and Cu (36.1 %). Ecological indices showed different impacts on aquatic life from metal pollution, but cancer risk levels stayed below the threshold set by the US Environmental Protection Agency. These findings underscore the need for targeted measures to address metal pollution.
Collapse
Affiliation(s)
- Md Habibur Rahman
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Tianran Chen
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Syeda Maksuda Yeasmin
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Hafijur Rahaman Khan
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tapos Kumar Chakraborty
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Hasibur Rahaman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh; Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China
| | - Md Anisur Rahman
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
2
|
Islam F, Parvin A, Parvin A, Akhtar US, Ali Shaikh MA, Uddin MN, Moniruzzaman M, Saha B, Khanom J, Suchi PD, Hossain MA, Hossain MK. Sediment-bound hazardous trace metals(oid) in south-eastern drainage system of Bangladesh: First assessment on human health. Heliyon 2023; 9:e20040. [PMID: 37809952 PMCID: PMC10559780 DOI: 10.1016/j.heliyon.2023.e20040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Despite the beneficial aspect of a natural drainage system, increasing human-induced activities, which include urbanization and growth in industrialization, degrade the ecosystem in terms of trace metal contamination. In response, given the great importance of the south-eastern drainage system in Bangladesh, a detailed evaluation of the human health risk as well as the potential ecological risk of trace metals (Be, Cd, Co, Cr, Cu, Hg, Ni, Pb, Se, V, Zn, and As) in Karnaphuli riverbed sediment was conducted. Mean levels of the elements in mg/kg were As (5.62 ± 1.47); Se (0.84 ± 0.61); Hg (0.37 ± 0.23); Be (1.17 ± 0.49); Pb (15.62 ± 8.42); Cd (0.24 ± 0.33); Co (11.59 ± 4.49); Cr (112.75 ± 40.09); Cu (192.67 ± 49.71); V (27.49 ± 10.95); Zn (366.83 ± 62.82); Ni (75.83 ± 25.87). Pollution indicators, specifically contamination factor (CF), pollution load index (PLI), degree of contamination (Cd), enrichment factor (EF), geo-accumulation index (Igeo), and potential ecological risk index (RI), were computed to assess sediment quality. For the first observation of health risk, chronic daily intake (CDI), hazard quotient (HQ), hazard index (HI), carcinogenic risk (CR) and total carcinogenic risk (TCR) indices were calculated. According to the results, CDI values through the ingestion route of both the adult and child groups were organized in the following descending mode respectively: Zn > Cu > Cr > Ni > V > Pb > Co > As > Se > Be > Cd > Hg. The non-carcinogenic risks were generally low for all routes of exposure, except HQingestion was slightly higher for both adults and children. The calculated hazard index (HI) was, nevertheless, within the permitted range (HI < 1). Similarly, none of the metals exhibited any carcinogenic risks, as all CR values were within the 10-4-10-6 range. The need for authoritative efforts and water policy for the sake of the surrounding ecosystem and human health in the vicinity of the examined watershed is strongly felt as an outcome of this study. The purpose of this study is to protect public health by identifying trace metal sources and reducing industrial and domestic discharge into this natural drainage system.
Collapse
Affiliation(s)
- Fahima Islam
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Afroza Parvin
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Afsana Parvin
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Umme Sarmeen Akhtar
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Md Aftab Ali Shaikh
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
- Department of Chemistry, Dhaka University, Dhaka, 1000, Bangladesh
| | - Md Nashir Uddin
- Planning and Development Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Mohammad Moniruzzaman
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
- Central Analytical and Research Facilities (CARF), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Badhan Saha
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Juliya Khanom
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Priyanka Dey Suchi
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Md Anwar Hossain
- Planning and Development Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Md Kamal Hossain
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
- Central Analytical and Research Facilities (CARF), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| |
Collapse
|
3
|
Haque MM, Reza AHMS, Hoyanagi K. Anthropogenic and natural contribution of potentially toxic elements in southwestern Ganges-Brahmaputra-Meghna delta, Bangladesh. MARINE POLLUTION BULLETIN 2023; 192:115103. [PMID: 37276710 DOI: 10.1016/j.marpolbul.2023.115103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
Elemental composition, multivariate statistical analyses with the absolute principal component score-multiple linear regression (APCS-MLR) model, and different pollution indices in Upper and Lower Southwestern Ganges-Brahmaputra-Meghna (GBM) delta sediments were studied to characterize pollution, ecological risk and quantify potential toxic element sources of the area. Toxic metals concentrations were higher in Lower Delta and individual pollution indices showed Upper Delta was moderately polluted by arsenic, chromium, cobalt, copper and lead, and Lower Delta was moderately-strongly polluted by the same metals. Synergistic indices include Potential Ecological, Toxic, Nemerow, and Pollution Risk indices in Upper and Lower Delta sediment ranged from 47.17-128.07, 2.03-12.19, 29.92-65.42, 0.28-1.62, and 69.17-246.90, 8.00-13.47, 20.53-152.92, 1.18-1.58, indicated low and moderate risk pollution, respectively. Statistical models represent the metals dominantly originated from nature for Upper Delta, and both natural and anthropogenic activities contributed to Lower Delta sediment. The study found that the modern deposit in Lower Delta became more contaminated and thus enhanced ecological risk.
Collapse
Affiliation(s)
- Md Masidul Haque
- Department of Geology and Mining, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - A H M Selim Reza
- Department of Geology and Mining, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Koichi Hoyanagi
- Department of Geology, Institute of Science, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| |
Collapse
|
4
|
Rakib MRJ, Rahman MA, Onyena AP, Kumar R, Sarker A, Hossain MB, Islam ARMT, Islam MS, Rahman MM, Jolly YN, Idris AM, Ali MM, Bilal M, Sun X. A comprehensive review of heavy metal pollution in the coastal areas of Bangladesh: abundance, bioaccumulation, health implications, and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67532-67558. [PMID: 35921010 DOI: 10.1007/s11356-022-22122-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The coastal zone of Bangladesh, with a population density of 1278 people per square kilometer, is under serious threat due to heavy metal pollution. To date, many studies have been conducted on the heavy metal contamination in soils, water, aquatic animals, and plants in the coastal zone of Bangladesh; however, the available information is dispersed. In this study, previous findings on the contamination levels, distributions, risks, and sources of heavy metals in sediments and organisms were summarized for the first time to present the overall status of heavy metal pollution along coastal regions. Earlier research found that the concentrations of various heavy metals (HMs), particularly Co, Cd, Pb, Cu, Cr, Mn, Fe, and Ni in water, sediment, and fish in most coastal locations, were above their permissible limits. High concentrations of HMs were observed in sediments and water, like Cr of 55 mg/kg and 86.93 mg/l in the ship-breaking areas and Karnaphuli River, respectively, in coastal regions of Bangladesh. Heavy metals severely contaminated the Karnaphuli River estuary and ship-breaking area on the Sitakundu coast, where sediments were the ultimate sink of high concentrations of metals. Sedentary or bottom-dwelling organisms like gastropods and shrimp had higher levels of heavy metals than other organisms. As a result, the modified PRISMA review method was used to look at the critical research gap about heavy metal pollution in Bangladesh's coastal areas by analyzing the current research trends and bottlenecks.
Collapse
Affiliation(s)
- Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh.
| | - Md Asrafur Rahman
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Amarachi Paschaline Onyena
- Department of Marine Environment and Pollution Control, Nigeria Maritime University Okerenkoko, Warri, Delta State, Nigeria
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Aniruddha Sarker
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Belal Hossain
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD, Australia
| | | | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Yeasmin Nahar Jolly
- Atmospheric and Environmental Chemistry Laboratory, Chemistry Division Atomic Energy Centre, Dhaka, 1000, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62529, Saudi Arabia
| | - Mir Mohammad Ali
- Department of Aquaculture, Bangla Agricultural University, Sher-e, Dhaka-1207, Bangladesh
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Xian Sun
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
5
|
Hossain MJ, AftabUddin S, Akhter F, Nusrat N, Rahaman A, Sikder MNA, Monwar MM, Chowdhury MSN, Jiang S, Shi H, Zhang J. Surface water, sediment, and biota: The first multi-compartment analysis of microplastics in the Karnafully river, Bangladesh. MARINE POLLUTION BULLETIN 2022; 180:113820. [PMID: 35689937 DOI: 10.1016/j.marpolbul.2022.113820] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
The Karnafullly River, which flows through Chattogram and falls into the Bay of Bengal, Bangladesh, is vulnerable to microplastic contamination. In this study, we looked at microplastics in the Karnafully River's surface water (5 sites), sediment (9 sites), and biota (4 species). Microplastic concentrations ranged from 0.57 ± 0.07 to 6.63 ± 0.52 items/L in surface water, 143.33 ± 3.33 to 1240 ± 5.77 items/kg dry weight in sediment, and 5.93 ± 0.62 to 13.17 ± 0.76 items/species in biota. A significant difference (P < 0.05) was found in the concentration of MPs in the Karnafully River's sediment, biota, and surface water. High percentage of fiber-shaped and small-sized MPs (<1 mm) were detected throughout the samples. Water and sediment MPs were often transparent/white and blue, whereas biota MPs were mostly black and red, indicating a color preference during biological uptake. The Bay of Bengal received 61.3 × 109 microplastic items per day. The feeding zone of biota influenced the level of microplastics, with a trend of pelagic > demersal > benthic > benthopelagic. Polyethylene and polyethylene terephthalate were the most abundant polymer. Using the average fish intake rate in Bangladesh, we computed a possible consumption of 4015-7665 items of MPs/person/year.
Collapse
Affiliation(s)
- Md Jaker Hossain
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Sheikh AftabUddin
- Institute of Marine Sciences, University of Chittagong, Chittagong 4331, Bangladesh.
| | - Farjana Akhter
- Department of Oceanography, University of Chittagong, Chittagong 4331, Bangladesh
| | - Nabila Nusrat
- Institute of Marine Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Atikur Rahaman
- Institute of Marine Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | | | - Md Mostafa Monwar
- Institute of Marine Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | | | - Shan Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Jing Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| |
Collapse
|
6
|
Rahman M, Saima J, Rima SA, Hossain MIS, Das DK, Bakar MA, Siddique MAM. Ecological risks of heavy metals on surficial sediment of Nijhum Dweep (Island), an important biodiversity area of Bangladesh. MARINE POLLUTION BULLETIN 2022; 179:113688. [PMID: 35490486 DOI: 10.1016/j.marpolbul.2022.113688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/09/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Ten surficial sediment samples (up to a depth of 3 cm) were randomly collected during the pre-monsoon and analyzed for nine heavy metals using an atomic absorption spectrophotometer (AAS) to assess the distribution, contamination levels, and potential sources of heavy metals. The particle size distribution of the sediments was also investigated using a laser particle size analyzer. The mean concentration (mg/kg) of the analyzed metals followed a decreasing order of Fe (4706.24) > Mn (95.20) > Cu (36.97) > Zn (20.65) > Ni (9.26) > Cr (7.20) > Pb (5.63) > Co (5.52) > Cd (0.29). Surficial sediment of the Island was low to moderately contaminated by Cd and, to a laser extent by Cu in terms of enrichment factor (EF), geo-accumulation index (Igeo), and contamination factor. Ecologically, the Nijhum Dweep area was at low to moderate risk, where Cd was the most potential ecological risk factor. The Pearson correlation analysis revealed a significant positive correlation among Cr, Pb, Zn, Mn, Cd, Fe, Co, Ni, and silt particles, whereas a negative correlation with sand particles. No correlation was found with Cu and other metals except clay particles.
Collapse
Affiliation(s)
- Mahfuzur Rahman
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Jerin Saima
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Sabrina Akhter Rima
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Imam Sohel Hossain
- Institute of Mining, Mineralogy and Metallurgy, Bangladesh Council of Scientific and Industrial Research, Jaypurhat, Bangladesh
| | - Delip K Das
- Department of Zoology, Jagannath University, Dhaka 1100, Bangladesh
| | - Muhammad Abu Bakar
- Bangladesh Council of Scientific and Industrial Research, Chattogram, Bangladesh
| | - Mohammad Abdul Momin Siddique
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| |
Collapse
|
7
|
Distribution, Concentration, and Ecological Risk Assessment of Trace Metals in Surface Sediment of a Tropical Bangladeshi Urban River. SUSTAINABILITY 2022. [DOI: 10.3390/su14095033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Trace metal contamination in sediments is a global concern. This study aimed to assess the contamination level of trace metals, their sources, and ecological risk in surface sediments of Karnaphuli River—a tropical urban river in Bangladesh. Forty-five sediment samples were analyzed by atomic absorption spectrophotometry (AAS) for Cu, Fe, Zn, Pb, Cr, Cd, and Ni metals along with physicochemical parameters like pH and organic matter (OM). The pollution status and potential ecological risk were assessed by using the geo-accumulation index (Igeo), contamination factor (CF), and potential ecological risk index (PERI). Source identification of trace metals was performed by correlation analysis, cluster analysis, and principal component analysis (PCA). The results show that the range of Cu, Fe, Zn, Pb, Cr, Cd, and Ni concentrations were 0.62–1.61 mg/kg, 23.95–85.70%, 0.52–1.89 mg/kg, 7.99–12.90 mg/kg, 33.91–65.47 mg/kg, 0.77–1.17 mg/kg, and 2.73–5.36 mg/kg, respectively. The concentrations of Fe, Cd, and Cr were above the permissible limits while the contamination factor (CF) and geo-accumulation index (Igeo) values revealed that Fe and Cd were the most dominant pollutants. Cluster analysis and PERI exhibited significant anthropogenic intrusions of trace metals. A significant positive correlation between Fe-Cr, Cr-Ni, Fe-Ni, and Pb-Cd shows their common anthropogenic source and influences. PERI also revealed that Cr, Fe, and Cd have a significant contribution with a moderate to considerable potential threat.
Collapse
|
8
|
Rani S, Ahmed MK, Xiongzhi X, Keliang C, Islam MS, Habibullah-Al-Mamun M. Occurrence, spatial distribution and ecological risk assessment of trace elements in surface sediments of rivers and coastal areas of the East Coast of Bangladesh, North-East Bay of Bengal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149782. [PMID: 34467902 DOI: 10.1016/j.scitotenv.2021.149782] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Coastal and estuarine ecosystems provide habitats for many organisms. Recently, the estuaries and coastal areas of the East Coast of Bangladesh have become heavily contaminated due to dumping of untreated wastewater into the rivers from a number of different industries. The current study analyzes potentially toxic elements contamination in surface sediments of the Karnaphuli, Sangu, Bakkhali and Naf Rivers, Kutubdia and Moheshkhali Channel, and St. Martin's Island, and assesses the consequent ecological risks. The pollution load index (PLI), geoaccumulation index (Igeo) and potential ecological risk (PER) indices show that the contaminated sediments have negative effects on the aquatic environments. The PLI values ranged between 0.45 and 1.67, which suggests the severity of trace-element contamination. The mean Igeo values showed the sediments range from uncontaminated to heavily contaminated state. The Enrichment Factor (EF) values suggested that the sediments were contaminated by anthropogenic sources, and PER values demonstrate that sites at Sangu, Naf and St Martin's Island are less contaminated compared to sites at Karnaphuli, Bakkhali, Kutubdia and Moheshkhali. Overall, results showed that Karnaphuli river is the most contaminated and St Martin's Island is the least based on the spatial distribution of PLI, Cd, PER and ∑TUs of trace metals in surface sediments. Comparing with the neighboring countries, the concentrations of Cd and Pb were found to be higher while Cr is lower in the East Coast of Bangladesh than the estuarine and coastal waters of the Bay of Bengal rim countries. The present study reveals that the lack of water quality guidelines in Bangladesh for the coastal, estuarine and marine water escalated the dumping of untreated wastewater. Immediate measures need to be taken to address the ecological risks so that an effective management program can be undertaken. A systematic approach for collecting pollutant data and use of isotopes to trace anthropogenic sources of contamination is recommended for pollutants like toxic metals, pesticides and other contaminants in sediment and aquatic products in the entire coastal waters of the Bay of Bengal.
Collapse
Affiliation(s)
- Seema Rani
- Coastal and Ocean Management Institute (COMI), Xiamen University, Fujian Province, China; Third Institute of Oceanography (TIO), Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; International Centre for Ocean Governance (ICOG), Faculty of Earth & Environmental Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Kawser Ahmed
- International Centre for Ocean Governance (ICOG), Faculty of Earth & Environmental Sciences, University of Dhaka, Dhaka 1000, Bangladesh; Department of Oceanography, Faculty of Earth & Environmental Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Xue Xiongzhi
- Coastal and Ocean Management Institute (COMI), Xiamen University, Fujian Province, China.
| | - Chen Keliang
- Third Institute of Oceanography (TIO), Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China.
| | - Md Saiful Islam
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Md Habibullah-Al-Mamun
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
9
|
Hossain MB, Runu UH, Sarker MM, Hossain MK, Parvin A. Vertical distribution and contamination assessment of heavy metals in sediment cores of ship breaking area of Bangladesh. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4235-4249. [PMID: 33830391 DOI: 10.1007/s10653-021-00919-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Vertical heavy metal profiling reflects the history of the deposition of metals and helps to understand the characteristics of accumulation in various layers of the sediment. Nevertheless, no previous studies in Bangladesh had focused on the vertical distribution of heavy metals in core sediments. In this study, vertical distribution, contamination level and potential ecological risks of six heavy metals (Zn, Cu, Pb, Cr, Ni, Mn) from the core sediment of ship breaking were assessed and compared with the non-ship breaking area of Bangladesh. The concentration (µg/g) of heavy metals in the 0-10 cm (surface), 10-20 cm (middle) and 20-30 cm (bottom) of sediment cores was as follows, respectively: Zn (35.54-100.68, 37.27-258.02, 42.78-66.45); Cu (16.38-75.25, 30.64-92.02, 34.99-52.98); Pb (4.84-132.08, BDL-204.48, BDL-23.51); Cr (14.57-42.13, 25.31-42.71, 15.26-36.34); Ni (4.02-42.23, 4.94-43.70, 4.40-43.13); Mn (198.74-764.16, 257.77-980.50, 255.62-856.44). The heavy metal content of core sediment from the shipbreaking region was substantially higher than that of non-shipbreaking area. Except for Ni, heavy metal content was highest in the middle layer, followed by the upper and lower layers of the sediment core. Contamination exponents such as enrichment factor, contamination factor and geo-accumulation index (Igeo) revealed contamination by Zn, Cu and Pb while potential ecological risk factor ([Formula: see text]) and risk index suggested low ecological risk by studied heavy metals except for Pb. Correlation matrix, cluster analysis and principal component analysis indicated that all studied heavy metals could have similar anthropogenic origins.
Collapse
Affiliation(s)
- Mohammad Belal Hossain
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| | - Umme Hani Runu
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Milon Sarker
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Kamal Hossain
- Soil and Environment Laboratories, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Afroza Parvin
- Soil and Environment Laboratories, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| |
Collapse
|
10
|
Marziali L, Valsecchi L, Schiavon A, Mastroianni D, Viganò L. Vertical profiles of trace elements in a sediment core from the Lambro River (northern Italy): Historical trends and pollutant transport to the Adriatic Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146766. [PMID: 33839650 DOI: 10.1016/j.scitotenv.2021.146766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
River sediments generally act as a sink for trace elements but, when resuspended, they contribute to long-term downstream transport of contamination, which may finally reach the marine environment. This study analyzed these processes in a complex aquatic system that includes a contaminated tributary, the Lambro River (Northern Italy) and its recipient and main Italian watercourse, the Po River, with the prodelta in the Adriatic Sea. The study was conducted from a historical perspective which, covering the last 50 years, examined the main driving events such as the inputs of contaminants, the construction of WWTPs and the evolution of environmental legislation. The time trend of trace element contamination was analyzed in a sediment core collected in the Lambro River and dated 1962-2011. The highest enrichments were found for Hg, Zn, Cu, Pb and Cd, which showed similar trends, with EF maxima in the '60s-'90s (172, 56, 40, 28 and 21, respectively), following industrial and urban development, and a general decreasing pattern after the late '90s. Only in the 2000s the ecological risk associated with metal contamination showed mean PEC Quotients stably below 1. The results of a literature survey on sedimentary trace elements in the Po River and the prodelta for the last 50 years were then compared to the Lambro sediment core. A significant contribution to Cu, Zn, Pb, Hg and Cd contamination was proved to derive from Lambro sediment transport. In the prodelta, increasing Ni and Cr concentrations were also evidenced, likely as a result of enhanced soil erosion in the Po basin. This study highlights the key role of WWTPs, of lower-impact industrial processes and of environmental legislation in reducing contaminant inputs. It also emphasizes the active contribution of riverine sediment-bound contamination to long-distance marine sediment quality.
Collapse
Affiliation(s)
- Laura Marziali
- CNR-IRSA National Research Council-Water Research Institute, Via del Mulino 19, I-20861 Brugherio, MB, Italy.
| | - Lucia Valsecchi
- CNR-IRSA National Research Council-Water Research Institute, Via del Mulino 19, I-20861 Brugherio, MB, Italy.
| | - Alfredo Schiavon
- CNR-IRSA National Research Council-Water Research Institute, Via del Mulino 19, I-20861 Brugherio, MB, Italy; IGB Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology, Müggelseedamm 310, 12587 Berlin, Germany.
| | - Domenico Mastroianni
- CNR-IRSA National Research Council-Water Research Institute, Via Salaria km 29,300 - C.P. 10, 00015 Monterotondo St., RM, Italy.
| | - Luigi Viganò
- CNR-IRSA National Research Council-Water Research Institute, Via del Mulino 19, I-20861 Brugherio, MB, Italy.
| |
Collapse
|
11
|
Borges ACP, Piassão JFG, Albani SM, Albertoni EF, Martins MC, Cansian RL, Valduga AT, Hepp LU, Mielniczki-Pereira AA. Multiple metals and agricultural use affects oxidative stress biomarkers in freshwater Aegla crabs. BRAZ J BIOL 2021; 82:e230147. [PMID: 33729329 DOI: 10.1590/1519-6984.230147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/18/2020] [Indexed: 11/21/2022] Open
Abstract
Metals and agrochemicals are among the main aquatic contaminants, being able to trigger oxidative stress in exposed organisms. The objective of this work was to evaluate the correlation between the level of oxidative stress biomarkers in Aegla crabs (Crustacea, Anomura) with (i) the set of metals present in the streams sediment and (ii) with land uses of three hydrographic basins. The study was carried out in streams (≤ 2nd order) of hydrographic basins in southern Brazil (Basins of Rio Suzana, Rio Ligeirinho-Leãozinho and Rio Dourado). In these streams were quantified the land uses and Cu, Cr, Cd, Fe, Mn and Zn concentrations in the sediment. The enzymes Catalase (CAT) and Glutathione Reductase (GR), as well as the level of membrane lipid peroxidation (TBARS), were analyzed in adult females. The PCA analysis showed that the distribution of metals was different between the basins. Cd, Cr and Fe were correlated positively with CAT and negatively with TBARS and GR. The Dourado basin had the lowest concentrations of these three metals and the highest levels of TBARS. However, in Dourado basin there is predominance of agriculture land use, and TBARS was positively correlated with agricultural land use. Besides in Dourado basin, GR activity was higher than in the others basins, indicating a compensatory response in relation to CAT inhibition. The basins of Suzana and Ligeirinho-Leãozinho rivers had lower TBARS values, which may be due to the induction of CAT in response to metals accumulated in sediment. In summary, this work indicates that in the basins with a higher concentration of toxic metals there is an adaptive response of CAT induction, which reduces TBARS in Aegla. On the other hand, in the basin with lower metallic contamination, TBARS occurrence was primarily influenced by agricultural land use.
Collapse
Affiliation(s)
- A C P Borges
- Universidade Regional Integrada do Alto Uruguai e das Missões - URI, Departamento de Ciências Biológicas, Erechim, RS, Brasil
| | - J F G Piassão
- Universidade Regional Integrada do Alto Uruguai e das Missões - URI, Departamento de Ciências Biológicas, Erechim, RS, Brasil
| | - S M Albani
- Universidade Regional Integrada do Alto Uruguai e das Missões - URI, Departamento de Ciências Biológicas, Erechim, RS, Brasil
| | - E F Albertoni
- Universidade Federal do Rio Grande - FURG, Instituto de Ciências Biológicas, Rio Grande, RS, Brasil
| | - M C Martins
- Universidade Regional Integrada do Alto Uruguai e das Missões - URI, Departamento de Ciências Biológicas, Erechim, RS, Brasil
| | - R L Cansian
- Universidade Regional Integrada do Alto Uruguai e das Missões - URI, Departamento de Ciências Biológicas, Erechim, RS, Brasil
| | - A T Valduga
- Universidade Regional Integrada do Alto Uruguai e das Missões - URI, Departamento de Ciências Biológicas, Erechim, RS, Brasil
| | - L U Hepp
- Universidade Regional Integrada do Alto Uruguai e das Missões - URI, Departamento de Ciências Biológicas, Erechim, RS, Brasil
| | - A A Mielniczki-Pereira
- Universidade Regional Integrada do Alto Uruguai e das Missões - URI, Departamento de Ciências Biológicas, Erechim, RS, Brasil
| |
Collapse
|
12
|
Vasseghian Y, Sadeghi Rad S, Vilas-Boas JA, Khataee A. A global systematic review, meta-analysis, and risk assessment of the concentration of vanadium in drinking water resources. CHEMOSPHERE 2021; 267:128904. [PMID: 33199109 DOI: 10.1016/j.chemosphere.2020.128904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
The presence of toxic metals such as vanadium in water resources has attracted considerable attention as a new concern in international health. Systematic review and meta-analysis were performed to assess the concentration of vanadium in water resources along with the relevant ecological risk assessment. Databases of Scopus, PubMed, and Embase were investigated to retrieve the related articles from January 01, 1974 to December 25, 2019. Twenty-eight articles containing 152 samples from 24 countries were included. Furthermore, the meta-analysis was conducted by the approach of z-score to estimate differences in the effect size. In addition, the mean of concentrations of vanadium was applied to calculate the risk assessment only to the water surface and choose the maximum environmental concentration (MEC) for demonstrate a worst-case scenario. Here, the risk assessment approach was used to show that the MEC of vanadium confirm the risk it for aquatic ecosystems, being fish (e.g., Danio rerio) our model organism due to their sensibility. According to findings, the MEC of vanadium in surface water varied from 0.010 μg L-1 (USA) and 68 μg L-1 (China), with an overall mean of 6.21 ± 13.3 μg L-1 (mean ± standard deviation). The ecological risk assessment demonstrated that people living in some countries such as China and Japan were at an adverse ecological risk of vanadium in the water resources. Hence, essential control plans besides adequate removal techniques must be implemented for significant deracination of heavy metals like vanadium.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; The Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Samin Sadeghi Rad
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Jéssica Andrade Vilas-Boas
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia.
| |
Collapse
|
13
|
Uddin MJ, Jeong YK. Urban river pollution in Bangladesh during last 40 years: potential public health and ecological risk, present policy, and future prospects toward smart water management. Heliyon 2021; 7:e06107. [PMID: 33659727 PMCID: PMC7892934 DOI: 10.1016/j.heliyon.2021.e06107] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
River water is very much important for domestic, agriculture and industrial use in Bangladesh which is in critical condition from long time based on research data. During last 40 years, extreme pollution events occurred in peripheral rivers surrounding Dhaka city and Karnaphuli River in Chittagong city. Present data showed that other urban rivers are also in critical condition especially Korotoa, Teesta, Rupsha, Pashur and Padma. The pollutants flowing with water made a severe pollution in downstream areas of rivers. Metals concentrations in river water was found to be higher in dry season. Dissolve oxygen (DO) was nearly zero in Buriganga River and several points in Turag, Balu, Sitalakhya and Karnaphuli River. NO3-, NO2- and PO43- pollution occurred in different rivers. Zn, Cu, Fe, Pb, Cd, Ni, Mn, As and Cr concentration was above drinking water standard in most of the river and some metals was even above irrigation standard in water from several rivers. Sediment data showed very much higher metal concentrations in most of the rivers especially peripheral rivers in Dhaka and Karnaphuli, Korotoa, Teesta, Rupsha and Meghna River. Metal concentrations in sediment was above US EPA threshold value in most of the rivers. Metal concentrations in fish and agricultural crops showed that bioaccumulations of metals had occurred. The concentration of metals showed the trend like: water<fish<sediment. Agricultural crops were found to contain toxic metals through polluted water irrigation. The calculated data of daily intake for the non-carcinogenic and carcinogenic showed that consumption of the contaminated foodstuff can cause serious health injuries.
Collapse
Affiliation(s)
- Md. Jamal Uddin
- Department of Soil and Environmental Sciences, University of Barisal, Bangladesh
- Corresponding author.
| | - Yeon-Koo Jeong
- Solid and Hazardous Waste Management Laboratory, Department of Environmental Engineering, Kumoh National Institute of Technology, South Korea
| |
Collapse
|
14
|
Distribution, sources and ecological risk of trace elements and polycyclic aromatic hydrocarbons in sediments from a polluted urban river in central Bangladesh. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.enmm.2020.100318] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Kopprio GA, Neogi SB, Rashid H, Alonso C, Yamasaki S, Koch BP, Gärdes A, Lara RJ. Vibrio and Bacterial Communities Across a Pollution Gradient in the Bay of Bengal: Unraveling Their Biogeochemical Drivers. Front Microbiol 2020; 11:594. [PMID: 32351470 PMCID: PMC7174592 DOI: 10.3389/fmicb.2020.00594] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/18/2020] [Indexed: 01/23/2023] Open
Abstract
The highly populated coasts of the Bay of Bengal are particularly vulnerable to water-borne diseases, pollution and climatic extremes. The environmental factors behind bacterial community composition and Vibrio distribution were investigated in an estuarine system of a cholera-endemic region in the coastline of Bangladesh. Higher temperatures and sewage pollution were important drivers of the abundance of toxigenic Vibrio cholerae. A closer relation between non-culturable Vibrio and particulate organic matter (POM) was inferred during the post-monsoon. The distribution of operational taxonomic units (OTUs) of Vibrio genus was likely driven by salinity and temperature. The resuspension of sediments increased Vibrio abundance and organic nutrient concentrations. The δ13C dynamic in POM followed an increasing gradient from freshwater to marine stations; nevertheless, it was not a marker of sewage pollution. Bacteroidales and culturable coliforms were reliable indicators of untreated wastewater during pre and post-monsoon seasons. The presumptive incorporation of depleted-ammonium derived from ammonification processes under the hypoxic conditions, by some microorganisms such as Cloacibacterium and particularly by Arcobacter nearby the sewage discharge, contributed to the drastic 15N depletion in the POM. The likely capacity of extracellular polymeric substances production of these taxa may facilitate the colonization of POM from anthropogenic origin and may signify important properties for wastewater bioremediation. Genera of potential pathogens other than Vibrio associated with sewage pollution were Acinetobacter, Aeromonas, Arcobacter, and Bergeyella. The changing environmental conditions of the estuary favored the abundance of early colonizers and the island biogeography theory explained the distribution of some bacterial groups. This multidisciplinary study evidenced clearly the eutrophic conditions of the Karnaphuli estuary and assessed comprehensively its current bacterial baseline and potential risks. The prevailing conditions together with human overpopulation and frequent natural disasters, transform the region in one of the most vulnerable to climate change. Adaptive management strategies are urgently needed to enhance ecosystem health.
Collapse
Affiliation(s)
- Germán A Kopprio
- Department of Chemical Analytics and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Tropical Marine Microbiology, Leibniz Centre for Tropical Marine Research, Bremen, Germany.,Marine Biogeochemistry, Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Sucharit B Neogi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| | - Harunur Rashid
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Cecilia Alonso
- Microbial Ecology of Aquatic Systems, Centro Universitario Región Este, Universidad de la República, Rocha, Uruguay
| | - Shinji Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| | - Boris P Koch
- Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Astrid Gärdes
- Tropical Marine Microbiology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Rubén J Lara
- Marine Biogeochemistry, Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
16
|
Joseph L, Jun BM, Flora JRV, Park CM, Yoon Y. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. CHEMOSPHERE 2019; 229:142-159. [PMID: 31078029 DOI: 10.1016/j.chemosphere.2019.04.198] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 05/19/2023]
Abstract
Heavy metal contamination is a growing concern in the developing world. Inadequate water and wastewater treatment, coupled with increased industrial activity, have led to increased heavy metal contamination in rivers, lakes, and other water sources in developing countries. However, common methods for removing heavy metals from water sources, including membrane filtration, activated carbon adsorption, and electrocoagulation, are not feasible for developing countries. As a result, a significant amount of research has been conducted on low-cost adsorbents to evaluate their ability to remove heavy metals. In this review article, we summarize the current state of research on the removal of heavy metals with an emphasis on low-cost adsorbents that are feasible in the context of the developing world. This review evaluates the use of adsorbents from four major categories: agricultural waste; naturally-occurring soil and mineral deposits; aquatic and terrestrial biomass; and other locally-available waste materials. Along with a summary of the use of these adsorbents in the removal of heavy metals, this article provides a summary of the influence of various water-quality parameters on heavy metals and these adsorbents. The proposed adsorption mechanisms for heavy metal removal are also discussed.
Collapse
Affiliation(s)
- Lesley Joseph
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC, 29208, USA
| | - Byung-Moon Jun
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC, 29208, USA
| | - Joseph R V Flora
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC, 29208, USA
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC, 29208, USA.
| |
Collapse
|
17
|
Maina CW, Sang JK, Raude JM, Mutua BM. Geochronological and spatial distribution of heavy metal contamination in sediment from Lake Naivasha, Kenya. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1080/16878507.2019.1593718] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Caroline W. Maina
- Soil, Water and Environmental Engineering Department, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
- Department of Agricultural Engineering, Egerton University, Egerton, Kenya
| | - Joseph K. Sang
- Soil, Water and Environmental Engineering Department, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - James M. Raude
- Soil, Water and Environmental Engineering Department, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Benedict M. Mutua
- Planning, Partnerships, Research and Innovation Directorate, Kibabii University, Bungoma, Kenya
| |
Collapse
|
18
|
Abstract
The performance of Cd, Ni, and Cu release from river sediment at different pH was investigated by a leaching test using deionised water and river water as leachants. Visual MINTEQ geochemical software was used to model the experimental results to predict heavy metal release from sediments. The distribution and speciation of heavy metals in the sediments after leaching test were analyzed by Tessier sequential extraction. Leaching test results showed that the release amounts of Cd, Ni, and Cu are in the range of 10.2–27.3 mg·kg−1, 80.5–140.1 mg·kg−1, and 6.1–30.8 mg·kg−1, respectively, with deionised water as leachant at different pH. As far as the river water was used as the leaching solution in the test, the results show similar metal leaching contents and tendencies to that of the deionised water as leaching solution. The results of Tessier sequential extraction indicate that Cd of residual fraction easily forms obvious precipitate under the acidic condition, especially in the range of pH 0–4 with the residual of Cd over 50% of the total Cd in the sediment. The exchangeable content of Ni decreases with the increase of pH under the range of 0–5. The Fe-Mn oxide fraction of Cu in the sediments changes significantly from pH 0 to pH 9. Based on the effect of pH on the leaching of Cd, Ni, and Cu from the polluted sediment in the tests, more accurate information could be obtained to assess the risk related to metal release from sediments once it is exposed to the changed acid/alkali water conditions.
Collapse
|
19
|
Nabinger DD, Altenhofen S, Bitencourt PER, Nery LR, Leite CE, Vianna MRMR, Bonan CD. Nickel exposure alters behavioral parameters in larval and adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:1623-1633. [PMID: 29102187 DOI: 10.1016/j.scitotenv.2017.10.057] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/06/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Nickel is a heavy metal that, at high concentrations, leads to environmental contamination and causes health problems. We evaluated the effects of NiCl2 exposure on cognition and behavior in larval and adult zebrafish. Larval and adult zebrafish were exposed to NiCl2 concentrations (0.025, 2.0, 5.0, and 15.0mg/L) or water (control) in two treatment regimens: acute and subchronic. Larvae were exposed to NiCl2 for 2h (acute treatment: 5-day-old larvae treated for 2h, tested after treatment) or 11days (subchronic treatment: 11-day-old larvae treated since fertilization, tested at 5, 8 and 11days post-fertilization, dpf). Adults were exposed for 12h (acute treatment) or 96h (subchronic treatment) and were tested after the treatment period. In both regimens, exposed zebrafish showed concentration-dependent increases in body nickel levels compared with controls. For larvae, delayed hatching, decreased heart rate and morphological alterations were observed in subchronically treated zebrafish. Larvae from subchronic treatment tested at 5dpf decrease distance and mean speed at a low concentration (0.025mg/L) and increased at higher concentrations (5.0 and 15.0mg/L). Subchronic treated larvae decrease locomotion at 15.0mg/L at 8 and 11dpf, whereas decreased escape responses to an aversive stimulus was observed at 2.0, 5.0 and 15.0mg/L in all developmental stages. For adults, the exploratory behavior test showed that subchronic nickel exposure induced anxiogenic-like behavior and decrease aggression, whereas impaired memory was observed in both treatments. These results indicate that exposure to nickel in early life stages of zebrafish leads to morphological alterations, avoidance response impairment and locomotor deficits whereas acute and subchronic exposure in adults resulst in anxiogenic effects, impaired memory and decreased aggressive behavior. These effects may be associated to neurotoxic actions of nickel and suggest this metal may influence animals' physiology in doses that do not necessarily impact their survival.
Collapse
Affiliation(s)
- Débora Dreher Nabinger
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil
| | - Paula Eliete Rodrigues Bitencourt
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil
| | - Laura Roesler Nery
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Porto Alegre, RS, Brazil
| | | | - Mônica Ryff Moreira Roca Vianna
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil.
| |
Collapse
|
20
|
Rinklebe J, Shaheen SM. Redox chemistry of nickel in soils and sediments: A review. CHEMOSPHERE 2017; 179:265-278. [PMID: 28371710 DOI: 10.1016/j.chemosphere.2017.02.153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 05/27/2023]
Abstract
Knowledge on the redox geochemistry of Ni is behind in comparison to other heavy metals. Hence, this article reviews the direct and indirect impact of redox potential (EH) on mobilization and release dynamics of Ni in soils and sediments across the world. Nickel can show a different behavior in response to EH. Mobilization of Ni increased at low EH in various soils; however, oxic conditions can lead to an increased mobilization of Ni in other soils. Those differences occur because the mobilization of Ni is often indirectly affected by EH, e.g. through EH-dependent pH changes, co-precipitation with iron (Fe) and manganese (Mn) (hydr)oxides, complexation with soil organic carbon, similar position of Ni and magnesium (Mg) in the soil solid phase, and/or precipitation as sulphides. Dissolved concentrations of Ni showed a similar pattern like Fe and increased at low EH in many soils, which might be explained by the reductive dissolution of Fe (hydr)oxides and the release of the co-precipitated/sorbed Ni. Few other studies indicated that Ni might be associated with Mn oxides rather than with Fe oxides. Additionally, the formation of soluble complexes with dissolved organic carbon may contribute to a mobilization of Ni at low EH. Nickel and Mg are similarly affected by redox changes especially in serpentine soils. This review summarizes the recent knowledge about the redox chemistry of Ni and contributes thus to a better understanding of the potential mobilization, hazard, and eco-toxicity of Ni in frequently flooded soils and sediments as agricultural ecosystems.
Collapse
Affiliation(s)
- Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516, Kafr El-Sheikh, Egypt.
| |
Collapse
|