1
|
Nishimura T, Motoi M, Toyoshima H, Kishida F, Shin S, Katsumura T, Nakayama K, Oota H, Higuchi S, Watanuki S, Maeda T. Endocrine, inflammatory and immune responses and individual differences in acute hypobaric hypoxia in lowlanders. Sci Rep 2023; 13:12659. [PMID: 37542110 PMCID: PMC10403528 DOI: 10.1038/s41598-023-39894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023] Open
Abstract
When lowlanders are exposed to environments inducing hypobaric hypoxia (HH) such as high mountains, hemodynamic changes occur to maintain oxygen levels in the body. However, changes to other physiological functions under such conditions have yet to be clarified. This study investigated changes in endocrine, inflammatory and immune parameters and individual differences during acute HH exposure using a climatic chamber (75 min of exposure to conditions mimicking 3500 m) in healthy lowlanders. Aldosterone and cortisol were significantly decreased and interleukin (IL)-6, IL-8 and white blood cell (WBC) counts were significantly increased after HH. Lower peripheral oxygen saturation (SpO2) was associated with higher IL-6 and WBC counts, and higher IL-8 was associated with higher cortisol. These findings suggest that endocrine, inflammatory and immune responses are evoked even with a short 75-min exposure to HH and individuals with lower SpO2 seemed to show more pronounced responses. Our results provide basic data for understanding the physiological responses and interactions of homeostatic systems during acute HH.
Collapse
Affiliation(s)
- Takayuki Nishimura
- Department of Human Life Design and Science, Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-Ku, Fukuoka, 815-8540, Japan.
| | - Midori Motoi
- Department of Living Business, Seika Women's Junior College, 2-12-1 Minamihachiman, Hakata-Ku, Fukuoka, 812-0886, Japan
| | - Hideo Toyoshima
- Fukuoka Urasoe Clinic, BCC Building 9F, 2-12-19 Ropponmatsu, Cyuou-Ku, Fukuoka, 810-0044, Japan
| | - Fumi Kishida
- Department of Medical Laboratory Science, Faculty of Health Sciences, Junshin Gakuen University, 1-1-1 Chikushigaoka, Minami-ku, Fukuoka, 815-8510, Japan
| | - Sora Shin
- Advanced Testing and Evaluation Center, FITI Testing & Research Institute, 79 Magokjungang 8-ro 3-Gil, Gangseo-gu, Seoul, 07791, South Korea
| | - Takafumi Katsumura
- Department of Anatomy, Kitasato University School of Medicine, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kazuhiro Nakayama
- Department of Integrated Biosciences, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Hiroki Oota
- Department of Biological Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shigekazu Higuchi
- Department of Human Life Design and Science, Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-Ku, Fukuoka, 815-8540, Japan
| | - Shigeki Watanuki
- Department of Human Life Design and Science, Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-Ku, Fukuoka, 815-8540, Japan
| | - Takafumi Maeda
- Department of Human Life Design and Science, Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-Ku, Fukuoka, 815-8540, Japan
| |
Collapse
|
2
|
Nishimura T, Arima H, Koirala S, Ito H, Yamamoto T. Individual variations and sex differences in hemodynamics and percutaneous arterial oxygen saturation (SpO2) in Tibetan highlanders of Tsarang in the Mustang district of Nepal. J Physiol Anthropol 2022; 41:9. [PMID: 35292118 PMCID: PMC8925233 DOI: 10.1186/s40101-022-00282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/05/2022] [Indexed: 11/12/2022] Open
Abstract
Background Many studies have indicated specific low-hemoglobin (Hb) adaptation to high altitude in the Tibetan population, but studies focusing on physiological variations within this population are limited. This study aimed to investigate the relationships between SpO2 and related factors, including individual variations and sex differences, to assess the generality of high-altitude adaptation in the Tibetan population of Tsarang. Methods The participants were 31 male and 41 female community-dwelling people aged ≥18 years living in Tsarang, in the Mustang district of Nepal. Height, weight, SpO2, Hb concentration, finger temperature, heart rate, and blood pressure were measured. Lifestyle information was obtained by interview. Results Men had significantly higher systolic blood pressure (p = 0.002) and Hb (p < 0.001) than women. There was no significant correlation between SpO2 and other parameters in men. In women, SpO2 was negatively correlated with heart rate (p = 0.036), Hb (p = 0.004), and finger temperature (p = 0.037). In multiple regression analysis, a higher SpO2 was marginally correlated with lower age (β = −0.109, p = 0.086) and higher Hb (β = 0.547, p = 0.053) in men. In women, higher SpO2 was significantly correlated with lower heart rate (β = −0.045, p = 0.036) and Hb (β = −0.341, p = 0.018). Mean hemoglobin (95% confidence interval) was 13.6 g/dl (13.1–14.0 g/dl), which is lower than that found previously in Andeans and almost equal to that in Japanese lowlanders measured using the same device. In some participants of both sexes, hemoglobin was >17.0 g/dl. Conclusion Higher SpO2 was marginally correlated with younger age and higher Hb in men and with lower heart rate and lower Hb in women. Hemoglobin concentration was similar to that found previously in lowlanders, but higher in some individuals. These results indicate individual variation and sex differences in the hemodynamics of high-altitude adaptation in Tibetan highlanders of Tsarang, as well as low-Hb adaptation to high altitude equal to that of other Tibetans.
Collapse
|
3
|
Chanana N, Palmo T, Sharma K, Kumar R, Shah B, Mahajan S, Palleda GM, Gupta MD, Kukreti R, Faruq M, Thinlas T, Graham BB, Pasha Q. Sexual Dimorphism of Dexamethasone as a Prophylactic Treatment in Pathologies Associated With Acute Hypobaric Hypoxia Exposure. Front Pharmacol 2022; 13:873867. [PMID: 35668947 PMCID: PMC9163683 DOI: 10.3389/fphar.2022.873867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Dexamethasone can be taken prophylactically to prevent hypobaric hypoxia-associated disorders of high-altitude. While dexamethasone-mediated protection against high-altitude disorders has been clinically evaluated, detailed sex-based mechanistic insights have not been explored. As part of our India-Leh-Dexamethasone-expedition-2020 (INDEX 2020) programme, we examined the phenotype of control (n = 14) and dexamethasone (n = 13) groups, which were airlifted from Delhi (∼225 m elevation) to Leh, Ladakh (∼3,500 m), India, for 3 days. Dexamethasone 4 mg twice daily significantly attenuated the rise in blood pressure, heart rate, pulmonary pressure, and drop in SaO2 resulting from high-altitude exposure compared to control-treated subjects. Of note, the effect of dexamethasone was substantially greater in women than in men, in whom the drug had relatively little effect. Thus, for the first time, this study shows a sex-biased regulation by dexamethasone of physiologic parameters resulting from the hypoxic environment of high-altitude, which impacts the development of high-altitude pulmonary hypertension and acute mountain sickness. Future studies of cellular contributions toward sex-specific regulation may provide further insights and preventive measures in managing sex-specific, high-altitude–related disorders.
Collapse
Affiliation(s)
- Neha Chanana
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Tsering Palmo
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Kavita Sharma
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Rahul Kumar
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Bhushan Shah
- Department of Cardiology, GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India
| | - Sudhanshu Mahajan
- Department of Cardiology, GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India
| | - Girish M. Palleda
- Department of Cardiology, GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India
| | - Mohit D. Gupta
- Department of Cardiology, GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India
| | - Ritushree Kukreti
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Mohammad Faruq
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Tashi Thinlas
- Department of Medicine, Sonam Norboo Memorial Hospital, Leh, Ladakh, India
| | - Brian B. Graham
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Qadar Pasha
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Institute of Hypoxia Research, New Delhi, India
- *Correspondence: Qadar Pasha,
| |
Collapse
|
4
|
He Y, Li J, Yue T, Zheng W, Guo Y, Zhang H, Chen L, Li C, Li H, Cui C, Qi X, Su B. Seasonality and Sex-Biased Fluctuation of Birth Weight in Tibetan Populations. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:64-71. [PMID: 36939792 PMCID: PMC9590487 DOI: 10.1007/s43657-021-00038-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 06/18/2023]
Abstract
UNLABELLED Birth weight (BW) is a key determinant of infant mortality. Previous studies have reported seasonal fluctuation of BW. However, the responsible environmental factors remain disputable. High-altitude environment provides a great opportunity to test the current hypotheses due to its distinctive climate conditions. We collected BW data of ~ 9000 Tibetan singletons born at Lhasa (elevation: 3660 m) from 2014 to 2018. Using regression models, we analyzed BW seasonality of highland Tibetans. Multivariate models with meteorological factors as independent variables were employed to examine responsible environmental factors accounting for seasonal variation. We compared BW, low-BW prevalence and sex ratio between highland and lowland populations, and we observed a significant seasonal pattern of BW in Tibetans, with a peak in winter and a trough in summer. Notably, there is a marked sex-biased pattern of BW seasonality (more striking in males than in females). Sunlight exposure in the 3rd trimester and barometric pressure exposure in the 2nd trimester are significantly correlated with BW, and the latter can be explained by seasonal change of oxygen partial pressure. In particular, due to the male-biased BW seasonality, we found a more serious BW reduction and higher prevalence of low-BW in males, and a skewed sex ratio in highlanders. The infant BW of highland Tibetans has a clear pattern of seasonality. The winter BW is larger than the summer BW, due to the longer sunlight exposure during the late-trimester. Male infants are more sensitive to hypoxia than female infants during the 2nd trimester, leading to more BW reduction and higher mortality. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s43657-021-00038-7.
Collapse
Affiliation(s)
- Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223 China
| | - Jun Li
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000 China
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000 China
| | - Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223 China
| | - Li Chen
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000 China
| | - Chunxia Li
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000 China
| | - Hongyan Li
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000 China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000 China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000 China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223 China
| |
Collapse
|
5
|
Effect of EGLN1 Genetic Polymorphisms on Hemoglobin Concentration in Andean Highlanders. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3436581. [PMID: 33282944 PMCID: PMC7686849 DOI: 10.1155/2020/3436581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/03/2020] [Accepted: 10/15/2020] [Indexed: 11/20/2022]
Abstract
The physiological characteristics of Andean natives living at high altitudes have been investigated extensively, with many studies reporting that Andean highlanders have a higher hemoglobin (Hb) concentration than other highlander populations. It has previously been reported that positive natural selection has acted independently on the egl-9 family hypoxia inducible factor 1 (EGLN1) gene in Tibetan and Andean highlanders and is related to Hb concentration in Tibetans. However, no study has yet revealed the genetic determinants of Hb concentration in Andeans even though several single-nucleotide polymorphisms (SNPs) in EGLN1 have previously been examined. Therefore, we explored the relationship between hematological measurements and tag SNPs designed to cover the whole EGLN1 genomic region in Andean highlanders living in Bolivia. Our findings indicated that haplotype frequencies estimated from the EGLN1 SNPs were significantly correlated with Hb concentration in the Bolivian highlanders. Moreover, we found that an Andean-dominant haplotype related to high Hb level may have expanded rapidly in ancestral Andean highlander populations. Analysis of genotype data in an ~436.3 kb genomic region containing EGLN1 using public databases indicated that the population structure based on EGLN1 genetic markers in Andean highlanders was largely different from that in other human populations. This finding may be related to an intrinsic or adaptive physiological characteristic of Andean highlanders. In conclusion, the high Hb concentrations in Andean highlanders can be partly characterized by EGLN1 genetic variants.
Collapse
|