1
|
Karadağ A, Dirican E, Özmerdiven ÇG, Özen A, Ayan S, Kabadere S. Evaluation of miR-130b-3p and miR-375 levels and telomere length with telomerase activity in prostate cancer. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:136-147. [PMID: 38593055 DOI: 10.1080/15257770.2024.2334896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Prostate cancer (PC) is the most frequent cancer in males, as well as the second highest cause of cancer-related deaths in men. Differences in expression levels of miRNAs were linked with prostat cancer pathogenesis. qPCR was used to evaluate the expression of miR-130b-3p and miR-375 in Benign Prostate Hyperplasia (BPH (n = 20) and PC (n = 22, pre- and post-operative) patients plasma. Relative telomere lengths (RLTs) in genomic DNA isolated from plasma were measured with qPCR, and telomerase activity analyzed by the ELISA method. PSA levels of PC patients were greater than of BPH patients (p = 0.0473). miR-130b-3p and miR-375 levels were significantly lower in pre-operative specimens of PC patients according to BPH (p = 0,0362, p = 0.0168, respectively). Similarly, post-operative miR-375 levels were lower in PC patients than in BPH patients (p = 0.1866). BPH patients had shorter RTLs than PC patients in both pre- (p=0.0438) and post-operative (p=0.0297) specimens. Telomerase activity was higher in PC patients than BPH(p = 0.0129). Interestingly, telomerase activity was further increased after surgery (p = 0.0003). We aim to identify the levels of miR-130b-3p and miR-375 expression and their relationship with telomerase activity in PC patients. Our data suggest that miRNAs and telomere length (TL) with telomerase activity may play a role in regulating prostate tumorgenesis and may be used as biomarkers for PC diagnosis.
Collapse
Affiliation(s)
- Abdullah Karadağ
- Department of Physiology, Adiyaman University Faculty of Medicine, Adiyaman, Turkey
| | - Ebubekir Dirican
- Health Services Vocational School, Bayburt University, Bayburt, Turkey
| | | | - Ata Özen
- Department of Urology, Eskişehir Osmangazi University, Faculty of Medicine, Eskişehir, Turkey
| | - Semih Ayan
- Department of Urology, Istanbul Aydin University, Faculty of Medicine, Istanbul, Turkey
| | - Selda Kabadere
- Department of Physiology, EskişehirOsmangazi University, Faculty of Medicine, Eskişehir, Turkey
| |
Collapse
|
2
|
Wu M, Zhao J, Wu W, Hao C, Yang Y, Zhang J. miR-130b regulates B cell proliferation via CYLD-mediated NF-κB signaling. Exp Cell Res 2024; 434:113870. [PMID: 38049082 DOI: 10.1016/j.yexcr.2023.113870] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Previous studies have revealed that B cell activation is regulated by various microRNAs(miRNAs). However, the role of microRNA-130b regulating B cell activation and apoptosis is still unclear. In the present study, we first found that the expression of miR-130b was the lowest in Pro/Pre-B cells and the highest in immature B cells. Besides, the expression of miR-130b decreased after activation in B cells. Through the immuno-phenotypic analysis of miR-130b transgenic and knockout mice, we found that miR-130b mainly promoted the proliferation of B cells and inhibited B cell apoptosis. Furthermore, we identified that Cyld, a tumor suppressor gene was the target gene of miR-130b in B cells. Besides, the Cyld-mediated NF-κB signaling was increased in miR-130b overexpressed B cells, which further explains the enhanced proliferation of B cells. In conclusion, we propose that miR-130b promotes B cell proliferation via Cyld-mediated NF-κB signaling, which provides a new theoretical basis for the molecular regulation of B cell activation.
Collapse
Affiliation(s)
- Mengyun Wu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215000, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215000, China
| | - Jing Zhao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215000, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215000, China
| | - Wenyan Wu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215000, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215000, China
| | - Chuangli Hao
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, Jiangsu Province 215000, China.
| | - Yi Yang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215000, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215000, China.
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215000, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215000, China.
| |
Collapse
|
3
|
Nie L, Zeng X, Li H, Wang S, Yu R. Enzyme-assisted amplification of target cycle triggers the unlocking of locked hairpin probes for let-7a detection. Talanta 2024; 266:125023. [PMID: 37549569 DOI: 10.1016/j.talanta.2023.125023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
The detection of miRNA in cells is difficult owing to its substantially low cellular content. Therefore, developing a highly sensitive sensor to detect cellular miRNA remains a significant challenge. Herein, we report an enzyme-assisted biosensor with target cycle amplification that can trigger the unlocking of locked hairpin probes for sensitive and robust let-7a gene detection. In the research, three kinds of hairpin probes were skillfully designed. The hairpin probe comprises a complementary sequence of a target, primer, and recognition site of Nt. BbvCI restriction endonucleases. In addition, the alternating synergistic impact of polymerase and the nicking enzyme generates considerable triggers to unlock the locked hairpin probe LH1, consequently triggering a subsequent circulating strand displacement reaction to form a stable H1-H2 double strand to ensure sufficient distance between a fluorophore on H1 and a quenching group on bolt DNA (bDNA), and resulting in the recovery of fluorescence. Furthermore, this process does not require complicated operation procedures and instruments, and the target gene let-7a can be sensitively detected. Specifically, the detection limit of the biosensor is as low as 160 fM, and its linear range is 0.5 pM-250 nM. Moreover, this biosensor can be employed to detect let-7a in human serum with good selectivity.
Collapse
Affiliation(s)
- Lanxin Nie
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Xiaogang Zeng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Hongbo Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China; Key Laboratory of Energy Catalysis and Conversion of Nanchang, Nanchang, 330022, PR China; State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.
| | - Suqin Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
4
|
Silva J, Tavares V, Afonso A, Garcia J, Cerqueira F, Medeiros R. Plasmatic MicroRNAs and Treatment Outcomes of Patients with Metastatic Castration-Resistant Prostate Cancer: A Hospital-Based Cohort Study and In Silico Analysis. Int J Mol Sci 2023; 24:ijms24109101. [PMID: 37240449 DOI: 10.3390/ijms24109101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies among men worldwide. Inevitably, all advanced PCa patients develop metastatic castration-resistant prostate cancer (mCRPC), an aggressive phase of the disease. Treating mCRPC is challenging, and prognostic tools are needed for disease management. MicroRNA (miRNA) deregulation has been reported in PCa, constituting potential non-invasive prognostic biomarkers. As such, this study aimed to evaluate the prognostic potential of nine miRNAs in the liquid biopsies (plasma) of mCRPC patients treated with second-generation androgen receptor axis-targeted (ARAT) agents, abiraterone acetate (AbA) and enzalutamide (ENZ). Low expression levels of miR-16-5p and miR-145-5p in mCRPC patients treated with AbA were significantly associated with lower progression-free survival (PFS). The two miRNAs were the only predictors of the risk of disease progression in AbA-stratified analyses. Low miR-20a-5p levels in mCRPC patients with Gleason scores of <8 were associated with worse overall survival (OS). The transcript seems to predict the risk of death regardless of the ARAT agent. According to the in silico analyses, miR-16-5p, miR-145-5p, and miR-20a-5p seem to be implicated in several processes, namely, cell cycle, proliferation, migration, survival, metabolism, and angiogenesis, suggesting an epigenetic mechanism related to treatment outcome. These miRNAs may represent attractive prognostic tools to be used in mCRPC management, as well as a step further in the identification of new potential therapeutic targets, to use in combination with ARAT for an improved treatment outcome. Despite the promising results, real-world validation is necessary.
Collapse
Affiliation(s)
- Jani Silva
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- AquaValor-Centro de Valorização e Transferência de Tecnologia da Água, Rua Dr. Júlio Martins, nº1, 5400-342 Chaves, Portugal
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana Afonso
- Department of Oncology, Portuguese Institute of Oncology, Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal
| | - Juliana Garcia
- AquaValor-Centro de Valorização e Transferência de Tecnologia da Água, Rua Dr. Júlio Martins, nº1, 5400-342 Chaves, Portugal
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB)/Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Fátima Cerqueira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Instituto de Investigação, Inovação e Desenvolvimento Fernando Pessoa (FP-I3ID), Biomedical and Health Sciences (FP-BHS), Universidade Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Instituto de Investigação, Inovação e Desenvolvimento Fernando Pessoa (FP-I3ID), Biomedical and Health Sciences (FP-BHS), Universidade Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| |
Collapse
|
5
|
Liu W, Sun X, Huang J, Zhang J, Liang Z, Zhu J, Chen T, Zeng Y, Peng M, Li X, Zeng L, Lei W, Cheng J. Development and validation of a genomic nomogram based on a ceRNA network for comprehensive analysis of obstructive sleep apnea. Front Genet 2023; 14:1084552. [PMID: 36968605 PMCID: PMC10036397 DOI: 10.3389/fgene.2023.1084552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
Objectives: Some ceRNA associated with lncRNA have been considered as possible diagnostic and therapeutic biomarkers for obstructive sleep apnea (OSA). We intend to identify the potential hub genes for the development of OSA, which will provide a foundation for the study of the molecular mechanism underlying OSA and for the diagnosis and treatment of OSA.Methods: We collected plasma samples from OSA patients and healthy controls for the detection of ceRNA using a chip. Based on the differential expression of lncRNA, we identified the target genes of miRNA that bind to lncRNAs. We then constructed lncRNA-related ceRNA networks, performed functional enrichment analysis and protein-protein interaction analysis, and performed internal and external validation of the expression levels of stable hub genes. Then, we conducted LASSO regression analysis on the stable hub genes, selected relatively significant genes to construct a simple and easy-to-use nomogram, validated the nomogram, and constructed the core ceRNA sub-network of key genes.Results: We successfully identified 282 DElncRNAs and 380 DEmRNAs through differential analysis, and we constructed an OSA-related ceRNA network consisting of 292 miRNA-lncRNAs and 41 miRNA-mRNAs. Through PPI and hub gene selection, we obtained 7 additional robust hub genes, CCND2, WT1, E2F2, IRF1, BAZ2A, LAMC1, and DAB2. Using LASSO regression analysis, we created a nomogram with four predictors (CCND2, WT1, E2F2, and IRF1), and its area under the curve (AUC) is 1. Finally, we constructed a core ceRNA sub-network composed of 74 miRNA-lncRNA and 7 miRNA-mRNA nodes.Conclusion: Our study provides a new foundation for elucidating the molecular mechanism of lncRNA in OSA and for diagnosing and treating OSA.
Collapse
Affiliation(s)
- Wang Liu
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xishi Sun
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiewen Huang
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinjian Zhang
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhengshi Liang
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinru Zhu
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tao Chen
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yu Zeng
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Min Peng
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongbin Li
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lijuan Zeng
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wei Lei
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Junfen Cheng, ; Wei Lei,
| | - Junfen Cheng
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Junfen Cheng, ; Wei Lei,
| |
Collapse
|
6
|
Manasa VG, Thomas S, Kannan S. MiR-144/451a cluster synergistically modulates growth and metastasis of Oral Carcinoma. Oral Dis 2023; 29:584-594. [PMID: 34333815 DOI: 10.1111/odi.13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES MicroRNA (miRNA) clusters co-transcribe and function in a coordinated fashion mediating synergistic or antagonistic regulatory effects. MiR-144 and miR-451a are deregulated in various cancers but the combined regulatory role of miR-144/451a cluster in oral squamous cell carcinoma (OSCC) remains unexplored. In the present study, we studied the synergistic effect of miR-144/451a cluster on oral cancer progression. MATERIALS AND METHODS miR-144 and miR-451a expression was explored in OSCC cell lines by quantitative real-time PCR (qRT-PCR). Proliferation, wound healing, migration and invasion, spheroid formation, and colony formation assays were performed after transfection with miR-144-3p, miR-451a, miR-144-5p, and co-expressed miR-144/451a. Expression of putative target genes was analyzed using qRT-PCR and Western blotting. RESULTS miR-144 and miR-451a were downregulated in all cell lines. The cell viability and stemness of cancer cell lines were unaltered when treated with miRNA mimics. However, co-expressed miR-144/451a significantly reduced the migratory, invasive, and clonogenic potential of cells than individual miRNAs. CONCLUSION miR-144/451a cluster functions as a tumor suppressor in OSCC by inhibiting cancer cell invasion, migration, and clonogenic potential.
Collapse
Affiliation(s)
- Vidyadharan Geetha Manasa
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, India
| | - Shaji Thomas
- Head and Neck Clinic, Division of Surgical Oncology, Regional Cancer Centre, Thiruvananthapuram, India
| | - Sankarareddiar Kannan
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, India
| |
Collapse
|
7
|
NAKAMURA NORIKO, ROGERS PAUL, EGGERSON RÉMELLE, POST STEVENR, DAVIS RODNEY. Translational Research for Identifying Potential Early-stage Prostate Cancer Biomarkers. Cancer Genomics Proteomics 2023; 20:1-8. [PMID: 36581341 PMCID: PMC9806668 DOI: 10.21873/cgp.20359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/AIM Prostate cancer (PCa) is one of the most common types of cancer in men. Prostate-specific antigen (PSA) is currently the only biomarker used to screen for the risk of developing PCa. Because PSA tests may show false positives, identifying novel PCa-specific biomarkers would improve prediction and diagnosis at an early stage. Previously, we identified a number of genes/microRNAs (miRNAs) in prostate tissue as potential biomarkers of chronic prostatitis in a rat model of chemical-induced prostatitis. The current study aimed to evaluate their potential for use as translational, diagnostic markers in humans. MATERIALS AND METHODS We performed quantitative polymerase chain reaction analysis using pathologically clear (normal) or confirmed PCa tissue samples from the same patients (N=18 per group). RESULTS Levels (relative fold changes) of bone morphogenetic protein 7 (BMP7) transcripts were significantly lower in PCa tissues, compared with clear tissues, in a paired t-test (p=0.0075). Although neural cell adhesion molecule 1 (NCAM1) transcripts tended to be altered in PCa tissues, statistically insignificant differences were observed (p=0.0521). No statistically significant differences were observed for the other genes/miRNAs analyzed in PCa tissues due to a high degree of individual variance in expression. CONCLUSION Similar to the results previously observed in rats, changes in the levels of BMP7 and NCAM1 transcripts were evident in human PCa tissues, suggesting that these genes may serve as potential diagnostic biomarkers during the early stages of PCa. Further studies are needed to determine the potential use of these molecules as biomarkers.
Collapse
Affiliation(s)
- NORIKO NAKAMURA
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, U.S.A
| | - PAUL ROGERS
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, U.S.A
| | - RÉMELLE EGGERSON
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, U.S.A
| | - STEVEN R. POST
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, U.S.A
| | - RODNEY DAVIS
- Department of Urology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, U.S.A
| |
Collapse
|
8
|
Xie J, Jiang H, Zhao Y, Jin XR, Li B, Zhu Z, Zhang L, Liu J. Prognostic and diagnostic value of circRNA expression in prostate cancer: A systematic review and meta-analysis. Front Oncol 2022; 12:945143. [PMID: 36419885 PMCID: PMC9676972 DOI: 10.3389/fonc.2022.945143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/10/2022] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are receiving increasing attention as novel biomarkers. Our goal was to investigate the diagnostic, clinicopathological, and prognostic utility of circRNAs in prostate cancer (PCa). METHODS Relevant literature was searched in PubMed, Web of Science, and EMBASE. Sensitivity, specificity, diagnostic odds ratio (DOR), negative likelihood ratio (NLR), positive likelihood ratio (PLR), and the area under the curve (AUC) were calculated to evaluate the diagnostic accuracy of circRNA expression. circRNAs' clinical, pathological, and prognostic value was examined using pooled odds ratios (ORs) and hazard ratios (HRs). RESULTS This meta-analysis included 23 studies, with 5 for diagnosis, 16 for clinicopathological parameters, and 10 for prognosis. For diagnostic value, the pooled sensitivity, pooled specificity, PLR, NLR, DOR, and AUC were 0.82, 0.62, 2.17, 0.29, 7.37, and 0.81, respectively. Upregulation of carcinogenic circRNAs was associated with poor clinical parameters (Gleason score: OR = 0.222, 95% CI: 0.145-0.340; T classification: OR = 0.274, 95% CI: 0.175-0.430; lymph node metastasis: OR = 0.353, 95% CI: 0.175-0.716; tumor size: OR = 0.226, 95% CI: 0.099-0.518) and could predict poor survival outcomes (HR = 2.408, 95% CI: 1.559-3.720, p < 0.001). Conversely, downregulation of tumor-suppressor circRNAs was also associated with poor clinical parameters (Gleason score: OR = 1.689, 95% CI: 1.144-2.493; T classification: OR = 2.586, 95% CI: 1.779-3.762) and worse prognosis (HR = 1.739, 95% CI: 1.147-2.576, p = 0.006). CONCLUSION Our results showed that circRNAs might be useful biomarkers for the diagnosis and prognosis of PCa. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier CRD42021284785.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
9
|
Luo W, Kim Y, Jensen ME, Herlea-Pana O, Wang W, Rudolph MC, Friedman JE, Chernausek SD, Jiang S. miR-130b/301b Is a Negative Regulator of Beige Adipogenesis and Energy Metabolism In Vitro and In Vivo. Diabetes 2022; 71:2360-2371. [PMID: 36001751 PMCID: PMC9630090 DOI: 10.2337/db22-0205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022]
Abstract
Thermogenic brown or beige adipocytes dissipate energy in the form of heat and thereby counteract obesity and related metabolic complications. The miRNA cluster miR-130b/301b is highly expressed in adipose tissues and has been implicated in metabolic diseases as a posttranscriptional regulator of mitochondrial biogenesis and lipid metabolism. We investigated the roles of miR-130b/301b in regulating beige adipogenesis in vivo and in vitro. miR-130b/301b declined in adipose progenitor cells during beige adipogenesis, while forced overexpression of miR-130b-3p or miR-301b-3p suppressed uncoupling protein 1 (UCP1) and mitochondrial respiration, suggesting that a decline in miR-130b-3p or miR-301b-3p is required for adipocyte precursors to develop the beige phenotype. Mechanistically, miR-130b/301b directly targeted AMP-activated protein kinase (AMPKα1) and suppressed peroxisome proliferator-activated receptor γ coactivator-1α (Pgc-1α), key regulators of brown adipogenesis and mitochondrial biogenesis. Mice lacking the miR-130b/301b miRNA cluster showed reduced visceral adiposity and less weight gain. miR-130b/301b null mice exhibited improved glucose tolerance, increased UCP1 and AMPK activation in subcutaneous fat (inguinal white adipose tissue [iWAT]), and increased response to cold-induced energy expenditure. Together, these data identify the miR-130b/301b cluster as a new regulator that suppresses beige adipogenesis involving PGC-1α and AMPK signaling in iWAT and is therefore a potential therapeutic target against obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Wenyi Luo
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Youngsil Kim
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Mary Ellen Jensen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Oana Herlea-Pana
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Weidong Wang
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Michael C. Rudolph
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Steven D. Chernausek
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Section of Diabetes and Endocrinology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Shaoning Jiang
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Section of Diabetes and Endocrinology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
10
|
Hu N, Wang C, Zhang T, Su H, Liu H, Yang HH, Giffen C, Hu Y, Taylor PR, Goldstein AM. CSMD1 Shows Complex Patterns of Somatic Copy Number Alterations and Expressions of mRNAs and Target Micro RNAs in Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14205001. [PMID: 36291785 PMCID: PMC9599939 DOI: 10.3390/cancers14205001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Human Cub and Sushi Multiple Domains 1 (CSMD1) is a novel candidate tumor-suppressor gene. We investigated CSMD1 in esophageal squamous cell carcinoma (ESCC) by performing an integrated analysis of somatic DNA alterations (i.e., copy number alteration, allelic imbalance, and loss of heterozygosity) with RNA expressions (mRNA and target miRNAs) on specimens from the same ESCC patients, using data from SNP, miRNA, and RT-PCR arrays. Our results indicate that the CSMD1 gene may play a role in the development of ESCC through complex patterns involving somatic alterations and mRNA expression. Furthermore, somatic copy number alterations in SNPs located in non-coding regions of CSMD1 appear to influence expression of both this gene and its target miRNAs. Abstract Background: Human Cub and Sushi Multiple Domains 1 (CSMD1) is a novel candidate tumor-suppressor gene that codes for multiple domains, including complement regulatory and adhesion proteins, and has recently been shown to have alterations in multiple cancers. We investigated CSMD1 in esophageal squamous cell carcinoma (ESCC) by performing an integrated analysis on somatic copy number alterations (CNAs), including copy-number gain or loss, allelic imbalance (AI), loss of heterozygosity (LOH), and the expressions of mRNA and its target miRNAs on specimens from the same patients with ESCC. Results: (i) Two-thirds of ESCC patients had all three types of alterations studied—somatic DNA alterations in 70%, and abnormal expressions of CSMD1 RNA in 69% and in target miRNAs in 66%; patterns among these alterations were complex. (ii) In total, 97% of 888 CSMD1 SNPs studied showed somatic DNA alterations, with most located near exons 4–11, 24–25, 39–40, 55–56, and 69–70. (iii) In total, 68% of SNPs with a CNA were correlated with expression of CSMD1. (iv) A total of 33 correlations between non-coding SNPs and expression of CSMD1 target miRs were found. Conclusions: Our results indicate that the CSMD1 gene may play a role in ESCC through complex patterns of DNA alterations and RNA and miRNA expressions. Alterations in some somatic SNPs in non-coding regions of CSMD1 appear to influence expression of this gene and its target miRNAs.
Collapse
Affiliation(s)
- Nan Hu
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Chaoyu Wang
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD 20892, USA
- Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Hua Su
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Huaitian Liu
- Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Howard H. Yang
- Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Carol Giffen
- Information Management Services, Inc., Silver Spring, Bethesda, MD 20904, USA
| | - Ying Hu
- Computational Genomics & Bioinformatics Branch (CGBB), Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Philip R. Taylor
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD 20892, USA
- Correspondence:
| |
Collapse
|
11
|
Wang B, Wang X, Zheng X, Han Y, Du X. JSCSNCP-LMA: a method for predicting the association of lncRNA-miRNA. Sci Rep 2022; 12:17030. [PMID: 36220862 PMCID: PMC9552706 DOI: 10.1038/s41598-022-21243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have long been considered the "white elephant" on the genome because they lack the ability to encode proteins. However, in recent years, more and more biological experiments and clinical reports have proved that ncRNAs account for a large proportion in organisms. At the same time, they play a decisive role in the biological processes such as gene expression and cell growth and development. Recently, it has been found that short sequence non-coding RNA(miRNA) and long sequence non-coding RNA(lncRNA) can regulate each other, which plays an important role in various complex human diseases. In this paper, we used a new method (JSCSNCP-LMA) to predict lncRNA-miRNA with unknown associations. This method combined Jaccard similarity algorithm, self-tuning spectral clustering similarity algorithm, cosine similarity algorithm and known lncRNA-miRNA association networks, and used the consistency projection to complete the final prediction. The results showed that the AUC values of JSCSNCP-LMA in fivefold cross validation (fivefold CV) and leave-one-out cross validation (LOOCV) were 0.9145 and 0.9268, respectively. Compared with other models, we have successfully proved its superiority and good extensibility. Meanwhile, the model also used three different lncRNA-miRNA datasets in the fivefold CV experiment and obtained good results with AUC values of 0.9145, 0.9662 and 0.9505, respectively. Therefore, JSCSNCP-LMA will help to predict the associations between lncRNA and miRNA.
Collapse
Affiliation(s)
- Bo Wang
- grid.412616.60000 0001 0002 2355College of Computer and Control Engineering, Qiqihar University, Qiqihar, 161006 People’s Republic of China
| | - Xinwei Wang
- grid.412616.60000 0001 0002 2355College of Computer and Control Engineering, Qiqihar University, Qiqihar, 161006 People’s Republic of China
| | - Xiaodong Zheng
- grid.412616.60000 0001 0002 2355College of Computer and Control Engineering, Qiqihar University, Qiqihar, 161006 People’s Republic of China
| | - Yu Han
- grid.412616.60000 0001 0002 2355College of Computer and Control Engineering, Qiqihar University, Qiqihar, 161006 People’s Republic of China
| | - Xiaoxin Du
- grid.412616.60000 0001 0002 2355College of Computer and Control Engineering, Qiqihar University, Qiqihar, 161006 People’s Republic of China
| |
Collapse
|
12
|
Bunnell BA, Martin EC, Matossian MD, Brock CK, Nguyen K, Collins-Burow B, Burow ME. The effect of obesity on adipose-derived stromal cells and adipose tissue and their impact on cancer. Cancer Metastasis Rev 2022; 41:549-573. [PMID: 35999486 DOI: 10.1007/s10555-022-10063-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
The significant increase in the incidence of obesity represents the next global health crisis. As a result, scientific research has focused on gaining deeper insights into obesity and adipose tissue biology. As a result of the excessive accumulation of adipose tissue, obesity results from hyperplasia and hypertrophy within the adipose tissue. The functional alterations in the adipose tissue are a confounding contributing factor to many diseases, including cancer. The increased incidence and aggressiveness of several cancers, including colorectal, postmenopausal breast, endometrial, prostate, esophageal, hematological, malignant melanoma, and renal carcinomas, result from obesity as a contributing factor. The increased morbidity and mortality of obesity-associated cancers are attributable to increased hormones, adipokines, and cytokines produced by the adipose tissue. The increased adipose tissue levels observed in obese patients result in more adipose stromal/stem cells (ASCs) distributed throughout the body. ASCs have been shown to impact cancer progression in vitro and in preclinical animal models. ASCs influence tumor biology via multiple mechanisms, including the increased recruitment of ASCs to the tumor site and increased production of cytokines and growth factors by ASCs and other cells within the tumor stroma. Emerging evidence indicates that obesity induces alterations in the biological properties of ASCs, subsequently leading to enhanced tumorigenesis and metastasis of cancer cells. As the focus of this review is the interaction and impact of ASCs on cancer, the presentation is limited to preclinical data generated on cancers in which there is a demonstrated role for ASCs, such as postmenopausal breast, colorectal, prostate, ovarian, multiple myeloma, osteosarcoma, cervical, bladder, and gastrointestinal cancers. Our group has investigated the interactions between obesity and breast cancer and the mechanisms that regulate ASCs and adipocytes in these different contexts through interactions between cancer cells, immune cells, and other cell types present in the tumor microenvironment (TME) are discussed. The reciprocal and circular feedback loop between obesity and ASCs and the mechanisms by which ASCs from obese patients alter the biology of cancer cells and enhance tumorigenesis will be discussed. At present, the evidence for ASCs directly influencing human tumor growth is somewhat limited, though recent clinical studies suggest there may be some link.
Collapse
Affiliation(s)
- Bruce A Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| | - Elizabeth C Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Margarite D Matossian
- Department of Microbiology, Immunology and Genetics, University of Chicago, IL, Chicago, USA
| | - Courtney K Brock
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Khoa Nguyen
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bridgette Collins-Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Matthew E Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
13
|
Oliveira-Rizzo C, Ottati MC, Fort RS, Chavez S, Trinidad JM, DiPaolo A, Garat B, Sotelo-Silveira JR, Duhagon MA. Hsa-miR-183-5p Modulates Cell Adhesion by Repression of ITGB1 Expression in Prostate Cancer. Noncoding RNA 2022; 8:ncrna8010011. [PMID: 35202085 PMCID: PMC8875343 DOI: 10.3390/ncrna8010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer is a major health problem worldwide. MiR-183 is an oncomiR and a candidate biomarker in prostate cancer, affecting various pathways responsible for disease initiation and progression. We sought to discover the most relevant processes controlled by miR-183 through an unbiased transcriptomic approach using prostate cell lines and patient tissues to identify miR-183 responsive genes and pathways. Gain of function experiments, reporter gene assays, and transcript and protein measurements were conducted to validate predicted functional effects and protein mediators. A total of 135 candidate miR-183 target genes overrepresenting cell adhesion terms were inferred from the integrated transcriptomic analysis. Cell attachment, spreading assays and focal adhesion quantification of miR-183-overexpressing cells confirmed the predicted reduction in cell adhesion. ITGB1 was validated as a major target of repression by miR-183 as well as a mediator of cell adhesion in response to miR-183. The reporter gene assay and PAR-CLIP read mapping suggest that ITGB1 may be a direct target of miR-183. The negative correlation between miR-183 and ITGB1 expression in prostate cancer cohorts supports their interaction in the clinical set. Overall, cell adhesion was uncovered as a major pathway controlled by miR-183 in prostate cancer, and ITGB1 was identified as a relevant mediator of this effect.
Collapse
Affiliation(s)
- Carolina Oliveira-Rizzo
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; (C.O.-R.); (M.C.O.); (R.S.F.); (S.C.); (J.M.T.); (B.G.)
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María Carolina Ottati
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; (C.O.-R.); (M.C.O.); (R.S.F.); (S.C.); (J.M.T.); (B.G.)
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Rafael Sebastián Fort
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; (C.O.-R.); (M.C.O.); (R.S.F.); (S.C.); (J.M.T.); (B.G.)
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (A.D.); (J.R.S.-S.)
| | - Santiago Chavez
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; (C.O.-R.); (M.C.O.); (R.S.F.); (S.C.); (J.M.T.); (B.G.)
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (A.D.); (J.R.S.-S.)
| | - Juan Manuel Trinidad
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; (C.O.-R.); (M.C.O.); (R.S.F.); (S.C.); (J.M.T.); (B.G.)
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (A.D.); (J.R.S.-S.)
| | - Andrés DiPaolo
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (A.D.); (J.R.S.-S.)
| | - Beatriz Garat
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; (C.O.-R.); (M.C.O.); (R.S.F.); (S.C.); (J.M.T.); (B.G.)
| | - José Roberto Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (A.D.); (J.R.S.-S.)
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - María Ana Duhagon
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; (C.O.-R.); (M.C.O.); (R.S.F.); (S.C.); (J.M.T.); (B.G.)
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
- Correspondence: or ; Tel.: +598-2-525-8618 (ext. 7237) or +598-2-924-3414 (ext. 3468)
| |
Collapse
|
14
|
Madrigal T, Hernández-Monge J, Herrera LA, González-De la Rosa CH, Domínguez-Gómez G, Candelaria M, Luna-Maldonado F, Calderón González KG, Díaz-Chávez J. Regulation of miRNAs Expression by Mutant p53 Gain of Function in Cancer. Front Cell Dev Biol 2021; 9:695723. [PMID: 34957087 PMCID: PMC8697023 DOI: 10.3389/fcell.2021.695723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
The p53 roles have been largely described; among them, cell proliferation and apoptosis control are some of the best studied and understood. Interestingly, the mutations on the six hotspot sites within the region that encodes the DNA-binding domain of p53 give rise to other very different variants. The particular behavior of these variants led to consider p53 mutants as separate oncogene entities; that is, they do not retain wild type functions but acquire new ones, namely Gain-of-function p53 mutants. Furthermore, recent studies have revealed how p53 mutants regulate gene expression and exert oncogenic effects by unbalancing specific microRNAs (miRNAs) levels that provoke epithelial-mesenchymal transition, chemoresistance, and cell survival, among others. In this review, we discuss recent evidence of the crosstalk between miRNAs and mutants of p53, as well as the consequent cellular processes dysregulated.
Collapse
Affiliation(s)
- Tzitzijanik Madrigal
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Mexico City, Mexico
- Departamento de Ciencias Biológicas y de La Salud, UAM Iztapalapa, Mexico City, Mexico
| | - Jesús Hernández-Monge
- Cátedra-CONACyT Laboratorio de Biomarcadores Moleculares, Instituto de Física, UASLP, San Luis Potosí, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Mexico City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | | | - Myrna Candelaria
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Fernando Luna-Maldonado
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Karla G Calderón González
- Laboratorio de Interacciones Biomoleculares y Cáncer, Instituto de Física, UASLP, San Luis Potosi, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
15
|
Dashti F, Mirazimi SMA, Rabiei N, Fathazam R, Rabiei N, Piroozmand H, Vosough M, Rahimian N, Hamblin MR, Mirzaei H. The role of non-coding RNAs in chemotherapy for gastrointestinal cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:892-926. [PMID: 34760336 PMCID: PMC8551789 DOI: 10.1016/j.omtn.2021.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, hepatic, esophageal, and pancreatic tumors, are responsible for large numbers of deaths around the world. Chemotherapy is the most common approach used to treat advanced GI cancer. However, chemoresistance has emerged as a critical challenge that prevents successful tumor elimination, leading to metastasis and recurrence. Chemoresistance mechanisms are complex, and many factors and pathways are involved. Among these factors, non-coding RNAs (ncRNAs) are critical regulators of GI tumor development and subsequently can induce resistance to chemotherapy. This occurs because ncRNAs can target multiple signaling pathways, affect downstream genes, and modulate proliferation, apoptosis, tumor cell migration, and autophagy. ncRNAs can also induce cancer stem cell features and affect the epithelial-mesenchymal transition. Thus, ncRNAs could possibly act as new targets in chemotherapy combinations to treat GI cancer and to predict treatment response.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
16
|
Soares S, Guerreiro SG, Cruz-Martins N, Faria I, Baylina P, Sales MG, Correa-Duarte MA, Fernandes R. The Influence of miRNAs on Radiotherapy Treatment in Prostate Cancer - A Systematic Review. Front Oncol 2021; 11:704664. [PMID: 34414113 PMCID: PMC8369466 DOI: 10.3389/fonc.2021.704664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/06/2021] [Indexed: 11/21/2022] Open
Abstract
In the last years, extensive investigation on miRNomics have shown to have great advantages in cancer personalized medicine regarding diagnosis, treatment and even clinical outcomes. Prostate cancer (PCa) is the second most common male cancer and about 50% of all PCa patients received radiotherapy (RT), despite some of them develop radioresistance. Here, we aim to provide an overview on the mechanisms of miRNA biogenesis and to discuss the functional impact of miRNAs on PCa under radiation response. As main findings, 23 miRNAs were already identified as being involved in genetic regulation of PCa cell response to RT. The mechanisms of radioresistance are still poorly understood, despite it has been suggested that miRNAs play an important role in cell signaling pathways. Identification of miRNAs panel can be thus considered an upcoming and potentially useful strategy in PCa diagnosis, given that radioresistance biomarkers, in both prognosis and therapy still remains a challenge.
Collapse
Affiliation(s)
- Sílvia Soares
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, Porto, Portugal.,LaBMI - Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology & Innovation Center (PORTIC), P.PORTO - Polytechnic Institute of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), Porto, Portugal.,Faculty of Chemistry, University of Vigo, Vigo, Spain.,CEB, Centre of Biological Engineering of Minho University, Braga, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Susana G Guerreiro
- Institute for Research and Innovation in Health (i3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto-IPATIMUP, Porto, Portugal.,Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Natália Cruz-Martins
- Institute for Research and Innovation in Health (i3S), Porto, Portugal.,Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Gandra, Portugal
| | - Isabel Faria
- School of Health, Polytechnic of Porto, Porto, Portugal
| | - Pilar Baylina
- LaBMI - Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology & Innovation Center (PORTIC), P.PORTO - Polytechnic Institute of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), Porto, Portugal.,School of Health, Polytechnic of Porto, Porto, Portugal
| | - Maria Goreti Sales
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, Porto, Portugal.,CEB, Centre of Biological Engineering of Minho University, Braga, Portugal.,Biomark@UC, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Miguel A Correa-Duarte
- Faculty of Chemistry, University of Vigo, Vigo, Spain.,CINBIO, University of Vigo, Vigo, Spain.,Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Vigo, Spain
| | - Rúben Fernandes
- LaBMI - Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology & Innovation Center (PORTIC), P.PORTO - Polytechnic Institute of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), Porto, Portugal.,School of Health, Polytechnic of Porto, Porto, Portugal
| |
Collapse
|
17
|
Martínez-González LJ, Sánchez-Conde V, González-Cabezuelo JM, Antunez-Rodríguez A, Andrés-León E, Robles-Fernandez I, Lorente JA, Vázquez-Alonso F, Alvarez-Cubero MJ. Identification of MicroRNAs as Viable Aggressiveness Biomarkers for Prostate Cancer. Biomedicines 2021; 9:biomedicines9060646. [PMID: 34198846 PMCID: PMC8227559 DOI: 10.3390/biomedicines9060646] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
MiRNAs play a relevant role in PC (prostate cancer) by the regulation in the expression of several pathways’ AR (androgen receptor), cellular cycle, apoptosis, MET (mesenchymal epithelium transition), or metastasis. Here, we report the role of several miRNAs’ expression patterns, such as miR-93-5p, miR-23c, miR-210-3p, miR-221-3p, miR-592, miR-141, miR-375, and miR-130b, with relevance in processes like cell proliferation and MET. Using Trizol® extraction protocol and TaqMan™ specific probes for amplification, we performed miRNAs’ analysis of 159 PC fresh tissues and 60 plasmas from peripheral blood samples. We had clinical data from all samples including PSA, Gleason, TNM, and D’Amico risk. Moreover, a bioinformatic analysis in TCGA (The Cancer Genome Atlas) was included to analyze the effect of the most relevant miRNAs according to aggressiveness in an extensive cohort (n = 531). We found that miR-210-3p, miR-23c, miR-592, and miR-93-5p are the most suitable biomarkers for PC aggressiveness and diagnosis, respectively. In fact, according with our results, miR-93-5p seems the most promising non-invasive biomarker for PC. To sum up, miR-210-3p, miR-23c, miR-592, and miR-93-5p miRNAs are suggested to be potential biomarkers for PC risk stratification that could be included in non-invasive strategies such as liquid biopsy in precision medicine for PC management.
Collapse
Affiliation(s)
- Luis Javier Martínez-González
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Genomics Unit, PTS Granada-Avenida de la Ilustración, 114-18016 Granada, Spain;
- Correspondence: author: (L.J.M.-G.); (M.J.A.-C.); Tel.: +34-958-715-500 (ext. 108) (L.J.M.-G.); +34-958-248-945 (M.J.A.-C.); Fax: +34-958-637-071 (L.J.M.-G.)
| | - Victor Sánchez-Conde
- Urology Department, Hospital Virgen de las Nieves, 18014 Granada, Spain; (V.S.-C.); (F.V.-A.)
| | | | - Alba Antunez-Rodríguez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Genomics Unit, PTS Granada-Avenida de la Ilustración, 114-18016 Granada, Spain;
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Spanish National Research Council (CSIC), 18016 Granada, Spain;
| | - Inmaculada Robles-Fernandez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, PTS Granada, 114-18016 Granada, Spain; (I.R.-F.); (J.A.L.)
| | - Jose Antonio Lorente
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, PTS Granada, 114-18016 Granada, Spain; (I.R.-F.); (J.A.L.)
- University of Granada, Legal Medicine and Toxicology Department, Faculty of Medicine, PTS Granada, 18016 Granada, Spain
| | - Fernando Vázquez-Alonso
- Urology Department, Hospital Virgen de las Nieves, 18014 Granada, Spain; (V.S.-C.); (F.V.-A.)
| | - María Jesus Alvarez-Cubero
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, PTS Granada, 114-18016 Granada, Spain; (I.R.-F.); (J.A.L.)
- University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS Granada, 18016 Granada, Spain
- Nutrition, Diet and Risk Assessment Group, Bio-Health Research Institute (ibs.GRANADA Instituto de Investigación Biosanitaria), 18014 Granada, Spain
- Correspondence: author: (L.J.M.-G.); (M.J.A.-C.); Tel.: +34-958-715-500 (ext. 108) (L.J.M.-G.); +34-958-248-945 (M.J.A.-C.); Fax: +34-958-637-071 (L.J.M.-G.)
| |
Collapse
|
18
|
Fu G, Pei Z, Song N. Oncogenic microRNA-301b regulates tumor repressor dystrobrevin alpha to facilitate cell growth, invasion and migration in esophageal cancer. Esophagus 2021; 18:315-325. [PMID: 32737801 DOI: 10.1007/s10388-020-00764-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Esophageal cancer (EC) ranks the eighth in morbidity and the sixth in mortality around the whole world, which is an aggressive malignancy. To authenticate potential therapeutic targets for EC is therefore imperative. Although miR-301b might display changed expression in esophageal adenocarcinoma by utilizing Taqman miRNA profiling analysis, much less is known about the impact of miR-301b in EC. METHODS AND RESULTS By analyzing the data of 187 cancer tissues and 13 normal samples from TCGA database, we discovered that miR-301b was highly expressed in EC tissues. Then, RT-qPCR determined that miR-301b was up-regulated in EC cell lines (ECA109, JAR, TE-1 and OE33). Besides, miR-301b expression level was higher in ESCC cell line-TE-1 cells and lower in ESCC cell line-ECA109 cells compared to other EC cell lines. Hence, ECA109 cell line was used to up-regulate miR-301b expression while TE-1 cell line was applied to down-regulate miR-301b expression in the subsequent experiments. Additionally, OE33, as an ECA cell line, was applied to upregulate miR-301b expression to reflect the influence of miR-301b overexpression on EC progression. More interestingly, miR-301b appeared to act as a promoting effect on the proliferation of EC cells, which was tested by CCK8. Dystrobrevin alpha (DTNA) was a targeting gene of miR-301b, which was predicted by the websites of miRanda, miRWalk and TargetScan. Additionally, DTNA was low expressed in EC tissues and was an independent predictor of EC. Meanwhile, the low expression of DTNA was related to worse overall survival in EC patients. The Pearson correlation coefficient analyzed that DTNA expression was negatively correlated with miR-301b. Furthermore, RT-qPCR and western blotting assays ulteriorly indicated that DTNA was negatively modulated by miR-301b. The facilitating impact of miR-301b re-expression on ECA109 and OE33 cell growth, invasion and migration was receded by DTNA over-expression, whilst the repressive effect of miR-301b ablation on TE-1 cell growth, invasion and migration was inversed by DTNA silencing. Overexpression of miR-301b accelerated EC cell growth, migration and invasion through targeting DTNA. CONCLUSIONS Above all, we concluded that miR-301b was concerned with the progression of EC via regulating DTNA, suggesting that miR-301b and its target gene, DTNA, might serve as predictive biomarkers for EC therapy.
Collapse
Affiliation(s)
- Gui Fu
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288 Zhong Zhou Zhong Road, Luoyang, 471000, Henan, People's Republic of China
| | - Zhidong Pei
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288 Zhong Zhou Zhong Road, Luoyang, 471000, Henan, People's Republic of China
| | - Nasha Song
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288 Zhong Zhou Zhong Road, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
19
|
Gregorova J, Vychytilova-Faltejskova P, Sevcikova S. Epigenetic Regulation of MicroRNA Clusters and Families during Tumor Development. Cancers (Basel) 2021; 13:1333. [PMID: 33809566 PMCID: PMC8002357 DOI: 10.3390/cancers13061333] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small non-coding single-stranded RNA molecules regulating gene expression on a post-transcriptional level based on the seed sequence similarity. They are frequently clustered; thus, they are either simultaneously transcribed into a single polycistronic transcript or they may be transcribed independently. Importantly, microRNA families that contain the same seed region and thus target related signaling proteins, may be localized in one or more clusters, which are in a close relationship. MicroRNAs are involved in basic physiological processes, and their deregulation is associated with the origin of various pathologies, including solid tumors or hematologic malignancies. Recently, the interplay between the expression of microRNA clusters and families and epigenetic machinery was described, indicating aberrant DNA methylation or histone modifications as major mechanisms responsible for microRNA deregulation during cancerogenesis. In this review, the most studied microRNA clusters and families affected by hyper- or hypomethylation as well as by histone modifications are presented with the focus on particular mechanisms. Finally, the diagnostic and prognostic potential of microRNA clusters and families is discussed together with technologies currently used for epigenetic-based cancer therapies.
Collapse
Affiliation(s)
- Jana Gregorova
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
| | - Petra Vychytilova-Faltejskova
- Department of Molecular Medicine, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic;
| | - Sabina Sevcikova
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
- Department of Clinical Hematology, University Hospital Brno, 625 00 Brno, Czech Republic
| |
Collapse
|
20
|
Wu M, Li Q, Wang H. Identification of Novel Biomarkers Associated With the Prognosis and Potential Pathogenesis of Breast Cancer via Integrated Bioinformatics Analysis. Technol Cancer Res Treat 2021; 20:1533033821992081. [PMID: 33550915 PMCID: PMC7876582 DOI: 10.1177/1533033821992081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Breast cancer is the most commonly diagnosed malignancy and a major cause of cancer-related deaths in women globally. Identification of novel prognostic and pathogenesis biomarkers play a pivotal role in the management of the disease. Methods: Three data sets from the GEO database were used to identify differentially expressed genes (DEGs) in breast cancer. Gene Ontology (GO) enrichment and Kyoto Encyclopaedia of Genes and Genomes pathway analyses were performed to elucidate the functional roles of the DEGs. Besides, we investigated the translational and protein expression levels and survival data of the DEGs in patients with breast cancer from the Gene Expression Profiling Interactive Analysis (GEPIA), Oncomine, Human Protein Atlas, and Kaplan Meier plotter tool databases. The corresponding change in the expression level of microRNAs in the DEGs was also predicted using miRWalk and TargetScan, and the expression profiles were analyzed using OncomiR. Finally, the expression of novel DEGs were validated in Chinese breast cancer tissues by RT-qPCR. Results: A total of 46 DEGs were identified, and GO analysis revealed that these genes were mainly associated with biological processes involved in fatty acid, lipid localization, and regulation of lipid metabolism. Two novel biomarkers, ADH1A and IGSF10, and 4 other genes (APOD, KIT, RBP4, and SFRP1) that were implicated in the prognosis and pathogenesis of breast cancer, exhibited low expression levels in breast cancer tissues. Besides, 14/25 microRNAs targeting 6 genes were first predicted to be associated with breast cancer prognosis. RT-qPCR results of ADH1A and IGSF10 expression in Chinese breast cancer tissues were consistent with the database analysis and showed significant down-regulation. Conclusion: ADH1A, IGSF10, and the 14 microRNAs were found to be potential novel biomarkers for the diagnosis, treatment, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Meng Wu
- Department of Medical Oncology, The Affiliated Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingdai Li
- Department of Medical Oncology, The Affiliated Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongbing Wang
- Department of Medical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
21
|
Zhou J, Zhao H, Zhang L, Li Q, Huang Z, Zhao Z, Ke H, Xiao Y, Su X, Liu Q, Yang S, Zhao L. MiRNA-seq analysis of spleen and head kidney tissue from aquacultured largemouth bass (Micropterus salmoides) in response to Aeromonas hydrophila infection. Funct Integr Genomics 2021; 21:101-111. [PMID: 33442859 DOI: 10.1007/s10142-020-00763-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Recently, the same fish diseases, which have been found in pond farming, have been found in the newly tested largemouth bass (Micropterus salmoides) system. Bacterial septicemia caused by Aeromonas hydrophila occurs frequently in largemouth bass culture leading to significant economic losses. To investigate the role miRNA in the largemouth bass disease resistance, twelve (2 tissues (spleen and head kidney) × 2 experimental groups (infected and control) × three biological replicates) small RNA libraries were constructed and sequenced with miRNA-seq. A total of 26 differentially expressed miRNAs, 8 upregulated and 18 downregulated, were identified in the spleen, and 19 differentially expressed miRNAs, 9 upregulated and 10 downregulated, were identified in head kidney (fold change ≥ 2 or ≤ 0.5 and P ≤ 0.05). The differentially expressed miRNAs with the largest fold change were selected for target gene prediction using GO and KEGG analysis. Six miRNAs in the spleen and 5 miRNAs in the head kidney were selected. Analysis showed that, of all the immune and metabolic pathways, the FoxO signaling pathway was enriched in both the spleen and head kidney groups. Common target genes of the pathway included AMP-activated catalytic subunit alpha 1 (prkaa1), phosphatidylinositol 3-kinase (pik3r3b), serine/threonine-protein kinase (plk2), and forkhead box protein G1 (foxg1a). MiRNAs (such as miR-126-5P, miR-126-3P) are involved in immune response and cell cycle functions as they regulate targeted genes in the FoxO pathway. These results will enhance our understanding of the molecular mechanisms underlying immune responses to bacterial septicemia and facilitate molecular-assisted selection of resistant strains of largemouth bass.
Collapse
Affiliation(s)
- Jian Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Han Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Lu Zhang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Qiang Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Zhipeng Huang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Zhongmeng Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Hongyu Ke
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Yu Xiao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Xutao Su
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
22
|
Mishra N, Raina K, Agarwal R. Deciphering the role of microRNAs in mustard gas-induced toxicity. Ann N Y Acad Sci 2020; 1491:25-41. [PMID: 33305460 DOI: 10.1111/nyas.14539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/16/2022]
Abstract
Mustard gas (sulfur mustard, SM), a highly vesicating chemical warfare agent, was first deployed in warfare in 1917 and recently during the Iraq-Iran war (1980s) and Syrian conflicts (2000s); however, the threat of exposure from stockpiles and old artillery shells still looms large. Whereas research has been long ongoing on SM-induced toxicity, delineating the precise molecular pathways is still an ongoing area of investigation; thus, it is important to attempt novel approaches to decipher these mechanisms and develop a detailed network of pathways associated with SM-induced toxicity. One such avenue is exploring the role of microRNAs (miRNAs) in SM-induced toxicity. Recent research on the regulatory role of miRNAs provides important results to fill in the gaps in SM toxicity-associated mechanisms. In addition, differentially expressed miRNAs can also be used as diagnostic markers to determine the extent of toxicity in exposed individuals. Thus, in our review, we have summarized the studies conducted so far in cellular and animal models, including human subjects, on the expression profiles and roles of miRNAs in SM- and/or SM analog-induced toxicity. Further detailed research in this area will guide us in devising preventive strategies, diagnostic tools, and therapeutic interventions against SM-induced toxicity.
Collapse
Affiliation(s)
- Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, Colorado.,Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
23
|
Li S, Yi M, Dong B, Jiao Y, Luo S, Wu K. The roles of exosomes in cancer drug resistance and its therapeutic application. Clin Transl Med 2020; 10:e257. [PMID: 33377643 PMCID: PMC7752167 DOI: 10.1002/ctm2.257] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/05/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022] Open
Abstract
Exosomes are a category of extracellular vesicles with a size ranging from 40 to 160 nm, which can be secreted by multiple cells in the tumor microenvironment. Exosomes serve as communicators in regulating biological functions and pathological processes, including drug response. Through transporting the cargo such as protein or nucleic acid, exosomes can modulate drug sensitivity via multiple mechanisms. Additionally, exosomes can be deployed as a delivery system to treat cancer due to their high-efficient loading capacity and tolerable toxicity. Recent studies have demonstrated the high efficacy of exosomes in cancer therapy. Herein, we conduct this review to summarize the mechanism of exosome-mediated drug resistance and the therapeutic potential of exosomes in cancer.
Collapse
Affiliation(s)
- Shiyu Li
- Department of OncologyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ming Yi
- Department of OncologyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Bing Dong
- Department of Molecular PathologyThe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Ying Jiao
- Department of OncologyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Suxia Luo
- Department of Medical OncologyThe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Kongming Wu
- Department of OncologyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Medical OncologyThe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| |
Collapse
|
24
|
Mäkitie RE, Hackl M, Weigl M, Frischer A, Kämpe A, Costantini A, Grillari J, Mäkitie O. Unique, Gender-Dependent Serum microRNA Profile in PLS3 Gene-Related Osteoporosis. J Bone Miner Res 2020; 35:1962-1973. [PMID: 32453450 DOI: 10.1002/jbmr.4097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022]
Abstract
Plastin 3 (PLS3), encoded by PLS3, is a newly recognized regulator of bone metabolism, and mutations in the encoding gene result in severe childhood-onset osteoporosis. Because it is an X chromosomal gene, PLS3 mutation-positive males are typically more severely affected whereas females portray normal to increased skeletal fragility. Despite the severe skeletal pathology, conventional metabolic bone markers tend to be normal and are thus insufficient for diagnosing or monitoring patients. Our study aimed to explore serum microRNA (miRNA) concentrations in subjects with defective PLS3 function to identify novel markers that could differentiate subjects according to mutation status and give insight into the molecular mechanisms by which PLS3 regulates skeletal health. We analyzed fasting serum samples for a custom-designed panel comprising 192 miRNAs in 15 mutation-positive (five males, age range 8-76 years, median 41 years) and 14 mutation-negative (six males, age range 8-69 years, median 40 years) subjects from four Finnish families with different PLS3 mutations. We identified a unique miRNA expression profile in the mutation-positive subjects with seven significantly upregulated or downregulated miRNAs (miR-93-3p, miR-532-3p, miR-133a-3p, miR-301b-3p, miR-181c-5p, miR-203a-3p, and miR-590-3p; p values, range .004-.044). Surprisingly, gender subgroup analysis revealed the difference to be even more distinct in female mutation-positive subjects (congruent p values, range .007-.086) than in males (p values, range .127-.843) in comparison to corresponding mutation-negative subjects. Although the seven identified miRNAs have all been linked to bone metabolism and two of them (miR-181c-5p and miR-203a-3p) have bioinformatically predicted targets in the PLS3 3' untranslated region (3'-UTR), none have previously been reported to associate with PLS3. Our results indicate that PLS3 mutations are reflected in altered serum miRNA levels and suggest there is crosstalk between PLS3 and these miRNAs in bone metabolism. These provide new understanding of the pathomechanisms by which mutations in PLS3 lead to skeletal disease and may provide novel avenues for exploring miRNAs as biomarkers in PLS3 osteoporosis or as target molecules in future therapeutic applications. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Riikka E Mäkitie
- Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Hammersmith Campus, Imperial College, London, London, United Kingdom
| | - Matthias Hackl
- TAmiRNA GmbH, Vienna, Austria.,Austrian Cluster of Tissue Regeneration, Vienna, Austria
| | | | - Amelie Frischer
- Austrian Cluster of Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Alice Costantini
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Johannes Grillari
- Austrian Cluster of Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
25
|
Exosomes: Insights from Retinoblastoma and Other Eye Cancers. Int J Mol Sci 2020; 21:ijms21197055. [PMID: 32992741 PMCID: PMC7582726 DOI: 10.3390/ijms21197055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes, considered as cell debris or garbage bags, have been later characterized as nanometer-sized extracellular double-membrane lipid bilayer bio-vesicles secreted by the fusion of vesicular bodies with the plasma membrane. The constituents and the rate of exosomes formation differ in different pathophysiological conditions. Exosomes are also observed and studied in different parts of the eye, like the retina, cornea, aqueous, and vitreous humor. Tear fluid consists of exosomes that are shown to regulate various cellular processes. The role of exosomes in eye cancers, especially retinoblastoma (RB), is not well explored, although few studies point towards their presence. Retinoblastoma is an intraocular tumor that constitutes 3% of cases of cancer in children. Diagnosis of RB may require invasive procedures, which might lead to the spread of the disease to other parts. Due to this reason, better ways of diagnosis are being explored. Studies on the exosomes in RB tumors and serum might help designing better diagnostic approaches for RB. In this article, we reviewed studies on exosomes in the eye, with a special emphasis on RB. We also reviewed miRNAs expressed in RB tumor, serum, and cell lines and analyzed the targets of these miRNAs from the proteins identified in the RB tumor exosomes. hsa-miR-494 and hsa-miR-9, upregulated and downregulated, respectively in RB, have the maximum number of targets. Although oppositely regulated, they share the same targets in the proteins identified in RB tumor exosomes. Overall this review provides the up-to-date progress in the area of eye exosome research, with an emphasis on RB.
Collapse
|
26
|
Sun YM, Chen YQ. Principles and innovative technologies for decrypting noncoding RNAs: from discovery and functional prediction to clinical application. J Hematol Oncol 2020; 13:109. [PMID: 32778133 PMCID: PMC7416809 DOI: 10.1186/s13045-020-00945-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Noncoding RNAs (ncRNAs) are a large segment of the transcriptome that do not have apparent protein-coding roles, but they have been verified to play important roles in diverse biological processes, including disease pathogenesis. With the development of innovative technologies, an increasing number of novel ncRNAs have been uncovered; information about their prominent tissue-specific expression patterns, various interaction networks, and subcellular locations will undoubtedly enhance our understanding of their potential functions. Here, we summarized the principles and innovative methods for identifications of novel ncRNAs that have potential functional roles in cancer biology. Moreover, this review also provides alternative ncRNA databases based on high-throughput sequencing or experimental validation, and it briefly describes the current strategy for the clinical translation of cancer-associated ncRNAs to be used in diagnosis.
Collapse
Affiliation(s)
- Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| |
Collapse
|
27
|
Wang W, Wang S, Pan L. Identification of key differentially expressed mRNAs and microRNAs in non-small cell lung cancer using bioinformatics analysis. Exp Ther Med 2020; 20:3720-3732. [PMID: 32855723 PMCID: PMC7444408 DOI: 10.3892/etm.2020.9105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of mortality worldwide. However, the pathogenesis of NSCLC remains to be fully elucidated. Therefore, the present study aimed to explore the differential expression of mRNAs and microRNAs (miRNAs/miRs) in NSCLC and to determine how these RNA molecules interact with one another to affect disease progression. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were identified from the GSE18842, GSE32863 and GSE29250 datasets downloaded from the Gene Expression Omnibus (GEO database). Functional and pathway enrichment analysis were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. STRING, Cytoscape and MCODE were applied to construct a protein-protein interaction (PPI) network and to screen hub genes. The interactions between miRNAs and mRNAs were predicted using miRWalk 3.0 and a miRNA-mRNA regulatory network was constructed. The prognostic value of the identified hub genes was then evaluated via Kaplan-Meier survival analyses using datasets from The Cancer Genome Atlas. A total of 782 DEGs and 46 DEMs were identified from the 3 GEO datasets. The enriched pathways and functions of the DEGs and target genes of the DEMs included osteoclast differentiation, cell adhesion, response to a drug, plasma membrane, extracellular exosome and protein binding. A subnetwork composed of 11 genes was extracted from the PPI network and the genes in this subnetwork were mainly involved in the cell cycle, cell division and DNA replication. A miRNA-gene regulatory network was constructed with 247 miRNA-gene pairs based on 6 DEMs and 210 DEGs. Kaplan-Meier survival analysis indicated that the expression of ubiquitin E2 ligase C, cell division cycle protein 20, DNA topoisomerase IIα, aurora kinase A and B, cyclin B2, maternal embryonic leucine zipper kinase, slit guidance ligand 3, phosphoglucomutase 5, endomucin, cysteine dioxygenase type 1, dihydropyrimidinase-like 2, miR-130b, miR-1181 and miR-127 was significantly associated with overall survival of patients with lung adenocarcinoma. In the present study, a miRNA-mRNA regulatory network in NSCLC was established, which may provide future avenues for scientific exploration and therapeutic targeting of NSCLC.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Pulmonary and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Shanshan Wang
- Department of Pulmonary and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Lei Pan
- Department of Pulmonary and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
28
|
Zhang L, Yang F, Yan Q. Candesartan ameliorates vascular smooth muscle cell proliferation via regulating miR-301b/STAT3 axis. Hum Cell 2020; 33:528-536. [PMID: 32170715 DOI: 10.1007/s13577-020-00333-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022]
Abstract
Excessive vascular smooth muscle cell (VSMC) proliferation contributes to vascular remodeling and stroke during hypertension. Blockade of Angiotensin (AngII) type 1 receptor (AT1R) is shown to effectively attenuate VSMC proliferation and vascular remodeling, while the mechanisms underlying these protective effects are unclear. Here, we investigated whether the amelioration of VSMC proliferation mediated by candesartan, an AT1R blocker, could be associated with miRNA regulation. Based on the published data in rat aortic smooth muscle cells (RASMCs), we discovered that candesartan specifically reversed the AngII-induced decrease of miR-301b level in RASMCs and human aortic smooth muscle cells (HASMCs). Knockdown of miR-301b abolished candesartan-mediated inhibition of HASMC proliferation via promoting cell cycle transition. Computational analysis showed that miR-301b targets at 3'UTR of STAT3. MiR-301b upregulation inhibited the luciferase activity and protein expression of STAT3, whereas miR-301b knockdown increased STAT3 luciferase activity and expression. Furthermore, downregulation of STAT3 markedly abrogated the effects of miR-301b inhibition on candesartan-mediated HASMC proliferation, invasion, and migration. Collectively, this study suggests that miR-301b may be a novel molecular target of candesartan and provides a new understanding for the mechanisms underlying the cardiovascular effects of candesartan.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pharmacy, Xiantao First People's Hospital, No. 29 Mianzhou Road, Xiantao, 433000, Hubei, China.
| | - Fan Yang
- Department of Pharmacy, Xiantao First People's Hospital, No. 29 Mianzhou Road, Xiantao, 433000, Hubei, China
| | - Qiong Yan
- Department of Pharmacy, Huazhong University of Science and Technology Hospital, Wuhan, 430074, Hubei, China
| |
Collapse
|
29
|
MiRNA-Based Inspired Approach in Diagnosis of Prostate Cancer. ACTA ACUST UNITED AC 2020; 56:medicina56020094. [PMID: 32102477 PMCID: PMC7074198 DOI: 10.3390/medicina56020094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/14/2022]
Abstract
Prostate cancer is one of the most encountered cancer diseases in men worldwide and in consequence it requires the improvement of therapeutic strategies. For the clinical diagnosis, the standard approach is represented by solid biopsy. From a surgical point of view, this technique represents an invasive procedure that may imply several postoperative complications. To overcome these impediments, many trends are focusing on developing liquid biopsy assays and on implementing them in clinical practice. Liquid samples (blood, urine) are rich in analytes, especially in transcriptomic information provided by genetic markers. Additionally, molecular characterization regarding microRNAs content reveals outstanding prospects in understanding cancer progression mechanisms. Moreover, these analytes have great potential for prostate cancer early detection, more accurate prostate cancer staging and also for decision making respecting therapy schemes. However, there are still questionable topics and more research is needed to standardize liquid biopsy-based techniques.
Collapse
|
30
|
Zheng H, Bai L. Hypoxia induced microRNA-301b-3p overexpression promotes proliferation, migration and invasion of prostate cancer cells by targeting LRP1B. Exp Mol Pathol 2019; 111:104301. [PMID: 31442444 DOI: 10.1016/j.yexmp.2019.104301] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/19/2019] [Accepted: 08/20/2019] [Indexed: 01/21/2023]
Abstract
Prostate cancer is a high burden on society worldwide due to its high morbidity and mortality. Growing evidence has implicated microRNAs (miRNAs or miRs) in the occurrence and progression of prostate cancer. The present study was conducted with main emphasis put on the possible effect of hypoxia-induced miR-301b-3p on prostate cancer by targeting low-density lipoprotein receptor-related protein 1B (LRP1B). Firstly, the differentially expressed genes were identified by conducting microarray-based gene expression profiling of prostate cancer. Next, the expression of miR-301b-3p in prostate cancer cells was examined in cells treated with 1% oxygen or dimethyloxalylglycine (DMOG), and the cell line with the highest miR-301b-3p expression was selected for subsequent experiments. Subsequently, the target relationship between miR-301b-3p and LRP1B was identified. The effect of miR-301b-3p and LRP1B on cell proliferation, migration and invasion as well as tumorigenicity of transfected cells was examined using the gain- and loss-of-function approaches. Hypoxia induced miR-301b-3p was highly expressed while LRP1B was poorly expressed in prostate cancer. Moreover, miR-301b-3p could down-regulate LRP1B by interacting with LRP1B, which acted to promote the proliferation, migration and invasion abilities of prostate cancer cells in addition to tumor growth in vivo. In addition, up-regulation of LRP1B can reverse the promoting effect of miR-301b-3p on the aforementioned factors. Collectively, up-regulation of miR-301b-3p induced by hypoxia could potentially accelerate proliferation, migration and invasion of prostate cancer cells via the inhibitory effect on LRP1B expression, highlighting that miR-301b-3p may be instrumental for the therapeutic targeting of prostate cancer.
Collapse
Affiliation(s)
- Haiying Zheng
- Department of Cardiovascular Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot 010050, PR China
| | - Ligang Bai
- Department of Urology Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot 010050, PR China.
| |
Collapse
|
31
|
Fan H, Jin X, Liao C, Qiao L, Zhao W. MicroRNA-301b-3p accelerates the growth of gastric cancer cells by targeting zinc finger and BTB domain containing 4. Pathol Res Pract 2019; 215:152667. [PMID: 31585814 DOI: 10.1016/j.prp.2019.152667] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/10/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) have been found to be aberrantly expressed and exert essential roles in the tumorigenesis and progression of gastric cancer (GC). miR-301b-3p has been recognized as a cancer-related miRNA in lung cancer, bladder cancer and hepatocellular carcinoma. However, the function of miR-301b-3p in GC progression and its underlying mechanism have not been studied yet. In this study, we found that miR-301b-3p expression was up-regulated in GC tissues compared to adjacent noncancerous tissues. Furthermore, the elevated levels of miR-301b-3p were detected in GC cell lines (SGC-7901, AGS, MKN-45 and MGC-803) as compared with GES-1 cells. Interestingly, GC tissues from patients with tumor size ≥ 5 cm and advanced tumor stages showed obvious higher levels of miR-301b-3p compared to matched controls. Functionally, miR-301b-3p knockdown prominently inhibited cell proliferation, and induced cell cycle arrest at G1 phase and apoptosis in MGC-803 cells. Meanwhile, ectopic expression of miR-301b-3p conversely regulated these biological behaviors of MKN-45 cells. Next, we found that miR-301b-3p knockdown increased, whereas miR-301b-3p overexpression reduced the expression of zinc finger and BTB domain containing 4 (ZBTB4) in GC cells. Accordingly, luciferase reporter assay identified ZBTB4 as a direct target of miR-301b-3p. ZBTB4 overexpression markedly restrained the growth of MGC-803 cells. More importantly, ZBTB4 silencing partially reversed miR-301b-3p knockdown-induced tumor suppressive effects on MGC-803 cells. In conclusion, we firstly revealed that miR-301-3p was highly expressed in GC and contributed to tumor progression via attenuating ZBTB4, which might provide a novel molecular-targeted strategy for GC treatment.
Collapse
Affiliation(s)
- Hui Fan
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Xianzhen Jin
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Chunyan Liao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Lina Qiao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China.
| | - Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China.
| |
Collapse
|
32
|
Wang JJ, Huang YQ, Song W, Li YF, Wang H, Wang WJ, Huang M. Comprehensive analysis of the lncRNA‑associated competing endogenous RNA network in breast cancer. Oncol Rep 2019; 42:2572-2582. [PMID: 31638237 PMCID: PMC6826329 DOI: 10.3892/or.2019.7374] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been confirmed to be potential prognostic markers in a variety of cancers and to interact with microRNAs (miRNAs) as competing endogenous RNAs (ceRNAs) to regulate target gene expression. However, the role of lncRNA‑mediated ceRNAs in breast cancer (BC) remains unclear. In the present study, a ceRNA network was generated to explore their role in BC. The expression profiles of mRNAs, miRNAs and lncRNAs in 1,109 BC tissues and 113 normal breast tissues were obtained from The Cancer Genome Atlas database (TCGA). A total of 3,198 differentially expressed (DE) mRNAs, 150 differentially DEmiRNAs and 1,043 DElncRNAs were identified between BC and normal tissues. A lncRNA‑miRNA‑mRNA network associated with BC was successfully constructed based on the combined data obtained from RNA databases, and comprised 97 lncRNA nodes, 24 miRNA nodes and 74 mRNA nodes. The biological functions of the 74 DEmRNAs were further investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The results demonstrated that the DEmRNAs were significantly enriched in two GO biological process categories; the main biological process enriched term was 'positive regulation of GTPase activity'. By KEGG analysis, four key enriched pathways were obtained, including the 'MAPK signaling pathway', the 'Ras signaling pathway', 'prostate cancer', and the 'FoxO signaling pathway'. Kaplan‑Meier survival analysis revealed that six DElncRNAs (INC AC112721.1, LINC00536, MIR7‑3HG, ADAMTS9‑AS1, AL356479.1 and LINC00466), nine DEmRNAs (KPNA2, RACGAP1, SHCBP1, ZNF367, NTRK2, ORS1, PTGS2, RASGRP1 and SFRP1) and two DEmiRNAs (hsa‑miR‑301b and hsa‑miR‑204) had significant effects on overall survival in BC. The present results demonstrated the aberrant expression of INC AC112721.1, AL356479.1, LINC00466 and MIR7‑3HG in BC, indicating their potential prognostic role in patients with BC.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Oncology, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Yue-Qing Huang
- Department of General Practice, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Wei Song
- Department of Intervention and Vascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Yi-Fan Li
- Department of Oncology, Binzhou People's Hospital, Binzhou, Shandong 256600, P.R. China
| | - Han Wang
- Department of Oncology, Jining Cancer Hospital, Jining, Shandong 272000, P.R. China
| | - Wen-Jie Wang
- Department of Radio‑Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Min Huang
- Department of General Practice, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| |
Collapse
|
33
|
MiR-146b inhibits autophagy in prostate cancer by targeting the PTEN/Akt/mTOR signaling pathway. Aging (Albany NY) 2019; 10:2113-2121. [PMID: 30153654 PMCID: PMC6128421 DOI: 10.18632/aging.101534] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/17/2018] [Indexed: 12/20/2022]
Abstract
Prostate cancer (PCa) is considered as a common visceral cancer in males and the sixth major cause of cancer-related deaths in males worldwide. Significant diagnostic and therapeutic advances have been made in the past decades. However, an improved understanding of their molecular mechanism is still needed. In the present research, we first detected the expression of miR-146b by quantitative real-time PCR (qRT-PCR) and found that miR-146b expression was increased in PCa. Subsequently, we found that miR-146b play an important role in the viability and proliferation capacity of PCa cells functionally. To explore the mechanism, we performed western blot to examine the autophagy-related markers, and found that miR‑146b may promote autophagy in PCa cells via activation of PTEN/AKT/mTOR signaling pathway. Furthermore, we performed the dual luciferase reporter assay to clarify the relationship between miR-146b and PTEN. In conclusion, this study demonstrated that miR-146b inhibited autophagy in PCa by targeting the PTEN/Akt/mTOR signaling pathway, and it could be a potential candidate for application in the treatment of PCa.
Collapse
|
34
|
A cross-cancer metastasis signature in the microRNA-mRNA axis of paired tissue samples. Mol Biol Rep 2019; 46:5919-5930. [PMID: 31410687 DOI: 10.1007/s11033-019-05025-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
In the progression of cancer, cells acquire genetic mutations that cause uncontrolled growth. Over time, the primary tumour may undergo additional mutations that allow for the cancerous cells to spread throughout the body as metastases. Since metastatic development typically results in markedly worse patient outcomes, research into the identity and function of metastasis-associated biomarkers could eventually translate into clinical diagnostics or novel therapeutics. Although the general processes underpinning metastatic progression are understood, no clear cross-cancer biomarker profile has emerged. However, the literature suggests that some microRNAs (miRNAs) may play an important role in the metastatic progression of several cancer types. Using a subset of The Cancer Genome Atlas (TCGA) data, we performed an integrated analysis of mRNA and miRNA expression with paired metastatic and primary tumour samples to interrogate how the miRNA-mRNA regulatory axis influences metastatic progression. From this, we successfully built mRNA- and miRNA-specific classifiers that can discriminate pairs of metastatic and primary samples across 11 cancer types. In addition, we identified a number of miRNAs whose metastasis-associated dysregulation could predict mRNA metastasis-associated dysregulation. Among the most predictive miRNAs, we found several previously implicated in cancer progression, including miR-301b, miR-1296, and miR-423. Taken together, our results suggest that metastatic samples have a common cross-cancer signature when compared with their primary tumour pair, and that these miRNA biomarkers can be used to predict metastatic status as well as mRNA expression.
Collapse
|
35
|
Sabol RA, Giacomelli P, Beighley A, Bunnell BA. Adipose Stem Cells and Cancer: Concise Review. Stem Cells 2019; 37:1261-1266. [DOI: 10.1002/stem.3050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/11/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Rachel A. Sabol
- Center for Stem Cell Research; Tulane University School of Medicine; New Orleans Louisiana USA
| | - Paulina Giacomelli
- Center for Stem Cell Research; Tulane University School of Medicine; New Orleans Louisiana USA
| | - Adam Beighley
- Center for Stem Cell Research; Tulane University School of Medicine; New Orleans Louisiana USA
| | - Bruce A. Bunnell
- Center for Stem Cell Research; Tulane University School of Medicine; New Orleans Louisiana USA
- Department of Pharmacology; Tulane University; New Orleans Louisiana USA
- Division of Regenerative Medicine; Tulane National Primate Research Center; Covington Louisiana USA
| |
Collapse
|
36
|
Mutual suppression between BHLHE40/BHLHE41 and the MIR301B-MIR130B cluster is involved in epithelial-to-mesenchymal transition of endometrial cancer cells. Oncotarget 2019; 10:4640-4654. [PMID: 31384392 PMCID: PMC6659797 DOI: 10.18632/oncotarget.27061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/19/2019] [Indexed: 01/03/2023] Open
Abstract
BHLHE40 and BHLHE41 (BHLHE40/41) are basic helix-loop-helix type transcription factors involved in multiple cell activities including epithelial-to-mesenchymal transition (EMT). However, the expression mechanism of BHLHE40/41 in EMT remains unclear. In the present study, we showed that the expression levels of BHLHE40/41 were negatively correlated with those of the microRNA (MIR) 130 family in endometrial cancer (EC) specimens. Our in vitro assays indicated that the expression of BHLHE40/41 was suppressed directly by the MIR130 family in a 3'-untranslated region-mediated manner. In EC cells, the MIR130 family promoted EMT and tumor cell invasion by suppressing the expression of BHLHE40/41. We identified the critical promoter region of the MIR301B-MIR130B cluster for its basal transcription by the transcription factor, SP1. We also found that BHLHE40/41 suppressed the expression of MIR301B and MIR130B, and we identified a binding site in the promoter region for BHLHE40/41. This study is the first to report that BHLHE40/41 and the MIR301B-MIR130B cluster suppressed each other to regulate EMT and invasion of EC cells. We propose that BHLHE40/41 and the MIR130 family are excellent markers to predict the progression of EC cases, and that molecular therapy targeting the MIR130 family-BHLHE40/41 axis may effectively control EC extension.
Collapse
|
37
|
Hashimoto Y, Shiina M, Dasgupta P, Kulkarni P, Kato T, Wong RK, Tanaka Y, Shahryari V, Maekawa S, Yamamura S, Saini S, Deng G, Tabatabai ZL, Majid S, Dahiya R. Upregulation of miR-130b Contributes to Risk of Poor Prognosis and Racial Disparity in African-American Prostate Cancer. Cancer Prev Res (Phila) 2019; 12:585-598. [PMID: 31266828 DOI: 10.1158/1940-6207.capr-18-0509] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/23/2019] [Accepted: 06/24/2019] [Indexed: 12/18/2022]
Abstract
Prostate cancer incidence and mortality rates are higher in African-American (AA) than in European-American (EA) men. The main objective of this study was to elucidate the role of miR-130b as a contributor to prostate cancer health disparity in AA patients. We also determined whether miR-130b is a prognostic biomarker and a new therapeutic candidate for AA prostate cancer. A comprehensive approach of using cell lines, tissue samples, and the TCGA database was employed. We performed a series of functional assays such as cell proliferation, migration, invasion, RT2-PCR array, qRT-PCR, cell cycle, luciferase reporter, immunoblot, and IHC. Various statistical approaches such as Kaplan-Meier, uni-, and multivariate analyses were utilized to determine the clinical significance of miR-130b. Our results showed that elevated levels of miR-130b correlated with race disparity and PSA levels/failure and acted as an independent prognostic biomarker for AA patients. Two tumor suppressor genes, CDKN1B and FHIT, were validated as direct functional targets of miR-130b. We also found race-specific cell-cycle pathway activation in AA patients with prostate cancer. Functionally, miR-130b inhibition reduced cell proliferation, colony formation, migration/invasion, and induced cell-cycle arrest. Inhibition of miR-130b modulated critical prostate cancer-related biological pathways in AA compared with EA prostate cancer patients. In conclusion, attenuation of miR-130b expression has tumor suppressor effects in AA prostate cancer. miR-130b is a significant contributor to prostate cancer racial disparity as its overexpression is a risk factor for poor prognosis in AA patients with prostate cancer. Thus, regulation of miR-130b may provide a novel therapeutic approach for the management of prostate cancer in AA patients.
Collapse
Affiliation(s)
- Yutaka Hashimoto
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Marisa Shiina
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Pritha Dasgupta
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Priyanka Kulkarni
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Taku Kato
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Ryan K Wong
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Yuichiro Tanaka
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Varahram Shahryari
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Shigekatsu Maekawa
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Soichiro Yamamura
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Sharanjot Saini
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Guoren Deng
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Z Laura Tabatabai
- Department of Pathology, San Francisco VA Medical Center, California.,University of California San Francisco, San Francisco, California
| | - Shahana Majid
- Department of Urology, San Francisco VA Medical Center, San Francisco, California. .,University of California San Francisco, San Francisco, California
| | - Rajvir Dahiya
- Department of Urology, San Francisco VA Medical Center, San Francisco, California. .,University of California San Francisco, San Francisco, California
| |
Collapse
|
38
|
Wang WT, Han C, Sun YM, Chen TQ, Chen YQ. Noncoding RNAs in cancer therapy resistance and targeted drug development. J Hematol Oncol 2019; 12:55. [PMID: 31174564 PMCID: PMC6556047 DOI: 10.1186/s13045-019-0748-z] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023] Open
Abstract
Noncoding RNAs (ncRNAs) represent a large segment of the human transcriptome and have been shown to play important roles in cellular physiology and disease pathogenesis. Increasing evidence on the functional roles of ncRNAs in cancer progression emphasizes the potential of ncRNAs for cancer treatment. Here, we summarize the roles of ncRNAs in disease relapse and resistance to current standard chemotherapy and radiotherapy; the current research progress on ncRNAs for clinical and/or potential translational applications, including the identification of ncRNAs as therapeutic targets; therapeutic approaches for ncRNA targeting; and ncRNA delivery strategies in potential clinical translation. Several ongoing clinical trials of novel RNA-based therapeutics were also emphasized. Finally, we discussed the perspectives and obstacles to different target combinations, delivery strategies, and system designs for ncRNA application. The next approved nucleic acid drug to treat cancer patients may realistically be on the horizon.
Collapse
Affiliation(s)
- Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Cai Han
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tian-Qi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China. .,School of Life Science, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
39
|
Li P, Xing W, Xu J, Yuan D, Liang G, Liu B, Ma H. microRNA-301b-3p downregulation underlies a novel inhibitory role of long non-coding RNA MBNL1-AS1 in non-small cell lung cancer. Stem Cell Res Ther 2019; 10:144. [PMID: 31113460 PMCID: PMC6528355 DOI: 10.1186/s13287-019-1235-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/31/2019] [Accepted: 04/14/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the second most prevalent cause of cancer-related fatality. Long non-coding RNAs (lncRNAs) have been observed to exercise functions in NSCLC. Here, the current study aimed to explore the potential mechanism of lncRNA MBNL1-AS1 in NSCLC. METHODS Microarray analysis was performed to screen the differentially expressed lncRNA associated with NSCLC and its potential mechanism. The lncRNA MBNL1-AS1 expression was quantified in 56 paired NSCLC and adjacent normal tissue samples. In an attempt to outline the function of lncRNA MBNL1-AS1 in NSCLC and to identify the interaction among lncRNA MBNL1-AS1, microRNA-301b-3p (miR-301b-3p) and TGFBR2, ectopic expression, depletion, and reporter assay experiments were conducted to detect CSC proliferation, migration, invasion, drug resistance, and sphere formation in NSCLC. RESULTS Initially, the intersection among lncRNA MBNL1-AS1, miR-301b-3p, and TGFBR2 was observed in NSCLC. While a poor expression of lncRNA MBNL1-AS1 and TGFBR2, along with a high expression of miR-301b-3p was observed in NSCLC tissues. A demonstration of lncRNA MBNL1-AS1 restoration significantly decreased CSC proliferation, migration, invasion, drug resistance, and sphere formation in NSCLC. LncRNA MBNL1-AS1 functioned as a sponge of miR-301b-3p, which inverted the inhibitory role of lncRNA MBNL1-AS1 in CSC proliferation, migration, invasion, drug resistance, and sphere formation in NSCLC. LncRNA MBNL1-AS1 positively regulated TGFBR2 which was a target gene of miR-301b-3p. At last, upregulated lncRNA MBNL1-AS1 or depleted miR-301b-3p suppressed the xenograft tumor formation in vivo. CONCLUSION Collectively, the present study suggests an inhibitory role of lncRNA MBNL1-AS1 in CSC drug resistance of NSCLC by upregulating miR-301b-3p-targeted TGFBR2.
Collapse
Affiliation(s)
- Peng Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008 Henan Province People’s Republic of China
| | - Wenqun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008 Henan Province People’s Republic of China
| | - Jinliang Xu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008 Henan Province People’s Republic of China
| | - Dongfeng Yuan
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008 Henan Province People’s Republic of China
| | - Guanghui Liang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008 Henan Province People’s Republic of China
| | - Baoxing Liu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008 Henan Province People’s Republic of China
| | - Haibo Ma
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008 Henan Province People’s Republic of China
| |
Collapse
|
40
|
Liu F, Zhang G, Lv S, Wen X, Liu P. miRNA-301b-3p accelerates migration and invasion of high-grade ovarian serous tumor via targeting CPEB3/EGFR axis. J Cell Biochem 2019; 120:12618-12627. [PMID: 30834603 DOI: 10.1002/jcb.28528] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 01/02/2023]
Abstract
High-grade ovarian serous carcinoma (HGS-OvCa), a type of ovarian cancer with poor prognosis due to distant metastasis, is urgently in need of new therapeutic targets. microRNAs (miRNAs), a class of small noncoding RNAs, perform significant roles in tumor progression. Mounting evidence has revealed the aberrant expression of miRNA in various cancers, one of which is HGS-OvCa. Present study planned to investigate that miRNA-301b-3p accelerates migration and invasion of high-grade ovarian serous tumor via targeting CPEB3/EGFR axis. Upregulation of miR-301b-3p was uncovered in HGS-OvCa tissues and cell lines, and was identified to be associated with metastasis. The Kaplan-Meier analysis confirmed the association of miR-301b-3p with poor prognosis of HGS-OvCa patients. Transwell assay validated the oncogenic effect of miR-301b-3p on migration and invasion of HGS-OvCa cells. Cytoplasmic polyadenylation element binding protein 3 (CPEB3) was then identified as a target of miR-301b-3p. It was also discovered that CPEB3 was downregulated in HGS-OvCa tissues and cell lines. The Spearman correlation curve presented the negative correlation of CPEB3 expression with miR-301b-3p. Furthermore, rescue assays proved that miRNA-301b-3p regulated the invasion and migration through CPEB3. Western blot and qRT-PCR analysis showed that miRNA-301b-3p induced epidermal growth factor receptor and downstream metastasis-related proteins, p38, and extracellular signal-regulated kinase 1/2 (ERK1/2), through CPEB3. To be concluded, these results indicated that miRNA-301b-3p accelerated migration and invasion of high-grade ovarian serous tumor via targeting CPEB3/EGFR axis.
Collapse
Affiliation(s)
- Fengying Liu
- Department of Gynecology and obstetrics, the Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Guilian Zhang
- Department of Gynecology and obstetrics, the Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Shiming Lv
- Department of Gynecology and obstetrics, the Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Xinmian Wen
- Department of Laboratory Medicine, the Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Peishu Liu
- Department of Gynecology and obstetrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
41
|
Gao C, Li H, Zhuang J, Zhang H, Wang K, Yang J, Liu C, Liu L, Zhou C, Sun C. The construction and analysis of ceRNA networks in invasive breast cancer: a study based on The Cancer Genome Atlas. Cancer Manag Res 2018; 11:1-11. [PMID: 30588106 PMCID: PMC6301306 DOI: 10.2147/cmar.s182521] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Studies have shown that long noncoding RNAs (lncRNAs) make up the major proportion of the ceRNA network and can regulate gene expression by competitively binding to miRNAs. This reveals the existence of an RNA-miRNA regulatory pathway and is of great biological significance. CeRNAs, as competitive endogenous RNAs, have revealed a new mechanism of interaction between RNAs. Until now, the role of lncRNA-mediated ceRNAs in breast cancer and their regulatory mechanisms have been elucidated to some extent. Purpose In this study, comprehensive analysis of large-scale invasive breast cancer samples in TCGA were conducted to further explore the developmental mechanism of invasive breast cancer and the potential predictive markers for invasive breast cancer prognosis in the ceRNA network. Methods Abnormal expression profiles of invasive breast cancer associated mRNAs, lncRNAs and miRNAs were obtained from the TCGA database. Through further alignment and prediction of target genes, an abnormal lncRNA-miRNA-mRNA ceRNA network was constructed for invasive breast cancer. Through the overall survival analysis, Identification prognostic bio-markers for invasive breast cancer patients. In addition, we used Cytoscape plug-in BinGo for the different mRNA performance functional cluster analysis. Results Differential analysis revealed that 1059 lncRNAs, 86 miRNAs, and 2138 mRNAs were significantly different in invasive breast cancer samples versus normal samples. Then we construct an abnormal lncRNA-miRNA-mRNA ceRNA network for invasive breast cancer, consisting of 90 DElncRNAs, 18 DEmiRNAs and 26 DEmRNAs.Further, 4 out of 90 lncRNAs, 3 out of 26 mRNAs, and 2 out of 18 miRNAs were useful as prognostic biomarkers for invasive breast cancer patients (P value < 0.05). It is worth noting that based on the ceRNA network, we found that the LINC00466-Hsa-mir-204- NTRK2 LINC00466-hsa-mir-204-NTRK2 axis was present in 9 RNAs associated with the prognosis of invasive breast cancer. Conclusion This study provides an effective bioinformatics basis for further understanding of the molecular mechanism of invasive breast cancerand for predicting outcomes, which can guide the use of invasive breast cancerdrugs and subsequent related research.
Collapse
Affiliation(s)
- Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, People's Republic of China
| | - Huayao Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, People's Republic of China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, People's Republic of China, .,Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang 261031, People's Republic of China,
| | - HongXiu Zhang
- Institute of Virology, Jinan Center for Disease Control and Prevention, Jinan 250021, People's Republic of China
| | - Kejia Wang
- College of Basic Medicine, Qingdao University, Qingdao 266071, People's Republic of China
| | - Jing Yang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, People's Republic of China,
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, People's Republic of China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, People's Republic of China, .,Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang 261031, People's Republic of China,
| | - Chao Zhou
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, People's Republic of China, .,Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang 261031, People's Republic of China,
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, People's Republic of China, .,Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang 261031, People's Republic of China,
| |
Collapse
|