1
|
Xia T, Zhang Y, Peng H, Jia X, Yang D, Wei L, Li T, Yao W. EVA1B facilitates esophageal squamous carcinoma progression and recruitment of immunosuppressive myeloid-derived suppressor cells in the tumor microenvironment. Pharmacol Res 2024; 210:107521. [PMID: 39603573 DOI: 10.1016/j.phrs.2024.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Eva-1 Homolog B (EVA1B) has been preliminarily found to be associated with prognostic outcomes and immune microenvironment in several human cancer types, but the implications of EVA1B in ESCC remain unclear. Human ESCC and paracancerous tissues were gathered in this study, and EVA1B expression was measured via immunoblotting. EC109 and KYSE-180 ESCC cells were stably infected by sh-EVA1B lentivirus, and functional experiments were subsequently implemented. Syngeneic mouse models were built, and the expansion and recruitment of myeloid-derived suppressor cells (MDSCs) were then evaluated. The results showed that EVA1B presented the notable up-regulation in clinical ESCC tissues versus controls, and was connected to more advanced stages and the abundance of MDSCs. Silencing EVA1B notably attenuated proliferation of ESCC cells and tumor growth in syngeneic mouse models. Moreover, EVA1B suppression resulted in apoptosis and cell cycle arrest, and impaired ESCC cell aggressiveness. Among ESCC patients, EVA1B was strongly correlated to EMT pathway activity. Targeted suppression of EVA1B mitigated the expression of Wnt3a, β-catenin and LRP6 in ESCC cells and tumor xenografts. Additionally, inhibition of EVA1B attenuated the expansion and recruitment of MDSCs within the immune microenvironment based upon the reduction in the percentage of CD11b+Gr-1+ immunosuppressive MDSCs as well as the expression of MDSC expansion stimulators (S100A8, S100A9, Arg-1, and VEGF). Collectively, our findings unveiled the contribution of high expression of EVA1B to ESCC progression and MDSCs expansion and recruitment, indicating that targeted suppression of EVA1B may be a potential treatment choice for ESCC patients.
Collapse
Affiliation(s)
- Tian Xia
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China.
| | - Yongkang Zhang
- Department of Thoracic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| | - Haodong Peng
- Department of Thoracic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| | - Xiangbo Jia
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China.
| | - Dong Yang
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China.
| | - Li Wei
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China.
| | - Tian Li
- Tianjin Medical University, Tianjin 300102, China.
| | - Wenjian Yao
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
2
|
Chen C, Zhu Y, Li Q, Yu Z, Tan Y, Li F, Chen X, Jiang S, Yu K, Zhang S. SKI-606, a Src inhibitor, ameliorates benzene-induced hematotoxicity via blocking ROS/Src kinase-mediated p38 and Akt signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117223. [PMID: 39447291 DOI: 10.1016/j.ecoenv.2024.117223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Exposure to benzene causes acute myelosuppression and other hematologic disorders. However, the detailed mechanism by which benzene exerts its severe hematotoxicity and potential treatments still require further deciphering and exploration. Herein, we found that hydroquinone (HQ), a main benzene metabolite, significantly increased intracellular reactive oxygen species (ROS) formation and subsequently caused damage to DNA, leading to impaired colony formation capacity and induction of apoptosis in human hematopoietic stem/progenitor cells (HSPCs) in vitro. The effects were mediated by activation of Src kinase, which subsequently activated the p38 signaling pathway while inhibiting the Akt signaling pathway. The mechanism was further verified by pre-treatment with a Src kinase inhibitor SKI-606, which effectively reversed the dampened self-renewal capacity and increased apoptosis of HSPCs induced by HQ in vitro. Furthermore, administration of SKI-606 partially reversed benzene-induced hematotoxicity and prolonged the survival time in benzene-poisoned mice. Taken together, these findings highlight that HQ-induced hematotoxicity in HSPCs is attributed to the Src kinase-mediated activation of p38 signaling pathway and repression of Akt signaling pathway. Notably, SKI-606 as a tyrosine kinase inhibitor may be a promising and potential agent for alleviating benzene-induced hematotoxicity.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Yiyi Zhu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Qianping Li
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Zhijie Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Yicheng Tan
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China; Laboratory Animal Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fanfan Li
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Xipeng Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China.
| | - Shenghui Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China; Laboratory Animal Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Su C, Kent CL, Pierpoint M, Floyd W, Luo L, Williams NT, Ma Y, Peng B, Lazarides AL, Subramanian A, Himes JE, Perez VM, Hernansaiz-Ballesteros RD, Roche KE, Modliszewski JL, Selitsky SR, Shinohara ML, Wisdom AJ, Moding EJ, Mowery YM, Kirsch DG. Enhancing radiotherapy response via intratumoral injection of a TLR9 agonist in autochthonous murine sarcomas. JCI Insight 2024; 9:e178767. [PMID: 39133651 PMCID: PMC11383182 DOI: 10.1172/jci.insight.178767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/11/2024] [Indexed: 08/21/2024] Open
Abstract
Radiation therapy (RT) is frequently used to treat cancers, including soft-tissue sarcomas. Prior studies established that the toll-like receptor 9 (TLR9) agonist cytosine-phosphate-guanine oligodeoxynucleotide (CpG) enhances the response to RT in transplanted tumors, but the mechanisms of this enhancement remain unclear. Here, we used CRISPR/Cas9 and the chemical carcinogen 3-methylcholanthrene (MCA) to generate autochthonous soft-tissue sarcomas with high tumor mutation burden. Treatment with a single fraction of 20 Gy RT and 2 doses of CpG significantly enhanced tumor response, which was abrogated by genetic or immunodepletion of CD8+ T cells. To characterize the immune response to CpG+RT, we performed bulk RNA-Seq, single-cell RNA-Seq, and mass cytometry. Sarcomas treated with 20 Gy and CpG demonstrated increased CD8 T cells expressing markers associated with activation and proliferation, such as Granzyme B, Ki-67, and IFN-γ. CpG+RT also upregulated antigen presentation pathways on myeloid cells. Furthermore, in sarcomas treated with CpG+RT, TCR clonality analysis suggests an increase in clonal T cell dominance. Collectively, these findings demonstrate that CpG+RT significantly delays tumor growth in a CD8 T cell-dependent manner. These results provide a strong rationale for clinical trials evaluating CpG or other TLR9 agonists with RT in patients with soft-tissue sarcoma.
Collapse
Affiliation(s)
- Chang Su
- Department of Pharmacology and Cancer Biology and
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Collin L Kent
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew Pierpoint
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Warren Floyd
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Lixia Luo
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Nerissa T Williams
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Brian Peng
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Alexander L Lazarides
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ajay Subramanian
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Jonathon E Himes
- Department of Pharmacology and Cancer Biology and
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | - Kimberly E Roche
- Tempus AI Inc., Durham, North Carolina, USA
- QuantBio LLC, Durham, North Carolina, USA
| | - Jennifer L Modliszewski
- QuantBio LLC, Durham, North Carolina, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Sara R Selitsky
- Tempus AI Inc., Durham, North Carolina, USA
- QuantBio LLC, Durham, North Carolina, USA
| | - Mari L Shinohara
- Department of Integrative Immunology
- Department of Molecular Genetics and Microbiology, and
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Amy J Wisdom
- Harvard Radiation Oncology Program, Boston, Massachusetts, USA
| | - Everett J Moding
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
- Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David G Kirsch
- Department of Pharmacology and Cancer Biology and
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Radiation Oncology and
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
5
|
Shcholok T, Eftekharpour E. Insights into the Multifaceted Roles of Thioredoxin-1 System: Exploring Knockout Murine Models. BIOLOGY 2024; 13:180. [PMID: 38534450 DOI: 10.3390/biology13030180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Redox balance is increasingly identified as a major player in cellular signaling. A fundamentally simple reaction of oxidation and reduction of cysteine residues in cellular proteins is the central concept in this complex regulatory mode of protein function. Oxidation of key cysteine residues occurs at the physiological levels of reactive oxygen species (ROS), but they are reduced by a supply of thiol antioxidant molecules including glutathione, glutaredoxin, and thioredoxin. While these molecules show complex compensatory roles in experimental conditions, transgenic animal models provide a comprehensive picture to pinpoint the role of each antioxidant. In this review, we have specifically focused on the available literature on thioredoxin-1 system transgenic models that include thioredoxin and thioredoxin reductase proteins. As the identification of thioredoxin protein targets is technically challenging, the true contribution of this system in maintaining cellular balance remains unidentified, including the role of this system in the brain.
Collapse
Affiliation(s)
- Tetiana Shcholok
- Department of Physiology and Pathophysiology, University of Manitoba, 631-BMSB, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, 631-BMSB, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
6
|
Su C, Kent CL, Pierpoint M, Floyd W, Luo L, Wiliams NT, Ma Y, Peng B, Lazarides AL, Subramanian A, Himes JE, Perez VM, Hernansaiz-Ballesteros RD, Roche KE, Modliszewski JL, Selitsky SR, Mari Shinohara, Wisdom AJ, Moding EJ, Mowery YM, Kirsch DG. Enhancing radiotherapy response via intratumoral injection of the TLR9 agonist CpG to stimulate CD8 T cells in an autochthonous mouse model of sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573968. [PMID: 38260522 PMCID: PMC10802286 DOI: 10.1101/2024.01.03.573968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Radiation therapy is frequently used to treat cancers including soft tissue sarcomas. Prior studies established that the toll-like receptor 9 (TLR9) agonist cytosine-phosphate-guanine oligodeoxynucleotide (CpG) enhances the response to radiation therapy (RT) in transplanted tumors, but the mechanism(s) remain unclear. Here, we used CRISPR/Cas9 and the chemical carcinogen 3-methylcholanthrene (MCA) to generate autochthonous soft tissue sarcomas with high tumor mutation burden. Treatment with a single fraction of 20 Gy RT and two doses of CpG significantly enhanced tumor response, which was abrogated by genetic or immunodepletion of CD8+ T cells. To characterize the immune response to RT + CpG, we performed bulk RNA-seq, single-cell RNA-seq, and mass cytometry. Sarcomas treated with 20 Gy and CpG demonstrated increased CD8 T cells expressing markers associated with activation and proliferation, such as Granzyme B, Ki-67, and interferon-γ. CpG + RT also upregulated antigen presentation pathways on myeloid cells. Furthermore, in sarcomas treated with CpG + RT, TCR clonality analysis suggests an increase in clonal T-cell dominance. Collectively, these findings demonstrate that RT + CpG significantly delays tumor growth in a CD8 T cell-dependent manner. These results provide a strong rationale for clinical trials evaluating CpG or other TLR9 agonists with RT in patients with soft tissue sarcoma.
Collapse
Affiliation(s)
- Chang Su
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Collin L. Kent
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Matthew Pierpoint
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | | | - Lixia Luo
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Nerissa T. Wiliams
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Brian Peng
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | | | - Ajay Subramanian
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Jonathan E. Himes
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | - Mari Shinohara
- Department of Immunology, Duke University, Durham, NC, USA
| | - Amy J. Wisdom
- Department of Radiation Oncology, Harvard University, Cambridge, MA, USA
| | - Everett J. Moding
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Yvonne M. Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
- MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David G. Kirsch
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|