1
|
Angelakis GN, Psarologaki C, Pirintsos S, Kotzabasis K. Extremophiles and Extremophilic Behaviour-New Insights and Perspectives. Life (Basel) 2024; 14:1425. [PMID: 39598223 PMCID: PMC11595344 DOI: 10.3390/life14111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Extremophiles, throughout evolutionary time, have evolved a plethora of unique strategies to overcome hardships associated with the environments they are found in. Modifying their genome, showing a bias towards certain amino acids, redesigning their proteins, and enhancing their membranes and other organelles with specialised chemical compounds are only some of those strategies. Scientists can utilise such attributes of theirs for a plethora of biotechnological and astrobiological applications. Moreover, the rigorous study of such microorganisms regarding their evolution and ecological niche can offer deep insight into science's most paramount inquiries such as how life originated on Earth and whether we are alone in the universe. The intensification of studies involving extremophiles in the future can prove to be highly beneficial for humanity, even potentially ameliorating modern problems such as those related to climate change while also expanding our knowledge about the complex biochemical reactions that ultimately resulted in life as we know it today.
Collapse
Affiliation(s)
- George N. Angelakis
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Faculty of Geosciences, Utrecht University, 3508 TC Utrecht, The Netherlands
| | - Chrysianna Psarologaki
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Faculty of Biology and Psychology, Georg-August University of Göttingen, Wilhelm-Weber-Straße 2, 37073 Göttingen, Germany
| | - Stergios Pirintsos
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Botanical Garden, University of Crete, Gallos University Campus, GR 74100 Rethymnon, Crete, Greece
| | - Kiriakos Kotzabasis
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Botanical Garden, University of Crete, Gallos University Campus, GR 74100 Rethymnon, Crete, Greece
| |
Collapse
|
2
|
Zhang Y, Li Z, Peng Y, Guo Z, Wang H, Wei T, Shakir Y, Jiang G, Deng Y. Microbiome in a ground-based analog cabin of China Space Station during a 50-day human occupation. ISME COMMUNICATIONS 2024; 4:ycae013. [PMID: 38495633 PMCID: PMC10942772 DOI: 10.1093/ismeco/ycae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 03/19/2024]
Abstract
Dead-corner areas in space station that untouched by the clean-up campaign often experience microorganisms outbreaks, but the microbiome of these areas has never been studied. In this study, the microbiome in a ground-based analog ``Tianhe'' core module of China Space Station was first investigated during a 50-day three-crew occupation. Dead-corner areas were receiving attention by adopting a new sampling method. Results indicate that the astronauts occupation did not affect the dominant bacteria community, but affected a small proportion. Due to the frequent activity of astronauts in the work and sleep areas, the biomarkers in these two areas are common human skin surface and gut microorganisms, respectively. For areas that astronaut rarely visits, the biomarkers in which are common environmental microbial groups. Fluorescence counting showed that 70.12-84.78% of bacteria were alive, with a quantity of 104-105 cells/100 cm2. With the occupation time extension, the number of microorganisms increased. At the same sampling time, there was no significant bioburden difference in various locations. The cultivable bioburden ranged from 101 to 104 colony forming unit (CFU)/100 cm2, which are the following eight genera Penicillium, Microsphaeropsis, Stachybotrys, Humicola, Cladosporium, Bacillus, Planomicrobium, and Acinetobacter. Chryseomicrobium genus may be a key focus for future microbial prevention and control work.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhidong Li
- Office of International Business and Technology Application, Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
| | - Yuan Peng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zimu Guo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Tao Wei
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yasmeen Shakir
- Department of Biochemistry, Hazara University, Mansehra 21120, Pakistan
| | - Guohua Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Marra D, Karapantsios T, Caserta S, Secchi E, Holynska M, Labarthe S, Polizzi B, Ortega S, Kostoglou M, Lasseur C, Karapanagiotis I, Lecuyer S, Bridier A, Noirot-Gros MF, Briandet R. Migration of surface-associated microbial communities in spaceflight habitats. Biofilm 2023; 5:100109. [PMID: 36909662 PMCID: PMC9999172 DOI: 10.1016/j.bioflm.2023.100109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Astronauts are spending longer periods locked up in ships or stations for scientific and exploration spatial missions. The International Space Station (ISS) has been inhabited continuously for more than 20 years and the duration of space stays by crews could lengthen with the objectives of human presence on the moon and Mars. If the environment of these space habitats is designed for the comfort of astronauts, it is also conducive to other forms of life such as embarked microorganisms. The latter, most often associated with surfaces in the form of biofilm, have been implicated in significant degradation of the functionality of pieces of equipment in space habitats. The most recent research suggests that microgravity could increase the persistence, resistance and virulence of pathogenic microorganisms detected in these communities, endangering the health of astronauts and potentially jeopardizing long-duration manned missions. In this review, we describe the mechanisms and dynamics of installation and propagation of these microbial communities associated with surfaces (spatial migration), as well as long-term processes of adaptation and evolution in these extreme environments (phenotypic and genetic migration), with special reference to human health. We also discuss the means of control envisaged to allow a lasting cohabitation between these vibrant microscopic passengers and the astronauts.
Collapse
Affiliation(s)
- Daniele Marra
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Thodoris Karapantsios
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
| | | | - Simon Labarthe
- University of Bordeaux, IMB, UMR 5251, CNRS, IMB, Memphis Team, INRIA, Talence, France
| | - Bastien Polizzi
- Laboratoire de Mathématiques de Besançon, Université Bourgogne Franche-Comté, CNRS UMR-6623, Besançon, France
| | | | - Margaritis Kostoglou
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Ioannis Karapanagiotis
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, ANSES, Fougères, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
4
|
Blachowicz A, Urbaniak C, Adolphson A, Isenhouer G, Page A, Venkateswaran K. Microbial Detection and Quantification of Low-Biomass Water Samples Using an International Space Station Smart Sample Concentrator. Microorganisms 2023; 11:2310. [PMID: 37764154 PMCID: PMC10537578 DOI: 10.3390/microorganisms11092310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The pressing need to safeguard the health of astronauts aboard the International Space Station (ISS) necessitates constant and rigorous microbial monitoring. Recognizing the shortcomings of traditional culture-based methods, NASA is deliberating the incorporation of molecular-based techniques. The challenge, however, lies in developing and validating effective methods for concentrating samples to facilitate this transition. This study is dedicated to investigating the potential of an ISS Smart Sample Concentrator (iSSC) as an innovative concentration method. First, the iSSC system and its components were tested and optimized for microgravity, including various testing environments: a drop tower, parabolic flight, and the ISS itself. Upon confirming the system's compatibility with microgravity, we further evaluated its proficiency and reliability in concentrating large volumes (i.e., 1 L) of water samples inoculated with different microbes. The samples carried 102 to 105 colony-forming units (CFUs) of Sphingomonas paucimobilis, Ralstonia pickettii, or Cupriavidus basilensis per liter, aligning with NASA's acceptable limit of 5 × 104 CFU/L. The average retrieved volume post-concentration was ≈450 µL, yielding samples that were ≈2200 times more concentrated for subsequent quantitative PCR (qPCR) and CFU analysis. The average microbial percent recovery, as assessed with CFU counts, demonstrated consistency for C. basilensis and R. pickettii at around 50% and 45%, respectively. For S. paucimobilis, the efficiency oscillated between 40% and 80%. Interestingly, when we examined microbial recovery using qPCR, the results showed more variability across all tested species. The significance of these findings lies not merely in the successful validation of the iSSC but also in the system's proven consistency, as evidenced by its alignment with previous validation-phase results. In conclusion, conducted research underscored the potential of the iSSC in monitoring microbial contamination in potable water aboard the ISS, heralding a paradigm shift from culture-based to molecular-based monitoring methods.
Collapse
Affiliation(s)
- Adriana Blachowicz
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Camilla Urbaniak
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- ZIN Technologies Inc., Middleburg Heights, OH 44130, USA
| | | | | | - Andy Page
- InnovaPrep LLC, Drexel, MO 64742, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|
5
|
Qu X, Wang H, Lodhi AF, Deng YL, Zhang Y. Evaluation of Decontamination Potential of Wet Wipes Against Microbial Contamination of Chinese Spacecraft Materials. ASTROBIOLOGY 2023; 23:746-755. [PMID: 37279031 DOI: 10.1089/ast.2022.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Abstract There are many kinds of microorganisms that inhabit the environment of manned space stations. Wet wipes are a common tool used in space stations to clean and reduce microorganisms on surfaces. Here, we compared the performance of five types of wipes used by the Chinese Space Station (CSS) on orbit before 2021 in terms of microbial decontamination. In previous studies, we found that Bacillus sp. TJ-1-1 and Staphylococcus sp. HN-5 were the most abundant microorganisms in the assembly environment of the CSS. In this study, we used these two bacteria to build different microbial load models to represent the occurrence and non-occurrence of microbial outbreaks in the on-orbit CSS. The results show that the number of microorganisms that can be removed when wiping the surface with high microbial load by wet wipes was higher than that when wiping the surface with low microbial load. For on-orbit daily cleaning and keeping the microbial population within the regulation concentration range, it is suitable to use two pure water wipes per 100 cm2. When the number of microorganisms increases to a degree where astronauts can see the colonies with their naked eyes, the best way to eliminate the problem is to wipe them thoroughly and repeatedly with at least four quaternary ammonium-based wipes every 100 cm2.
Collapse
Affiliation(s)
- Xi Qu
- Beijing Institute of Spacecraft System Engineering, Beijing, China
| | - Hong Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Adil Farooq Lodhi
- Department of Microbiology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Yu-Lin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ying Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
6
|
Vélez Justiniano YA, Goeres DM, Sandvik EL, Kjellerup BV, Sysoeva TA, Harris JS, Warnat S, McGlennen M, Foreman CM, Yang J, Li W, Cassilly CD, Lott K, HerrNeckar LE. Mitigation and use of biofilms in space for the benefit of human space exploration. Biofilm 2023; 5:100102. [PMID: 36660363 PMCID: PMC9843197 DOI: 10.1016/j.bioflm.2022.100102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/08/2023] Open
Abstract
Biofilms are self-organized communities of microorganisms that are encased in an extracellular polymeric matrix and often found attached to surfaces. Biofilms are widely present on Earth, often found in diverse and sometimes extreme environments. These microbial communities have been described as recalcitrant or protective when facing adversity and environmental exposures. On the International Space Station, biofilms were found in human-inhabited environments on a multitude of hardware surfaces. Moreover, studies have identified phenotypic and genetic changes in the microorganisms under microgravity conditions including changes in microbe surface colonization and pathogenicity traits. Lack of consistent research in microgravity-grown biofilms can lead to deficient understanding of altered microbial behavior in space. This could subsequently create problems in engineered systems or negatively impact human health on crewed spaceflights. It is especially relevant to long-term and remote space missions that will lack resupply and service. Conversely, biofilms are also known to benefit plant growth and are essential for human health (i.e., gut microbiome). Eventually, biofilms may be used to supply metabolic pathways that produce organic and inorganic components useful to sustaining life on celestial bodies beyond Earth. This article will explore what is currently known about biofilms in space and will identify gaps in the aerospace industry's knowledge that should be filled in order to mitigate or to leverage biofilms to the advantage of spaceflight.
Collapse
Affiliation(s)
- Yo-Ann Vélez Justiniano
- ECLSS Development Branch, NASA Marshall Space Flight Center, Huntsville, AL, USA,Corresponding author.
| | - Darla M. Goeres
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | | | - Birthe Veno Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Tatyana A. Sysoeva
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Jacob S. Harris
- Biomedical and Environmental Science Division, NASA Johnson Space Center, Houston, TX, USA
| | - Stephan Warnat
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Mechanical Engineering, Montana State University, Bozeman, MT, USA
| | - Matthew McGlennen
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Mechanical Engineering, Montana State University, Bozeman, MT, USA
| | - Christine M. Foreman
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Wenyan Li
- Laboratory Support Services and Operations (LASSO), NASA Kennedy Space Center, Cape Canaveral, FL, USA
| | | | - Katelynn Lott
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Lauren E. HerrNeckar
- ECLSS Development Branch, NASA Marshall Space Flight Center, Huntsville, AL, USA
| |
Collapse
|
7
|
Sabatino R, Sbaffi T, Corno G, de Carvalho DS, Trovatti Uetanabaro AP, Góes-Neto A, Podolich O, Kozyrovska N, de Vera JP, Azevedo V, Barh D, Di Cesare A. Metagenome Analysis Reveals a Response of the Antibiotic Resistome to Mars-like Extraterrestrial Conditions. ASTROBIOLOGY 2022; 22:1072-1080. [PMID: 35714354 PMCID: PMC9508453 DOI: 10.1089/ast.2021.0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
The spread of antibiotic resistance is becoming a serious global health concern. Numerous studies have been done to investigate the dynamics of antibiotic resistance genes (ARGs) in both indoor and outdoor environments. Nonetheless, few studies are available about the dynamics of the antibiotic resistome (total content of ARGs in the microbial cultures or communities) under stress in outer space environments. In this study, we aimed to experimentally investigate the dynamics of ARGs and metal resistance genes (MRGs) in Kombucha Mutualistic Community (KMC) samples exposed to Mars-like conditions simulated during the BIOMEX experiment outside the International Space Station with analysis of the metagenomics data previously produced. Thus, we compared them with those of the respective non-exposed KMC samples. The antibiotic resistome responded to the Mars-like conditions by enriching its diversity with ARGs after exposure, which were not found in non-exposed samples (i.e., tet and van genes against tetracycline and vancomycin, respectively). Furthermore, ARGs and MRGs were correlated; therefore, their co-selection could be assumed as a mechanism for maintaining antibiotic resistance in Mars-like environments. Overall, these results highlight the high plasticity of the antibiotic resistome in response to extraterrestrial conditions and in the absence of anthropogenic stresses.
Collapse
Affiliation(s)
- Raffaella Sabatino
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Verbania, Italy
| | - Tomasa Sbaffi
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Verbania, Italy
| | - Gianluca Corno
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Verbania, Italy
| | - Daniel Santana de Carvalho
- Laboratório de Biologia Molecular e Computacional de Fungos, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Trovatti Uetanabaro
- Laboratório de Microbiologia Aplicada, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brasil
| | - Aristóteles Góes-Neto
- Laboratório de Biologia Molecular e Computacional de Fungos, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | | | - Jean-Pierre de Vera
- German Aerospace Center (DLR), Space Operations and Astronaut Training, Microgravity User Support Center (MUSC), Cologne, Germany
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Debmalya Barh
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), West Bengal, India
| | - Andrea Di Cesare
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Verbania, Italy
| |
Collapse
|
8
|
Urbaniak C, Morrison MD, Thissen JB, Karouia F, Smith DJ, Mehta S, Jaing C, Venkateswaran K. Microbial Tracking-2, a metagenomics analysis of bacteria and fungi onboard the International Space Station. MICROBIOME 2022; 10:100. [PMID: 35765106 PMCID: PMC9241228 DOI: 10.1186/s40168-022-01293-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/19/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND The International Space Station (ISS) is a unique and complex built environment with the ISS surface microbiome originating from crew and cargo or from life support recirculation in an almost entirely closed system. The Microbial Tracking 1 (MT-1) project was the first ISS environmental surface study to report on the metagenome profiles without using whole-genome amplification. The study surveyed the microbial communities from eight surfaces over a 14-month period. The Microbial Tracking 2 (MT-2) project aimed to continue the work of MT-1, sampling an additional four flights from the same locations, over another 14 months. METHODS Eight surfaces across the ISS were sampled with sterile wipes and processed upon return to Earth. DNA extracted from the processed samples (and controls) were treated with propidium monoazide (PMA) to detect intact/viable cells or left untreated and to detect the total DNA population (free DNA/compromised cells/intact cells/viable cells). DNA extracted from PMA-treated and untreated samples were analyzed using shotgun metagenomics. Samples were cultured for bacteria and fungi to supplement the above results. RESULTS Staphylococcus sp. and Malassezia sp. were the most represented bacterial and fungal species, respectively, on the ISS. Overall, the ISS surface microbiome was dominated by organisms associated with the human skin. Multi-dimensional scaling and differential abundance analysis showed significant temporal changes in the microbial population but no spatial differences. The ISS antimicrobial resistance gene profiles were however more stable over time, with no differences over the 5-year span of the MT-1 and MT-2 studies. Twenty-nine antimicrobial resistance genes were detected across all samples, with macrolide/lincosamide/streptogramin resistance being the most widespread. Metagenomic assembled genomes were reconstructed from the dataset, resulting in 82 MAGs. Functional assessment of the collective MAGs showed a propensity for amino acid utilization over carbohydrate metabolism. Co-occurrence analyses showed strong associations between bacterial and fungal genera. Culture analysis showed the microbial load to be on average 3.0 × 105 cfu/m2 CONCLUSIONS: Utilizing various metagenomics analyses and culture methods, we provided a comprehensive analysis of the ISS surface microbiome, showing microbial burden, bacterial and fungal species prevalence, changes in the microbiome, and resistome over time and space, as well as the functional capabilities and microbial interactions of this unique built microbiome. Data from this study may help to inform policies for future space missions to ensure an ISS surface microbiome that promotes astronaut health and spacecraft integrity. Video Abstract.
Collapse
Affiliation(s)
- Camilla Urbaniak
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Michael D Morrison
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - James B Thissen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Fathi Karouia
- KBRwyle, NASA Ames Research Center, Moffett Field, Mountain View, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Blue Marble Space Institute of Science, Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - David J Smith
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, Mountain View, CA, USA
| | - Satish Mehta
- JesTech, NASA-Johnson Space Center, Houston, TX, USA
| | - Crystal Jaing
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA.
| |
Collapse
|
9
|
Phenotypic, genomic, and transcriptomic changes in an Acinetobacter baumannii strain after spaceflight in China's Tiangong-2 space laboratory. Braz J Microbiol 2022; 53:1447-1464. [PMID: 35763257 DOI: 10.1007/s42770-022-00772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 05/11/2022] [Indexed: 11/02/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen often found in patients with low immunity. It causes nosocomial infections, which are difficult to treat. This bacterium can rapidly mutate, developing resistance to antimicrobials and adapting to environmental stress, thereby increasing its survival. Understanding such adaptive mechanisms will be beneficial for controlling the spread of A. baumannii. Astrobiology studies have demonstrated that microbiomes from astronauts and manned spaceflight environments show resistance to stress and antibiotics. Astronauts also encounter low immunity during spaceflight missions. The extreme conditions of spaceflight provide a unique research platform for studying how opportunistic pathogens such as A. baumannii adapt to conditions such as microgravity and mutate during spaceflight. In this study, we compared phenotypic variations and analyzed genomic and transcriptomic variations in A. baumannii strains exposed to three different conditions: ST1 (64 days on Tiangong-2 space laboratory), GT1 (ground control), and Aba (original strain). Biofilm formation ability of the ST1 strain increased after 64 days of spaceflight. In addition, high-throughput sequencing revealed that some differentially expressed genes were upregulated in the ST1 strain compared to the GT1 strain. These results provide insights into the environmental adaptation of this widespread pathogen.
Collapse
|
10
|
Blachowicz A, Mhatre S, Singh NK, Wood JM, Parker CW, Ly C, Butler D, Mason CE, Venkateswaran K. The Isolation and Characterization of Rare Mycobiome Associated With Spacecraft Assembly Cleanrooms. Front Microbiol 2022; 13:777133. [PMID: 35558115 PMCID: PMC9087587 DOI: 10.3389/fmicb.2022.777133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
Ensuring biological cleanliness while assembling and launching spacecraft is critical for robotic exploration of the solar system. To date, when preventing forward contamination of other celestial bodies, NASA Planetary Protection policies have focused on endospore-forming bacteria while fungi were neglected. In this study, for the first time the mycobiome of two spacecraft assembly facilities at Jet Propulsion Laboratory (JPL) and Kennedy Space Center (KSC) was assessed using both cultivation and sequencing techniques. To facilitate enumeration of viable fungal populations and downstream molecular analyses, collected samples were first treated with chloramphenicol for 24 h and then with propidium monoazide (PMA). Among cultivable fungi, 28 distinct species were observed, 16 at JPL and 16 at KSC facilities, while 13 isolates were potentially novel species. Only four isolated species Aureobasidium melanogenum, Penicillium fuscoglaucum, Penicillium decumbens, and Zalaria obscura were present in both cleanroom facilities, which suggests that mycobiomes differ significantly between distant locations. To better visualize the biogeography of all isolated strains the network analysis was undertaken and confirmed higher abundance of Malassezia globosa and Cyberlindnera jadinii. When amplicon sequencing was performed, JPL-SAF and KSC-PHSF showed differing mycobiomes. Metagenomic fungal reads were dominated by Ascomycota (91%) and Basidiomycota (7.15%). Similar to amplicon sequencing, the number of fungal reads changed following antibiotic treatment in both cleanrooms; however, the opposite trends were observed. Alas, treatment with the antibiotic did not allow for definitive ascribing changes observed in fungal populations between treated and untreated samples in both cleanrooms. Rather, these substantial differences in fungal abundance might be attributed to several factors, including the geographical location, climate and the in-house cleaning procedures used to maintain the cleanrooms. This study is a first step in characterizing cultivable and viable fungal populations in cleanrooms to assess fungal potential as biocontaminants during interplanetary explorations. The outcomes of this and future studies could be implemented in other cleanrooms that require to reduce microbial burden, like intensive care units, operating rooms, or cleanrooms in the semiconducting and pharmaceutical industries.
Collapse
Affiliation(s)
- Adriana Blachowicz
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Snehit Mhatre
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Jason M Wood
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Ceth W Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Cynthia Ly
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Daniel Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
11
|
Butler J, Kelly SD, Muddiman KJ, Besinis A, Upton M. Hospital sink traps as a potential source of the emerging multidrug-resistant pathogen Cupriavidus pauculus: characterization and draft genome sequence of strain MF1. J Med Microbiol 2022; 71. [PMID: 35113779 PMCID: PMC8941954 DOI: 10.1099/jmm.0.001501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Introduction.Cupriavidus pauculus is historically found in soil and water but has more recently been reported to cause human infection and death. Hospital sink traps can serve as a niche for bacterial persistence and a platform for horizontal gene transfer, with evidence of dissemination of pathogens in hospital plumbing systems driving nosocomial infection. Gap Statement. This paper presents the first C. pauculus strain isolated from a hospital sink trap. There are only six genome assemblies available on NCBI for C. pauculus; two of these are PacBio/Illumina hybrids. This paper presents the first ONT/Illumina hybrid assembly, with five contigs. The other assemblies available consist of 37, 38, 111 and 227 contigs. This paper also presents data on biofilm formation and lethal dose in Galleria mellonella; there is little published information describing these aspects of virulence. Aim. The aims were to identify the isolate found in a hospital sink trap, characterize its genome, and assess whether it could pose a risk to human health. Methodology. The genome was sequenced, and a hybrid assembly of short and long reads produced. Antimicrobial susceptibility was determined by the broth microdilution method. Virulence was assessed by measuring in vitro biofilm formation compared to Pseudomonas aeruginosa and in vivo lethality in Galleria mellonella larvae. Results. The isolate was confirmed to be a strain of C. pauculus, with a 6.8 Mb genome consisting of 6468 coding sequences and an overall G+C content of 63.9 mol%. The genome was found to contain 12 antibiotic resistance genes, 8 virulence factor genes and 33 metal resistance genes. The isolate can be categorized as resistant to meropenem, amoxicillin, amikacin, gentamicin and colistin, but susceptible to cefotaxime, cefepime, imipenem and ciprofloxacin. Clear biofilm formation was seen in all conditions over 72 h and exceeded that of P. aeruginosa when measured at 37 °C in R2A broth. Lethality in G. mellonella larvae over 48 h was relatively low. Conclusion. The appearance of a multidrug-resistant strain of C. pauculus in a known pathogen reservoir within a clinical setting should be considered concerning. Further work should be completed to compare biofilm formation and in vivo virulence between clinical and environmental strains, to determine how easily environmental strains may establish human infection. Infection control teams and clinicians should be aware of the emerging nature of this pathogen and further work is needed to minimize the impact of contaminated hospital plumbing systems on patient outcomes.
Collapse
Affiliation(s)
- James Butler
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth PL4 8AA, UK
| | - Sean D Kelly
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| | - Katie J Muddiman
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| | - Alexandros Besinis
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth PL4 8AA, UK.,Peninsula Dental School, Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| | - Mathew Upton
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
12
|
Abstract
Microbial research in space is being conducted for almost 50 years now. The closed system of the International Space Station (ISS) has acted as a microbial observatory for the past 10 years, conducting research on adaptation and survivability of microorganisms exposed to space conditions. This adaptation can be either beneficial or detrimental to crew members and spacecraft. Therefore, it becomes crucial to identify the impact of two primary stress conditions, namely, radiation and microgravity, on microbial life aboard the ISS. Elucidating the mechanistic basis of microbial adaptation to space conditions aids in the development of countermeasures against their potentially detrimental effects and allows us to harness their biotechnologically important properties. Several microbial processes have been studied, either in spaceflight or using devices that can simulate space conditions. However, at present, research is limited to only a few microorganisms, and extensive research on biotechnologically important microorganisms is required to make long-term space missions self-sustainable.
Collapse
Affiliation(s)
- Swati Bijlani
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Elisa Stephens
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Nitin Kumar Singh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| |
Collapse
|
13
|
Bashir AK, Wink L, Duller S, Schwendner P, Cockell C, Rettberg P, Mahnert A, Beblo-Vranesevic K, Bohmeier M, Rabbow E, Gaboyer F, Westall F, Walter N, Cabezas P, Garcia-Descalzo L, Gomez F, Malki M, Amils R, Ehrenfreund P, Monaghan E, Vannier P, Marteinsson V, Erlacher A, Tanski G, Strauss J, Bashir M, Riedo A, Moissl-Eichinger C. Taxonomic and functional analyses of intact microbial communities thriving in extreme, astrobiology-relevant, anoxic sites. MICROBIOME 2021; 9:50. [PMID: 33602336 PMCID: PMC7893877 DOI: 10.1186/s40168-020-00989-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Extreme terrestrial, analogue environments are widely used models to study the limits of life and to infer habitability of extraterrestrial settings. In contrast to Earth's ecosystems, potential extraterrestrial biotopes are usually characterized by a lack of oxygen. METHODS In the MASE project (Mars Analogues for Space Exploration), we selected representative anoxic analogue environments (permafrost, salt-mine, acidic lake and river, sulfur springs) for the comprehensive analysis of their microbial communities. We assessed the microbiome profile of intact cells by propidium monoazide-based amplicon and shotgun metagenome sequencing, supplemented with an extensive cultivation effort. RESULTS The information retrieved from microbiome analyses on the intact microbial community thriving in the MASE sites, together with the isolation of 31 model microorganisms and successful binning of 15 high-quality genomes allowed us to observe principle pathways, which pinpoint specific microbial functions in the MASE sites compared to moderate environments. The microorganisms were characterized by an impressive machinery to withstand physical and chemical pressures. All levels of our analyses revealed the strong and omnipresent dependency of the microbial communities on complex organic matter. Moreover, we identified an extremotolerant cosmopolitan group of 34 poly-extremophiles thriving in all sites. CONCLUSIONS Our results reveal the presence of a core microbiome and microbial taxonomic similarities between saline and acidic anoxic environments. Our work further emphasizes the importance of the environmental, terrestrial parameters for the functionality of a microbial community, but also reveals a high proportion of living microorganisms in extreme environments with a high adaptation potential within habitability borders. Video abstract.
Collapse
Affiliation(s)
- Alexandra Kristin Bashir
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- Department of Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | - Lisa Wink
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Stefanie Duller
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Petra Schwendner
- UK Center for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Charles Cockell
- UK Center for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Petra Rettberg
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Kristina Beblo-Vranesevic
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Maria Bohmeier
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Elke Rabbow
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Frederic Gaboyer
- Centre de Biophysique Moléculaire, Centre National de la Recherché Scientifique (CNRS), Orléans, France
| | - Frances Westall
- Centre de Biophysique Moléculaire, Centre National de la Recherché Scientifique (CNRS), Orléans, France
| | | | | | - Laura Garcia-Descalzo
- Instituto Nacional de Técnica Aeroespacial – Centro de Astrobiología (INTA-CAB), Madrid, Spain
| | - Felipe Gomez
- Instituto Nacional de Técnica Aeroespacial – Centro de Astrobiología (INTA-CAB), Madrid, Spain
| | - Mustapha Malki
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - Euan Monaghan
- Leiden Observatory, Universiteit Leiden, Leiden, The Netherlands
| | | | - Viggo Marteinsson
- MATIS, Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Armin Erlacher
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - George Tanski
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Unit, Potsdam, Germany
| | - Jens Strauss
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Unit, Potsdam, Germany
| | - Mina Bashir
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Graz, Austria
| | - Andreas Riedo
- Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
14
|
Mahnert A, Verseux C, Schwendner P, Koskinen K, Kumpitsch C, Blohs M, Wink L, Brunner D, Goessler T, Billi D, Moissl-Eichinger C. Microbiome dynamics during the HI-SEAS IV mission, and implications for future crewed missions beyond Earth. MICROBIOME 2021; 9:27. [PMID: 33487169 PMCID: PMC7831191 DOI: 10.1186/s40168-020-00959-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/06/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Human health is closely interconnected with its microbiome. Resilient microbiomes in, on, and around the human body will be key for safe and successful long-term space travel. However, longitudinal dynamics of microbiomes inside confined built environments are still poorly understood. Herein, we used the Hawaii Space Exploration Analog and Simulation IV (HI-SEAS IV) mission, a 1 year-long isolation study, to investigate microbial transfer between crew and habitat, in order to understand adverse developments which may occur in a future outpost on the Moon or Mars. RESULTS Longitudinal 16S rRNA gene profiles, as well as quantitative observations, revealed significant differences in microbial diversity, abundance, and composition between samples of the built environment and its crew. The microbiome composition and diversity associated with abiotic surfaces was found to be rather stable, whereas the microbial skin profiles of individual crew members were highly dynamic, resulting in an increased microbiome diversity at the end of the isolation period. The skin microbiome dynamics were especially pronounced by a regular transfer of the indicator species Methanobrevibacter between crew members within the first 200 days. Quantitative information was used to track the propagation of antimicrobial resistance in the habitat. Together with functional and phenotypic predictions, quantitative and qualitative data supported the observation of a delayed longitudinal microbial homogenization between crew and habitat surfaces which was mainly caused by a malfunctioning sanitary facility. CONCLUSIONS This study highlights main routes of microbial transfer, interaction of the crew, and origins of microbial dynamics in an isolated environment. We identify key targets of microbial monitoring, and emphasize the need for defined baselines of microbiome diversity and abundance on surfaces and crew skin. Targeted manipulation to counteract adverse developments of the microbiome could be a highly important strategy to ensure safety during future space endeavors. Video abstract.
Collapse
Affiliation(s)
- Alexander Mahnert
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Cyprien Verseux
- Laboratory of Applied Space Microbiology, Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm 2, 28359 Bremen, Germany
| | - Petra Schwendner
- University of Florida, Space Life Sciences Lab, 505 Odyssey Way, Exploration Park, N. Merritt Island, FL 32953 USA
| | - Kaisa Koskinen
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Christina Kumpitsch
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Marcus Blohs
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Lisa Wink
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Daniela Brunner
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Theodora Goessler
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica s.n.c, 00133 Rome, Italy
| | - Christine Moissl-Eichinger
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
15
|
Zea L, McLean RJ, Rook TA, Angle G, Carter DL, Delegard A, Denvir A, Gerlach R, Gorti S, McIlwaine D, Nur M, Peyton BM, Stewart PS, Sturman P, Velez Justiniano YA. Potential biofilm control strategies for extended spaceflight missions. Biofilm 2020; 2:100026. [PMID: 33447811 PMCID: PMC7798464 DOI: 10.1016/j.bioflm.2020.100026] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/08/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023] Open
Abstract
Biofilms, surface-adherent microbial communities, are associated with microbial fouling and corrosion in terrestrial water-distribution systems. Biofilms are also present in human spaceflight, particularly in the Water Recovery System (WRS) on the International Space Station (ISS). The WRS is comprised of the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA) which together recycles wastewater from human urine and recovered humidity from the ISS atmosphere. These wastewaters and various process streams are continually inoculated with microorganisms primarily arising from the space crew microbiome. Biofilm-related fouling has been encountered and addressed in spacecraft in low Earth orbit, including ISS and the Russian Mir Space Station. However, planned future missions beyond low Earth orbit to the Moon and Mars present additional challenges, as resupplying spare parts or support materials would be impractical and the mission timeline would be in the order of years in the case of a mission to Mars. In addition, future missions are expected to include a period of dormancy in which the WRS would be unused for an extended duration. The concepts developed in this review arose from a workshop including NASA personnel and representatives with biofilm expertise from a wide range of industrial and academic backgrounds. Here, we address current strategies that are employed on Earth for biofilm control, including antifouling coatings and biocides and mechanisms for mitigating biofilm growth and damage. These ideas are presented in the context of their applicability to spaceflight and identify proposed new topics of biofilm control that need to be addressed in order to facilitate future extended, crewed, spaceflight missions.
Collapse
Affiliation(s)
- Luis Zea
- BioServe Space Technologies, University of Colorado, Boulder, CO, USA
| | | | | | | | | | | | | | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Sridhar Gorti
- NASA Marshall Spaceflight Center, Huntsville, AL, USA
| | | | - Mononita Nur
- NASA Marshall Spaceflight Center, Huntsville, AL, USA
| | - Brent M. Peyton
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Philip S. Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Paul Sturman
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | | |
Collapse
|
16
|
Antimicrobial Photoinactivation Approach Based on Natural Agents for Control of Bacteria Biofilms in Spacecraft. Int J Mol Sci 2020; 21:ijms21186932. [PMID: 32967302 PMCID: PMC7554952 DOI: 10.3390/ijms21186932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/08/2023] Open
Abstract
A spacecraft is a confined system that is inhabited by a changing microbial consortium, mostly originating from life-supporting devices, equipment collected in pre-flight conditions, and crewmembers. Continuous monitoring of the spacecraft’s bioburden employing culture-based and molecular methods has shown the prevalence of various taxa, with human skin-associated microorganisms making a substantial contribution to the spacecraft microbiome. Microorganisms in spacecraft can prosper not only in planktonic growth mode but can also form more resilient biofilms that pose a higher risk to crewmembers’ health and the material integrity of the spacecraft’s equipment. Moreover, bacterial biofilms in space conditions are characterized by faster formation and acquisition of resistance to chemical and physical effects than under the same conditions on Earth, making most decontamination methods unsafe. There is currently no reported method available to combat biofilm formation in space effectively and safely. However, antibacterial photodynamic inactivation based on natural photosensitizers, which is reviewed in this work, seems to be a promising method.
Collapse
|
17
|
Yin M, Ye B, Jin Y, Liu L, Zhang Y, Li P, Wang Y, Li Y, Han Y, Shen W, Zhao Z. Changes in Vibrio natriegens Growth Under Simulated Microgravity. Front Microbiol 2020; 11:2040. [PMID: 32983034 PMCID: PMC7483581 DOI: 10.3389/fmicb.2020.02040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/03/2020] [Indexed: 01/20/2023] Open
Abstract
The growth rate of bacteria increases under simulated microgravity (SMG) with low-shear force. The next-generation microbial chassis Vibrio natriegens (V. natriegens) is a fast-growing Gram-negative, non-pathogenic bacterium with a generation time of less than 10 min. Screening of a V. natriegens strain with faster growth rate was attempted by 2-week continuous long-term culturing under SMG. However, the rapid growth rate of this strain made it difficult to obtain the desired mutant strain with even more rapid growth. Thus, a mutant with slower growth rate emerged. Multi-omics integration analysis was conducted to explore why this mutant grew more slowly, which might inform us about the molecular mechanisms of rapid growth of V. natriegens instead. The transcriptome data revealed that whereas genes related to mechanical signal transduction and flagellin biogenesis were up-regulated, those involved in adaptive responses, anaerobic and nitrogen metabolism, chromosome segregation and cell vitality were down-regulated. Moreover, genome-wide chromosome conformation capture (Hi-C) results of the slower growth mutant and wide type indicated that SMG-induced great changes of genome 3D organization were highly correlated with differentially expressed genes (DEGs). Meanwhile, whole genome re-sequencing found a significant number of structure variations (SVs) were enriched in regions with lower interaction frequency and down-regulated genes in the slower growth mutant compared with wild type (WT), which might represent a prophage region. Additionally, there was also a decreased interaction frequency in regions associated with well-orchestrated chromosomes replication. These results suggested that SMG might regulate local gene expression by sensing stress changes through conformation changes in the genome region of genes involved in flagellin, adaptability and chromosome segregation, thus followed by alteration of some physiological characteristics and affecting the growth rate and metabolic capacity.
Collapse
Affiliation(s)
- Man Yin
- Beijing Institute of Biotechnology, Beijing, China
| | - Bingyu Ye
- Beijing Institute of Biotechnology, Beijing, China.,College of Life Science, Henan Normal University, Xinxiang, China
| | - Yifei Jin
- Beijing Institute of Biotechnology, Beijing, China
| | - Lin Liu
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, China
| | - Yan Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Ping Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Yahao Wang
- Beijing Institute of Biotechnology, Beijing, China
| | - Ye Li
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanping Han
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenlong Shen
- Beijing Institute of Biotechnology, Beijing, China
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
18
|
Lopez JV, Peixoto RS, Rosado AS. Inevitable future: space colonization beyond Earth with microbes first. FEMS Microbiol Ecol 2020; 95:5553461. [PMID: 31437273 PMCID: PMC6748721 DOI: 10.1093/femsec/fiz127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Based on modern microbiology, we propose a major revision in current space exploration philosophy and planetary protection policy, especially regarding microorganisms in space. Mainly, microbial introduction should not be considered accidental but inevitable. We hypothesize the near impossibility of exploring new planets without carrying and/or delivering any microbial travelers. In addition, although we highlight the importance of controlling and tracking such contaminations-to explore the existence of extraterrestrial microorganisms-we also believe that we must discuss the role of microbes as primary colonists and assets, rather than serendipitous accidents, for future plans of extraterrestrial colonization. This paradigm shift stems partly from the overwhelming evidence of microorganisms' diverse roles in sustaining life on Earth, such as symbioses and ecosystem services (decomposition, atmosphere effects, nitrogen fixation, etc.). Therefore, we propose a framework for new discussion based on the scientific implications of future colonization and terraforming: (i) focus on methods to track and avoid accidental delivery of Earth's harmful microorganisms and genes to extraterrestrial areas; (ii) begin a rigorous program to develop and explore 'Proactive Inoculation Protocols'. We outline a rationale and solicit feedback to drive a public and private research agenda that optimizes diverse organisms for potential space colonization.
Collapse
Affiliation(s)
- Jose V Lopez
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL 33004, USA
| | - Raquel S Peixoto
- Institute of Microbiology, Federal University of Rio de Janeiro-UFRJ, Av. Carlos Chagas Filho, 373. CCS, Bloco E, Ilha do Fundão, CEP: 21941-902 Rio de Janeiro, Brazil.,University of California Davis, Davis, CA 95616, USA
| | - Alexandre S Rosado
- Institute of Microbiology, Federal University of Rio de Janeiro-UFRJ, Av. Carlos Chagas Filho, 373. CCS, Bloco E, Ilha do Fundão, CEP: 21941-902 Rio de Janeiro, Brazil.,University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
19
|
Maertens L, Coninx I, Claesen J, Leys N, Matroule JY, Van Houdt R. Copper Resistance Mediates Long-Term Survival of Cupriavidus metallidurans in Wet Contact With Metallic Copper. Front Microbiol 2020; 11:1208. [PMID: 32582116 PMCID: PMC7284064 DOI: 10.3389/fmicb.2020.01208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/12/2020] [Indexed: 11/13/2022] Open
Abstract
Metallic copper to combat bacterial proliferation in drinking water systems is being investigated as an attractive alternative to existing strategies. A potential obstacle to this approach is the induction of metal resistance mechanisms in contaminating bacteria, that could severely impact inactivation efficacy. Thus far, the role of these resistance mechanisms has not been studied in conditions relevant to drinking water systems. Therefore, we evaluated the inactivation kinetics of Cupriavidus metallidurans CH34 in contact with metallic copper in drinking water. Viability and membrane permeability were examined for 9 days through viable counts and flow cytometry. After an initial drop in viable count, a significant recovery was observed starting after 48 h. This behavior could be explained by either a recovery from an injured/viable-but-non-culturable state or regrowth of surviving cells metabolizing lysed cells. Either hypothesis would necessitate an induction of copper resistance mechanisms, since no recovery was seen in a CH34 mutant strain lacking metal resistance mechanisms, while being more pronounced when copper resistance mechanisms were pre-induced. Interestingly, no biofilms were formed on the copper surface, while extensive biofilm formation was observed on the stainless steel control plates. When CH34 cells in water were supplied with CuSO4, a similar initial decrease in viable counts was observed, but cells recovered fully after 7 days. In conclusion, we have shown that long-term bacterial survival in the presence of a copper surface is possible upon the induction of metal resistance mechanisms. This observation may have important consequences in the context of the increasing use of copper as an antimicrobial surface, especially in light of potential co-selection for metal and antimicrobial resistance.
Collapse
Affiliation(s)
- Laurens Maertens
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Research Unit in Microorganisms Biology (URBM), Narilis Institute, University of Namur, Namur, Belgium
| | - Ilse Coninx
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Jürgen Claesen
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Jean-Yves Matroule
- Research Unit in Microorganisms Biology (URBM), Narilis Institute, University of Namur, Namur, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
20
|
Fahrion J, Fink C, Zabel P, Schubert D, Mysara M, Van Houdt R, Eikmanns B, Beblo-Vranesevic K, Rettberg P. Microbial Monitoring in the EDEN ISS Greenhouse, a Mobile Test Facility in Antarctica. Front Microbiol 2020; 11:525. [PMID: 32296408 PMCID: PMC7137377 DOI: 10.3389/fmicb.2020.00525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/11/2020] [Indexed: 11/13/2022] Open
Abstract
The EDEN ISS greenhouse, integrated in two joined containers, is a confined mobile test facility in Antarctica for the development and optimization of new plant cultivation techniques for future space programs. The EDEN ISS greenhouse was used successfully from February to November 2018 for fresh food production for the overwintering crew at the Antarctic Neumayer III station. During the 9 months of operation, samples from the different plants, from the nutrition solution of the aeroponic planting system, and from diverse surfaces within the three different compartments of the container were taken [future exploration greenhouse (FEG), service section (SS), and cold porch (CP)]. Quantity as well as diversity of microorganisms was examined by cultivation. In case of the plant samples, microbial quantities were in a range from 102 to 104 colony forming units per gram plant material. Compared to plants purchased from a German grocery, the produce hosted orders of magnitude more microorganisms than the EDEN ISS plants. The EDEN ISS plant samples contained mainly fungi and a few bacteria. No classical food associated pathogenic microorganism, like Escherichia and Salmonella, could be found. Probably due to the used cultivation approach, Archaea were not found in the samples. The bioburden in the nutrition solutions increased constantly over time but never reached critical values like 102-103 cfu per 100 mL in irrigation water as it is stated, e.g., for commercial European plant productions. The surface samples revealed high differences in the microbial burden between the greenhouse part of the container and the SS and CP part. However, the numbers of organisms (bacteria and fungi) found in the planted greenhouse were still not critical. The microbial loaded surfaces showed strong temporal as well as spatial fluctuations. In samples of the nutrition solution and the surface, the amount of bacteria exceeded the amount of fungi by many times. For identification, 16S rRNA gene sequencing was performed for the isolated prokaryotic organisms. Phylogenetic analyses revealed that the most abundant bacterial phyla were Firmicutes and Actinobacteria. These phyla include plant- and human-associated bacterial species. In general, it could be shown that it is possible to produce edible fresh food in a remote environment and this food is safe for consumption from a microbiological point of view.
Collapse
Affiliation(s)
- Jana Fahrion
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute of Microbiology and Biotechnology, Faculty of Natural Sciences, University of Ulm, Ulm, Germany
| | - Carina Fink
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Paul Zabel
- Institute for Space Systems, German Aerospace Center (DLR), Bremen, Germany
| | - Daniel Schubert
- Institute for Space Systems, German Aerospace Center (DLR), Bremen, Germany
| | - Mohamed Mysara
- Microbiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Bernhard Eikmanns
- Institute of Microbiology and Biotechnology, Faculty of Natural Sciences, University of Ulm, Ulm, Germany
| | | | - Petra Rettberg
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| |
Collapse
|
21
|
Macey MC, Pratscher J, Crombie AT, Murrell JC. Impact of plants on the diversity and activity of methylotrophs in soil. MICROBIOME 2020; 8:31. [PMID: 32156318 PMCID: PMC7065363 DOI: 10.1186/s40168-020-00801-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/10/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Methanol is the second most abundant volatile organic compound in the atmosphere, with the majority produced as a metabolic by-product during plant growth. There is a large disparity between the estimated amount of methanol produced by plants and the amount which escapes to the atmosphere. This may be due to utilisation of methanol by plant-associated methanol-consuming bacteria (methylotrophs). The use of molecular probes has previously been effective in characterising the diversity of methylotrophs within the environment. Here, we developed and applied molecular probes in combination with stable isotope probing to identify the diversity, abundance and activity of methylotrophs in bulk and in plant-associated soils. RESULTS Application of probes for methanol dehydrogenase genes (mxaF, xoxF, mdh2) in bulk and plant-associated soils revealed high levels of diversity of methylotrophic bacteria within the bulk soil, including Hyphomicrobium, Methylobacterium and members of the Comamonadaceae. The community of methylotrophic bacteria captured by this sequencing approach changed following plant growth. This shift in methylotrophic diversity was corroborated by identification of the active methylotrophs present in the soils by DNA stable isotope probing using 13C-labelled methanol. Sequencing of the 16S rRNA genes and construction of metagenomes from the 13C-labelled DNA revealed members of the Methylophilaceae as highly abundant and active in all soils examined. There was greater diversity of active members of the Methylophilaceae and Comamonadaceae and of the genus Methylobacterium in plant-associated soils compared to the bulk soil. Incubating growing pea plants in a 13CO2 atmosphere revealed that several genera of methylotrophs, as well as heterotrophic genera within the Actinomycetales, assimilated plant exudates in the pea rhizosphere. CONCLUSION In this study, we show that plant growth has a major impact on both the diversity and the activity of methanol-utilising methylotrophs in the soil environment, and thus, the study contributes significantly to efforts to balance the terrestrial methanol and carbon cycle. Video abstract.
Collapse
Affiliation(s)
- Michael C. Macey
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, Buckinghamshire MK7 6AA UK
| | - Jennifer Pratscher
- The Lyell Centre, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Research Avenue South, Edinburgh, EH14 4AP UK
| | - Andrew T. Crombie
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
22
|
Pausan MR, Csorba C, Singer G, Till H, Schöpf V, Santigli E, Klug B, Högenauer C, Blohs M, Moissl-Eichinger C. Exploring the Archaeome: Detection of Archaeal Signatures in the Human Body. Front Microbiol 2019; 10:2796. [PMID: 31866971 PMCID: PMC6906140 DOI: 10.3389/fmicb.2019.02796] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/18/2019] [Indexed: 01/18/2023] Open
Abstract
Due to their fundamentally different biology, archaea are consistently overlooked in conventional microbiome surveys. Using amplicon sequencing, we evaluated methodological set-ups to detect archaea in samples from five different body sites: respiratory tract (nasal cavity), digestive tract (mouth, appendix, and stool) and skin. With optimized protocols, the detection of archaeal ribosomal sequence variants (RSVs) was increased from one (found in currently used, so-called "universal" approach) to 81 RSVs in a representative sample set. The results from this extensive primer-evaluation led to the identification of the primer pair combination 344f-1041R/519F-806R which performed superior for the analysis of the archaeome of gastrointestinal tract, oral cavity and skin. The proposed protocol might not only prove useful for analyzing the human archaeome in more detail but could also be used for other holobiont samples.
Collapse
Affiliation(s)
- Manuela R. Pausan
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Cintia Csorba
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Georg Singer
- Department of Pediatrics and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Holger Till
- Department of Pediatrics and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Veronika Schöpf
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Elisabeth Santigli
- Department of Dental Medicine and Oral Health, Medical University Graz, Graz, Austria
| | - Barbara Klug
- Department of Dental Medicine and Oral Health, Medical University Graz, Graz, Austria
| | | | - Marcus Blohs
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Christine Moissl-Eichinger
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
23
|
Zhang Y, Zhang LT, Li ZD, Xin CX, Li XQ, Wang X, Deng YL. Microbiomes of China's Space Station During Assembly, Integration, and Test Operations. MICROBIAL ECOLOGY 2019; 78:631-650. [PMID: 30809693 DOI: 10.1007/s00248-019-01344-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Sufficient evidence indicates that orbiting space stations contain diverse microbial populations, which may threaten astronaut health and equipment reliability. Understanding the composition of microbial communities in space stations will facilitate further development of targeted biological safety prevention and maintenance practices. Therefore, this study systematically investigated the microbial community of China's Space Station (CSS). Air and surface samples from 46 sites on the CSS and Assembly Integration and Test (AIT) center were collected, from which 40 bacteria strains were isolated and identified. Most isolates were cold- and desiccation-resistant and adapted to oligotrophic conditions. Bacillus was the dominant bacterial genus detected by both cultivation-based and Illumina MiSeq amplicon sequencing methods. Microbial contamination on the CSS was correlated with encapsulation staff activities. Analysis by spread plate and qPCR revealed that the CSS surface contained 2.24 × 103-5.47 × 103 CFU/100 cm2 culturable bacteria and 9.32 × 105-5.64 × 106 16S rRNA gene copies/100cm2; BacLight™ analysis revealed that the viable/total bacterial cell ratio was 1.98-13.28%. This is the first study to provide important systematic insights into the microbiome of the CSS during assembly that describes the pre-launch microbial diversity of the space station. Our findings revealed the following. (1) Bacillus strains and staff activities should be considered major concerns for future biological safety. (2) Autotrophic and multi-resistant microbial communities were widespread in the AIT environment. Although harsh cleaning methods reduced the number of microorganisms, stress-resistant strains were not completely removed. (3) Sampling, storage and analytical methods for the space station were thoroughly optimized, and are expected to be applicable to low-biomass environments in general. Microbiology-related future works will follow up to comprehensively understand the changing characteristics of microbial communities in CSS.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Lan-Tao Zhang
- Institute of Manned Space System Engineering, China Academy of Space Technology, Beijing, 100094, China
| | - Zhi-Dong Li
- Beijing Institute of Spacecraft System Engineering, Beijing, 100094, China
| | - Cong-Xin Xin
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiao-Qiong Li
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiang Wang
- Institute of Manned Space System Engineering, China Academy of Space Technology, Beijing, 100094, China.
| | - Yu-Lin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
24
|
Mora M, Wink L, Kögler I, Mahnert A, Rettberg P, Schwendner P, Demets R, Cockell C, Alekhova T, Klingl A, Krause R, Zolotariof A, Alexandrova A, Moissl-Eichinger C. Space Station conditions are selective but do not alter microbial characteristics relevant to human health. Nat Commun 2019; 10:3990. [PMID: 31488812 PMCID: PMC6728350 DOI: 10.1038/s41467-019-11682-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
The International Space Station (ISS) is a unique habitat for humans and microorganisms. Here, we report the results of the ISS experiment EXTREMOPHILES, including the analysis of microbial communities from several areas aboard at three time points. We assess microbial diversity, distribution, functional capacity and resistance profile using a combination of cultivation-independent analyses (amplicon and shot-gun sequencing) and cultivation-dependent analyses (physiological and genetic characterization of microbial isolates, antibiotic resistance tests, co-incubation experiments). We show that the ISS microbial communities are highly similar to those present in ground-based confined indoor environments and are subject to fluctuations, although a core microbiome persists over time and locations. The genomic and physiological features selected by ISS conditions do not appear to be directly relevant to human health, although adaptations towards biofilm formation and surface interactions were observed. Our results do not raise direct reason for concern with respect to crew health, but indicate a potential threat towards material integrity in moist areas.
Collapse
Affiliation(s)
- Maximilian Mora
- Medical University of Graz, Department of Internal Medicine, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Lisa Wink
- Medical University of Graz, Department of Internal Medicine, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Ines Kögler
- Medical University of Graz, Department of Internal Medicine, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Alexander Mahnert
- Medical University of Graz, Department of Internal Medicine, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Petra Rettberg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Research Group Astrobiology, Linder Höhe, 51147, Cologne, Germany
| | - Petra Schwendner
- University of Edinburgh, School of Physics and Astronomy, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - René Demets
- European Space Research and Technology Centre (ESTEC), Keplerlaan 1, 2201 AZ, Noordwijk, The Netherlands
| | - Charles Cockell
- University of Edinburgh, School of Physics and Astronomy, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Tatiana Alekhova
- Lomonosov Moscow State University, Biological Faculty, ul. Leninskiye Gory, 1, стр. 12, Moscow, Russia
| | - Andreas Klingl
- Ludwig Maximilians University of Munich, Plant Development and Electron Microscopy, Department of Biology I, Biocenter, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Robert Krause
- Medical University of Graz, Department of Internal Medicine, Auenbruggerplatz 15, 8036, Graz, Austria
- BioTechMed Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - Anna Zolotariof
- University of Edinburgh, School of Physics and Astronomy, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Alina Alexandrova
- Lomonosov Moscow State University, Biological Faculty, ul. Leninskiye Gory, 1, стр. 12, Moscow, Russia
| | - Christine Moissl-Eichinger
- Medical University of Graz, Department of Internal Medicine, Auenbruggerplatz 15, 8036, Graz, Austria.
- BioTechMed Graz, Mozartgasse 12/II, 8010, Graz, Austria.
| |
Collapse
|
25
|
Microbial community composition of water samples stored inside the International Space Station. Res Microbiol 2019; 170:230-234. [DOI: 10.1016/j.resmic.2019.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/26/2019] [Accepted: 04/29/2019] [Indexed: 01/07/2023]
|
26
|
Weisleitner K, Perras A, Moissl-Eichinger C, Andersen DT, Sattler B. Source Environments of the Microbiome in Perennially Ice-Covered Lake Untersee, Antarctica. Front Microbiol 2019; 10:1019. [PMID: 31134036 PMCID: PMC6524460 DOI: 10.3389/fmicb.2019.01019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
Ultra-oligotrophic Lake Untersee is among the largest and deepest surface lakes of Central Queen Maud Land in East Antarctica. It is dammed at its north end by the Anuchin Glacier and the ice-cover dynamics are controlled by sublimation - not melt - as the dominating ablation process and therefore surface melt during austral summer does not provide significant amounts of water for recharge compared to subsurface melt of the Anuchin Glacier. Several studies have already described the structure and function of the microbial communities within the water column and benthic environments of Lake Untersee, however, thus far there have been no studies that examine the linkages between the lake ecosystem with that of the surrounding soils or the Anuchin Glacier. The glacier may also play an important role as a major contributor of nutrients and biota into the lake ecosystem. Based on microbial 16S rRNA amplicon sequencing, we showed that the dominant bacterial signatures in Lake Untersee, the Anuchin Glacier and its surrounding soils were affiliated with Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and Proteobacteria. Aerosol and local soil depositions on the glacier surface resulted in distinct microbial communities developing in glacier ice and cryoconite holes. Based on a source tracking algorithm, we found that cryoconite microbial assemblages were a potential source of organisms, explaining up to 36% of benthic microbial mat communities in the lake. However, the major biotic sources for the lake ecosystem are still unknown, illustrating the possible importance of englacial and subglacial zones. The Anuchin Glacier may be considered as a vector in a biological sense for the bacterial colonization of the perennially ice-covered Lake Untersee. However, despite a thick perennial ice cover, observed "lift-off" microbial mats escaping the lake make a bidirectional transfer of biota plausible. Hence, there is an exchange of biota between Lake Untersee and connective habitats possible despite the apparent sealing by a perennial ice cover and the absence of moat areas during austral summer.
Collapse
Affiliation(s)
- Klemens Weisleitner
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
- Austrian Polar Research Institute, Vienna, Austria
| | - Alexandra Perras
- Center for Medical Research (ZMF), Medical University of Graz, Graz, Austria
| | - Christine Moissl-Eichinger
- Department of Internal Medicine, Joint Facilities, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | | | - Birgit Sattler
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
- Austrian Polar Research Institute, Vienna, Austria
| |
Collapse
|
27
|
Zhang B, Bai P, Zhao X, Yu Y, Zhang X, Li D, Liu C. Increased growth rate and amikacin resistance of Salmonella enteritidis after one-month spaceflight on China's Shenzhou-11 spacecraft. Microbiologyopen 2019; 8:e00833. [PMID: 30912318 PMCID: PMC6741137 DOI: 10.1002/mbo3.833] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
China launched the Tiangong-2 space laboratory in 2016 and will eventually build a basic space station by the early 2020s. These spaceflight missions require astronauts to stay on the space station for more than 6 months, and they inevitably carry microbes into the space environment. It is known that the space environment affects microbial behavior, including growth rate, biofilm formation, virulence, drug resistance, and metabolism. However, the mechanisms of these alternations have not been fully elucidated. Therefore, it is beneficial to monitor microorganisms for preventing infections among astronauts in a space environment. Salmonella enteritidis is a Gram-negative bacterial pathogen that commonly causes acute gastroenteritis in humans. In this study, to better understand the effects of the space environment on S. enteritidis, a S. enteritidis strain was taken into space by the Shenzhou-11 spacecraft from 17 October 2016 to 18 November 2016, and a ground simulation with similar temperature conditions was simultaneously performed as a control. It was found that the flight strain displayed an increased growth rate, enhanced amikacin resistance, and some metabolism alterations compared with the ground strain. Enrichment analysis of proteome revealed that the increased growth rate might be associated with differentially expressed proteins involved in transmembrane transport and energy production and conversion assembly. A combined transcriptome and proteome analysis showed that the amikacin resistance was due to the downregulation of the oppA gene and oligopeptide transporter protein OppA. In conclusion, this study is the first systematic analysis of the phenotypic, genomic, transcriptomic, and proteomic variations in S. enteritidis during spaceflight and will provide beneficial insights for future studies on space microbiology.
Collapse
Affiliation(s)
- Bin Zhang
- Nankai University School of Medicine, Tianjin, China.,Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Po Bai
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China.,Respiratory Diseases Department, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xian Zhao
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yi Yu
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuelin Zhang
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Diangeng Li
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Changting Liu
- Nankai University School of Medicine, Tianjin, China.,Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
International Space Station conditions alter genomics, proteomics, and metabolomics in Aspergillus nidulans. Appl Microbiol Biotechnol 2018; 103:1363-1377. [PMID: 30539259 DOI: 10.1007/s00253-018-9525-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/30/2022]
Abstract
The first global genomic, proteomic, and secondary metabolomic characterization of the filamentous fungus Aspergillus nidulans following growth onboard the International Space Station (ISS) is reported. The investigation included the A. nidulans wild-type and three mutant strains, two of which were genetically engineered to enhance secondary metabolite production. Whole genome sequencing revealed that ISS conditions altered the A. nidulans genome in specific regions. In strain CW12001, which features overexpression of the secondary metabolite global regulator laeA, ISS conditions induced the loss of the laeA stop codon. Differential expression of proteins involved in stress response, carbohydrate metabolic processes, and secondary metabolite biosynthesis was also observed. ISS conditions significantly decreased prenyl xanthone production in the wild-type strain and increased asperthecin production in LO1362 and CW12001, which are deficient in a major DNA repair mechanism. These data provide valuable insights into the adaptation mechanism of A. nidulans to spacecraft environments.
Collapse
|
29
|
Zhang Y, Xin CX, Zhang LT, Deng YL, Wang X, Chen XY, Wang ZQ. Detection of Fungi from Low-Biomass Spacecraft Assembly Clean Room Aerosols. ASTROBIOLOGY 2018; 18:1585-1593. [PMID: 30383981 DOI: 10.1089/ast.2017.1803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Highly sensitive and rapid detection of airborne fungi in space stations is essential to ensure disease prevention and equipment safety. In this study, quantitative loop-mediated isothermal amplification (qLAMP) was used to detect fungi in the aerosol of the low-biomass environment of China's space station assembly clean room (CSSAC). A qLAMP primer set for detecting a wide range of aerosol fungi was developed by aligning 34 sequences of isolated fungal species and 17 space station aerosol-related fungal species. Optimization of sample pretreatment conditions of the LAMP reaction increased the quantitative results by 1.29-1.96 times. The results showed that our qLAMP system had high amplification specificity for fungi, with a quantifiable detection limit as low as 102. The detected fungal biomass in the aerosol of CSSAC was 9.59 × 102-2.20 × 105 28S rRNA gene copy numbers/m3. This qLAMP assay may therefore replace traditional colony-forming unit and quantitative PCR methods as an effective strategy for detecting fungi in space stations.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Cong-Xin Xin
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lan-Tao Zhang
- Institute of Manned Space System Engineering, China Academy of Space Technology, Beijing, China
| | - Yu-Lin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiang Wang
- Institute of Manned Space System Engineering, China Academy of Space Technology, Beijing, China
| | - Xiang-Yu Chen
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhao-Qian Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
30
|
Singh NK, Wood JM, Karouia F, Venkateswaran K. Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces. MICROBIOME 2018; 6:204. [PMID: 30424821 PMCID: PMC6234677 DOI: 10.1186/s40168-018-0585-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 10/24/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND The International Space Station (ISS) is an ideal test bed for studying the effects of microbial persistence and succession on a closed system during long space flight. Culture-based analyses, targeted gene-based amplicon sequencing (bacteriome, mycobiome, and resistome), and shotgun metagenomics approaches have previously been performed on ISS environmental sample sets using whole genome amplification (WGA). However, this is the first study reporting on the metagenomes sampled from ISS environmental surfaces without the use of WGA. Metagenome sequences generated from eight defined ISS environmental locations in three consecutive flights were analyzed to assess the succession and persistence of microbial communities, their antimicrobial resistance (AMR) profiles, and virulence properties. Metagenomic sequences were produced from the samples treated with propidium monoazide (PMA) to measure intact microorganisms. RESULTS The intact microbial communities detected in Flight 1 and Flight 2 samples were significantly more similar to each other than to Flight 3 samples. Among 318 microbial species detected, 46 species constituting 18 genera were common in all flight samples. Risk group or biosafety level 2 microorganisms that persisted among all three flights were Acinetobacter baumannii, Haemophilus influenzae, Klebsiella pneumoniae, Salmonella enterica, Shigella sonnei, Staphylococcus aureus, Yersinia frederiksenii, and Aspergillus lentulus. Even though Rhodotorula and Pantoea dominated the ISS microbiome, Pantoea exhibited succession and persistence. K. pneumoniae persisted in one location (US Node 1) of all three flights and might have spread to six out of the eight locations sampled on Flight 3. The AMR signatures associated with β-lactam, cationic antimicrobial peptide, and vancomycin were detected. Prominent virulence factors were cobalt-zinc-cadmium resistance and multidrug-resistance efflux pumps. CONCLUSIONS There was an increase in AMR and virulence gene factors detected over the period sampled, and metagenome sequences of human pathogens persisted over time. Comparative analysis of the microbial compositions of ISS with Earth analogs revealed that the ISS environmental surfaces were different in microbial composition. Metagenomics coupled with PMA treatment would help future space missions to estimate problematic risk group microbial pathogens. Cataloging AMR/virulence characteristics, succession, accumulation, and persistence of microorganisms would facilitate the development of suitable countermeasures to reduce their presence in the closed built environment.
Collapse
Affiliation(s)
- Nitin Kumar Singh
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
| | - Jason M. Wood
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
| | - Fathi Karouia
- Space Bioscience Division, NASA Ames Research Center, Moffett Field, CA USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA USA
| | - Kasthuri Venkateswaran
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
| |
Collapse
|
31
|
Van Houdt R, Provoost A, Van Assche A, Leys N, Lievens B, Mijnendonckx K, Monsieurs P. Cupriavidus metallidurans Strains with Different Mobilomes and from Distinct Environments Have Comparable Phenomes. Genes (Basel) 2018; 9:genes9100507. [PMID: 30340417 PMCID: PMC6210171 DOI: 10.3390/genes9100507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022] Open
Abstract
Cupriavidus metallidurans has been mostly studied because of its resistance to numerous heavy metals and is increasingly being recovered from other environments not typified by metal contamination. They host a large and diverse mobile gene pool, next to their native megaplasmids. Here, we used comparative genomics and global metabolic comparison to assess the impact of the mobilome on growth capabilities, nutrient utilization, and sensitivity to chemicals of type strain CH34 and three isolates (NA1, NA4 and H1130). The latter were isolated from water sources aboard the International Space Station (NA1 and NA4) and from an invasive human infection (H1130). The mobilome was expanded as prophages were predicted in NA4 and H1130, and a genomic island putatively involved in abietane diterpenoids metabolism was identified in H1130. An active CRISPR-Cas system was identified in strain NA4, providing immunity to a plasmid that integrated in CH34 and NA1. No correlation between the mobilome and isolation environment was found. In addition, our comparison indicated that the metal resistance determinants and properties are conserved among these strains and thus maintained in these environments. Furthermore, all strains were highly resistant to a wide variety of chemicals, much broader than metals. Only minor differences were observed in the phenomes (measured by phenotype microarrays), despite the large difference in mobilomes and the variable (shared by two or three strains) and strain-specific genomes.
Collapse
Affiliation(s)
- Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium.
| | - Ann Provoost
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium.
| | - Ado Van Assche
- Laboratory for Process Microbial Ecology and Bioinspirational Management, KU Leuven, B-2860 Sint-Katelijne-Waver, Belgium.
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium.
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management, KU Leuven, B-2860 Sint-Katelijne-Waver, Belgium.
| | - Kristel Mijnendonckx
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium.
| | - Pieter Monsieurs
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium.
| |
Collapse
|
32
|
Hao Z, Li L, Fu Y, Liu H. The influence of bioregenerative life-support system dietary structure and lifestyle on the gut microbiota: a 105-day ground-based space simulation in Lunar Palace 1. Environ Microbiol 2018; 20:3643-3656. [DOI: 10.1111/1462-2920.14358] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 03/26/2018] [Accepted: 07/08/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Zikai Hao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering; Beihang University; Beijing, 100083 China
- Beijing Advanced Innovation Centre for Biomedical Engineering; Beihang University; Beijing, 100083 China
| | - Leyuan Li
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering; Beihang University; Beijing, 100083 China
- Beijing Advanced Innovation Centre for Biomedical Engineering; Beihang University; Beijing, 100083 China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering; Beihang University; Beijing, 100083 China
| | - Yuming Fu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering; Beihang University; Beijing, 100083 China
- Beijing Advanced Innovation Centre for Biomedical Engineering; Beihang University; Beijing, 100083 China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering; Beihang University; Beijing, 100083 China
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering; Beihang University; Beijing, 100083 China
- Beijing Advanced Innovation Centre for Biomedical Engineering; Beihang University; Beijing, 100083 China
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering; Beihang University; Beijing, 100083 China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering; Beihang University; Beijing, 100083 China
| |
Collapse
|
33
|
Tirumalai MR, Stepanov VG, Wünsche A, Montazari S, Gonzalez RO, Venkateswaran K, Fox GE. Bacillus safensis FO-36b and Bacillus pumilus SAFR-032: a whole genome comparison of two spacecraft assembly facility isolates. BMC Microbiol 2018; 18:57. [PMID: 29884123 PMCID: PMC5994023 DOI: 10.1186/s12866-018-1191-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/18/2018] [Indexed: 11/16/2022] Open
Abstract
Background Bacillus strains producing highly resistant spores have been isolated from cleanrooms and space craft assembly facilities. Organisms that can survive such conditions merit planetary protection concern and if that resistance can be transferred to other organisms, a health concern too. To further efforts to understand these resistances, the complete genome of Bacillus safensis strain FO-36b, which produces spores resistant to peroxide and radiation was determined. The genome was compared to the complete genome of B. pumilus SAFR-032, and the draft genomes of B. safensis JPL-MERTA-8-2 and the type strain B. pumilus ATCC7061T. Additional comparisons were made to 61 draft genomes that have been mostly identified as strains of B. pumilus or B. safensis. Results The FO-36b gene order is essentially the same as that in SAFR-032 and other B. pumilus strains. The annotated genome has 3850 open reading frames and 40 noncoding RNAs and riboswitches. Of these, 307 are not shared by SAFR-032, and 65 are also not shared by MERTA and ATCC7061T. The FO-36b genome has ten unique open reading frames and two phage-like regions, homologous to the Bacillus bacteriophage SPP1 and Brevibacillus phage Jimmer1. Differing remnants of the Jimmer1 phage are found in essentially all B. safensis / B. pumilus strains. Seven unique genes are part of these phage elements. Whole Genome Phylogenetic Analysis of the B. pumilus, B. safensis and other Firmicutes genomes, separate them into three distinct clusters. Two clusters are subgroups of B. pumilus while one houses all the B. safensis strains. The Genome-genome distance analysis and a phylogenetic analysis of gyrA sequences corroborated these results. Conclusions It is not immediately obvious that the presence or absence of any specific gene or combination of genes is responsible for the variations in resistance seen. It is quite possible that distinctions in gene regulation can alter the expression levels of key proteins thereby changing the organism’s resistance properties without gain or loss of a particular gene. What is clear is that phage elements contribute significantly to genome variability. Multiple genome comparison indicates that many strains named as B. pumilus likely belong to the B. safensis group. Electronic supplementary material The online version of this article (10.1186/s12866-018-1191-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Madhan R Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Victor G Stepanov
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Andrea Wünsche
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Saied Montazari
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Racquel O Gonzalez
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Kasturi Venkateswaran
- Biotechnology & Planetary Protection Group, NASA Jet Propulsion Laboratories, California Institute of Technology, Pasadena, CA, 91109, USA
| | - George E Fox
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA.
| |
Collapse
|
34
|
Huang B, Li DG, Huang Y, Liu CT. Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Mil Med Res 2018; 5:18. [PMID: 29807538 PMCID: PMC5971428 DOI: 10.1186/s40779-018-0162-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
Spaceflight and ground-based microgravity analog experiments have suggested that microgravity can affect microbial growth and metabolism. Although the effects of microgravity and its analogs on microorganisms have been studied for more than 50 years, plausible conflicting and diverse results have frequently been reported in different experiments, especially regarding microbial growth and secondary metabolism. Until now, only the responses of a few typical microbes to microgravity have been investigated; systematic studies of the genetic and phenotypic responses of these microorganisms to microgravity in space are still insufficient due to technological and logistical hurdles. The use of different test strains and secondary metabolites in these studies appears to have caused diverse and conflicting results. Moreover, subtle changes in the extracellular microenvironments around microbial cells play a key role in the diverse responses of microbial growth and secondary metabolisms. Therefore, "indirect" effects represent a reasonable pathway to explain the occurrence of these phenomena in microorganisms. This review summarizes current knowledge on the changes in microbial growth and secondary metabolism in response to spaceflight and its analogs and discusses the diverse and conflicting results. In addition, recommendations are given for future studies on the effects of microgravity in space on microbial growth and secondary metabolism.
Collapse
Affiliation(s)
- Bing Huang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital/Chinese PLA Postgraduate Medical School, Beijing, 100853, China
| | - Dian-Geng Li
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital/Chinese PLA Postgraduate Medical School, Beijing, 100853, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chang-Ting Liu
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital/Chinese PLA Postgraduate Medical School, Beijing, 100853, China.
| |
Collapse
|
35
|
Perrin E, Bacci G, Garrelly L, Canganella F, Bianconi G, Fani R, Mengoni A. Furnishing spaceship environment: evaluation of bacterial biofilms on different materials used inside International Space Station. Res Microbiol 2018; 169:289-295. [PMID: 29751063 DOI: 10.1016/j.resmic.2018.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/22/2018] [Accepted: 04/22/2018] [Indexed: 12/26/2022]
Abstract
Performed inside International Space Station (ISS) from 2011 to 2016, VIABLE (eValuatIon And monitoring of microBiofiLms insidE International Space Station) ISS was a long-lasting experiment aimed at evaluating the bacterial contamination on different surface space materials subjected to different pre-treatment, to provide useful information for future space missions. In this work, surfaces samples of the VIABLE ISS experiment were analyzed to determine both the total bacterial load (ATP-metry, qPCR) and the composition of the microbial communities (16S rRNA genes amplicon sequencing). Data obtained showed a low bacterial contamination of all the surfaces, with values in agreement with those allowed inside ISS, and with a taxonomic composition similar to those found in previous studies (Enterobacteriales, Bacillales, Lactobacillales and Actinomycetales). No pre-treatment or material effect were observed on both the bacterial load and the composition of the communities, but for both a slight effect of the position (expose/not expose to air) was observed. In conclusion, under the conditions used for VIABLE ISS, no material or pre-treatment seems to be better than others in terms of quantity and type of bacterial contamination.
Collapse
Affiliation(s)
- Elena Perrin
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino (FI), I-50019, Italy.
| | - Giovanni Bacci
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino (FI), I-50019, Italy.
| | - Laurent Garrelly
- GLBiocontrol, 9, avenue de l'Europe, Cap Alpha, 34 830 Clapiers, France.
| | - Francesco Canganella
- Department of Biological, Agricultural and Forestry Sciences, Università della Tuscia, Via San Camillo de Lellis snc, I-01100 Viterbo Italy.
| | - Giovanna Bianconi
- Department of Biological, Agricultural and Forestry Sciences, Università della Tuscia, Via San Camillo de Lellis snc, I-01100 Viterbo Italy.
| | | | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino (FI), I-50019, Italy.
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino (FI), I-50019, Italy.
| |
Collapse
|
36
|
|
37
|
|
38
|
First Insights into the Diverse Human Archaeome: Specific Detection of Archaea in the Gastrointestinal Tract, Lung, and Nose and on Skin. mBio 2017; 8:mBio.00824-17. [PMID: 29138298 PMCID: PMC5686531 DOI: 10.1128/mbio.00824-17] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human-associated archaea remain understudied in the field of microbiome research, although in particular methanogenic archaea were found to be regular commensals of the human gut, where they represent keystone species in metabolic processes. Knowledge on the abundance and diversity of human-associated archaea is extremely limited, and little is known about their function(s), their overall role in human health, or their association with parts of the human body other than the gastrointestinal tract and oral cavity. Currently, methodological issues impede the full assessment of the human archaeome, as bacteria-targeting protocols are unsuitable for characterization of the full spectrum of Archaea. The goal of this study was to establish conservative protocols based on specifically archaea-targeting, PCR-based methods to retrieve first insights into the archaeomes of the human gastrointestinal tract, lung, nose, and skin. Detection of Archaea was highly dependent on primer selection and the sequence processing pipeline used. Our results enabled us to retrieve a novel picture of the human archaeome, as we found for the first time Methanobacterium and Woesearchaeota (DPANN superphylum) to be associated with the human gastrointestinal tract and the human lung, respectively. Similar to bacteria, human-associated archaeal communities were found to group biogeographically, forming (i) the thaumarchaeal skin landscape, (ii) the (methano)euryarchaeal gastrointestinal tract, (iii) a mixed skin-gastrointestinal tract landscape for the nose, and (iv) a woesearchaeal lung landscape. On the basis of the protocols we used, we were able to detect unexpectedly high diversity of archaea associated with different body parts. In summary, our study highlights the importance of the primers and NGS data processing pipeline used to study the human archaeome. We were able to establish protocols that revealed the presence of previously undetected Archaea in all of the tissue samples investigated and to detect biogeographic patterns of the human archaeome in the gastrointestinal tract, on the skin, and for the first time in the respiratory tract, i.e., the nose and lungs. Our results are a solid basis for further investigation of the human archaeome and, in the long term, discovery of the potential role of archaea in human health and disease.
Collapse
|
39
|
Schwendner P, Mahnert A, Koskinen K, Moissl-Eichinger C, Barczyk S, Wirth R, Berg G, Rettberg P. Preparing for the crewed Mars journey: microbiota dynamics in the confined Mars500 habitat during simulated Mars flight and landing. MICROBIOME 2017; 5:129. [PMID: 28974259 PMCID: PMC5627443 DOI: 10.1186/s40168-017-0345-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/18/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND The Mars500 project was conceived as the first full duration simulation of a crewed return flight to Mars. For 520 days, six crew members lived confined in a specifically designed spacecraft mock-up. The herein described "MIcrobial ecology of Confined Habitats and humAn health" (MICHA) experiment was implemented to acquire comprehensive microbiota data from this unique, confined manned habitat, to retrieve important information on the occurring microbiota dynamics, the microbial load and diversity in the air and on various surfaces. In total, 360 samples from 20 (9 air, 11 surface) locations were taken at 18 time-points and processed by extensive cultivation, PhyloChip and next generation sequencing (NGS) of 16S rRNA gene amplicons. RESULTS Cultivation assays revealed a Staphylococcus and Bacillus-dominated microbial community on various surfaces, with an average microbial load that did not exceed the allowed limits for ISS in-flight requirements indicating adequate maintenance of the facility. Areas with high human activity were identified as hotspots for microbial accumulation. Despite substantial fluctuation with respect to microbial diversity and abundance throughout the experiment, the location within the facility and the confinement duration were identified as factors significantly shaping the microbial diversity and composition, with the crew representing the main source for microbial dispersal. Opportunistic pathogens, stress-tolerant or potentially mobile element-bearing microorganisms were predicted to be prevalent throughout the confinement, while the overall microbial diversity dropped significantly over time. CONCLUSIONS Our findings clearly indicate that under confined conditions, the community structure remains a highly dynamic system which adapts to the prevailing habitat and micro-conditions. Since a sterile environment is not achievable, these dynamics need to be monitored to avoid spreading of highly resistant or potentially pathogenic microorganisms and a potentially harmful decrease of microbial diversity. If necessary, countermeasures are required, to maintain a healthy, diverse balance of beneficial, neutral and opportunistic pathogenic microorganisms. Our results serve as an important data collection for (i) future risk estimations of crewed space flight, (ii) an optimized design and planning of a spacecraft mission and (iii) for the selection of appropriate microbial monitoring approaches and potential countermeasures, to ensure a microbiologically safe space-flight environment.
Collapse
Affiliation(s)
- Petra Schwendner
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center e.V. (DLR), Linder Höhe, 51147 Cologne, Germany
- Institute for Microbiology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
- Present address: UK Center for Astrobiology, University of Edinburgh, School of Physics and Astronomy, Peter Guthrie Tait Road, Edinburgh, EH9 3FD UK
| | - Alexander Mahnert
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| | - Kaisa Koskinen
- Medical University of Graz, Department of Internal Medicine, Auenbruggerplatz 15, 8036 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Christine Moissl-Eichinger
- Medical University of Graz, Department of Internal Medicine, Auenbruggerplatz 15, 8036 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Simon Barczyk
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center e.V. (DLR), Linder Höhe, 51147 Cologne, Germany
| | - Reinhard Wirth
- Institute for Microbiology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| | - Petra Rettberg
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center e.V. (DLR), Linder Höhe, 51147 Cologne, Germany
| |
Collapse
|
40
|
Theodorakopoulos N, Février L, Barakat M, Ortet P, Christen R, Piette L, Levchuk S, Beaugelin-Seiller K, Sergeant C, Berthomieu C, Chapon V. Soil prokaryotic communities in Chernobyl waste disposal trench T22 are modulated by organic matter and radionuclide contamination. FEMS Microbiol Ecol 2017. [DOI: 10.1093/femsec/fix079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
41
|
Karouia F, Peyvan K, Pohorille A. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth. Biotechnol Adv 2017; 35:905-932. [PMID: 28433608 DOI: 10.1016/j.biotechadv.2017.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022]
Abstract
Space biotechnology is a nascent field aimed at applying tools of modern biology to advance our goals in space exploration. These advances rely on our ability to exploit in situ high throughput techniques for amplification and sequencing DNA, and measuring levels of RNA transcripts, proteins and metabolites in a cell. These techniques, collectively known as "omics" techniques have already revolutionized terrestrial biology. A number of on-going efforts are aimed at developing instruments to carry out "omics" research in space, in particular on board the International Space Station and small satellites. For space applications these instruments require substantial and creative reengineering that includes automation, miniaturization and ensuring that the device is resistant to conditions in space and works independently of the direction of the gravity vector. Different paths taken to meet these requirements for different "omics" instruments are the subjects of this review. The advantages and disadvantages of these instruments and technological solutions and their level of readiness for deployment in space are discussed. Considering that effects of space environments on terrestrial organisms appear to be global, it is argued that high throughput instruments are essential to advance (1) biomedical and physiological studies to control and reduce space-related stressors on living systems, (2) application of biology to life support and in situ resource utilization, (3) planetary protection, and (4) basic research about the limits on life in space. It is also argued that carrying out measurements in situ provides considerable advantages over the traditional space biology paradigm that relies on post-flight data analysis.
Collapse
Affiliation(s)
- Fathi Karouia
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA; NASA Ames Research Center, Flight Systems Implementation Branch, Moffett Field, CA 94035, USA.
| | | | - Andrew Pohorille
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA.
| |
Collapse
|