1
|
Abdelghany S, Simancas-Giraldo SM, Zayed A, Farag MA. How does the coral microbiome mediate its natural host fitness under climate stress conditions? Physiological, molecular, and biochemical mechanisms. MARINE ENVIRONMENTAL RESEARCH 2024; 204:106920. [PMID: 39729906 DOI: 10.1016/j.marenvres.2024.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
Although the symbiotic partnership between corals and algal endosymbionts has been extensively explored, interactions between corals, their algal endosymbionts and microbial associates are still less understood. Screening the response of natural microbial consortiums inside corals can aid in exploiting them as markers for dysbiosis interactions inside the coral holobiont. The coral microbiome includes archaea, bacteria, fungi, and viruses hypothesized to play a pivotal vital role in coral health and tolerance to heat stress condition via different physiological, biochemical, and molecular mechanisms. The dynamic behaviour of microbial associates could denote their potential role in coral adaptation to future climate change, with microbiome shifts occurring independently as a response to thermal stress or as a response to host stress response. Associated adaptations include regulation of coral-algal-microbial interactions, expression of heat shock proteins, microbial composition changes, and accumulation of secondary metabolites to aid in sustaining the coral's overall homeostasis under ocean warming scenarios.
Collapse
Affiliation(s)
- Sabrin Abdelghany
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany; Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany; National Institute of Oceanography and Fisheries (NIOF), Cairo, 11516, Egypt
| | - Susana M Simancas-Giraldo
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute (AWI), Am Alten Hafen, 27568, Bremerhaven, Germany
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), 31527, Tanta, Egypt.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, P.B, 11562, Egypt.
| |
Collapse
|
2
|
Li Y, Ye Z, Lai MC, Liu CS, Paull CK, Lin S, Lai SJ, You YT, Wu SY, Hung CC, Ding JY, Shih CJ, Wu YC, Zhao J, Xiao W, Wu CH, Dong G, Zhang H, Qiu W, Wang S, Chen SC. Microbial Communities in and Around the Siboglinid Tubeworms from the South Yungan East Ridge Cold Seep Offshore Southwestern Taiwan at the Northern South China Sea. Microorganisms 2024; 12:2452. [PMID: 39770655 PMCID: PMC11676240 DOI: 10.3390/microorganisms12122452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
To date, only a few microbial community studies of cold seeps at the South China Sea (SCS) have been reported. The cold seep dominated by tubeworms was discovered at South Yungan East Ridge (SYER) offshore southwestern Taiwan by miniROV. The tubeworms were identified and proposed as Paraescarpia formosa sp. nov. through morphological and phylogenetic analyses. The endosymbionts in the trunk of P. formosa analyzed by a 16S rRNA gene clone library represented only one phylotype, which belonged to the family Sedimenticolaceae in Gammaproteobacteria. In addition, the archaeal and bacterial communities in the habitat of tubeworm P. formosa were investigated by using high-phylogenetic-resolution full-length 16S rRNA gene amplicon sequencing. The results showed that anerobic methane-oxidizing archaea (ANME)-1b was most abundant and ANME-2ab was minor in a consortia of the anerobic oxidation of methane (AOM). The known sulfate-reducing bacteria (SRB) partners in AOM consortia, such as SEEP-SRB1, -SRB2, and -SRB4, Desulfococcus and Desulfobulbus, occurred in a small population (0-5.7%) at the SYER cold seep, and it was suggested that ANME-1b and ANME-2ab might be coupled with multiple SRB in AOM consortia. Besides AOM consortia, various methanogenic archaea, including Bathyarchaeota (Subgroup-8), Methanocellales, Methanomicrobiales, Methanosarcinales, Methanofastidiosales and Methanomassiliicoccales, were identified, and sulfur-oxidizing bacteria Sulfurovum and Sulfurimonas in phylum Epsilonbacteraeota were dominant. This study revealed the first investigation of microbiota in and around tubeworm P. formosa discovered at the SYER cold seep offshore southwestern Taiwan. We could gain insights into the chemosynthetic communities in the deep sea, especially regarding the cold seep ecosystems at the SCS.
Collapse
Affiliation(s)
- Yin Li
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhiwei Ye
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
| | - Mei-Chin Lai
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
| | - Char-Shine Liu
- Institute of Oceanography, National Taiwan University, Taipei 106319, Taiwan; (C.-S.L.); (S.L.)
| | - Charles K. Paull
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039-9644, USA;
| | - Saulwood Lin
- Institute of Oceanography, National Taiwan University, Taipei 106319, Taiwan; (C.-S.L.); (S.L.)
| | - Shu-Jung Lai
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| | - Yi-Ting You
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
| | - Sue-Yao Wu
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
| | - Chuan-Chuan Hung
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
| | - Jiun-Yan Ding
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
| | - Chao-Jen Shih
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300193, Taiwan; (C.-J.S.); (Y.-C.W.)
| | - Yen-Chi Wu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300193, Taiwan; (C.-J.S.); (Y.-C.W.)
| | - Jingjing Zhao
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Wangchuan Xiao
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
| | - Chih-Hung Wu
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Guowen Dong
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Hangying Zhang
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming 365004, China
| | - Wanling Qiu
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Song Wang
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Sheng-Chung Chen
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
3
|
Changsut IV, Borbee EM, Womack HR, Shickle A, Sharp KH, Fuess LE. Photosymbiont Density Is Correlated with Constitutive and Induced Immunity in the Facultatively Symbiotic Coral, Astrangia poculata. Integr Comp Biol 2024; 64:1278-1290. [PMID: 38782716 DOI: 10.1093/icb/icae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Scleractinian corals, essential ecosystem engineers that form the base of coral reef ecosystems, have faced unprecedented mortality in recent decades due to climate change-related stressors, including disease outbreaks. Despite this emergent threat to corals, many questions still remain regarding mechanisms underlying observed variation in disease susceptibility. Recent data suggest at least some degree of variation in disease response may be linked to variability in the relationship between host corals and their algal photosymbionts (Family Symbiodiniaceae). Still, the nuances of connections between symbiosis and immunity in cnidarians, including scleractinian corals, remain poorly understood. Here, we leveraged an emergent model species, the facultatively symbiotic, temperate, scleractinian coral Astrangia poculata, to investigate associations between symbiont density and both constitutive and induced immunity. We used a combination of controlled immune challenges with heat-inactivated pathogens and transcriptomic analyses. Our results demonstrate that A. poculata mounts a robust initial response to pathogenic stimuli that is highly similar to responses documented in tropical corals. We document positive associations between symbiont density and both constitutive and induced immune responses, in agreement with recent preliminary studies in A. poculata. A suite of immune genes, including those coding for antioxidant peroxiredoxin biosynthesis, are positively associated with symbiont density in A. poculata under constitutive conditions. Furthermore, variation in symbiont density is associated with distinct patterns of immune response; low symbiont density corals induce preventative immune mechanisms, whereas high symbiont density corals mobilize energetic resources to fuel humoral immune responses. In summary, our study reveals the need for more nuanced study of symbiosis-immune interplay across diverse scleractinian corals, preferably including quantitative energy budget analysis for full disentanglement of these complex associations and their effects on host pathogen susceptibility.
Collapse
Affiliation(s)
| | - Erin M Borbee
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Haley R Womack
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Alicia Shickle
- Department of Biology, Marine Biology, and Environmental Science, Roger Williams University, Bristol, RI 02809, USA
| | - Koty H Sharp
- Department of Biology, Marine Biology, and Environmental Science, Roger Williams University, Bristol, RI 02809, USA
| | - Lauren E Fuess
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
4
|
Pfab F, Detmer AR, Moeller HV, Nisbet RM, Putnam HM, Cunning R. Heat stress and bleaching in corals: a bioenergetic model. CORAL REEFS (ONLINE) 2024; 43:1627-1645. [PMID: 39553893 PMCID: PMC11561010 DOI: 10.1007/s00338-024-02561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 08/19/2024] [Indexed: 11/19/2024]
Abstract
The coral-dinoflagellate endosymbiosis is based on nutrient exchanges that impact holobiont energetics. Of particular concern is the breakdown or dysbiosis of this partnership that is seen in response to elevated temperatures, where loss of symbionts through coral bleaching can lead to starvation and mortality. Here we extend a dynamic bioenergetic model of coral symbioses to explore the mechanisms by which temperature impacts various processes in the symbiosis and to enable simulational analysis of thermal bleaching. Our model tests the effects of two distinct mechanisms for how increased temperature impacts the symbiosis: 1) accelerated metabolic rates due to thermodynamics and 2) damage to the photosynthetic machinery of the symbiont caused by heat stress. Model simulations show that the model can capture key biological responses to different levels of increased temperatures. Moderately increased temperatures increase metabolic rates and slightly decrease photosynthesis. The slightly decreased photosynthesis rates cause the host to receive less carbon and share more nitrogen with the symbiont. This results in temporarily increased symbiont growth and a higher symbiont/host ratio. In contrast, higher temperatures cause a breakdown of the symbiosis due to escalating feedback that involves further reduction in photosynthesis and insufficient energy supply for CO 2 concentration by the host. This leads to the accumulation of excess light energy and the generation of reactive oxygen species, eventually triggering symbiont expulsion and coral bleaching. Importantly, bleaching does not result from accelerated metabolic rates alone; it only occurs as a result of the photodamage mechanism due to its effect on nutrient cycling. Both higher light intensities and higher levels of DIN render corals more susceptible to heat stress. Conversely, heterotrophic feeding can increase the maximal temperature that can be tolerated by the coral. Collectively these results show that a bioenergetics model can capture many observed patterns of heat stress in corals, such as higher metabolic rates and higher symbiont/host ratios at moderately increased temperatures and symbiont expulsion at strongly increased temperatures. Supplementary Information The online version contains supplementary material available at 10.1007/s00338-024-02561-1.
Collapse
Affiliation(s)
- Ferdinand Pfab
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA USA
| | - A. Raine Detmer
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA USA
| | - Holly V. Moeller
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA USA
| | - Roger M. Nisbet
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA USA
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI USA
| | - Ross Cunning
- Conservation Research Department, John G. Shedd Aquarium, Chicago, IL USA
| |
Collapse
|
5
|
Wuitchik DM, Aichelman HE, Atherton KF, Brown CM, Chen X, DiRoberts L, Pelose GE, Tramonte CA, Davies SW. Photosymbiosis reduces the environmental stress response under a heat challenge in a facultatively symbiotic coral. Sci Rep 2024; 14:15484. [PMID: 38969663 PMCID: PMC11226616 DOI: 10.1038/s41598-024-66057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
The symbiosis between corals and dinoflagellates of the family Symbiodiniaceae is sensitive to environmental stress. The oxidative bleaching hypothesis posits that extreme temperatures lead to accumulation of photobiont-derived reactive oxygen species ROS, which exacerbates the coral environmental stress response (ESR). To understand how photosymbiosis modulates coral ESRs, these responses must be explored in hosts in and out of symbiosis. We leveraged the facultatively symbiotic coral Astrangia poculata, which offers an opportunity to uncouple the ESR across its two symbiotic phenotypes (brown, white). Colonies of both symbiotic phenotypes were exposed to three temperature treatments for 15 days: (i) control (static 18 °C), (ii) heat challenge (increasing from 18 to 30 °C), and (iii) cold challenge (decreasing from 18 to 4 °C) after which host gene expression was profiled. Cold challenged corals elicited widespread differential expression, however, there were no differences between symbiotic phenotypes. In contrast, brown colonies exhibited greater gene expression plasticity under heat challenge, including enrichment of cell cycle pathways involved in controlling photobiont growth. While this plasticity was greater, the genes driving this plasticity were not associated with an amplified environmental stress response (ESR) and instead showed patterns of a dampened ESR under heat challenge. This provides nuance to the oxidative bleaching hypothesis and suggests that, at least during the early onset of bleaching, photobionts reduce the host's ESR under elevated temperatures in A. poculata.
Collapse
Affiliation(s)
- D M Wuitchik
- Department of Biology, Boston University, Boston, MA, USA.
- Department of Biology, Tufts University, Medford, MA, USA.
| | - H E Aichelman
- Department of Biology, Boston University, Boston, MA, USA
| | - K F Atherton
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | - C M Brown
- Department of Biology, Boston University, Boston, MA, USA
| | - X Chen
- Department of Biology, Boston University, Boston, MA, USA
| | - L DiRoberts
- Department of Biology, Boston University, Boston, MA, USA
| | - G E Pelose
- Department of Biology, Boston University, Boston, MA, USA
| | - C A Tramonte
- Department of Biology, Boston College, Boston, MA, USA
| | - S W Davies
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
6
|
Sun H, Chen F, Zheng W, Huang Y, Peng H, Hao H, Wang KJ. Impact of captivity and natural habitats on gut microbiome in Epinephelus akaara across seasons. BMC Microbiol 2024; 24:239. [PMID: 38961321 PMCID: PMC11221007 DOI: 10.1186/s12866-024-03398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The gut microbiota significantly influences the health and growth of red-spotted grouper (Epinephelus akaara), a well-known commercial marine fish from Fujian Province in southern China. However, variations in survival strategies and seasons can impact the stability of gut microbiota data, rendering it inaccurate in reflecting the state of gut microbiota. Which impedes the effective enhancement of aquaculture health through a nuanced understanding of gut microbiota. Inspired by this, we conducted a comprehensive analysis of the gut microbiota of wild and captive E. akaara in four seasons. RESULTS Seventy-two E. akaara samples were collected from wild and captive populations in Dongshan city, during four different seasons. Four sections of the gut were collected to obtain comprehensive information on the gut microbial composition and sequenced using 16S rRNA next-generation Illumina MiSeq. We observed the highest gut microbial diversity in both captive and wild E. akaara during the winter season, and identified strong correlations with water temperature using Mantel analysis. Compared to wild E. akaara, we found a more complex microbial network in captive E. akaara, as evidenced by increased abundance of Bacillaceae, Moraxellaceae and Enterobacteriaceae. In contrast, Vibrionaceae, Clostridiaceae, Flavobacteriaceae and Rhodobacteraceae were found to be more active in wild E. akaara. However, some core microorganisms, such as Firmicutes and Photobacterium, showed similar distribution patterns in both wild and captive groups. Moreover, we found the common community composition and distribution characteristics of top 10 core microbes from foregut to hindgut in E. akaara. CONCLUSIONS Collectively, the study provides relatively more comprehensive description of the gut microbiota in E. akaara, taking into account survival strategies and temporal dimensions, which yields valuable insights into the gut microbiota of E. akaara and provides a valuable reference to its aquaculture.
Collapse
Affiliation(s)
- Hang Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wenbin Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yixin Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hua Hao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
7
|
Galià-Camps C, Junkin L, Borrallo X, Carreras C, Pascual M, Turon X. Navigating spatio-temporal microbiome dynamics: Environmental factors and trace elements shape the symbiont community of an invasive marine species. MARINE POLLUTION BULLETIN 2024; 203:116477. [PMID: 38759466 DOI: 10.1016/j.marpolbul.2024.116477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
The proliferation of marine invasive species is a mounting concern. While the role of microbial communities in invasive ascidian species is recognized, the role of seasonal shifts in microbiome composition remains largely unexplored. We sampled five individuals of the invasive ascidian Styela plicata quarterly from January 2020 to October 2021 in two harbours, examining gills, tunics, and surrounding water. By analysing Amplicon Sequence Variants (ASVs) and seawater trace elements, we found that compartment (seawater, tunic, or gills) was the primary differentiating factor, followed by harbour. Clear seasonal patterns were evident in seawater bacteria, less so in gills, and absent in tunics. We identified compartment-specific bacteria, as well as seasonal indicator ASVs and ASVs correlated with trace element concentrations. Among these bacteria, we found that Endozoicomonas, Hepatoplasma and Rhodobacteraceae species had reported functions which might be necessary for overcoming seasonality and trace element shifts. This study contributes to understanding microbiome dynamics in invasive holobiont systems, and the patterns found indicate a potential role in adaptation and invasiveness.
Collapse
Affiliation(s)
- Carles Galià-Camps
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain; Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Spain.
| | - Liam Junkin
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain.
| | - Xavier Borrallo
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Carlos Carreras
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain.
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain.
| | - Xavier Turon
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Spain.
| |
Collapse
|
8
|
Helgoe J, Davy SK, Weis VM, Rodriguez-Lanetty M. Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms. Biol Rev Camb Philos Soc 2024; 99:715-752. [PMID: 38217089 DOI: 10.1111/brv.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
The intracellular coral-dinoflagellate symbiosis is the engine that underpins the success of coral reefs, one of the most diverse ecosystems on the planet. However, the breakdown of the symbiosis and the loss of the microalgal symbiont (i.e. coral bleaching) due to environmental changes are resulting in the rapid degradation of coral reefs globally. There is an urgent need to understand the cellular physiology of coral bleaching at the mechanistic level to help develop solutions to mitigate the coral reef crisis. Here, at an unprecedented scope, we present novel models that integrate putative mechanisms of coral bleaching within a common framework according to the triggers (initiators of bleaching, e.g. heat, cold, light stress, hypoxia, hyposalinity), cascades (cellular pathways, e.g. photoinhibition, unfolded protein response, nitric oxide), and endpoints (mechanisms of symbiont loss, e.g. apoptosis, necrosis, exocytosis/vomocytosis). The models are supported by direct evidence from cnidarian systems, and indirectly through comparative evolutionary analyses from non-cnidarian systems. With this approach, new putative mechanisms have been established within and between cascades initiated by different bleaching triggers. In particular, the models provide new insights into the poorly understood connections between bleaching cascades and endpoints and highlight the role of a new mechanism of symbiont loss, i.e. 'symbiolysosomal digestion', which is different from symbiophagy. This review also increases the approachability of bleaching physiology for specialists and non-specialists by mapping the vast landscape of bleaching mechanisms in an atlas of comprehensible and detailed mechanistic models. We then discuss major knowledge gaps and how future research may improve the understanding of the connections between the diverse cascade of cellular pathways and the mechanisms of symbiont loss (endpoints).
Collapse
Affiliation(s)
- Joshua Helgoe
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, 2701 SW Campus Way, 2403 Cordley Hall, Corvallis, OR, USA
| | - Mauricio Rodriguez-Lanetty
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, USA
| |
Collapse
|
9
|
Vuleta S, Nakagawa S, Ainsworth TD. The global significance of Scleractinian corals without photoendosymbiosis. Sci Rep 2024; 14:10161. [PMID: 38698199 PMCID: PMC11066124 DOI: 10.1038/s41598-024-60794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
Globally tropical Scleractinian corals have been a focal point for discussions on the impact of a changing climate on marine ecosystems and biodiversity. Research into tropical Scleractinian corals, particularly the role and breakdown of photoendosymbiosis in response to warming, has been prolific in recent decades. However, research into their subtropical, temperate, cold- and deep-water counterparts, whose number is dominated by corals without photoendosymbiosis, has not been as prolific. Approximately 50% of Scleractinian corals (> 700 species) do not maintain photoendosymbiosis and as such, do not rely upon the products of photosynthesis for homeostasis. Some species also have variable partnerships with photendosymbionts depending on life history and ecological niche. Here we undertake a systematic map of literature on Scleractinian corals without, or with variable, photoendosymbiosis. In doing so we identify 482 publications spanning 5 decades. In mapping research effort, we find publications have been sporadic over time, predominately focusing on a limited number of species, with greater research effort directed towards deep-water species. We find only 141 species have been studied, with approximately 30% of the total identified research effort directed toward a single species, Desmophyllum pertusum, highlighting significant knowledge gaps into Scleractinian diversity. We find similar limitations to studied locations, with 78 identified from the global data, of which only few represent most research outputs. We also identified inconsistencies with terminology used to describe Scleractinia without photoendosymbiosis, likely contributing to difficulties in accounting for their role and contribution to marine ecosystems. We propose that the terminology requires re-evaluation to allow further systematic assessment of literature, and to ensure it's consistent with changes implemented for photoendosymbiotic corals. Finally, we find that knowledge gaps identified over 20 years ago are still present for most aphotoendosymbiotic Scleractinian species, and we show data deficiencies remain regarding their function, biodiversity and the impacts of anthropogenic stressors.
Collapse
Affiliation(s)
- S Vuleta
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences (BEES), The University of New South Wales, Sydney, NSW, 2033, Australia.
| | - S Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences (BEES), The University of New South Wales, Sydney, NSW, 2033, Australia
| | - T D Ainsworth
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences (BEES), The University of New South Wales, Sydney, NSW, 2033, Australia
| |
Collapse
|
10
|
Aichelman HE, Huzar AK, Wuitchik DM, Atherton KF, Wright RM, Dixon G, Schlatter E, Haftel N, Davies SW. Symbiosis modulates gene expression of symbionts, but not coral hosts, under thermal challenge. Mol Ecol 2024; 33:e17318. [PMID: 38488669 DOI: 10.1111/mec.17318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 04/09/2024]
Abstract
Increasing ocean temperatures are causing dysbiosis between coral hosts and their symbionts. Previous work suggests that coral host gene expression responds more strongly to environmental stress compared to their intracellular symbionts; however, the causes and consequences of this phenomenon remain untested. We hypothesized that symbionts are less responsive because hosts modulate symbiont environments to buffer stress. To test this hypothesis, we leveraged the facultative symbiosis between the scleractinian coral Oculina arbuscula and its symbiont Breviolum psygmophilum to characterize gene expression responses of both symbiotic partners in and ex hospite under thermal challenges. To characterize host and in hospite symbiont responses, symbiotic and aposymbiotic O. arbuscula were exposed to three treatments: (1) control (18°C), (2) heat (32°C), and (3) cold (6°C). This experiment was replicated with B. psygmophilum cultured from O. arbuscula to characterize ex hospite symbiont responses. Both thermal challenges elicited classic environmental stress responses (ESRs) in O. arbuscula regardless of symbiotic state, with hosts responding more strongly to cold challenge. Hosts also exhibited stronger responses than in hospite symbionts. In and ex hospite B. psygmophilum both down-regulated gene ontology pathways associated with photosynthesis under thermal challenge; however, ex hospite symbionts exhibited greater gene expression plasticity and differential expression of genes associated with ESRs. Taken together, these findings suggest that O. arbuscula hosts may buffer environments of B. psygmophilum symbionts; however, we outline the future work needed to confirm this hypothesis.
Collapse
Affiliation(s)
| | - Alexa K Huzar
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Daniel M Wuitchik
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | | | - Rachel M Wright
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Groves Dixon
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - E Schlatter
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Nicole Haftel
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
11
|
von Hoyningen-Huene AJE, Bang C, Rausch P, Rühlemann M, Fokt H, He J, Jensen N, Knop M, Petersen C, Schmittmann L, Zimmer T, Baines JF, Bosch TCG, Hentschel U, Reusch TBH, Roeder T, Franke A, Schulenburg H, Stukenbrock E, Schmitz RA. The archaeome in metaorganism research, with a focus on marine models and their bacteria-archaea interactions. Front Microbiol 2024; 15:1347422. [PMID: 38476944 PMCID: PMC10927989 DOI: 10.3389/fmicb.2024.1347422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
Metaorganism research contributes substantially to our understanding of the interaction between microbes and their hosts, as well as their co-evolution. Most research is currently focused on the bacterial community, while archaea often remain at the sidelines of metaorganism-related research. Here, we describe the archaeome of a total of eleven classical and emerging multicellular model organisms across the phylogenetic tree of life. To determine the microbial community composition of each host, we utilized a combination of archaea and bacteria-specific 16S rRNA gene amplicons. Members of the two prokaryotic domains were described regarding their community composition, diversity, and richness in each multicellular host. Moreover, association with specific hosts and possible interaction partners between the bacterial and archaeal communities were determined for the marine models. Our data show that the archaeome in marine hosts predominantly consists of Nitrosopumilaceae and Nanoarchaeota, which represent keystone taxa among the porifera. The presence of an archaeome in the terrestrial hosts varies substantially. With respect to abundant archaeal taxa, they harbor a higher proportion of methanoarchaea over the aquatic environment. We find that the archaeal community is much less diverse than its bacterial counterpart. Archaeal amplicon sequence variants are usually host-specific, suggesting adaptation through co-evolution with the host. While bacterial richness was higher in the aquatic than the terrestrial hosts, a significant difference in diversity and richness between these groups could not be observed in the archaeal dataset. Our data show a large proportion of unclassifiable archaeal taxa, highlighting the need for improved cultivation efforts and expanded databases.
Collapse
Affiliation(s)
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Philipp Rausch
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Hanna Fokt
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jinru He
- Cell and Developmental Biology, Zoological Institute, Kiel University, Kiel, Germany
| | - Nadin Jensen
- Institute for General Microbiology, Kiel University, Kiel, Germany
| | - Mirjam Knop
- Department of Molecular Physiology, Zoology, Kiel University, Kiel, Germany
| | - Carola Petersen
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | - Lara Schmittmann
- Research Unit Ocean Dynamics, GEOMAR Helmholtz Institute for Ocean Research Kiel, Kiel, Germany
| | - Thorsten Zimmer
- Institute for General Microbiology, Kiel University, Kiel, Germany
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - John F. Baines
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Thomas C. G. Bosch
- Cell and Developmental Biology, Zoological Institute, Kiel University, Kiel, Germany
| | - Ute Hentschel
- Marine Evolutionary Ecology, GEOMAR Helmholtz Center for Ocean Research, Kiel, Germany
- Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Thorsten B. H. Reusch
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Thomas Roeder
- Department of Molecular Physiology, Zoology, Kiel University, Kiel, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Hinrich Schulenburg
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Antibiotic Resistance Group, Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Eva Stukenbrock
- Max Planck Institute for Evolutionary Biology, Plön, Germany
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Ruth A. Schmitz
- Institute for General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
12
|
Goodbody-Gringley G, Martinez S, Bellworthy J, Chequer A, Nativ H, Mass T. Irradiance driven trophic plasticity in the coral Madracis pharensis from the Eastern Mediterranean. Sci Rep 2024; 14:3646. [PMID: 38351312 PMCID: PMC10864392 DOI: 10.1038/s41598-024-54217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
The distribution of symbiotic scleractinian corals is driven, in part, by light availability, as host energy demands are partially met through translocation of photosynthate. Physiological plasticity in response to environmental conditions, such as light, enables the expansion of resilient phenotypes in the face of changing environmental conditions. Here we compared the physiology, morphology, and taxonomy of the host and endosymbionts of individual Madracis pharensis corals exposed to dramatically different light conditions based on colony orientation on the surface of a shipwreck at 30 m depth in the Bay of Haifa, Israel. We found significant differences in symbiont species consortia, photophysiology, and stable isotopes, suggesting that these corals can adjust multiple aspects of host and symbiont physiology in response to light availability. These results highlight the potential of corals to switch to a predominantly heterotrophic diet when light availability and/or symbiont densities are too low to sustain sufficient photosynthesis, which may provide resilience for corals in the face of climate change.
Collapse
Affiliation(s)
| | - Stephane Martinez
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Leon H. Charney School of Marine Sciences, Morris Kahn Marine Research Station, University of Haifa, Haifa, Israel
| | - Jessica Bellworthy
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Leon H. Charney School of Marine Sciences, Morris Kahn Marine Research Station, University of Haifa, Haifa, Israel
| | - Alex Chequer
- Reef Ecology and Evolution, Central Caribbean Marine Institute, Little Cayman, Cayman Islands
| | - Hagai Nativ
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Leon H. Charney School of Marine Sciences, Morris Kahn Marine Research Station, University of Haifa, Haifa, Israel
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Leon H. Charney School of Marine Sciences, Morris Kahn Marine Research Station, University of Haifa, Haifa, Israel
| |
Collapse
|
13
|
Villafranca N, Changsut I, Diaz de Villegas S, Womack H, Fuess LE. Characterization of trade-offs between immunity and reproduction in the coral species Astrangia poculata. PeerJ 2023; 11:e16586. [PMID: 38077420 PMCID: PMC10702360 DOI: 10.7717/peerj.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Background Living organisms face ubiquitous pathogenic threats and have consequently evolved immune systems to protect against potential invaders. However, many components of the immune system are physiologically costly to maintain and engage, often drawing resources away from other organismal processes such as growth and reproduction. Evidence from a diversity of systems has demonstrated that organisms use complex resource allocation mechanisms to manage competing needs and optimize fitness. However, understanding of resource allocation patterns is limited across taxa. Cnidarians, which include ecologically important organisms like hard corals, have been historically understudied in the context of resource allocations. Improving understanding of resource allocation-associated trade-offs in cnidarians is critical for understanding future ecological dynamics in the face of rapid environmental change. Methods Here, we characterize trade-offs between constitutive immunity and reproduction in the facultatively symbiotic coral Astrangia poculata. Male colonies underwent ex situ spawning and sperm density was quantified. We then examined the effects of variable symbiont density and energetic budget on physiological traits, including immune activity and reproductive investment. Furthermore, we tested for potential trade-offs between immune activity and reproductive investment. Results We found limited associations between energetic budget and immune metrics; melanin production was significantly positively associated with carbohydrate concentration. However, we failed to document any associations between immunity and reproductive output which would be indicative of trade-offs, possibly due to experimental limitations. Our results provide a preliminary framework for future studies investigating immune trade-offs in cnidarians.
Collapse
Affiliation(s)
- Natalie Villafranca
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Isabella Changsut
- Department of Biology, Texas State University, San Marcos, TX, United States
| | | | - Haley Womack
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Lauren E. Fuess
- Department of Biology, Texas State University, San Marcos, TX, United States
| |
Collapse
|
14
|
Pei PT, Liu L, Jing XL, Liu XL, Sun LY, Gao C, Cui XH, Wang J, Ma ZL, Song SY, Sun ZH, Wang CY. Meta-analysis reveals variations in microbial communities from diverse stony coral taxa at different geographical distances. Front Microbiol 2023; 14:1087750. [PMID: 37520377 PMCID: PMC10374221 DOI: 10.3389/fmicb.2023.1087750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Coral-associated microbial communities play a vital role in underpinning the health and resilience of reef ecosystems. Previous studies have demonstrated that the microbial communities of corals are affected by multiple factors, mainly focusing on host species and geolocation. However, up-to-date, insight into how the coral microbiota is structured by vast geographic distance with rich taxa is deficient. In the present study, the coral microbiota in six stony coral species collected from the coastal area of three countries, including United States of America (USA), Australia and Fiji, was used for analysis. It was found that the geographic influence on the coral microbiota was stronger than the coral host influence, even though both were significant. Interestingly, the contribution of the deterministic process to bacterial community composition increased as geographical distance grew. A total of 65 differentially abundant features of functions in coral microbial communities were identified to be associated with three geolocations. While in the same coastal area of USA, the similar relationship of coral microbiota was consistent with the phylogenetic relationship of coral hosts. In contrast to the phylum Proteobacteria, which was most abundant in other coral species in USA, Cyanobacteria was the most abundant phylum in Orbicella faveolata. The above findings may help to better understand the multiple natural driving forces shaping the coral microbial community to contribute to defining the healthy baseline of the coral microbiome.
Collapse
Affiliation(s)
- Peng-Tao Pei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- School of Pharmacy, Fujian Health College, Fuzhou, China
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Lu Liu
- School of Pharmacy, Fujian Health College, Fuzhou, China
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Li Jing
- High Performance Computing and System Simulation Platform, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xiao-Lu Liu
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu-Yang Sun
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Gao
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xiao-Han Cui
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Department of Mathematics, Ocean University of China, Qingdao, China
| | - Zhong-Lian Ma
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Shu-Yue Song
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Zhi-Hua Sun
- Department of Mathematics, Ocean University of China, Qingdao, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
15
|
Zhu W, Liu X, Zhang J, Zhao H, Li Z, Wang H, Chen R, Wang A, Li X. Response of coral bacterial composition and function to water quality variations under anthropogenic influence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163837. [PMID: 37137368 DOI: 10.1016/j.scitotenv.2023.163837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Microbial communities play key roles in the adaptation of corals living in adverse environments, as the microbiome flexibility can enhance environmental plasticity of coral holobiont. However, the ecological association of coral microbiome and related function to locally deteriorating water quality remains underexplored. In this work, we used 16S rRNA gene sequencing and quantitative microbial element cycling (QMEC) to investigate the seasonal changes of bacterial communities, particularly their functional genes related to carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) cycle, of the scleractinian coral Galaxea fascicularis from nearshore reefs exposed anthropogenic influence. We used nutrient concentrations as the indicator of anthropogenic activities in coastal reefs, and found a higher nutrient pressure in spring than summer. The bacterial diversity, community structure and dominant bacteria of coral shifted significantly due to seasonal variations dominated by nutrient concentrations. Additionally, the network structure and nutrient cycling gene profiles in summer under low nutrient stress was distinct from that under poor environmental conditions in spring, with lower network complexity and abundance of CNPS cycling genes in summer compared with spring. We further identified significant correlations between microbial community (taxonomic composition and co-occurrence network) and geochemical functions (abundance of multiple functional genes and functional community). Nutrient enrichment was proved to be the most important environmental fluctuation in controlling the diversity, community structure, interactional network and functional genes of the coral microbiome. These results highlight that seasonal shifts in coral-associated bacteria due to anthropogenic activities alter the functional potentials, and provide novel insight about the mechanisms of coral adaptation to locally deteriorating environments.
Collapse
Affiliation(s)
- Wentao Zhu
- College of Ecology and Environment, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiangbo Liu
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Junling Zhang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - He Zhao
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Zhuoran Li
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Hao Wang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Rouwen Chen
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Aimin Wang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiubao Li
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.
| |
Collapse
|
16
|
Paulino GVB, Félix CR, da Silva Oliveira FA, Gomez-Silvan C, Melo VMM, Andersen GL, Landell MF. Microbiota of healthy and bleached corals of the species Siderastrea stellata in response to river influx and seasonality in Brazilian northeast. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26496-26509. [PMID: 36369436 DOI: 10.1007/s11356-022-23976-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Although coral bleaching is increasing worldwide due to warming oceans exacerbated by climate change, there has been a growing recognition that local stressors may play an additional role. Important stressors include the physicochemical and microbiological influences that are related to river runoff. Here, we investigated the microbiota associated to mucus and tissue of endemic coral Siderastrea stellata, collected from Brazilian northeast coral reefs of Barra de Santo Antônio (subject to river runoff) and Maragogi (minimal river runoff) during both the rainy and dry seasons. We sequenced the V4 region of 16S rDNA and used multiple R packages to process raw data and performed statistical analysis to reveal the microbial community structure composition and functional predictions. Major dissimilarities between microbial communities were related to seasonality, while healthy and bleached specimens were mainly associated with the enrichment of several less abundant taxa involved in specific metabolic functions, mainly related to the nitrogen cycle. We were not able to observe the dominance of groups that has been previously associated with bleachings, such as Vibrionaceae or Burkholderiaceae. The influx of freshwater appears to increase the homogeneity between individuals in Barra de Santo Antonio, especially during the rainy season. By contrast, we observed an increased homogeneity between samples in Maragogi during the dry season. Understanding the dynamics of the coral microbiota and how bleaching appears in response to specific environmental variables, in addition to determining the conditions that lead to a more robust coral microbiota, is essential for choosing the most appropriate area and conservation methods, for example.
Collapse
Affiliation(s)
- Gustavo Vasconcelos Bastos Paulino
- Universidade Federal de Alagoas, Maceió, AL, Brazil
- Programa de Pós-Graduação Em Diversidade Biológica E Conservação Nos Trópicos, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Ciro Ramon Félix
- Universidade Federal de Alagoas, Maceió, AL, Brazil
- Programa de Pós-Graduação Em Diversidade Biológica E Conservação Nos Trópicos, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Francisca Andréa da Silva Oliveira
- Laboratório de Ecologia Microbiana E Biotecnologia (Lembiotech), Departamento de Biologia, Universidade Federal Do Ceará, Campus Do Pici, Bloco 909, Fortaleza, CE, 60455-760, Brazil
| | - Cinta Gomez-Silvan
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vânia M M Melo
- Laboratório de Ecologia Microbiana E Biotecnologia (Lembiotech), Departamento de Biologia, Universidade Federal Do Ceará, Campus Do Pici, Bloco 909, Fortaleza, CE, 60455-760, Brazil
| | - Gary L Andersen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Melissa Fontes Landell
- Universidade Federal de Alagoas, Maceió, AL, Brazil.
- Setor de Genética-ICBS, Universidade Federal de Alagoas, Av. Lourival Melo Mota, S/N, Tabuleiro Dos Martins, CEP: 57072-900, Maceió, AL, Brasil.
| |
Collapse
|
17
|
Baldassarre L, Reitzel AM, Fraune S. Genotype-environment interactions determine microbiota plasticity in the sea anemone Nematostella vectensis. PLoS Biol 2023; 21:e3001726. [PMID: 36689558 PMCID: PMC9894556 DOI: 10.1371/journal.pbio.3001726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/02/2023] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Most multicellular organisms harbor microbial colonizers that provide various benefits to their hosts. Although these microbial communities may be host species- or even genotype-specific, the associated bacterial communities can respond plastically to environmental changes. In this study, we estimated the relative contribution of environment and host genotype to bacterial community composition in Nematostella vectensis, an estuarine cnidarian. We sampled N. vectensis polyps from 5 different populations along a north-south gradient on the Atlantic coast of the United States and Canada. In addition, we sampled 3 populations at 3 different times of the year. While half of the polyps were immediately analyzed for their bacterial composition by 16S rRNA gene sequencing, the remaining polyps were cultured under laboratory conditions for 1 month. Bacterial community comparison analyses revealed that laboratory maintenance reduced bacterial diversity by 4-fold, but maintained a population-specific bacterial colonization. Interestingly, the differences between bacterial communities correlated strongly with seasonal variations, especially with ambient water temperature. To decipher the contribution of both ambient temperature and host genotype to bacterial colonization, we generated 12 clonal lines from 6 different populations in order to maintain each genotype at 3 different temperatures for 3 months. The bacterial community composition of the same N. vectensis clone differed greatly between the 3 different temperatures, highlighting the contribution of ambient temperature to bacterial community composition. To a lesser extent, bacterial community composition varied between different genotypes under identical conditions, indicating the influence of host genotype. In addition, we identified a significant genotype x environment interaction determining microbiota plasticity in N. vectensis. From our results we can conclude that N. vectensis-associated bacterial communities respond plastically to changes in ambient temperature, with the association of different bacterial taxa depending in part on the host genotype. Future research will reveal how this genotype-specific microbiota plasticity affects the ability to cope with changing environmental conditions.
Collapse
Affiliation(s)
- Laura Baldassarre
- Institut für Zoologie und Organismische Interaktionen, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
- Istituto Nazionale di Oceanografia e di Geofisica Sperimentale—OGS, Sezione di Oceanografia, Trieste, Italy
| | - Adam M. Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Sebastian Fraune
- Institut für Zoologie und Organismische Interaktionen, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
18
|
Offret C, Gauthier O, Despréaux G, Bidault A, Corporeau C, Miner P, Petton B, Pernet F, Fabioux C, Paillard C, Le Blay G. Microbiota of the Digestive Glands and Extrapallial Fluids of Clams Evolve Differently Over Time Depending on the Intertidal Position. MICROBIAL ECOLOGY 2023; 85:288-297. [PMID: 35066615 DOI: 10.1007/s00248-022-01959-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/04/2022] [Indexed: 02/08/2023]
Abstract
The Manila clam (Ruditapes philippinarum) is the second most exploited bivalve in the world but remains threatened by diseases and global changes. Their associated microbiota play a key role in their fitness and acclimation capacities. This study aimed at better understanding the behavior of clam digestive glands and extrapallial fluids microbiota at small, but contrasting spatial and temporal scales. Results showed that environmental variations impacted clam microbiota differently according to the considered tissue. Each clam tissue presented its own microbiota and showed different dynamics according to the intertidal position and sampling period. Extrapallial fluids microbiota was modified more rapidly than digestive glands microbiota, for clams placed on the upper and lower intertidal position, respectively. Clam tissues could be considered as different microhabitats for bacteria as they presented different responses to small-scale temporal and spatial variabilities in natural conditions. These differences underlined a more stringent environmental filter capacity of the digestive glands.
Collapse
Affiliation(s)
- Clément Offret
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Olivier Gauthier
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | | | - Adeline Bidault
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | | | - Philippe Miner
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, Plouzané, 29280, Brest, France
| | - Bruno Petton
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, Plouzané, 29280, Brest, France
| | - Fabrice Pernet
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, Plouzané, 29280, Brest, France
| | - Caroline Fabioux
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | | | | |
Collapse
|
19
|
Liu M, Li Q, Tan L, Wang L, Wu F, Li L, Zhang G. Host-microbiota interactions play a crucial role in oyster adaptation to rising seawater temperature in summer. ENVIRONMENTAL RESEARCH 2023; 216:114585. [PMID: 36252835 DOI: 10.1016/j.envres.2022.114585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Climate change, represented by rising and fluctuating temperature, induces systematic changes in marine organisms and in their bacterial symbionts. However, the role of host-microbiota interactions in the host's response to rising temperature and the underlying mechanisms are incompletely understood in marine organisms. Here, the symbiotic intestinal microbiota and transcriptional responses between diploid and triploid oysters that displayed susceptible and resistant performance under the stress of rising temperature during a summer mortality event were compared to investigate the host-microbiota interactions. The rising and fluctuating temperatures triggered an earlier onset and higher mortality in susceptible oysters (46.7%) than in resistant oysters (17.3%). Correlation analysis between microbial properties and environmental factors showed temperature was strongly correlated with indices of α-diversity and the abundance of top 10 phyla, indicating that temperature significantly shaped the intestinal microbiota of oysters. The microbiota structure of resistant oysters exhibited more rapid changes in composition and diversity compared to susceptible oysters before peak mortality, indicating that resistant oysters possessed a stronger ability to regulate their symbiotic microbiota. Meanwhile, linear discriminant analysis effect size (LefSe) analysis found that the probiotics Verrucomicrobiales and Clostridiales were highly enriched in resistant oysters, and that potential pathogens Betaproteobacteriales and Acidobacteriales were enriched in susceptible oysters. These results implied that the symbiotic microbiota played a significant role in the oysters' adaptation to rising temperature. Accompanying the decrease in unfavorable bacteria before peak mortality, genes related to phagocytosis and lysozymes were upregulated and the xenobiotics elimination pathway was exclusively expressed in resistant oysters, demonstrating the validity of these immunological functions in controlling proliferation of pathogens driven by rising temperature. Compromised immunological functions might lead to proliferation of pathogens in susceptible oysters. This study might uncover a conserved mechanism of adaptation to rising temperature in marine invertebrates from the perspective of interactions between host and symbiotic microbiota.
Collapse
Affiliation(s)
- Mingkun Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Qingyuan Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Lintao Tan
- Rushan Marine Economy and Development Center, Rushan, 264599, China
| | - Luping Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Fucun Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China.
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| |
Collapse
|
20
|
Bove CB, Ingersoll MV, Davies SW. Help Me, Symbionts, You're My Only Hope: Approaches to Accelerate our Understanding of Coral Holobiont Interactions. Integr Comp Biol 2022; 62:1756-1769. [PMID: 36099871 DOI: 10.1093/icb/icac141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 01/05/2023] Open
Abstract
Tropical corals construct the three-dimensional framework for one of the most diverse ecosystems on the planet, providing habitat to a plethora of species across taxa. However, these ecosystem engineers are facing unprecedented challenges, such as increasing disease prevalence and marine heatwaves associated with anthropogenic global change. As a result, major declines in coral cover and health are being observed across the world's oceans, often due to the breakdown of coral-associated symbioses. Here, we review the interactions between the major symbiotic partners of the coral holobiont-the cnidarian host, algae in the family Symbiodiniaceae, and the microbiome-that influence trait variation, including the molecular mechanisms that underlie symbiosis and the resulting physiological benefits of different microbial partnerships. In doing so, we highlight the current framework for the formation and maintenance of cnidarian-Symbiodiniaceae symbiosis, and the role that immunity pathways play in this relationship. We emphasize that understanding these complex interactions is challenging when you consider the vast genetic variation of the cnidarian host and algal symbiont, as well as their highly diverse microbiome, which is also an important player in coral holobiont health. Given the complex interactions between and among symbiotic partners, we propose several research directions and approaches focused on symbiosis model systems and emerging technologies that will broaden our understanding of how these partner interactions may facilitate the prediction of coral holobiont phenotype, especially under rapid environmental change.
Collapse
Affiliation(s)
- Colleen B Bove
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
21
|
Puntin G, Sweet M, Fraune S, Medina M, Sharp K, Weis VM, Ziegler M. Harnessing the Power of Model Organisms To Unravel Microbial Functions in the Coral Holobiont. Microbiol Mol Biol Rev 2022; 86:e0005322. [PMID: 36287022 PMCID: PMC9769930 DOI: 10.1128/mmbr.00053-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stony corals build the framework of coral reefs, ecosystems of immense ecological and economic importance. The existence of these ecosystems is threatened by climate change and other anthropogenic stressors that manifest in microbial dysbiosis such as coral bleaching and disease, often leading to coral mortality. Despite a significant amount of research, the mechanisms ultimately underlying these destructive phenomena, and what could prevent or mitigate them, remain to be resolved. This is mostly due to practical challenges in experimentation on corals and the highly complex nature of the coral holobiont that also includes bacteria, archaea, protists, and viruses. While the overall importance of these partners is well recognized, their specific contributions to holobiont functioning and their interspecific dynamics remain largely unexplored. Here, we review the potential of adopting model organisms as more tractable systems to address these knowledge gaps. We draw on parallels from the broader biological and biomedical fields to guide the establishment, implementation, and integration of new and emerging model organisms with the aim of addressing the specific needs of coral research. We evaluate the cnidarian models Hydra, Aiptasia, Cassiopea, and Astrangia poculata; review the fast-evolving field of coral tissue and cell cultures; and propose a framework for the establishment of "true" tropical reef-building coral models. Based on this assessment, we also suggest future research to address key aspects limiting our ability to understand and hence improve the response of reef-building corals to future ocean conditions.
Collapse
Affiliation(s)
- Giulia Puntin
- Department of Animal Ecology and Systematics, Marine Holobiomics Lab, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| | - Sebastian Fraune
- Institute for Zoology and Organismic Interactions, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Koty Sharp
- Department of Biology, Marine Biology, and Environmental Science, Roger Williams University, Bristol, Rhode Island, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Marine Holobiomics Lab, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
22
|
Reshuffling of the Coral Microbiome during Dormancy. Appl Environ Microbiol 2022; 88:e0139122. [PMID: 36383004 PMCID: PMC9746315 DOI: 10.1128/aem.01391-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Quiescence, or dormancy, is a response to stressful conditions in which an organism slows or halts physiological functioning. Although most species that undergo dormancy maintain complex microbiomes, there is little known about how dormancy influences and is influenced by the host's microbiome, including in the temperate coral Astrangia poculata. Northern populations of A. poculata undergo winter quiescence. Here, we characterized wild A. poculata microbiomes in a high-resolution sampling time series before, during, and after quiescence using 16S rRNA gene sequencing on active (RNA) and present (DNA) microbiomes. We observed a restructuring of the coral microbiome during quiescence that persisted after reemergence. Upon entering quiescence, corals shed copiotrophic microbes, including putative pathogens, suggesting a removal of these taxa as corals cease normal functioning. During and after quiescence, bacteria and archaea associated with nitrification were enriched, suggesting that the quiescent microbiome may replace essential functions through supplying nitrate to corals and/or microbes. Overall, this study demonstrates that key microbial groups related to quiescence in A. poculata may play a role in the onset or emergence from dormancy and long-term regulation of the microbiome composition. The predictability of dormancy in A. poculata provides an ideal natural manipulation system to further identify factors that regulate host-microbial associations. IMPORTANCE Using a high-resolution sampling time series, this study is the first to demonstrate a persistent microbial community shift with quiescence (dormancy) in a marine organism, the temperate coral Astrangia poculata. Furthermore, during this period of community turnover, there is a shedding of putative pathogens and copiotrophs and an enhancement of the ammonia-oxidizing bacteria (Nitrosococcales) and archaea ("Candidatus Nitrosopumilus"). Our results suggest that quiescence represents an important period during which the coral microbiome can reset, shedding opportunistic microbes and enriching for the reestablishment of beneficial associates, including those that may contribute nitrate while the coral animal is not actively feeding. We suggest that this work provides foundational understanding of the interplay of microbes and the host's dormancy response in marine organisms.
Collapse
|
23
|
Wyness AJ, Roush D, McQuaid CD. Global distribution and diversity of marine euendolithic cyanobacteria. JOURNAL OF PHYCOLOGY 2022; 58:746-759. [PMID: 36199189 PMCID: PMC10092097 DOI: 10.1111/jpy.13288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Euendolithic, or true-boring, cyanobacteria actively erode carbonate-containing substrata in a wide range of environments and pose significant risks to calcareous marine fauna. Their boring activities cause structural damage and increase susceptibility to disease and are projected to only intensify with global climate change. Most research has, however, focused on tropical coral systems, and limited information exists on the global distribution, diversity, and substratum specificity of euendoliths. This metastudy aimed to collate existing 16S rRNA gene surveys along with novel data from the south coast of South Africa to investigate the global distribution and genetic diversity of endoliths to identify a "core endolithic cyanobacterial microbiome" and assess global diversification of euendolithic cyanobacteria. The cyanobacterial families Phormidesmiaceae, Nodosilineaceae, Nostocaceae, and Xenococcaceae were the most prevalent, found in >92% of categories surveyed. All four known euendolith clusters were detected in both intertidal and subtidal habitats, in the North Atlantic, Mediterranean, and South Pacific oceans, across temperate latitudes, and within rock, travertine tiles, coral, shell, and coralline algae substrata. Analysis of the genetic variation within clusters revealed many organisms to be unique to substratum type and location, suggesting high diversity and niche specificity. Euendoliths are known to have important effects on their hosts. This is particularly important when hosts are globally significant ecological engineers or habitat-forming species. The findings of this study indicate high ubiquity and diversity of euendolithic cyanobacteria, suggesting high adaptability, which may lead to increased community and ecosystem-level effects with changing climatic conditions favoring the biochemical mechanisms of cyanobacterial bioerosion.
Collapse
Affiliation(s)
- Adam J. Wyness
- Coastal Research GroupDepartment of Zoology and EntomologyRhodes UniversityMakhanda (Grahamstown)South Africa6139
- School of Biology and Environmental SciencesUniversity of MpumalangaMbombelaSouth Africa1200
| | - Daniel Roush
- Center for Fundamental and Applied MicrobiomicsBiodesign InstituteArizona State UniversityTempeArizona85287USA
| | - Christopher D. McQuaid
- Coastal Research GroupDepartment of Zoology and EntomologyRhodes UniversityMakhanda (Grahamstown)South Africa6139
| |
Collapse
|
24
|
Changsut I, Womack HR, Shickle A, Sharp KH, Fuess LE. Variation in symbiont density is linked to changes in constitutive immunity in the facultatively symbiotic coral, Astrangia poculata. Biol Lett 2022; 18:20220273. [PMID: 36382375 PMCID: PMC9667134 DOI: 10.1098/rsbl.2022.0273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Scleractinian corals are essential ecosystem engineers, forming the basis of coral reef ecosystems. However, these organisms are in decline globally, in part due to rising disease prevalence. Most corals are dependent on symbiotic interactions with single-celled algae from the family Symbiodiniaceae to meet their nutritional needs, however, suppression of host immunity may be essential to this relationship. To explore immunological consequences of algal symbioses in scleractinian corals, we investigated constitutive immune activity in the facultatively symbiotic coral, Astrangia poculata. We compared immune metrics (melanin synthesis, antioxidant production and antibacterial activity) between coral colonies of varying symbiont density. Symbiont density was positively correlated to both antioxidant activity and melanin concentration, likely as a result of the dual roles of these pathways in immunity and symbiosis regulation. Our results confirm the complex nature of relationships between algal symbiosis and host immunity and highlight the need for nuanced approaches when considering these relationships.
Collapse
|
25
|
Harman TE, Barshis DJ, Hauff Salas B, Hamsher SE, Strychar KB. Indications of symbiotic state influencing melanin-synthesis immune response in the facultative coral Astrangia poculata. DISEASES OF AQUATIC ORGANISMS 2022; 151:63-74. [PMID: 36173117 DOI: 10.3354/dao03695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Increased ocean warming is causing detrimental impacts to tropical corals worldwide. Compounding the effects of heat stress, incidences of tropical coral disease have risen concurrently. While tropical coral responses to these impacts are well studied, temperate coral responses remain largely unknown. The present study focused on the immune response of the temperate coral Astrangia poculata to increased temperature and disease. Symbiotic and aposymbiotic A. poculata were collected from Narragansett Bay, Rhode Island (USA) in summer and winter seasons and exposed to control (18°C) versus elevated temperatures (26°C) in the presence of an immune stimulant (i.e. lipopolysaccharide) for a 12 h period. Prophenoloxidase (PPO) and melanin concentrations from the melanin-synthesis pathway were assessed via spectrophotometry to examine immune responses. While PPO measurements were higher on average in symbiotic corals compared with aposymbiotic corals, temperature and season did not significantly affect this metric. Melanin was significantly higher in symbiotic compared to aposymbiotic corals, implying that symbiotic state may be important for melanin-synthesis response. Conversely, melanin as an immune response may be of less importance in aposymbiotic A. poculata due to the potential capacity of other immune responses in this species. In addition, differences in resource allocation to immune investment as a result of symbiosis is plausible given melanin production observed within the present study. However, thermal stressors may reduce the overall influence of symbiosis on melanin production. Future studies should build upon these results to further understand the entirety of innate immunity responses in temperate coral species.
Collapse
Affiliation(s)
- Tyler E Harman
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Dr, Muskegon, MI 49441, USA
| | | | | | | | | |
Collapse
|
26
|
Haydon TD, Suggett DJ, Siboni N, Kahlke T, Camp EF, Seymour JR. Temporal Variation in the Microbiome of Tropical and Temperate Octocorals. MICROBIAL ECOLOGY 2022; 83:1073-1087. [PMID: 34331071 DOI: 10.1007/s00248-021-01823-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Bacterial members of the coral holobiont play an important role in determining coral fitness. However, most knowledge of the coral microbiome has come from reef-building scleractinian corals, with far less known about the nature and importance of the microbiome of octocorals (subclass Octocorallia), which contribute significantly to reef biodiversity and functional complexity. We examined the diversity and structure of the bacterial component of octocoral microbiomes over summer and winter, with a focus on two temperate (Erythropodium hicksoni, Capnella gaboensis; Sydney Harbour) and two tropical (Sinularia sp., Sarcophyton sp.; Heron Island) species common to reefs in eastern Australia. Bacterial communities associated with these octocorals were also compared to common temperate (Plesiastrea versipora) and tropical (Acropora aspera) hard corals from the same reefs. Using 16S rRNA amplicon sequencing, bacterial diversity was found to be heterogeneous among octocorals, but we observed changes in composition between summer and winter for some species (C. gaboensis and Sinularia sp.), but not for others (E. hicksoni and Sarcophyton sp.). Bacterial community structure differed significantly between all octocoral species within both the temperate and tropical environments. However, on a seasonal basis, those differences were less pronounced. The microbiomes of C. gaboensis and Sinularia sp. were dominated by bacteria belonging to the genus Endozoicomonas, which were a key conserved feature of their core microbiomes. In contrast to previous studies, our analysis revealed that Endozoicomonas phylotypes are shared across different octocoral species, inhabiting different environments. Together, our data demonstrates that octocorals harbour a broad diversity of bacterial partners, some of which comprise 'core microbiomes' that potentially impart important functional roles to their hosts.
Collapse
Affiliation(s)
- Trent D Haydon
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - David J Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Nachshon Siboni
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Tim Kahlke
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Emma F Camp
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Justin R Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
27
|
Coral-microbe interactions: their importance to reef function and survival. Emerg Top Life Sci 2022; 6:33-44. [PMID: 35119475 DOI: 10.1042/etls20210229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
Many different microorganisms associate with the coral host in a single entity known as the holobiont, and their interactions with the host contribute to coral health, thereby making them a fundamental part of reef function, survival, and conservation. As corals continue to be susceptible to bleaching due to environmental stress, coral-associated bacteria may have a potential role in alleviating bleaching. This review provides a synthesis of the various roles bacteria have in coral physiology and development, and explores the possibility that changes in the microbiome with environmental stress could have major implications in how corals acclimatize and survive. Recent studies on the interactions between the coral's algal and bacterial symbionts elucidate how bacteria may stabilize algal health and, therefore, mitigate bleaching. A summary of the innovative tools and experiments to examine host-microbe interactions in other cnidarians (a temperate coral, a jellyfish, two anemones, and a freshwater hydroid) is offered in this review to delineate our current knowledge of mechanisms underlying microbial establishment and maintenance in the animal host. A better understanding of these mechanisms may enhance the success of maintaining probiotics long-term in corals as a conservation strategy.
Collapse
|
28
|
Dellaert Z, Vargas PA, La Riviere PJ, Roberson LM. Uncovering the Effects of Symbiosis and Temperature on Coral Calcification. THE BIOLOGICAL BULLETIN 2022; 242:62-73. [PMID: 35245159 DOI: 10.1086/716711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
AbstractWe tested the impact of temperature and symbiont state on calcification in corals, using the facultatively symbiotic coral Astrangia poculata as a model system. Symbiotic and aposymbiotic colonies of A. poculata were reared in 15, 20, and 27 °C conditions. We used scanning electron microscopy to quantify how these physiological and environmental conditions impact skeletal structure. Buoyant weight data over time revealed that temperature significantly affects calcification rates. Scanning electron microscopy of A. poculata skeletons showed that aposymbiotic colonies appear to have a lower density of calcium carbonate in actively growing septal spines. We describe a novel approach to analyze the roughness and texture of scanning electron microscopy images. Quantitative analysis of the roughness of septal spines revealed that aposymbiotic colonies have a rougher surface than symbiotic colonies in tropical conditions (27 °C). This trend reversed at 15 °C, a temperature at which the symbionts of A. poculata may exhibit parasitic properties. Analysis of surface texture patterns showed that temperature impacts the spatial variance of crystals on the spine surface. Few published studies have examined the skeleton of A. poculata by using scanning electron microscopy. Our approach provides a way to study detailed changes in skeletal microstructure in response to environmental parameters and can serve as a proxy for more expensive and time-consuming analyses. Utilizing a facultatively symbiotic coral that is native to both temperate and tropical regions provides new insights into the impact of both symbiosis and temperature on calcification in corals.
Collapse
|
29
|
Wang JT, Wang YT, Chen CA, Meng PJ, Tew KS, Chiang PW, Tang SL. Extra high superoxide dismutase in host tissue is associated with improving bleaching resistance in "thermal adapted" and Durusdinium trenchii-associating coral. PeerJ 2022; 10:e12746. [PMID: 35070504 PMCID: PMC8760857 DOI: 10.7717/peerj.12746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023] Open
Abstract
Global warming threatens reef-building corals with large-scale bleaching events; therefore, it is important to discover potential adaptive capabilities for increasing their temperature resistance before it is too late. This study presents two coral species (Platygyra verweyi and Isopora palifera) surviving on a reef having regular hot water influxes via a nearby nuclear power plant that exhibited completely different bleaching susceptibilities to thermal stress, even though both species shared several so-called "winner" characteristics (e.g., containing Durusdinium trenchii, thick tissue, etc.). During acute heating treatment, algal density did not decline in P. verweyi corals within three days of being directly transferred from 25 to 31 °C; however, the same treatment caused I. palifera to lose < 70% of its algal symbionts within 24 h. The most distinctive feature between the two coral species was an overwhelmingly higher constitutive superoxide dismutase (ca. 10-fold) and catalase (ca. 3-fold) in P. verweyi over I. palifera. Moreover, P. verweyi also contained significantly higher saturated and lower mono-unsaturated fatty acids, especially a long-chain saturated fatty acid (C22:0), than I. palifera, and was consistently associated with the symbiotic bacteria Endozoicomonas, which was not found in I. palifera. However, antibiotic treatment and inoculation tests did not support Endozoicomonas having a direct contribution to thermal resistance. This study highlights that, besides its association with a thermally tolerable algal symbiont, a high level of constitutive antioxidant enzymes in the coral host is crucial for coral survivorship in the more fluctuating and higher temperature environments.
Collapse
Affiliation(s)
- Jih-Terng Wang
- Department of Oceanography, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yi-Ting Wang
- Department of Oceanography, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | | | - Pei-Jei Meng
- General Education Center, National Dong Hwa University, Hualien, Taiwan,National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Kwee Siong Tew
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan,Institute of Marine Biodiversity and Evolution, National Dong Hwa University, Pingtung, Taiwan
| | - Pei-Wen Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
30
|
Haydon TD, Seymour JR, Raina JB, Edmondson J, Siboni N, Matthews JL, Camp EF, Suggett DJ. Rapid Shifts in Bacterial Communities and Homogeneity of Symbiodiniaceae in Colonies of Pocillopora acuta Transplanted Between Reef and Mangrove Environments. Front Microbiol 2021; 12:756091. [PMID: 34759906 PMCID: PMC8575411 DOI: 10.3389/fmicb.2021.756091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023] Open
Abstract
It has been proposed that an effective approach for predicting whether and how reef-forming corals persist under future climate change is to examine populations thriving in present day extreme environments, such as mangrove lagoons, where water temperatures can exceed those of reef environments by more than 3°C, pH levels are more acidic (pH < 7.9, often below 7.6) and O2 concentrations are regularly considered hypoxic (<2 mg/L). Defining the physiological features of these “extreme” corals, as well as their relationships with the, often symbiotic, organisms within their microbiome, could increase our understanding of how corals will persist into the future. To better understand coral-microbe relationships that potentially underpin coral persistence within extreme mangrove environments, we therefore conducted a 9-month reciprocal transplant experiment, whereby specimens of the coral Pocillopora acuta were transplanted between adjacent mangrove and reef sites on the northern Great Barrier Reef. Bacterial communities associated with P. acuta specimens native to the reef environment were dominated by Endozoicomonas, while Symbiodiniaceae communities were dominated by members of the Cladocopium genus. In contrast, P. acuta colonies native to the mangrove site exhibited highly diverse bacterial communities with no dominating members, and Symbiodiniaceae communities dominated by Durusdinium. All corals survived for 9 months after being transplanted from reef-to-mangrove, mangrove-to-reef environments (as well as control within environment transplants), and during this time there were significant changes in the bacterial communities, but not in the Symbiodiniaceae communities or their photo-physiological functioning. In reef-to-mangrove transplanted corals, there were varied, but sometimes rapid shifts in the associated bacterial communities, including a loss of “core” bacterial members after 9 months where coral bacterial communities began to resemble those of the native mangrove corals. Bacterial communities associated with mangrove-to-reef P. acuta colonies also changed from their original composition, but remained different to the native reef corals. Our data demonstrates that P. acuta associated bacterial communities are strongly influenced by changes in environmental conditions, whereas Symbiodiniaceae associated communities remain highly stable.
Collapse
Affiliation(s)
- Trent D Haydon
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | | | | | - Nachshon Siboni
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | | | - Emma F Camp
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| |
Collapse
|
31
|
Rivera HE, Davies SW. Symbiosis maintenance in the facultative coral, Oculina arbuscula, relies on nitrogen cycling, cell cycle modulation, and immunity. Sci Rep 2021; 11:21226. [PMID: 34707162 PMCID: PMC8551165 DOI: 10.1038/s41598-021-00697-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Symbiosis with unicellular algae in the family Symbiodiniaceae is common across tropical marine invertebrates. Reef-building corals offer a clear example of cellular dysfunction leading to a dysbiosis that disrupts entire ecosystems in a process termed coral bleaching. Due to their obligate symbiotic relationship, understanding the molecular underpinnings that sustain this symbiosis in tropical reef-building corals is challenging, as any aposymbiotic state is inherently coupled with severe physiological stress. Here, we leverage the subtropical, facultatively symbiotic and calcifying coral Oculina arbuscula to investigate gene expression differences between aposymbiotic and symbiotic branches within the same colonies under baseline conditions. We further compare gene ontology (GO) and KOG enrichment in gene expression patterns from O. arbuscula with prior work in the sea anemone Exaiptasia pallida (Aiptasia) and the salamander Ambystoma maculatum-both of which exhibit endophotosymbiosis with unicellular algae. We identify nitrogen cycling, cell cycle control, and immune responses as key pathways involved in the maintenance of symbiosis under baseline conditions. Understanding the mechanisms that sustain a healthy symbiosis between corals and Symbiodiniaceae algae is of urgent importance given the vulnerability of these partnerships to changing environmental conditions and their role in the continued functioning of critical and highly diverse marine ecosystems.
Collapse
Affiliation(s)
- H E Rivera
- Department of Biology, Boston University, Boston, MA, USA.
| | - S W Davies
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
32
|
Yu X, Yu K, Liao Z, Chen B, Deng C, Yu J, Yao Q, Qin Z, Liang J. Seasonal fluctuations in symbiotic bacteria and their role in environmental adaptation of the scleractinian coral Acropora pruinosa in high-latitude coral reef area of the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148438. [PMID: 34153755 DOI: 10.1016/j.scitotenv.2021.148438] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Coral-associated bacterial communities are paramount for coral ecosystems and holobiont health. However, the role of symbiotic bacteria in the adaptation of high-latitude corals to seasonal fluctuations remains underexplored. Therefore, we used 16S rRNA-based high-throughput sequencing to analyze the symbiotic bacterial diversity, composition, and core bacterial community in high-latitude coral and explored the seasonal fluctuation characteristics of symbiotic bacterial communities. We found that bacterial richness and α-diversity changed significantly across different seasons. Additionally, the community structure recombined seasonally, with different dominant bacterial phyla and genera in different seasons. However, the symbiotic bacterial community structures of Acropora pruinosa in winter and spring were similar. Proteobacteria were the dominant bacteria in spring, autumn, and winter. In summer, the dominant bacterial taxa were Bacteroidota and Proteobacteria. Ralstonia was the dominant bacterial genus in spring and winter, whereas in autumn, BD1-7_clade was dominant. Linear discriminant analysis effect size identified 20 abundant genera between the different groups. Core microbiome analysis revealed that 12 core bacterial operational taxonomic units were associated with A. pruinosa in all seasons, seven of which varied with the seasons, changing between dominant and rare. Distance-based redundancy and variation partitioning analyses revealed that sea surface temperature was the major contributor of variation in the microbial community structure. We hypothesized that the high diversity and abundance of symbiotic bacteria and the increase in Prosthecochloris abundance in coral in summer can help A. pruinosa maintain its physiological functions, ameliorating the negative physiological effects of the decrease in Symbiodiniaceae density under high-temperature stress. Thus, the rapid reorganization of the symbiotic bacterial community structure and core microflora in different seasons may allow the corals to adapt to large seasonal environmental fluctuations. In conclusion, seasonal variation of bacteria plays an important role in coral adaptation to large environmental fluctuations.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China.
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Chuanqi Deng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiaoyang Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Qiucui Yao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
33
|
Natural experiments and long-term monitoring are critical to understand and predict marine host-microbe ecology and evolution. PLoS Biol 2021; 19:e3001322. [PMID: 34411089 PMCID: PMC8376202 DOI: 10.1371/journal.pbio.3001322] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host’s physiological capacities; however, the identity and functional role(s) of key members of the microbiome (“core microbiome”) in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems’ capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts’ plastic and adaptive responses to environmental change requires (i) recognizing that individual host–microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions. This Essay argues that in order to truly understand how marine hosts benefit from the immense diversity of microbes, we need to expand towards long-term, multi-disciplinary research focussing on few areas of the world’s ocean that we refer to as “natural experiments,” where processes can be studied at scales that far exceed those captured in laboratory experiments.
Collapse
|
34
|
Wuitchik DM, Almanzar A, Benson BE, Brennan S, Chavez JD, Liesegang MB, Reavis JL, Reyes CL, Schniedewind MK, Trumble IF, Davies SW. Title: Characterizing environmental stress responses of aposymbiotic Astrangia poculata to divergent thermal challenges. Mol Ecol 2021; 30:5064-5079. [PMID: 34379848 DOI: 10.1111/mec.16108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022]
Abstract
Anthropogenic climate change threatens corals globally and both high and low temperatures are known to induce coral bleaching. However, coral stress responses across wide thermal breadths remain understudied. Disentangling the role of symbiosis on the stress response in obligately symbiotic corals is challenging because this response is inherently coupled with nutritional stress. Here, we leverage aposymbiotic colonies of the facultatively symbiotic coral, Astrangia poculata, which lives naturally with and without its algal symbionts, to examine how broad thermal challenges influence coral hosts in the absence of symbiosis. A. poculata were collected from their northern range limit and thermally challenged in two independent 16-day common garden experiments (heat and cold challenge) and behavioral responses to food stimuli and genome-wide gene expression profiling (TagSeq) were performed. Both thermal challenges elicited significant reductions in polyp extension. However, there were five times as many differentially expressed genes (DEGs) under cold challenge compared to heat challenge. Despite an overall stronger response to cold challenge, there was significant overlap in DEGs between thermal challenges. We contrasted these responses to a previously identified module of genes associated with the environmental stress response (ESR) in tropical reef-building corals. Cold challenged corals exhibited a pattern consistent with more severe stressors while the heat challenge response was consistent with lower intensity stressors. Given that these responses were observed in aposymbiotic colonies, many genes previously implicated in ESRs in tropical symbiotic species may represent the coral host's stress response in or out of symbiosis.
Collapse
Affiliation(s)
- D M Wuitchik
- Department of Biology, Boston University, Boston, MA, USA
| | - A Almanzar
- Department of Biology, Boston University, Boston, MA, USA
| | - B E Benson
- Department of Biology, Boston University, Boston, MA, USA
| | - S Brennan
- Department of Biology, Boston University, Boston, MA, USA
| | - J D Chavez
- Department of Biology, Boston University, Boston, MA, USA
| | - M B Liesegang
- Department of Biology, Boston University, Boston, MA, USA.,Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
| | - J L Reavis
- Department of Biology, Boston University, Boston, MA, USA
| | - C L Reyes
- Department of Biology, Boston University, Boston, MA, USA
| | | | - I F Trumble
- Department of Biology, Boston University, Boston, MA, USA
| | - S W Davies
- Department of Biology, Boston University, Boston, MA, USA
| |
Collapse
|
35
|
Brown T, Sonett D, Zaneveld JR, Padilla-Gamiño JL. Characterization of the microbiome and immune response in corals with chronic Montipora white syndrome. Mol Ecol 2021; 30:2591-2606. [PMID: 33763924 DOI: 10.1111/mec.15899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 01/04/2023]
Abstract
Coral diseases have increased in frequency and intensity around the tropics worldwide. However, in many cases, little is known about their etiology. Montipora white syndrome (MWS) is a common disease affecting the coral Montipora capitata, a major reef builder in Hawai'i. Chronic Montipora white syndrome (cMWS) is a slow-moving form of the disease that affects M. capitata throughout the year. The effects of this chronic disease on coral immunology and microbiology are currently unknown. In this study, we use prophenoloxidase immune assays and 16S rRNA gene amplicon sequencing to characterize the microbiome and immunological response associated with cMWS. Our results show that immunological and microbiological responses are highly localized. Relative to diseased samples, apparently healthy portions of cMWS corals differed in immune activity and in the relative abundance of microbial taxa. Coral tissues with cMWS showed decreased tyrosinase-type catecholase and tyrosinase-type cresolase activity and increased laccase-type activity. Catecholase and cresolase activity were negatively correlated across all tissue types with microbiome richness. The localized effect of cMWS on coral microbiology and immunology is probably an important reason for the slow progression of the disease. This local confinement may facilitate interventions that focus on localized treatments on tissue types. This study provides an important baseline to understand the interplay between the microbiome and immune system and the mechanisms used by corals to manage chronic microbial perturbations associated with white syndrome.
Collapse
Affiliation(s)
- Tanya Brown
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, Washington, USA
| | - Dylan Sonett
- Division of Biological Sciences, University of Washington, Bothell, Washington, USA
| | - Jesse R Zaneveld
- Division of Biological Sciences, University of Washington, Bothell, Washington, USA
| | | |
Collapse
|
36
|
Differential Patterns of Microbiota Recovery in Symbiotic and Aposymbiotic Corals following Antibiotic Disturbance. mSystems 2021; 6:6/2/e01086-20. [PMID: 33850041 PMCID: PMC8546993 DOI: 10.1128/msystems.01086-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Microbial relationships are critical to coral health, and changes in microbiomes are often exhibited following environmental disturbance. However, the dynamics of coral-microbial composition and external factors that govern coral microbiome assembly and response to disturbance remain largely uncharacterized. Here, we investigated how antibiotic-induced disturbance affects the coral mucus microbiota in the facultatively symbiotic temperate coral Astrangia poculata, which occurs naturally with high (symbiotic) or low (aposymbiotic) densities of the endosymbiotic dinoflagellate Breviolum psygmophilum. We also explored how differences in the mucus microbiome of natural and disturbed A. poculata colonies affected levels of extracellular superoxide, a reactive oxygen species thought to have both beneficial and detrimental effects on coral health. Using a bacterial and archaeal small-subunit (SSU) rRNA gene sequencing approach, we found that antibiotic exposure significantly altered the composition of the mucus microbiota but that it did not influence superoxide levels, suggesting that superoxide production in A. poculata is not influenced by the mucus microbiota. In antibiotic-treated A. poculata exposed to ambient seawater, mucus microbiota recovered to its initial state within 2 weeks following exposure, and six bacterial taxa played a prominent role in this reassembly. Microbial composition among symbiotic colonies was more similar throughout the 2-week recovery period than that among aposymbiotic colonies, whose microbiota exhibited significantly more interindividual variability after antibiotic treatment and during recovery. This work suggests that the A. poculata mucus microbiome can rapidly reestablish itself and that the presence of B. psygmophilum, perhaps by supplying nutrients, photosynthate, or other signaling molecules, exerts influence on this process. IMPORTANCE Corals are animals whose health is often maintained by symbiotic microalgae and other microorganisms, yet they are highly susceptible to environmental-related disturbances. Here, we used a known disruptor, antibiotics, to understand how the coral mucus microbial community reassembles itself following disturbance. We show that the Astrangia poculata microbiome can recover from this disturbance and that individuals with algal symbionts reestablish their microbiomes in a more consistent manner compared to corals lacking symbionts. This work is important because it suggests that this coral may be able to recover its mucus microbiome following disturbance, it identifies specific microbes that may be important to reassembly, and it demonstrates that algal symbionts may play a previously undocumented role in microbial recovery and resilience to environmental change.
Collapse
|
37
|
Neu AT, Hughes IV, Allen EE, Roy K. Decade-scale stability and change in a marine bivalve microbiome. Mol Ecol 2021; 30:1237-1250. [PMID: 33432685 DOI: 10.1111/mec.15796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022]
Abstract
Predicting how populations and communities of organisms will respond to anthropogenic change is of paramount concern in ecology today. For communities of microorganisms, however, these predictions remain challenging, primarily due to data limitations. Information about long-term dynamics of host-associated microbial communities, in particular, is lacking. In this study, we use well-preserved and freshly collected samples of soft tissue from a marine bivalve host, Donax gouldii, at a single site to quantify the diversity and composition of its microbiome over a decadal timescale. Site-level measurements of temperature, salinity and chlorophyll a allowed us to test how the microbiome of this species responded to two natural experiments: a seasonal increase in temperature and a phytoplankton bloom. Our results show that ethanol-preserved tissue can provide high-resolution information about temporal trends in compositions of host-associated microbial communities. Specifically, we found that the richness of amplicon sequence variants (ASVs) associated with D.gouldii did not change significantly over time despite increases in water temperature (+1.6°C due to seasonal change) and chlorophyll a concentration (more than ninefold). The phylogenetic composition of the communities, on the other hand, varied significantly between all collection years, with only six ASVs persisting over our sampling period. Overall, these results suggest that the diversity of microbial taxa associated with D.gouldii has remained stable over time and in response to seasonal environmental change over the course of more than a decade, but such stability is underlain by substantial turnover in the composition of the microbiome.
Collapse
Affiliation(s)
- Alexander T Neu
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ian V Hughes
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Eric E Allen
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.,Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Kaustuv Roy
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
38
|
King WL, Siboni N, Kahlke T, Dove M, O'Connor W, Mahbub KR, Jenkins C, Seymour JR, Labbate M. Regional and oyster microenvironmental scale heterogeneity in the Pacific oyster bacterial community. FEMS Microbiol Ecol 2020; 96:5813259. [PMID: 32221598 DOI: 10.1093/femsec/fiaa054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/22/2020] [Indexed: 01/04/2023] Open
Abstract
Different organs of a host represent distinct microenvironments resulting in the establishment of multiple discrete bacterial communities within a host. These discrete bacterial communities can also vary according to geographical location. For the Pacific oyster, Crassostrea gigas, the factors governing bacterial diversity and abundance of different oyster microenvironments are poorly understood. In this study, the factors shaping bacterial abundance, diversity and composition associated with the C. gigas mantle, gill, adductor muscle and digestive gland were characterised using 16S (V3-V4) rRNA amplicon sequencing across six discrete estuaries. Both location and tissue-type, with tissue-type being the stronger determinant, were factors driving bacterial community composition. Bacterial communities from wave-dominated estuaries had similar compositions and higher bacterial abundance despite being geographically distant from one another, possibly indicating that functional estuarine morphology characteristics are a factor shaping the oyster bacterial community. Despite the bacterial community heterogeneity, examinations of the core bacterial community identified Spirochaetaceae bacteria as conserved across all sites and samples. Whereas members of the Vulcaniibacterium, Spirochaetaceae and Margulisbacteria, and Polynucleobacter were regionally conserved members of the digestive gland, gill and mantle bacterial communities, respectively. This indicates that baseline bacterial community profiles for specific locations are necessary when investigating bacterial communities in oyster health.
Collapse
Affiliation(s)
- William L King
- University of Technology Sydney, The School of Life Sciences, Ultimo, New South Wales, 2007, Australia.,University of Technology Sydney, Climate Change Cluster, Ultimo, New South Wales, 2007, Australia
| | - Nachshon Siboni
- University of Technology Sydney, Climate Change Cluster, Ultimo, New South Wales, 2007, Australia
| | - Tim Kahlke
- University of Technology Sydney, Climate Change Cluster, Ultimo, New South Wales, 2007, Australia
| | - Michael Dove
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Port Stephens, New South Wales, 2316, Australia
| | - Wayne O'Connor
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Port Stephens, New South Wales, 2316, Australia
| | - Khandaker Rayhan Mahbub
- University of Technology Sydney, The School of Life Sciences, Ultimo, New South Wales, 2007, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales, 2568, Australia
| | - Justin R Seymour
- University of Technology Sydney, Climate Change Cluster, Ultimo, New South Wales, 2007, Australia
| | - Maurizio Labbate
- University of Technology Sydney, The School of Life Sciences, Ultimo, New South Wales, 2007, Australia
| |
Collapse
|
39
|
Britstein M, Cerrano C, Burgsdorf I, Zoccarato L, Kenny NJ, Riesgo A, Lalzar M, Steindler L. Sponge microbiome stability during environmental acquisition of highly specific photosymbionts. Environ Microbiol 2020; 22:3593-3607. [PMID: 32656901 DOI: 10.1111/1462-2920.15165] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/15/2020] [Accepted: 07/10/2020] [Indexed: 01/08/2023]
Abstract
In this study, we used in situ transplantations to provide the first evidence of horizontal acquisition of cyanobacterial symbionts by a marine sponge. The acquisition of the symbionts by the host sponge Petrosia ficiformis, which was observed in distinct visible patches, appeared several months after transplantation and at different times on different sponge specimens. We further used 16S rRNA gene amplicon sequencing of genomic DNA (gDNA) and complementary DNA (cDNA) and metatranscriptomics to investigate how the acquisition of the symbiotic cyanobacterium Candidatus Synechococcus feldmannii perturbed the diverse microbiota associated with the host P. ficiformis. To our surprise, the microbiota remained relatively stable during cyanobacterial symbiont acquisition at both structural (gDNA content) and activity (cDNA expression) levels. At the transcriptomic level, photosynthesis was the primary function gained following the acquisition of cyanobacteria. Genes involved in carotene production and oxidative stress tolerance were among those highly expressed by Ca. S. feldmannii, suggesting that this symbiont may protect itself and its host from damaging light radiation.
Collapse
Affiliation(s)
- Maya Britstein
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Carlo Cerrano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Luca Zoccarato
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Nathan J Kenny
- Life Sciences Department, The Natural History Museum of London, Cromwell Road, London, SW7 5BD, UK
| | - Ana Riesgo
- Life Sciences Department, The Natural History Museum of London, Cromwell Road, London, SW7 5BD, UK
| | - Maya Lalzar
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
40
|
Temperature-Induced Annual Variation in Microbial Community Changes and Resulting Metabolome Shifts in a Controlled Fermentation System. mSystems 2020; 5:5/4/e00555-20. [PMID: 32694129 PMCID: PMC7566281 DOI: 10.1128/msystems.00555-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We used Chinese liquor fermentation as a model system to show that microbiome composition changes more dramatically across seasons than throughout the fermentation process within seasons. These changes translate to differences in the metabolome as the ultimate functional outcome of microbial activity, suggesting that temporal changes in microbiome composition are translating into functional changes. This result is striking as it suggests that microbial functioning, despite controlled conditions in the fermentors, fluctuates over season along with external temperature differences, which threatens a reproducible food taste. As such, we believe that our study provides a stepping-stone into novel taxonomy-functional studies that promote future work in other systems and that also is relevant in applied settings to better control surrounding conditions in food production. We are rapidly increasing our understanding on the spatial distribution of microbial communities. However, microbial functioning, as well as temporal differences and mechanisms causing microbial community shifts, remains comparably little explored. Here, using Chinese liquor fermentation as a model system containing a low microbial diversity, we studied temporal changes in microbial community structure and functioning. For that, we used high-throughput sequencing to analyze the composition of bacteria and fungi and analyzed the microbially derived metabolome throughout the fermentation process in all four seasons in both 2018 and 2019. We show that microbial communities and the metabolome changed throughout the fermentation process in each of the four seasons, with metabolome diversity increasing throughout the fermentation process. Across seasons, bacterial and fungal communities as well as the metabolome driven by 10 indicator microorganisms and six metabolites varied even more. Daily average temperature in the external surroundings was the primary determinant of the observed temporal microbial community and metabolome changes. Collectively, our work reveals critical insights into patterns and processes determining temporal changes of microbial community composition and functioning. We highlight the importance of linking taxonomic to functional changes in microbial ecology to enable predictions of human-relevant applications. IMPORTANCE We used Chinese liquor fermentation as a model system to show that microbiome composition changes more dramatically across seasons than throughout the fermentation process within seasons. These changes translate to differences in the metabolome as the ultimate functional outcome of microbial activity, suggesting that temporal changes in microbiome composition are translating into functional changes. This result is striking as it suggests that microbial functioning, despite controlled conditions in the fermentors, fluctuates over season along with external temperature differences, which threatens a reproducible food taste. As such, we believe that our study provides a stepping-stone into novel taxonomy-functional studies that promote future work in other systems and that also is relevant in applied settings to better control surrounding conditions in food production.
Collapse
|
41
|
|
42
|
Speare L, Davies SW, Balmonte JP, Baumann J, Castillo KD. Patterns of environmental variability influence coral-associated bacterial and algal communities on the Mesoamerican Barrier Reef. Mol Ecol 2020; 29:2334-2348. [PMID: 32497352 DOI: 10.1111/mec.15497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
A coral's capacity to alter its microbial symbionts may enhance its fitness in the face of climate change. Recent work predicts exposure to high environmental variability may increase coral resilience and adaptability to future climate conditions. However, how this heightened environmental variability impacts coral-associated microbial communities remains largely unexplored. Here, we examined the bacterial and algal symbionts associated with two coral species of the genus Siderastrea with distinct life history strategies from three reef sites on the Belize Mesoamerican Barrier Reef System with low or high environmental variability. Our results reveal bacterial community structure, as well as alpha- and beta-diversity patterns, vary by host species. Differences in bacterial communities between host species were partially explained by high abundance of Deltaproteobacteria and Rhodospirillales and high bacterial diversity in Siderastrea radians. Our findings also suggest Siderastrea spp. have dynamic core bacterial communities that likely drive differences observed in the entire bacterial community, which may play a critical role in rapid acclimatization to environmental change. Unlike the bacterial community, Symbiodiniaceae composition was only distinct between host species at high thermal variability sites, suggesting that different factors shape bacterial versus algal communities within the coral holobiont. Our findings shed light on how domain-specific shifts in dynamic microbiomes may allow for unique methods of enhanced host fitness.
Collapse
Affiliation(s)
- Lauren Speare
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah W Davies
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biology, Boston University, Boston, MA, USA
| | - John P Balmonte
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Ecology and Genetics - Limnology, Uppsala University, Uppsala, Sweden
| | - Justin Baumann
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karl D Castillo
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Environment, Ecology, and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
43
|
Guibert I, Bourdreux F, Bonnard I, Pochon X, Dubousquet V, Raharivelomanana P, Berteaux-Lecellier V, Lecellier G. Dimethylsulfoniopropionate concentration in coral reef invertebrates varies according to species assemblages. Sci Rep 2020; 10:9922. [PMID: 32555283 PMCID: PMC7303174 DOI: 10.1038/s41598-020-66290-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/18/2020] [Indexed: 11/28/2022] Open
Abstract
Dimethylsulfoniopropionate (DMSP) is a key compound in the marine sulfur cycle, and is produced in large quantities in coral reefs. In addition to Symbiodiniaceae, corals and associated bacteria have recently been shown to play a role in DMSP metabolism. Numerous ecological studies have focused on DMSP concentrations in corals, which led to the hypothesis that increases in DMSP levels might be a general response to stress. Here we used multiple species assemblages of three common Indo-Pacific holobionts, the scleractinian corals Pocillopora damicornis and Acropora cytherea, and the giant clam Tridacna maxima and examined the DMSP concentrations associated with each species within different assemblages and thermal conditions. Results showed that the concentration of DMSP in A. cytherea and T. maxima is modulated according to the complexity of species assemblages. To determine the potential importance of symbiotic dinoflagellates in DMSP production, we then explored the relative abundance of Symbiodiniaceae clades in relation to DMSP levels using metabarcoding, and found no significant correlation between these factors. Finally, this study also revealed the existence of homologs involved in DMSP production in giant clams, suggesting for the first time that, like corals, they may also contribute to DMSP production. Taken together, our results demonstrated that corals and giant clams play important roles in the sulfur cycle. Because DMSP production varies in response to specific species-environment interactions, this study offers new perspectives for future global sulfur cycling research.
Collapse
Affiliation(s)
- Isis Guibert
- Swire Institute of Marine Science, The University of Hong Kong, Hong Kong S.A.R, China.
- Sorbonne Université, UMR250/9220 ENTROPIE IRD-CNRS-UR-IFREMER-UNC, Promenade Roger-Laroque, Noumea cedex, New Caledonia, France.
- USR3278 PSL CRIOBE CNRS-EPHE-UPVD, LabEx CORAIL, Papetoai, Moorea, French Polynesia.
| | - Flavien Bourdreux
- Université de Paris-Saclay, UVSQ, 45 avenue des Etats-Unis, Versailles Cedex, France
- Institut Lavoisier de Versailles, UMR CNRS 8180, 45 avenue des Etats-Unis, Versailles Cedex, France
| | - Isabelle Bonnard
- USR3278 PSL CRIOBE CNRS-EPHE-UPVD, LabEx CORAIL, Université de Perpignan, 58 avenue Paul Alduy, 66860, Perpignan, France
| | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
- Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth, 0941, New Zealand
| | - Vaimiti Dubousquet
- Délégation à la recherche, Government of French Polynesia BP 20981, 98713, Papeete, Tahiti, French Polynesia
| | - Phila Raharivelomanana
- UMR 241 EIO, Université de la Polynésie Française, BP 6570 Faaa, 98702, Faaa, Tahiti, French Polynesia
| | - Véronique Berteaux-Lecellier
- USR3278 PSL CRIOBE CNRS-EPHE-UPVD, LabEx CORAIL, Papetoai, Moorea, French Polynesia
- UMR250/9220 ENTROPIE IRD-CNRS-UR-IFREMER-UNC, Promenade Roger-Laroque, Noumea cedex, New Caledonia, France
| | - Gael Lecellier
- Université de Paris-Saclay, UVSQ, 45 avenue des Etats-Unis, Versailles Cedex, France
- UMR250/9220 ENTROPIE IRD-CNRS-UR-IFREMER-UNC, Promenade Roger-Laroque, Noumea cedex, New Caledonia, France
| |
Collapse
|
44
|
Chiarello M, Auguet JC, Graham NAJ, Claverie T, Sucré E, Bouvier C, Rieuvilleneuve F, Restrepo-Ortiz CX, Bettarel Y, Villéger S, Bouvier T. Exceptional but vulnerable microbial diversity in coral reef animal surface microbiomes. Proc Biol Sci 2020; 287:20200642. [PMID: 32396801 DOI: 10.1098/rspb.2020.0642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Coral reefs host hundreds of thousands of animal species that are increasingly threatened by anthropogenic disturbances. These animals host microbial communities at their surface, playing crucial roles for their fitness. However, the diversity of such microbiomes is mostly described in a few coral species and still poorly defined in other invertebrates and vertebrates. Given the diversity of animal microbiomes, and the diversity of host species inhabiting coral reefs, the contribution of such microbiomes to the total microbial diversity of coral reefs could be important, yet potentially vulnerable to the loss of animal species. Analysis of the surface microbiome from 74 taxa, including teleost fishes, hard and soft corals, crustaceans, echinoderms, bivalves and sponges, revealed that more than 90% of their prokaryotic phylogenetic richness was specific and not recovered in surrounding plankton. Estimate of the total richness associated with coral reef animal surface microbiomes reached up to 2.5% of current estimates of Earth prokaryotic diversity. Therefore, coral reef animal surfaces should be recognized as a hotspot of marine microbial diversity. Loss of the most vulnerable reef animals expected under present-day scenarios of reef degradation would induce an erosion of 28% of the prokaryotic richness, with unknown consequences on coral reef ecosystem functioning.
Collapse
Affiliation(s)
- Marlène Chiarello
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | | - Nicholas A J Graham
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster LA1 4YQ, UK
| | - Thomas Claverie
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France.,Département Sciences et Technologie, Centre Universitaire de Formation et de Recherche de Mayotte, Route nationale 3, BP53, 97660 Dembeni, France
| | - Elliott Sucré
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France.,Département Sciences et Technologie, Centre Universitaire de Formation et de Recherche de Mayotte, Route nationale 3, BP53, 97660 Dembeni, France
| | - Corinne Bouvier
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | | | | - Yvan Bettarel
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Sébastien Villéger
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Thierry Bouvier
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| |
Collapse
|
45
|
Guibert I, Lecellier G, Torda G, Pochon X, Berteaux-Lecellier V. Metabarcoding reveals distinct microbiotypes in the giant clam Tridacna maxima. MICROBIOME 2020; 8:57. [PMID: 32317019 PMCID: PMC7175534 DOI: 10.1186/s40168-020-00835-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Giant clams and scleractinian (reef-building) corals are keystone species of coral reef ecosystems. The basis of their ecological success is a complex and fine-tuned symbiotic relationship with microbes. While the effect of environmental change on the composition of the coral microbiome has been heavily studied, we know very little about the composition and sensitivity of the microbiome associated with clams. Here, we explore the influence of increasing temperature on the microbial community (bacteria and dinoflagellates from the family Symbiodiniaceae) harbored by giant clams, maintained either in isolation or exposed to other reef species. We created artificial benthic assemblages using two coral species (Pocillopora damicornis and Acropora cytherea) and one giant clam species (Tridacna maxima) and studied the microbial community in the latter using metagenomics. RESULTS Our results led to three major conclusions. First, the health status of giant clams depended on the composition of the benthic species assemblages. Second, we discovered distinct microbiotypes in the studied T. maxima population, one of which was disproportionately dominated by Vibrionaceae and directly linked to clam mortality. Third, neither the increase in water temperature nor the composition of the benthic assemblage had a significant effect on the composition of the Symbiodiniaceae and bacterial communities of T. maxima. CONCLUSIONS Altogether, our results suggest that at least three microbiotypes naturally exist in the studied clam populations, regardless of water temperature. These microbiotypes plausibly provide similar functions to the clam host via alternate molecular pathways as well as microbiotype-specific functions. This redundancy in functions among microbiotypes together with their specificities provides hope that giant clam populations can tolerate some levels of environmental variation such as increased temperature. Importantly, the composition of the benthic assemblage could make clams susceptible to infections by Vibrionaceae, especially when water temperature increases. Video abstract.
Collapse
Affiliation(s)
- Isis Guibert
- Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, SAR China
- UMR250/9220 ENTROPIE IRD-CNRS-UR, Promenade Roger-Laroque, Sorbonne Université, Noumea Cedex, New Caledonia France
- USR3278 PSL CRIOBE CNRS-EPHE-UPVD, Papetoai, Moorea, French Polynesia
| | - Gael Lecellier
- UMR250/9220 ENTROPIE IRD-CNRS-UR, Promenade Roger-Laroque, Sorbonne Université, Noumea Cedex, New Caledonia France
- UVSQ, Université de Paris-Saclay, 45 Avenue des Etats-Unis, Versailles Cedex, France
| | - Gergely Torda
- ARC, Centre of Excellence for Coral Reef Studies, James Cook University, QLD, Townsville, 4811 Australia
| | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson, 7042 New Zealand
- Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth, 0941 New Zealand
| | - Véronique Berteaux-Lecellier
- UMR250/9220 ENTROPIE IRD-CNRS-UR, Promenade Roger-Laroque, Sorbonne Université, Noumea Cedex, New Caledonia France
| |
Collapse
|
46
|
Lima LFO, Weissman M, Reed M, Papudeshi B, Alker AT, Morris MM, Edwards RA, de Putron SJ, Vaidya NK, Dinsdale EA. Modeling of the Coral Microbiome: the Influence of Temperature and Microbial Network. mBio 2020; 11:e02691-19. [PMID: 32127450 PMCID: PMC7064765 DOI: 10.1128/mbio.02691-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Host-associated microbial communities are shaped by extrinsic and intrinsic factors to the holobiont organism. Environmental factors and microbe-microbe interactions act simultaneously on the microbial community structure, making the microbiome dynamics challenging to predict. The coral microbiome is essential to the health of coral reefs and sensitive to environmental changes. Here, we develop a dynamic model to determine the microbial community structure associated with the surface mucus layer (SML) of corals using temperature as an extrinsic factor and microbial network as an intrinsic factor. The model was validated by comparing the predicted relative abundances of microbial taxa to the relative abundances of microbial taxa from the sample data. The SML microbiome from Pseudodiploria strigosa was collected across reef zones in Bermuda, where inner and outer reefs are exposed to distinct thermal profiles. A shotgun metagenomics approach was used to describe the taxonomic composition and the microbial network of the coral SML microbiome. By simulating the annual temperature fluctuations at each reef zone, the model output is statistically identical to the observed data. The model was further applied to six scenarios that combined different profiles of temperature and microbial network to investigate the influence of each of these two factors on the model accuracy. The SML microbiome was best predicted by model scenarios with the temperature profile that was closest to the local thermal environment, regardless of the microbial network profile. Our model shows that the SML microbiome of P. strigosa in Bermuda is primarily structured by seasonal fluctuations in temperature at a reef scale, while the microbial network is a secondary driver.IMPORTANCE Coral microbiome dysbiosis (i.e., shifts in the microbial community structure or complete loss of microbial symbionts) caused by environmental changes is a key player in the decline of coral health worldwide. Multiple factors in the water column and the surrounding biological community influence the dynamics of the coral microbiome. However, by including only temperature as an external factor, our model proved to be successful in describing the microbial community associated with the surface mucus layer (SML) of the coral P. strigosa The dynamic model developed and validated in this study is a potential tool to predict the coral microbiome under different temperature conditions.
Collapse
Affiliation(s)
- Laís F O Lima
- Department of Biology, San Diego State University, San Diego, California, USA
- College of Biological Sciences, University of California Davis, Davis, California, USA
| | - Maya Weissman
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
| | - Micheal Reed
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Bhavya Papudeshi
- National Center for Genome Analysis Support, Pervasive Institute of Technology, Indiana University, Bloomington, Indiana, USA
| | - Amanda T Alker
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Megan M Morris
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Robert A Edwards
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | | | - Naveen K Vaidya
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Elizabeth A Dinsdale
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| |
Collapse
|
47
|
Abstract
In this paper, we examined the microbiome of the bovine rumen, feces, and milk and attempted to understand how the bacterial communities at each site affected the production and movement of vitamin B12 around the animal’s body. It was determined that the composition of the bovine rumen microbiome correlates well with vitamin B12 concentration, indicating that the rumen microbiota may be a good target for manipulation to improve production of this important vitamin. Vitamin B12 is synthesized by prokaryotes in the rumens of dairy cows—and this has implications in human nutrition since humans rely on consumption of dairy products for vitamin B12 acquisition. However, the concentration of vitamin B12 in milk is highly variable, and there is interest in determining what causes vitamin B12 variability. We collected 92 temporally linked rumen, fecal, blood, and milk sample sets from Holstein cows at various stages of lactation fitted with rumen cannula and attempted to define which bacterial genera correlated well with vitamin B12 abundance. The level of vitamin B12 present in each sample was measured, and the bacterial population of each rumen, fecal, and milk sample (n = 263) was analyzed by 16S rRNA-targeted amplicon sequencing of the V4 region. The bacterial populations present in the rumen, small intestine, and milk were highly dissimilar. Combined diet and lactation status had significant effects on the composition of the microbiota in the rumen and in the feces. A high ruminal concentration of vitamin B12 was correlated with the increased abundance of Prevotella, while a low ruminal concentration of vitamin B12 was correlated with increased abundance of Bacteroidetes, Ruminiclostridium, and Butyrivibrio. The ultimate concentration of vitamin B12 is controlled by the complex interaction of several factors, including the composition of the microbiota. Bacterial consumption of vitamin B12 in the rumen may be more important in determining overall levels than bacterial production. IMPORTANCE In this paper, we examined the microbiome of the bovine rumen, feces, and milk and attempted to understand how the bacterial communities at each site affected the production and movement of vitamin B12 around the animal’s body. It was determined that the composition of the bovine rumen microbiome correlates well with vitamin B12 concentration, indicating that the rumen microbiota may be a good target for manipulation to improve production of this important vitamin.
Collapse
|
48
|
The Effect of Thermal Stress on the Bacterial Microbiome of Exaiptasia diaphana. Microorganisms 2019; 8:microorganisms8010020. [PMID: 31877636 PMCID: PMC7022623 DOI: 10.3390/microorganisms8010020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Coral bleaching linked to climate change has generated interest in the response of coral’s bacterial microbiome to thermal stress. The sea anemone, Exaiptasia diaphana, is a popular coral model, but the response of its bacteria to thermal stress has been barely explored. To address this, we compared the bacterial communities of Great Barrier Reef (GBR) E. diaphana maintained at 26 °C or exposed to increasing temperature (26–33 °C) over two weeks. Communities were analyzed by metabarcoding of the bacterial 16S rRNA gene. Bleaching and Symbiodiniaceae health were assessed by Symbiodiniaceae cell density and dark-adapted quantum yield (Fv/Fm), respectively. Significant bleaching and reductions in Fv/Fm occurred in the heat-treated anemones above 29 °C. Overall declines in bacterial alpha diversity in all anemones were also observed. Signs of bacterial change emerged above 31 °C. Some initial outcomes may have been influenced by relocation or starvation, but collectively, the bacterial community and taxa-level data suggested that heat was the primary driver of change above 32 °C. Six bacterial indicator species were identified as potential biomarkers for thermal stress. We conclude that the bacterial microbiome of GBR E. diaphana is generally stable until a thermal threshold is surpassed, after which significant changes occur.
Collapse
|
49
|
Abstract
The significance of symbioses between eukaryotic hosts and microbes extends from the organismal to the ecosystem level and underpins the health of Earth’s most threatened marine ecosystems. Despite rapid growth in research on host-associated microbes, from individual microbial symbionts to host-associated consortia of significantly relevant taxa, little is known about their interactions with the vast majority of marine host species. We outline research priorities to strengthen our current knowledge of host–microbiome interactions and how they shape marine ecosystems. We argue that such advances in research will help predict responses of species, communities, and ecosystems to stressors driven by human activity and inform future management strategies. The significance of symbioses between eukaryotic hosts and microbes extends from the organismal to the ecosystem level and underpins the health of Earth’s most threatened marine ecosystems. This Perspective article outlines research priorities to strengthen our current knowledge of host-microbiome interactions, to help predict responses to anthropogenic stressors and to inform future management strategies.
Collapse
|
50
|
Mitchison-Field LMY, Vargas-Muñiz JM, Stormo BM, Vogt EJD, Van Dierdonck S, Pelletier JF, Ehrlich C, Lew DJ, Field CM, Gladfelter AS. Unconventional Cell Division Cycles from Marine-Derived Yeasts. Curr Biol 2019; 29:3439-3456.e5. [PMID: 31607535 PMCID: PMC7076734 DOI: 10.1016/j.cub.2019.08.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/07/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Fungi have been found in every marine habitat that has been explored; however, the diversity and functions of fungi in the ocean are poorly understood. In this study, fungi were cultured from the marine environment in the vicinity of Woods Hole, MA, USA, including from plankton, sponge, and coral. Our sampling resulted in 35 unique species across 20 genera. We observed many isolates by time-lapse, differential interference contrast (DIC) microscopy and analyzed modes of growth and division. Several black yeasts displayed highly unconventional cell division cycles compared to those of traditional model yeast systems. Black yeasts have been found in habitats inhospitable to other life and are known for halotolerance, virulence, and stress resistance. We find that this group of yeasts also shows remarkable plasticity in terms of cell size control, modes of cell division, and cell polarity. Unexpected behaviors include division through a combination of fission and budding, production of multiple simultaneous buds, and cell division by sequential orthogonal septations. These marine-derived yeasts reveal alternative mechanisms for cell division cycles that seem likely to expand the repertoire of rules established from classic model system yeasts.
Collapse
Affiliation(s)
- Lorna M Y Mitchison-Field
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Marine Biological Laboratory, Woods Hole, MA 02354, USA
| | - José M Vargas-Muñiz
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin M Stormo
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ellysa J D Vogt
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah Van Dierdonck
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| | - James F Pelletier
- Marine Biological Laboratory, Woods Hole, MA 02354, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Ehrlich
- Marine Biological Laboratory, Woods Hole, MA 02354, USA; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| | - Christine M Field
- Marine Biological Laboratory, Woods Hole, MA 02354, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Marine Biological Laboratory, Woods Hole, MA 02354, USA.
| |
Collapse
|