1
|
Valencia-Toxqui G, Ramsey J. How to introduce a new bacteriophage on the block: a short guide to phage classification. J Virol 2024; 98:e0182123. [PMID: 39264154 PMCID: PMC11494874 DOI: 10.1128/jvi.01821-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Bacteriophage (phage) studies established the field of molecular biology and continue to propel life science research forward due to their diversity, abundance, and potential applications. In this Gem article, we orient newcomers to four common ways phages are currently classified: infection cycle, morphology, taxonomy, and supergroup. By using these classifications, researchers can determine where any novel phage fits into the scheme of the known "phage-verse".
Collapse
Affiliation(s)
- Guadalupe Valencia-Toxqui
- Department of Biology, Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Jolene Ramsey
- Department of Biology, Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Meidaninikjeh S, Mohammadi P, Elikaei A. A simplified method of bacteriophage preparation for transmission electron microscope. J Virol Methods 2024; 328:114951. [PMID: 38750823 DOI: 10.1016/j.jviromet.2024.114951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
Bacteriophages are viruses that infect bacteria. Researchers use different methods to study the characteristics of bacteriophages. Transmission electron microscope (TEM) is considered the best method to analyze these characteristics. However, the quality of TEM micrographs is significantly influenced by the preparation methods used to prepare the bacteriophages sample. In this study, researchers compared two different methods for preparing the bacteriophage samples. In one method was used SM buffer, while in the other used deionized water. The results were analyzed by TEM and compared with each other. Additionally, the viability of bacteriophage in deionized water and SM buffer at 4°C was determined through plaque assay within 72 hours. TEM micrographs showed that the quality of bacteriophage sample prepared with deionized water is superior to those prepared with SM buffer. Furthermore, the titer of the bacteriophages did not show a significant reduction during 72 hours in both SM and deionized water. In conclusion, the results suggested that preparation method can significantly impact the quality of TEM micrographs. Using sterile deionized water for the preparation of bacteriophages is a simple way to improve the quality of TEM micrographs and it is advisable to send the samples to the laboratory within 72 hours.
Collapse
Affiliation(s)
- Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran.
| | - Ameneh Elikaei
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran
| |
Collapse
|
3
|
Lossouarn J, Beurrier E, Bouteau A, Moncaut E, Sir Silmane M, Portalier H, Zouari A, Cattoir V, Serror P, Petit MA. The virtue of training: extending phage host spectra against vancomycin-resistant Enterococcus faecium strains using the Appelmans method. Antimicrob Agents Chemother 2024; 68:e0143923. [PMID: 38591854 PMCID: PMC11210271 DOI: 10.1128/aac.01439-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Phage therapy has (re)emerged as a serious possibility for combating multidrug-resistant bacterial infections, including those caused by vancomycin-resistant Enterococcus faecium strains. These opportunistic pathogens belong to a specific clonal complex 17, against which relatively few phages have been screened. We isolated a collection of 21 virulent phages growing on these vancomycin-resistant isolates. Each of these phages harbored a typical narrow plaquing host range, lysing at most 5 strains and covering together 10 strains of our panel of 14 clinical isolates. To enlarge the host spectrum of our phages, the Appelmans protocol was used. We mixed four out of our most complementary phages in a cocktail that we iteratively grew on eight naive strains from our panel, of which six were initially refractory to at least three of the combined phages. Fifteen successive passages permitted to significantly improve the lytic activity of the cocktail, from which phages with extended host ranges within the E. faecium species could be isolated. A single evolved phage able to kill up to 10 of the 14 initial E. faecium strains was obtained, and it barely infected nearby species. All evolved phages had acquired point mutations or a recombination event in the tail fiber genetic region, suggesting these genes might have driven phage evolution by contributing to their extended host spectra.
Collapse
Affiliation(s)
- Julien Lossouarn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elsa Beurrier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Astrid Bouteau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elisabeth Moncaut
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Maria Sir Silmane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Heïdi Portalier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Asma Zouari
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière et CNR de la Résistance aux Antibiotiques (laboratoire associé "Entérocoques"), Rennes, France
| | - Vincent Cattoir
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière et CNR de la Résistance aux Antibiotiques (laboratoire associé "Entérocoques"), Rennes, France
- Université de Rennes, INSERM, UMR_S1230 BRM, Rennes, France
| | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
4
|
Wang H, Chao S, Yan Q, Zhang S, Chen G, Mao C, Hu Y, Yu F, Wang S, Lv L, Yang B, He J, Zhang S, Zhang L, Simmonds P, Feng G. Genetic diversity of RNA viruses infecting invertebrate pests of rice. SCIENCE CHINA. LIFE SCIENCES 2024; 67:175-187. [PMID: 37946067 DOI: 10.1007/s11427-023-2398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 11/12/2023]
Abstract
Invertebrate species are a natural reservoir of viral genetic diversity, and invertebrate pests are widely distributed in crop fields. However, information on viruses infecting invertebrate pests of crops is limited. In this report, we describe the deep metatranscriptomic sequencing of 88 invertebrate samples covering all major invertebrate pests in rice fields. We identified 296 new RNA viruses and 13 known RNA viruses. These viruses clustered within 31 families, with many highly divergent viruses constituting potentially new families and genera. Of the identified viruses, 13 RNA viruses clustered within the Fiersviridae family of bacteriophages, and 48 RNA viruses clustered within families and genera of mycoviruses. We detected known rice viruses in novel invertebrate hosts at high abundances. Furthermore, some novel RNA viruses have genome structures closely matching to known plant viruses and clustered within genera of several plant virus species. Forty-five potential insect pathogenic RNA viruses were detected in invertebrate species. Our analysis revealed that host taxonomy plays a major role and geographical location plays an important role in structuring viral diversity. Cross-species transmission of RNA viruses was detected between invertebrate hosts. Newly identified viral genomes showed extensive variation for invertebrate viral families or genera. Together, the large-scale metatranscriptomic analysis greatly expands our understanding of RNA viruses in rice invertebrate species, the results provide valuable information for developing efficient strategies to manage insect pests and virus-mediated crop diseases.
Collapse
Affiliation(s)
- Haoran Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shufen Chao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Qing Yan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Shu Zhang
- Institute of Plant Protection & Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Guoqing Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Chonghui Mao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Yang Hu
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550000, China
| | - Fengquan Yu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Shuo Wang
- Sanya Agricultural Technology Extension and Service Centre, Sanya, 572000, China
| | - Liang Lv
- Institute of Plant Protection & Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Baojun Yang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Jiachun He
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Songbai Zhang
- College of Agriculture, Yangtze University, Jingzhou, 434000, China
| | - Liangsheng Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310012, China
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Guozhong Feng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China.
| |
Collapse
|
5
|
Vik D, Bolduc B, Roux S, Sun CL, Pratama AA, Krupovic M, Sullivan MB. MArVD2: a machine learning enhanced tool to discriminate between archaeal and bacterial viruses in viral datasets. ISME COMMUNICATIONS 2023; 3:87. [PMID: 37620369 PMCID: PMC10449787 DOI: 10.1038/s43705-023-00295-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Our knowledge of viral sequence space has exploded with advancing sequencing technologies and large-scale sampling and analytical efforts. Though archaea are important and abundant prokaryotes in many systems, our knowledge of archaeal viruses outside of extreme environments is limited. This largely stems from the lack of a robust, high-throughput, and systematic way to distinguish between bacterial and archaeal viruses in datasets of curated viruses. Here we upgrade our prior text-based tool (MArVD) via training and testing a random forest machine learning algorithm against a newly curated dataset of archaeal viruses. After optimization, MArVD2 presented a significant improvement over its predecessor in terms of scalability, usability, and flexibility, and will allow user-defined custom training datasets as archaeal virus discovery progresses. Benchmarking showed that a model trained with viral sequences from the hypersaline, marine, and hot spring environments correctly classified 85% of the archaeal viruses with a false detection rate below 2% using a random forest prediction threshold of 80% in a separate benchmarking dataset from the same habitats.
Collapse
Affiliation(s)
- Dean Vik
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA.
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA.
| | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christine L Sun
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Akbar Adjie Pratama
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, CNRS UMR6047, Paris, France
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA.
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
van Oers MM, Herniou EA, Jehle JA, Krell PJ, Abd-Alla AMM, Ribeiro BM, Theilmann DA, Hu Z, Harrison RL. Developments in the classification and nomenclature of arthropod-infecting large DNA viruses that contain pif genes. Arch Virol 2023; 168:182. [PMID: 37322175 PMCID: PMC10271883 DOI: 10.1007/s00705-023-05793-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Viruses of four families of arthropod-specific, large dsDNA viruses (the nuclear arthropod large DNA viruses, or NALDVs) possess homologs of genes encoding conserved components involved in the baculovirus primary infection mechanism. The presence of such homologs encoding per os infectivity factors (pif genes), along with their absence from other viruses and the occurrence of other shared characteristics, suggests a common origin for the viruses of these families. Therefore, the class Naldaviricetes was recently established, accommodating these four families. In addition, within this class, the ICTV approved the creation of the order Lefavirales for three of these families, whose members carry homologs of the baculovirus genes that code for components of the viral RNA polymerase, which is responsible for late gene expression. We further established a system for the binomial naming of all virus species in the order Lefavirales, in accordance with a decision by the ICTV in 2019 to move towards a standardized nomenclature for all virus species. The binomial species names for members of the order Lefavirales consist of the name of the genus to which the species belongs (e.g., Alphabaculovirus), followed by a single epithet that refers to the host species from which the virus was originally isolated. The common names of viruses and the abbreviations thereof will not change, as the format of virus names lies outside the remit of the ICTV.
Collapse
Affiliation(s)
- Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands.
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS - University of Tours, 37200, Tours, France
| | - Johannes A Jehle
- Institute for Biological Control, Julius Kühn-Institut, 69221, Dossenheim, Germany
| | - Peter J Krell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Adly M M Abd-Alla
- Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna International Centre, Vienna, Austria
| | - Bergmann M Ribeiro
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília, Brasília, Brazil
| | - David A Theilmann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, Box 5000, Summerland, BC, V0H1Z0, Canada
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Robert L Harrison
- Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, 10300 Baltimore Avenue, Bldg 007 Barc‑West, Beltsville, MD, 20705, USA
| |
Collapse
|
7
|
Siddell SG, Smith DB, Adriaenssens E, Alfenas-Zerbini P, Dutilh BE, Garcia ML, Junglen S, Krupovic M, Kuhn JH, Lambert AJ, Lefkowitz EJ, Łobocka M, Mushegian AR, Oksanen HM, Robertson DL, Rubino L, Sabanadzovic S, Simmonds P, Suzuki N, Van Doorslaer K, Vandamme AM, Varsani A, Zerbini FM. Virus taxonomy and the role of the International Committee on Taxonomy of Viruses (ICTV). J Gen Virol 2023; 104:001840. [PMID: 37141106 PMCID: PMC10227694 DOI: 10.1099/jgv.0.001840] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023] Open
Abstract
The taxonomy of viruses is developed and overseen by the International Committee on Taxonomy of Viruses (ICTV), which scrutinizes, approves and ratifies taxonomic proposals, and maintains a list of virus taxa with approved names (https://ictv.global). The ICTV has approximately 180 members who vote by simple majority. Taxon-specific Study Groups established by the ICTV have a combined membership of over 600 scientists from the wider virology community; they provide comprehensive expertise across the range of known viruses and are major contributors to the creation and evaluation of taxonomic proposals. Proposals can be submitted by anyone and will be considered by the ICTV irrespective of Study Group support. Thus, virus taxonomy is developed from within the virology community and realized by a democratic decision-making process. The ICTV upholds the distinction between a virus or replicating genetic element as a physical entity and the taxon category to which it is assigned. This is reflected by the nomenclature of the virus species taxon, which is now mandated by the ICTV to be in a binomial format (genus + species epithet) and is typographically distinct from the names of viruses. Classification of viruses below the rank of species (such as, genotypes or strains) is not within the remit of the ICTV. This article, authored by the ICTV Executive Committee, explains the principles of virus taxonomy and the organization, function, processes and resources of the ICTV, with the aim of encouraging greater understanding and interaction among the wider virology community.
Collapse
Affiliation(s)
- Stuart G. Siddell
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, University of Bristol, Bristol, UK
| | - Donald B. Smith
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Bas E. Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Maria Laura Garcia
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET, UNLP, La Plata, Buenos Aires, Argentina
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Amy J. Lambert
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Elliot J. Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Arcady R. Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, Alexandria, Virginia, USA
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Luisa Rubino
- Istituto per la Protezione Sostenibile delle Piante, CNR, SS Bari, Bari, Italy
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi, USA
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, Department of Immunobiology, BIO5 Institute, Genetics Graduate Interdisciplinary Program, Cancer Biology Graduate Interdisciplinary Program and University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Anne-Mieke Vandamme
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium and Center for Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - F. Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
8
|
Moraru C. VirClust-A Tool for Hierarchical Clustering, Core Protein Detection and Annotation of ( Prokaryotic) Viruses. Viruses 2023; 15:v15041007. [PMID: 37112988 PMCID: PMC10143988 DOI: 10.3390/v15041007] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Recent years have seen major changes in the classification criteria and taxonomy of viruses. The current classification scheme, also called "megataxonomy of viruses", recognizes six different viral realms, defined based on the presence of viral hallmark genes (VHGs). Within the realms, viruses are classified into hierarchical taxons, ideally defined by the phylogeny of their shared genes. To enable the detection of shared genes, viruses have first to be clustered, and there is currently a need for tools to assist with virus clustering and classification. Here, VirClust is presented. It is a novel, reference-free tool capable of performing: (i) protein clustering, based on BLASTp and Hidden Markov Models (HMMs) similarities; (ii) hierarchical clustering of viruses based on intergenomic distances calculated from their shared protein content; (iii) identification of core proteins and (iv) annotation of viral proteins. VirClust has flexible parameters both for protein clustering and for splitting the viral genome tree into smaller genome clusters, corresponding to different taxonomic levels. Benchmarking on a phage dataset showed that the genome trees produced by VirClust match the current ICTV classification at family, sub-family and genus levels. VirClust is freely available, as a web-service and stand-alone tool.
Collapse
Affiliation(s)
- Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky-Str. 9-11, 26111 Oldenburg, Germany
| |
Collapse
|
9
|
Dezordi FZ, Coutinho GB, Dias YJM, Wallau GL. Ancient origin of Jingchuvirales derived glycoproteins integrated in arthropod genomes. Genet Mol Biol 2023; 46:e20220218. [PMID: 37036390 PMCID: PMC10084718 DOI: 10.1590/1678-4685-gmb-2022-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/11/2023] [Indexed: 04/11/2023] Open
Abstract
Endogenous virus elements (EVEs) are viral-derived sequences integrated into their host genomes. EVEs of the Jingchuvirales order were detected in a wide range of insect genomes covering several distantly related families. Moreover, Jingchuvirales-derived glycoproteins were recently associated by our group with the origin of a putative new retrovirus based on a glycoprotein captured by a mosquito retrotransposon. But, except for mosquitoes, there is a lack of a more detailed understanding of the endogenization mechanism, timing, and frequency per Jingchuvirales viral lineages. Here we screened Jingchuvirales glycoprotein-derived EVEs (Jg-EVEs) in eukaryotic genomes. We found six distinct endogenization events of Jg-EVEs, that belong to two out of five known Jingchuvirales families (Chuviridae and Natareviridae). For seven arthropod families bearing Jg-EVEs there is no register of bona fide circulating chuvirus infection. Hence, our results show that Jingchuvirales viruses infected or still infect these host families. Although we found abundant evidence of LTR-Gypsy retrotransposons fragments associated with the glycoprotein in Hymenoptera and other insect orders, our results show that the widespread distribution of Jingchuvirales glycoproteins in extant Arhtropods is a result of multiple ancient endogenization events and that these virus fossils are being vertically inherited in Arthropods genomes for millions of years.
Collapse
Affiliation(s)
- Filipe Zimmer Dezordi
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Departamento de Entomologia, Recife, PE, Brazil
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Núcleo de Bioinformática, Recife, PE, Brazil
| | - Gutembergmann Batista Coutinho
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Departamento de Entomologia, Recife, PE, Brazil
- Universidade Federal de Pernambuco, Centro de Biociências, Recife, PE, Brazil
| | - Yago José Mariz Dias
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Departamento de Entomologia, Recife, PE, Brazil
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Núcleo de Bioinformática, Recife, PE, Brazil
- Universidade Federal de Pernambuco, Centro de Biociências, Recife, PE, Brazil
| | - Gabriel Luz Wallau
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Departamento de Entomologia, Recife, PE, Brazil
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Núcleo de Bioinformática, Recife, PE, Brazil
- WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Department of Arbovirology, Hamburg, Germany
| |
Collapse
|
10
|
Olendraite I, Brown K, Firth AE. Identification of RNA Virus-Derived RdRp Sequences in Publicly Available Transcriptomic Data Sets. Mol Biol Evol 2023; 40:msad060. [PMID: 37014783 PMCID: PMC10101049 DOI: 10.1093/molbev/msad060] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/15/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
RNA viruses are abundant and highly diverse and infect all or most eukaryotic organisms. However, only a tiny fraction of the number and diversity of RNA virus species have been catalogued. To cost-effectively expand the diversity of known RNA virus sequences, we mined publicly available transcriptomic data sets. We developed 77 family-level Hidden Markov Model profiles for the viral RNA-dependent RNA polymerase (RdRp)-the only universal "hallmark" gene of RNA viruses. By using these to search the National Center for Biotechnology Information Transcriptome Shotgun Assembly database, we identified 5,867 contigs encoding RNA virus RdRps or fragments thereof and analyzed their diversity, taxonomic classification, phylogeny, and host associations. Our study expands the known diversity of RNA viruses, and the 77 curated RdRp Profile Hidden Markov Models provide a useful resource for the virus discovery community.
Collapse
Affiliation(s)
- Ingrida Olendraite
- Division of Virology, Department of Pathology, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Brown
- Division of Virology, Department of Pathology, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E Firth
- Division of Virology, Department of Pathology, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Simmonds P, Adriaenssens EM, Zerbini FM, Abrescia NGA, Aiewsakun P, Alfenas-Zerbini P, Bao Y, Barylski J, Drosten C, Duffy S, Duprex WP, Dutilh BE, Elena SF, García ML, Junglen S, Katzourakis A, Koonin EV, Krupovic M, Kuhn JH, Lambert AJ, Lefkowitz EJ, Łobocka M, Lood C, Mahony J, Meier-Kolthoff JP, Mushegian AR, Oksanen HM, Poranen MM, Reyes-Muñoz A, Robertson DL, Roux S, Rubino L, Sabanadzovic S, Siddell S, Skern T, Smith DB, Sullivan MB, Suzuki N, Turner D, Van Doorslaer K, Vandamme AM, Varsani A, Vasilakis N. Four principles to establish a universal virus taxonomy. PLoS Biol 2023; 21:e3001922. [PMID: 36780432 PMCID: PMC9925010 DOI: 10.1371/journal.pbio.3001922] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent.
Collapse
Affiliation(s)
- Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - F. Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Nicola G. A. Abrescia
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences—BRTA, Derio, Spain
- Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
| | - Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Yiming Bao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jakub Barylski
- Department of Molecular Virology, Adam Mickiewicz University, Poznan, Poland
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt University, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - W. Paul Duprex
- The Center for Vaccine Research, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bas E. Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University, Jena, Germany
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Valencia, Spain
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Maria Laura García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET, UNLP, La Plata, Argentina
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt University, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Aris Katzourakis
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, United States of America
| | - Amy J. Lambert
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Elliot J. Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Cédric Lood
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics and Databases, Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Arcady R. Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, Alexandria, Virginia, United States of America
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Alejandro Reyes-Muñoz
- Max Planck Tandem Group in Computational Biology, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Luisa Rubino
- Istituto per la Protezione Sostenibile delle Piante, CNR, UOS Bari, Bari, Italy
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Stuart Siddell
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Tim Skern
- Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Donald B. Smith
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew B. Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Dann Turner
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, United Kingdom
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, Department of Immunobiology, BIO5 Institute, and University of Arizona Cancer Center, Tucson, Arizona, United States of America
| | - Anne-Mieke Vandamme
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
- Center for Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
| | - Nikos Vasilakis
- Department of Pathology, Center of Vector-Borne and Zoonotic Diseases, Institute for Human Infection and Immunity and World Reference Center for Emerging Viruses and Arboviruses, The University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
12
|
Kawasaki J, Tomonaga K, Horie M. Large-scale investigation of zoonotic viruses in the era of high-throughput sequencing. Microbiol Immunol 2023; 67:1-13. [PMID: 36259224 DOI: 10.1111/1348-0421.13033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/28/2022] [Accepted: 10/16/2022] [Indexed: 01/10/2023]
Abstract
Zoonotic diseases considerably impact public health and socioeconomics. RNA viruses reportedly caused approximately 94% of zoonotic diseases documented from 1990 to 2010, emphasizing the importance of investigating RNA viruses in animals. Furthermore, it has been estimated that hundreds of thousands of animal viruses capable of infecting humans are yet to be discovered, warning against the inadequacy of our understanding of viral diversity. High-throughput sequencing (HTS) has enabled the identification of viral infections with relatively little bias. Viral searches using both symptomatic and asymptomatic animal samples by HTS have revealed hidden viral infections. This review introduces the history of viral searches using HTS, current analytical limitations, and future potentials. We primarily summarize recent research on large-scale investigations on viral infections reusing HTS data from public databases. Furthermore, considering the accumulation of uncultivated viruses, we discuss current studies and challenges for connecting viral sequences to their phenotypes using various approaches: performing data analysis, developing predictive modeling, or implementing high-throughput platforms of virological experiments. We believe that this article provides a future direction in large-scale investigations of potential zoonotic viruses using the HTS technology.
Collapse
Affiliation(s)
- Junna Kawasaki
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Horie
- Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan.,Osaka International Research Center for Infectious Diseases, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
13
|
Zhu Y, Shang J, Peng C, Sun Y. Phage family classification under Caudoviricetes: A review of current tools using the latest ICTV classification framework. Front Microbiol 2022; 13:1032186. [PMID: 36590402 PMCID: PMC9800612 DOI: 10.3389/fmicb.2022.1032186] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Bacteriophages, which are viruses infecting bacteria, are the most ubiquitous and diverse entities in the biosphere. There is accumulating evidence revealing their important roles in shaping the structure of various microbiomes. Thanks to (viral) metagenomic sequencing, a large number of new bacteriophages have been discovered. However, lacking a standard and automatic virus classification pipeline, the taxonomic characterization of new viruses seriously lag behind the sequencing efforts. In particular, according to the latest version of ICTV, several large phage families in the previous classification system are removed. Therefore, a comprehensive review and comparison of taxonomic classification tools under the new standard are needed to establish the state-of-the-art. In this work, we retrained and tested four recently published tools on newly labeled databases. We demonstrated their utilities and tested them on multiple datasets, including the RefSeq, short contigs, simulated metagenomic datasets, and low-similarity datasets. This study provides a comprehensive review of phage family classification in different scenarios and a practical guidance for choosing appropriate taxonomic classification pipelines. To our best knowledge, this is the first review conducted under the new ICTV classification framework. The results show that the new family classification framework overall leads to better conserved groups and thus makes family-level classification more feasible.
Collapse
|
14
|
Complete Genome Sequences of Five Phietaviruses Infecting Staphylococcus aureus. Microbiol Resour Announc 2022; 11:e0085522. [PMID: 36173192 PMCID: PMC9583785 DOI: 10.1128/mra.00855-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The annotated whole-genome sequences of five cultured phietaviruses infecting Staphylococcus aureus are presented. They are closely related to prophages that were previously sequenced as part of S. aureus genomes.
Collapse
|
15
|
Tarakanov RI, Lukianova AA, Evseev PV, Pilik RI, Tokmakova AD, Kulikov EE, Toshchakov SV, Ignatov AN, Dzhalilov FSU, Miroshnikov KA. Ayka, a Novel Curtobacterium Bacteriophage, Provides Protection against Soybean Bacterial Wilt and Tan Spot. Int J Mol Sci 2022; 23:10913. [PMID: 36142829 PMCID: PMC9502298 DOI: 10.3390/ijms231810913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Diseases caused by the Gram-positive bacterium Curtobacteriumflaccumfaciens pv. flaccumfaciens (Cff) inflict substantial economic losses in soybean cultivation. Use of specific bacterial viruses (bacteriophages) for treatment of seeds and plants to prevent the development of bacterial infections is a promising approach for bioprotection in agriculture. Phage control has been successfully tested for a number of staple crops. However, this approach has never been applied to treat bacterial diseases of legumes caused by Cff, and no specific bacteriophages have been known to date. This paper presents detailed characteristics of the first lytic bacteriophage infecting this pathogen. Phage Ayka, related to φ29-like (Salasmaviridae) viruses, but representing a new subfamily, was shown to control the development of bacterial wilt and tan spot in vitro and in greenhouse plants.
Collapse
Affiliation(s)
- Rashit I. Tarakanov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia
| | - Anna A. Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Peter V. Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Roksana I. Pilik
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str., 6, 117198 Moscow, Russia
| | - Anna D. Tokmakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Institutskiy Per, 9, Dolgoprudny, 141701 Moscow, Russia
| | - Eugene E. Kulikov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Institutskiy Per, 9, Dolgoprudny, 141701 Moscow, Russia
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prosp. 60-Letia Oktyabrya, 7-2, 117312 Moscow, Russia
| | - Stepan V. Toshchakov
- Center for Genome Research, National Research Center “Kurchatov Institute”, Kurchatov Sq., 1, 123098 Moscow, Russia
| | - Alexander N. Ignatov
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str., 6, 117198 Moscow, Russia
| | - Fevzi S.-U. Dzhalilov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia
| | - Konstantin A. Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| |
Collapse
|
16
|
Van Cauwenberghe J, Santamaría RI, Bustos P, González V. Novel lineages of single-stranded DNA phages that coevolved with the symbiotic bacteria Rhizobium. Front Microbiol 2022; 13:990394. [PMID: 36177468 PMCID: PMC9512667 DOI: 10.3389/fmicb.2022.990394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/19/2022] [Indexed: 11/27/2022] Open
Abstract
This study describes novel single-stranded DNA phages isolated from common bean agriculture soils by infection of the nitrogen-fixing symbiotic bacteria Rhizobium etli and R. phaseoli. A total of 29 phages analyzed have 4.3-6 kb genomes in size and GC 59-60%. They belong to different clades unrelated to other Microviridae subfamilies. Three-dimensional models of the major capsid protein (MCP) showed a conserved β-barrel structural "jelly-roll" fold. A variable-length loop in the MCPs distinguished three Rhizobium microvirus groups. Microviridae subfamilies were consistent with viral clusters determined by the protein-sharing network. All viral clusters, except for Bullavirinae, included mostly microviruses identified in metagenomes from distinct ecosystems. Two Rhizobium microvirus clusters, chaparroviruses, and chicoviruses, were included within large viral unknown clusters with microvirus genomes identified in diverse metagenomes. A third Rhizobium microvirus cluster belonged to the subfamily Amoyvirinae. Phylogenetic analysis of the MCP confirms the divergence of the Rhizobium microviruses into separate clades. The phylogeny of the bacterial hosts matches the microvirus MCP phylogeny, suggesting a coevolutionary history between the phages and their bacterial host. This study provided essential biological information on cultivated microvirus for understanding the evolution and ecological diversification of the Microviridae family in diverse microbial ecosystems.
Collapse
Affiliation(s)
- Jannick Van Cauwenberghe
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Cuernavaca, Mexico
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Rosa I. Santamaría
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Cuernavaca, Mexico
| | - Patricia Bustos
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Cuernavaca, Mexico
| | - Víctor González
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Cuernavaca, Mexico
| |
Collapse
|
17
|
Analysis of public domain plant transcriptomes expands the phylogenetic diversity of the family Secoviridae. Virus Genes 2022; 58:598-604. [PMID: 36040568 DOI: 10.1007/s11262-022-01931-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Secoviruses are mono-/bipartite plant-infecting, icosahedral RNA viruses that incite economically important diseases in plants. In the present study, nine secoviruses tentatively named as Ananas comosus secovirus (AcSV), Artocarpus altilis secovirus (AaSV), Boehmeria nivea secovirus (BnSV), Gynostemma pentaphyllum secovirus (GpSV), Orobanche cernua secovirus (OcSV), Paris polyphylla secovirus 1 (PpSV1), Paris polyphylla secovirus 2 (PpSV2), Rhododendron delavayi secovirus (RdSV), and Yucca gloriosa secovirus (YgSV) were identified by probing publicly available transcriptomes of eight plant species. Coding-complete genome/genome segments of all the identified viruses encoding a polyprotein were recovered. Two of the nine identified viruses-AcSV and GpSV were discovered in few of the small RNA libraries of respective plant species. Putative cleavage sites were predicted in polyproteins encoded by AcSV, GpSV, PpSV2 and YgSV genome segments. Phylogenetic and sequence identity analyses revealed that AcSV, GpSV and YgSV, PpSV1 and RdSV putatively belong to the genera- Sadwavirus (sub genus: Cholivirus), Fabavirus, Nepovirus and Waikavirus, respectively, while AaSV, BnSV, and PpSV2 may represent a distinct group of viruses within the family Secoviridae as they could not conclusively be assigned to a single genus.
Collapse
|
18
|
Comprehensive Evaluation of RNA and DNA Viromic Methods Based on Species Richness and Abundance Analyses Using Marmot Rectal Samples. mSystems 2022; 7:e0043022. [PMID: 35862817 PMCID: PMC9426427 DOI: 10.1128/msystems.00430-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Viral metagenomics is the most powerful tool to profile viromic composition for a given sample. Different viromic methods, including amplification-free ones, have been developed, but choosing them for different purposes requires comprehensive benchmarks. Here, we assessed the performance of four routinely used methods, i.e., multiple displacement amplification (MDA), direct metagenomic sequencing (MTG), sequence-independent single-primer amplification (SIA), and metatranscriptomic sequencing (MTT), using marmot rectal samples as the templates spiked with five known viruses of different genome types. The obtained clean data were differently contaminated by host and bacterial genomes, resulting in MDA having the most, with ~72.1%, but MTT had only ~7.5% data, useful for follow-up viromic analysis. MDA showed a broader spectrum with higher efficiency to profile the DNA virome, and MTT captured almost all RNA viruses with extraordinary sensitivity; hence, they are advisable in richness-based viromic studies. MTG was weak in capturing single-stranded DNA viruses, and SIA could detect both RNA and DNA viruses but with high randomness. Due to biases to certain types of viruses, the four methods caused different alterations to species abundance compared to the initial virus composition. SIA and MDA introduced greater stochastic errors to relative abundances of species, genus, and family taxa, whereas the two amplification-free methods were more tolerant toward such errors and thus are recommendable in abundance-based analyses. In addition, genus taxon is a compromising analytic level that ensures technically supported and biologically and/or ecologically meaningful viromic conclusions. IMPORTANCE Viral metagenomics can be roughly divided into species richness-based studies and species abundance-based analyses. Viromic methods with different principles have been developed, but rational selection of these techniques according to different purposes requires comprehensive understanding of their properties. By assessing the four most widely used methods using template samples, we found that multiple displacement amplification (MDA) and metatranscriptomic sequencing (MTT) are advisable for species richness-based viromic studies, as they show excellent efficiency to detect DNA and RNA viruses. Meanwhile, metagenomic sequencing (MTG) and MTT are more compatible with stochastic errors of methods introduced into relative abundance of viromic taxa and hence are rational choices in species abundance-based analyses. This study also highlights that MTG needs to tackle host genome contamination and ameliorate the capacity to detect single-stranded DNA viruses in the future, and the MTT method requires an improvement in bacterial rRNA depletion prior to library preparation.
Collapse
|
19
|
Raju RS, Al Nahid A, Chondrow Dev P, Islam R. VirusTaxo: Taxonomic classification of viruses from the genome sequence using k-mer enrichment. Genomics 2022; 114:110414. [PMID: 35718090 DOI: 10.1016/j.ygeno.2022.110414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 04/27/2022] [Accepted: 06/13/2022] [Indexed: 11/04/2022]
Abstract
Classification of viruses into their taxonomic ranks (e.g., order, family, and genus) provides a framework to organize an abundant population of viruses. Next-generation metagenomic sequencing technologies lead to a rapid increase in generating sequencing data of viruses which require bioinformatics tools to analyze the taxonomy. Many metagenomic taxonomy classifiers have been developed to study microbiomes, but it is particularly challenging to assign the taxonomy of diverse virus sequences and there is a growing need for dedicated methods to be developed that are optimized to classify virus sequences into their taxa. For taxonomic classification of viruses from metagenomic sequences, we developed VirusTaxo using diverse (e.g., 402 DNA and 280 RNA) genera of viruses. VirusTaxo has an average accuracy of 93% at genus level prediction in DNA and RNA viruses. VirusTaxo outperformed existing taxonomic classifiers of viruses where it assigned taxonomy of a larger fraction of metagenomic contigs compared to other methods. Benchmarking of VirusTaxo on a collection of SARS-CoV-2 sequencing libraries and metavirome datasets suggests that VirusTaxo can characterize virus taxonomy from highly diverse contigs and provide a reliable decision on the taxonomy of viruses.
Collapse
Affiliation(s)
- Rajan Saha Raju
- Department of Computer Science and Engineering, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Abdullah Al Nahid
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Preonath Chondrow Dev
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Rashedul Islam
- Omics Lab, Dhaka, Bangladesh; Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada.
| |
Collapse
|
20
|
Andrade-Martínez JS, Camelo Valera LC, Chica Cárdenas LA, Forero-Junco L, López-Leal G, Moreno-Gallego JL, Rangel-Pineros G, Reyes A. Computational Tools for the Analysis of Uncultivated Phage Genomes. Microbiol Mol Biol Rev 2022; 86:e0000421. [PMID: 35311574 PMCID: PMC9199400 DOI: 10.1128/mmbr.00004-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over a century of bacteriophage research has uncovered a plethora of fundamental aspects of their biology, ecology, and evolution. Furthermore, the introduction of community-level studies through metagenomics has revealed unprecedented insights on the impact that phages have on a range of ecological and physiological processes. It was not until the introduction of viral metagenomics that we began to grasp the astonishing breadth of genetic diversity encompassed by phage genomes. Novel phage genomes have been reported from a diverse range of biomes at an increasing rate, which has prompted the development of computational tools that support the multilevel characterization of these novel phages based solely on their genome sequences. The impact of these technologies has been so large that, together with MAGs (Metagenomic Assembled Genomes), we now have UViGs (Uncultivated Viral Genomes), which are now officially recognized by the International Committee for the Taxonomy of Viruses (ICTV), and new taxonomic groups can now be created based exclusively on genomic sequence information. Even though the available tools have immensely contributed to our knowledge of phage diversity and ecology, the ongoing surge in software programs makes it challenging to keep up with them and the purpose each one is designed for. Therefore, in this review, we describe a comprehensive set of currently available computational tools designed for the characterization of phage genome sequences, focusing on five specific analyses: (i) assembly and identification of phage and prophage sequences, (ii) phage genome annotation, (iii) phage taxonomic classification, (iv) phage-host interaction analysis, and (v) phage microdiversity.
Collapse
Affiliation(s)
- Juan Sebastián Andrade-Martínez
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Laura Carolina Camelo Valera
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Luis Alberto Chica Cárdenas
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Laura Forero-Junco
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Gamaliel López-Leal
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - J. Leonardo Moreno-Gallego
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Guillermo Rangel-Pineros
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alejandro Reyes
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
21
|
GRAN3SAT: Creating Flexible Higher-Order Logic Satisfiability in the Discrete Hopfield Neural Network. MATHEMATICS 2022. [DOI: 10.3390/math10111899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
One of the main problems in representing information in the form of nonsystematic logic is the lack of flexibility, which leads to potential overfitting. Although nonsystematic logic improves the representation of the conventional k Satisfiability, the formulations of the first, second, and third-order logical structures are very predictable. This paper proposed a novel higher-order logical structure, named G-Type Random k Satisfiability, by capitalizing the new random feature of the first, second, and third-order clauses. The proposed logic was implemented into the Discrete Hopfield Neural Network as a symbolic logical rule. The proposed logic in Discrete Hopfield Neural Networks was evaluated using different parameter settings, such as different orders of clauses, different proportions between positive and negative literals, relaxation, and differing numbers of learning trials. Each evaluation utilized various performance metrics, such as learning error, testing error, weight error, energy analysis, and similarity analysis. In addition, the flexibility of the proposed logic was compared with current state-of-the-art logic rules. Based on the simulation, the proposed logic was reported to be more flexible, and produced higher solution diversity.
Collapse
|
22
|
Quantifying and Cataloguing Unknown Sequences within Human Microbiomes. mSystems 2022; 7:e0146821. [PMID: 35258340 PMCID: PMC9052204 DOI: 10.1128/msystems.01468-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Advances in genome sequencing technologies and lower costs have enabled the exploration of a multitude of known and novel environments and microbiomes. This has led to an exponential growth in the raw sequence data that are deposited in online repositories. Metagenomic and metatranscriptomic data sets are typically analysed with regard to a specific biological question. However, it is widely acknowledged that these data sets are comprised of a proportion of sequences that bear no similarity to any currently known biological sequence, and this so-called "dark matter" is often excluded from downstream analyses. In this study, a systematic framework was developed to assemble, identify, and measure the proportion of unknown sequences present in distinct human microbiomes. This framework was applied to 40 distinct studies, comprising 963 samples, and covering 10 different human microbiomes including fecal, oral, lung, skin, and circulatory system microbiomes. We found that while the human microbiome is one of the most extensively studied, on average 2% of assembled sequences have not yet been taxonomically defined. However, this proportion varied extensively among different microbiomes and was as high as 25% for skin and oral microbiomes that have more interactions with the environment. A rate of taxonomic characterization of 1.64% of unknown sequences being characterized per month was calculated from these taxonomically unknown sequences discovered in this study. A cross-study comparison led to the identification of similar unknown sequences in different samples and/or microbiomes. Both our computational framework and the novel unknown sequences produced are publicly available for future cross-referencing. Our approach led to the discovery of several novel viral genomes that bear no similarity to sequences in the public databases. Some of these are widespread as they have been found in different microbiomes and studies. Hence, our study illustrates how the systematic characterization of unknown sequences can help the discovery of novel microbes, and we call on the research community to systematically collate and share the unknown sequences from metagenomic studies to increase the rate at which the unknown sequence space can be classified.
Collapse
|
23
|
Abstract
Broadly effective antiviral therapies must be developed to be ready for clinical trials, which should begin soon after the emergence of new life-threatening viruses. Here, we pave the way towards this goal by reviewing conserved druggable virus-host interactions, mechanisms of action, immunomodulatory properties of available broad-spectrum antivirals (BSAs), routes of BSA delivery, and interactions of BSAs with other antivirals. Based on the review, we concluded that the range of indications of BSAs can be expanded, and new pan- and cross-viral mono- and combinational therapies can be developed. We have also developed a new scoring algorithm that can help identify the most promising few of the thousands of potential BSAs and BSA-containing drug cocktails (BCCs) to prioritize their development during the critical period between the identification of a new virus and the development of virus-specific vaccines, drugs, and therapeutic antibodies.
Collapse
|
24
|
Owen L, Laird K, Shivkumar M. Antiviral plant-derived natural products to combat RNA viruses: Targets throughout the viral life cycle. Lett Appl Microbiol 2021; 75:476-499. [PMID: 34953146 PMCID: PMC9544774 DOI: 10.1111/lam.13637] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/08/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022]
Abstract
There is a need for new effective antivirals, particularly in response to the development of antiviral drug resistance and emerging RNA viruses such as SARS‐CoV‐2. Plants are a significant source of structurally diverse bioactive compounds for drug discovery suggesting that plant‐derived natural products could be developed as antiviral agents. This article reviews the antiviral activity of plant‐derived natural products against RNA viruses, with a focus on compounds targeting specific stages of the viral life cycle. A range of plant extracts and compounds have been identified with antiviral activity, often against multiple virus families suggesting they may be useful as broad‐spectrum antiviral agents. The antiviral mechanism of action of many of these phytochemicals is not fully understood and there are limited studies and clinical trials demonstrating their efficacy and toxicity in vivo. Further research is needed to evaluate the therapeutic potential of plant‐derived natural products as antiviral agents.
Collapse
Affiliation(s)
- Lucy Owen
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Katie Laird
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Maitreyi Shivkumar
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
25
|
Gorbalenya AE, Lauber C. Bioinformatics of virus taxonomy: foundations and tools for developing sequence-based hierarchical classification. Curr Opin Virol 2021; 52:48-56. [PMID: 34883443 DOI: 10.1016/j.coviro.2021.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 11/03/2022]
Abstract
The genome sequence is the only characteristic readily obtainable for all known viruses, underlying the growing role of comparative genomics in organizing knowledge about viruses in a systematic evolution-aware way, known as virus taxonomy. Overseen by the International Committee on Taxonomy of Viruses (ICTV), development of virus taxonomy involves taxa demarcation at 15 ranks of a hierarchical classification, often in host-specific manner. Outside the ICTV remit, researchers assess fitting numerous unclassified viruses into the established taxa. They employ different metrics of virus clustering, basing on conserved domain(s), separation of viruses in rooted phylogenetic trees and pair-wise distance space. Computational approaches differ further in respect to methodology, number of ranks considered, sensitivity to uneven virus sampling, and visualization of results. Advancing and using computational tools will be critical for improving taxa demarcation across the virosphere and resolving rank origins in research that may also inform experimental virology.
Collapse
Affiliation(s)
- Alexander E Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands; Faculty of Bioengineering and Bioinformatics and Belozersky, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899, Moscow, Russia.
| | - Chris Lauber
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, A Joint Venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| |
Collapse
|
26
|
Dutilh BE, Varsani A, Tong Y, Simmonds P, Sabanadzovic S, Rubino L, Roux S, Muñoz AR, Lood C, Lefkowitz EJ, Kuhn JH, Krupovic M, Edwards RA, Brister JR, Adriaenssens EM, Sullivan MB. Perspective on taxonomic classification of uncultivated viruses. Curr Opin Virol 2021; 51:207-215. [PMID: 34781105 DOI: 10.1016/j.coviro.2021.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022]
Abstract
Historically, virus taxonomy has been limited to describing viruses that were readily cultivated in the laboratory or emerging in natural biomes. Metagenomic analyses, single-particle sequencing, and database mining efforts have yielded new sequence data on an astounding number of previously unknown viruses. As metagenomes are relatively free of biases, these data provide an unprecedented insight into the vastness of the virosphere, but to properly value the extent of this diversity it is critical that the viruses are taxonomically classified. Inclusion of uncultivated viruses has already improved the process as well as the understanding of the taxa, viruses, and their evolutionary relationships. The continuous development and testing of computational tools will be required to maintain a dynamic virus taxonomy that can accommodate the new discoveries.
Collapse
Affiliation(s)
- Bas E Dutilh
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Institute of Bioloversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, 07743, Jena, Germany.
| | - Arvind Varsani
- The Biodesign Center of Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, 7925, Cape Town, South Africa
| | - Yigang Tong
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford, OX1 3SY, UK
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, MS 39762, USA
| | - Luisa Rubino
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alejandro Reyes Muñoz
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Cédric Lood
- Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001, Leuven, Belgium; Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Mart Krupovic
- Institut Pasteur, Université de Paris, Archaeal Virology Unit, F-75015, Paris, France
| | - Robert A Edwards
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda MD 20894, USA
| | | | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH, USA
| |
Collapse
|
27
|
Liu Y, Demina TA, Roux S, Aiewsakun P, Kazlauskas D, Simmonds P, Prangishvili D, Oksanen HM, Krupovic M. Diversity, taxonomy, and evolution of archaeal viruses of the class Caudoviricetes. PLoS Biol 2021; 19:e3001442. [PMID: 34752450 PMCID: PMC8651126 DOI: 10.1371/journal.pbio.3001442] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/07/2021] [Accepted: 10/17/2021] [Indexed: 11/19/2022] Open
Abstract
The archaeal tailed viruses (arTV), evolutionarily related to tailed double-stranded DNA (dsDNA) bacteriophages of the class Caudoviricetes, represent the most common isolates infecting halophilic archaea. Only a handful of these viruses have been genomically characterized, limiting our appreciation of their ecological impacts and evolution. Here, we present 37 new genomes of haloarchaeal tailed virus isolates, more than doubling the current number of sequenced arTVs. Analysis of all 63 available complete genomes of arTVs, which we propose to classify into 14 new families and 3 orders, suggests ancient divergence of archaeal and bacterial tailed viruses and points to an extensive sharing of genes involved in DNA metabolism and counterdefense mechanisms, illuminating common strategies of virus-host interactions with tailed bacteriophages. Coupling of the comparative genomics with the host range analysis on a broad panel of haloarchaeal species uncovered 4 distinct groups of viral tail fiber adhesins controlling the host range expansion. The survey of metagenomes using viral hallmark genes suggests that the global architecture of the arTV community is shaped through recurrent transfers between different biomes, including hypersaline, marine, and anoxic environments.
Collapse
Affiliation(s)
- Ying Liu
- Institut Pasteur, Université de Paris, Archaeal Virology Unit, Paris, France
| | - Tatiana A. Demina
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Pakorn Aiewsakun
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - David Prangishvili
- Institut Pasteur, Université de Paris, Archaeal Virology Unit, Paris, France
- Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mart Krupovic
- Institut Pasteur, Université de Paris, Archaeal Virology Unit, Paris, France
| |
Collapse
|
28
|
Singh BB, Ward MP, Dhand NK. Inherent virus characteristics and host range drive the zoonotic and emerging potential of viruses. Transbound Emerg Dis 2021; 69:e799-e813. [PMID: 34710290 DOI: 10.1111/tbed.14361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 04/04/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022]
Abstract
Understanding the zoonotic and emerging potential of viruses is critical to prevent and control spread that can cause disease epidemics or pandemics. We developed a database using the most up-to-date information from the International Committee on Taxonomy of Viruses (4958 virus species) and identified 1479 vertebrate virus species and their host ranges. Viral traits and host ranges were then used as predictors in generalized linear mixed models for three host-associated outcomes - confirmed zoonotic, potential zoonotic and disease emergence. We identified significant interactions between host range and viral characteristics, not previously reported, that influence the zoonotic and emergence potential of viruses. Bat- and livestock-adapted viruses posed high risk, and the risk increased substantially if these viruses were also present in other vertebrates or were not reported from invertebrates. Our model predicted 39 viruses of interest that have never been reported to have zoonotic potential (27) or to potentially become emerging human viruses (12). We conclude that nucleic acid type is important in identifying the zoonotic and emerging potential of viruses. We recommend enhanced surveillance and monitoring of these virus species identified with a zoonotic and emerging potential to mitigate disease outbreaks and future epidemics.
Collapse
Affiliation(s)
- Balbir B Singh
- Sydney School of Veterinary Science, The University of Sydney, Camden, Australia.,Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Michael P Ward
- Sydney School of Veterinary Science, The University of Sydney, Camden, Australia
| | - Navneet K Dhand
- Sydney School of Veterinary Science, The University of Sydney, Camden, Australia
| |
Collapse
|
29
|
Van Espen L, Bak EG, Beller L, Close L, Deboutte W, Juel HB, Nielsen T, Sinar D, De Coninck L, Frithioff-Bøjsøe C, Fonvig CE, Jacobsen S, Kjærgaard M, Thiele M, Fullam A, Kuhn M, Holm JC, Bork P, Krag A, Hansen T, Arumugam M, Matthijnssens J. A Previously Undescribed Highly Prevalent Phage Identified in a Danish Enteric Virome Catalog. mSystems 2021; 6:e0038221. [PMID: 34665009 PMCID: PMC8525569 DOI: 10.1128/msystems.00382-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/02/2021] [Indexed: 01/06/2023] Open
Abstract
Gut viruses are important, yet often neglected, players in the complex human gut microbial ecosystem. Recently, the number of human gut virome studies has been increasing; however, we are still only scratching the surface of the immense viral diversity. In this study, 254 virus-enriched fecal metagenomes from 204 Danish subjects were used to generate the Danish Enteric Virome Catalog (DEVoC) containing 12,986 nonredundant viral scaffolds, of which the majority was previously undescribed, encoding 190,029 viral genes. The DEVoC was used to compare 91 healthy DEVoC gut viromes from children, adolescents, and adults that were used to create the DEVoC. Gut viromes of healthy Danish subjects were dominated by phages. While most phage genomes (PGs) only occurred in a single subject, indicating large virome individuality, 39 PGs were present in more than 10 healthy subjects. Among these 39 PGs, the prevalences of three PGs were associated with age. To further study the prevalence of these 39 prevalent PGs, 1,880 gut virome data sets of 27 studies from across the world were screened, revealing several age-, geography-, and disease-related prevalence patterns. Two PGs also showed a remarkably high prevalence worldwide-a crAss-like phage (20.6% prevalence), belonging to the tentative AlphacrAssvirinae subfamily, and a previously undescribed circular temperate phage infecting Bacteroides dorei (14.4% prevalence), called LoVEphage because it encodes lots of viral elements. Due to the LoVEphage's high prevalence and novelty, public data sets in which the LoVEphage was detected were de novo assembled, resulting in an additional 18 circular LoVEphage-like genomes (67.9 to 72.4 kb). IMPORTANCE Through generation of the DEVoC, we added numerous previously uncharacterized viral genomes and genes to the ever-increasing worldwide pool of human gut viromes. The DEVoC, the largest human gut virome catalog generated from consistently processed fecal samples, facilitated the analysis of the 91 healthy Danish gut viromes. Characterizing the biggest cohort of healthy gut viromes from children, adolescents, and adults to date confirmed the previously established high interindividual variation in human gut viromes and demonstrated that the effect of age on the gut virome composition was limited to the prevalence of specific phage (groups). The identification of a previously undescribed prevalent phage illustrates the usefulness of developing virome catalogs, and we foresee that the DEVoC will benefit future analysis of the roles of gut viruses in human health and disease.
Collapse
Affiliation(s)
- Lore Van Espen
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Emilie Glad Bak
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leen Beller
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Lila Close
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Ward Deboutte
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Helene Bæk Juel
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Nielsen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Deniz Sinar
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Lander De Coninck
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Christine Frithioff-Bøjsøe
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Paediatrics, Copenhagen University Hospital Holbaek, Holbaek, Denmark
| | - Cilius Esmann Fonvig
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Paediatrics, Copenhagen University Hospital Holbaek, Holbaek, Denmark
| | - Suganya Jacobsen
- Department of Gastroenterology and Hepatology, Centre for Liver Research, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Maria Kjærgaard
- Department of Gastroenterology and Hepatology, Centre for Liver Research, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Maja Thiele
- Department of Gastroenterology and Hepatology, Centre for Liver Research, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anthony Fullam
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jens-Christian Holm
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Paediatrics, Copenhagen University Hospital Holbaek, Holbaek, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Yonsei Frontier Lab (YFL), Yonsei University, Seoul, South Korea
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Centre for Liver Research, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| |
Collapse
|
30
|
Chase EE, Monteil-Bouchard S, Gobet A, Andrianjakarivony FH, Desnues C, Blanc G. A High Rate Algal Pond Hosting a Dynamic Community of RNA Viruses. Viruses 2021; 13:2163. [PMID: 34834969 PMCID: PMC8619904 DOI: 10.3390/v13112163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
Despite a surge of RNA virome sequencing in recent years, there are still many RNA viruses to uncover-as indicated by the relevance of viral dark matter to RNA virome studies (i.e., putative viruses that do not match to taxonomically identified viruses). This study explores a unique site, a high-rate algal pond (HRAP), for culturing industrially microalgae, to elucidate new RNA viruses. The importance of viral-host interactions in aquatic systems are well documented, and the ever-expanding microalgae industry is no exception. As the industry becomes a more important source of sustainable plastic manufacturing, a producer of cosmetic pigments and alternative protein sources, and a means of CO2 remediation in the face of climate change, studying microalgal viruses becomes a vital practice for proactive management of microalgae cultures at the industrial level. This study provides evidence of RNA microalgal viruses persisting in a CO2 remediation pilot project HRAP and uncovers the diversity of the RNA virosphere contained within it. Evidence shows that family Marnaviridae is cultured in the basin, alongside other potential microalgal infecting viruses (e.g., family Narnaviridae, family Totitiviridae, and family Yueviridae). Finally, we demonstrate that the RNA viral diversity of the HRAP is temporally dynamic across two successive culturing seasons.
Collapse
Affiliation(s)
- Emily E. Chase
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, 163 Avenue de Luminy, 13009 Marseille, France; (S.M.-B.); (F.H.A.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Sonia Monteil-Bouchard
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, 163 Avenue de Luminy, 13009 Marseille, France; (S.M.-B.); (F.H.A.)
| | - Angélique Gobet
- MARBEC University Montpellier, CNRS, Ifremer, IRD, 34203 Sète, France;
| | - Felana H. Andrianjakarivony
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, 163 Avenue de Luminy, 13009 Marseille, France; (S.M.-B.); (F.H.A.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Christelle Desnues
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, 163 Avenue de Luminy, 13009 Marseille, France; (S.M.-B.); (F.H.A.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Guillaume Blanc
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, 163 Avenue de Luminy, 13009 Marseille, France; (S.M.-B.); (F.H.A.)
| |
Collapse
|
31
|
Ergünay K. New viruses on the rise: a One Health and ecosystem-based perspective on emerging viruses. Future Virol 2021. [PMID: 34659443 PMCID: PMC8516350 DOI: 10.2217/fvl-2021-0215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022]
Abstract
Empowered by interdisciplinary collaboration, we now have the tools to identify new viruses, contain future outbreaks and broadly understand natural processes toward a global health.
Collapse
Affiliation(s)
- Koray Ergünay
- Department of Medical Microbiology, Virology Unit, Hacettepe University, Faculty of Medicine, Ankara, 06100, Turkey
| |
Collapse
|
32
|
Zell R, Knowles NJ, Simmonds P. A proposed division of the family Picornaviridae into subfamilies based on phylogenetic relationships and functional genomic organization. Arch Virol 2021; 166:2927-2935. [PMID: 34350513 PMCID: PMC8421316 DOI: 10.1007/s00705-021-05178-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/01/2021] [Indexed: 11/24/2022]
Abstract
The highly diverse virus family Picornaviridae presently comprises 68 approved genera with 158 species plus many unassigned viruses. In order to better match picornavirus taxonomy to the functional and genomic groupings between genera, the establishment of five subfamilies (Caphthovirinae, Kodimesavirinae, Ensavirinae, Paavivirinae and Heptrevirinae) is proposed. The subfamilies are defined by phylogenetic analyses of 3CD (precursor of virus-encoded proteinase and polymerase) and P1 (capsid protein precursor) coding sequences and comprise between 7 and 22 currently approved virus genera. Due to the high within-subfamily and between-subfamily divergences of the picornavirus genera, p-distance estimates are unsuited for the demarcation of subfamilies. Members of the proposed subfamilies typically show some commonalities in their genome organisations, including VP1/2A cleavage mechanisms and possession of leader proteins. Other features, such as internal ribosomal entry site types, are more variable within and between members of genera. Some subfamilies are characterised by homology of proteins 1A, 2A, 2B and 3A encoded by members, which do not belong to the canon of orthologous picornavirus proteins. The proposed addition of a subfamily layer to the taxonomy of picornaviruses provides a valuable additional organisational level to the family that acknowledges the existence of higher-level evolutionary groupings of its component genera.
Collapse
Affiliation(s)
- Roland Zell
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Hans-Knoell-Str. 2, 07745, Jena, Germany.
| | - Nick J Knowles
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 ONF, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford, OX1 3SY, UK
| |
Collapse
|
33
|
Turner D, Kropinski AM, Adriaenssens EM. A Roadmap for Genome-Based Phage Taxonomy. Viruses 2021; 13:v13030506. [PMID: 33803862 PMCID: PMC8003253 DOI: 10.3390/v13030506] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Bacteriophage (phage) taxonomy has been in flux since its inception over four decades ago. Genome sequencing has put pressure on the classification system and recent years have seen significant changes to phage taxonomy. Here, we reflect on the state of phage taxonomy and provide a roadmap for the future, including the abolition of the order Caudovirales and the families Myoviridae, Podoviridae, and Siphoviridae. Furthermore, we specify guidelines for the demarcation of species, genus, subfamily and family-level ranks of tailed phage taxonomy.
Collapse
Affiliation(s)
- Dann Turner
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK;
| | - Andrew M. Kropinski
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
34
|
Rational Design of Profile Hidden Markov Models for Viral Classification and Discovery. Bioinformatics 2021. [DOI: 10.36255/exonpublications.bioinformatics.2021.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
35
|
Hernandez-Alias X, Benisty H, Schaefer MH, Serrano L. Translational adaptation of human viruses to the tissues they infect. Cell Rep 2021; 34:108872. [PMID: 33730572 PMCID: PMC7962955 DOI: 10.1016/j.celrep.2021.108872] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/15/2020] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
Viruses need to hijack the translational machinery of the host cell for a productive infection to happen. However, given the dynamic landscape of tRNA pools among tissues, it is unclear whether different viruses infecting different tissues have adapted their codon usage toward their tropism. Here, we collect the coding sequences of 502 human-infecting viruses and determine that tropism explains changes in codon usage. Using the tRNA abundances across 23 human tissues from The Cancer Genome Atlas (TCGA), we build an in silico model of translational efficiency that validates the correspondence of the viral codon usage with the translational machinery of their tropism. For instance, we detect that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is specifically adapted to the upper respiratory tract and alveoli. Furthermore, this correspondence is specifically defined in early viral proteins. The observed tissue-specific translational efficiency could be useful for the development of antiviral therapies and vaccines.
Collapse
Affiliation(s)
- Xavier Hernandez-Alias
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.
| | - Hannah Benisty
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Martin H Schaefer
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, Milan 20139, Italy.
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain; ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
36
|
Gao X, Ding J, Long Q, Zhan C. Virus-mimetic systems for cancer diagnosis and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1692. [PMID: 33354937 DOI: 10.1002/wnan.1692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 01/02/2023]
Abstract
Over past decades, various strategies have been developed to enhance the delivery efficiency of therapeutics and imaging agents to tumor tissues. However, the therapeutic outcome of tumors to date have not been significantly improved, which can be partly attributed to the weak targeting ability, fast elimination, and low stability of conventional delivery systems. Viruses are the most efficient agents for gene transfer, serving as a valuable source of inspiration for designing nanoparticle-based delivery systems. Based on the properties of viruses, including well-defined geometry, precise composition, easy modification, stable construction, and specific infection, researchers attempt to design biocompatible delivery vectors by mimicking virus assembly and using the vector system to selectively concentrate drugs or imaging probes in tumors with mitigated toxicity and improved efficacy. In this review, we introduce common viruses features and provide an overview of various virus-mimetic strategies for cancer therapy and diagnosis. The challenges faced by virus-mimetic systems are also discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Xihui Gao
- School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Junqiang Ding
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai, China
| | - Qianqian Long
- School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Changyou Zhan
- School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Pedersen JS, Carstens AB, Djurhuus AM, Kot W, Neve H, Hansen LH. Pectobacterium Phage Jarilo Displays Broad Host Range and Represents a Novel Genus of Bacteriophages Within the Family Autographiviridae. PHAGE (NEW ROCHELLE, N.Y.) 2020; 1:237-244. [PMID: 36147289 DOI: 10.1089/phage.2020.0037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Soft rot Pectobacteriaceae includes the genera Pectobacterium and Dickeya, which are important plant pathogens being responsible for diseases in a wide range of plant species, with potatoes as the main group. Both genera cause pre- and postharvest losses of potatoes, resulting in huge economic losses linked with the soft rot diseases. Materials and Methods: Organic waste was used to isolate phages, with Pectobacterium carotovorum subsp. carotovorum DSM 30170 as host. Complete genome sequencing, comparative genomics, and electron microscopy were used to characterize the phage. An adsorption assay was used to estimate adsorption rate. Twenty-three strains from the genera Pectobacterium and Dickeya were used to examine the host range of the phage. Results: Pectobacterium phage Jarilo represents a novel genus of bacteriophages within the family Autographiviridae, order Caudovirales. Jarilo possesses a double-stranded DNA genome of 40557 bp with a G+C% content of 50.08% and 50 predicted open reading frames. Gene synteny and products seem to be partly conserved between Pectobacterium phage Jarilo and Enterobacteria phage T7, but limited nucleotide similarity is found between Jarilo and other phages within the family Autographiviridae. The adsorption rate of phage Jarilo increased continuously for 1 h upon infection. Phage Jarilo was not able to infect any strains of P. carotovorum and Dickeya tested with the exception of the P. carotovorum strain used for isolation. However, phage Jarilo infected 10 of 16 Pectobacterium atrosepticum strains tested. Conclusion: We propose Pectobacterium phage Jarilo as the first member of a new genus of bacteriophages within the family Autographiviridae, order Caudovirales, displaying a broad host range within the genera of Pectobacterium.
Collapse
Affiliation(s)
- Julie Stenberg Pedersen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Alexander Byth Carstens
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Amaru Miranda Djurhuus
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Witold Kot
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
38
|
Zaczek-Moczydłowska MA, Mohamed-Smith L, Toldrà A, Hooper C, Campàs M, Furones MD, Bean TP, Campbell K. A Single-Tube HNB-Based Loop-Mediated Isothermal Amplification for the Robust Detection of the Ostreid herpesvirus 1. Int J Mol Sci 2020; 21:E6605. [PMID: 32917059 PMCID: PMC7555478 DOI: 10.3390/ijms21186605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 01/05/2023] Open
Abstract
The Ostreid herpesvirus 1 species affects shellfish, contributing significantly to high economic losses during production. To counteract the threat related to mortality, there is a need for the development of novel point-of-care testing (POCT) that can be implemented in aquaculture production to prevent disease outbreaks. In this study, a simple, rapid and specific colorimetric loop-mediated isothermal amplification (LAMP) assay has been developed for the detection of Ostreid herpesvirus1 (OsHV-1) and its variants infecting Crassostrea gigas (C. gigas). The LAMP assay has been optimized to use hydroxynaphthol blue (HNB) for visual colorimetric distinction of positive and negative templates. The effect of an additional Tte UvrD helicase enzyme used in the reaction was also evaluated with an improved reaction time of 10 min. Additionally, this study provides a robust workflow for optimization of primers for uncultured viruses using designed target plasmid when DNA availability is limited.
Collapse
Affiliation(s)
- Maja A. Zaczek-Moczydłowska
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Letitia Mohamed-Smith
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Anna Toldrà
- IRTA, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (M.C.); (M.D.F.)
| | - Chantelle Hooper
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth DT4 8UB, UK;
| | - Mònica Campàs
- IRTA, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (M.C.); (M.D.F.)
| | - M. Dolors Furones
- IRTA, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (M.C.); (M.D.F.)
| | - Tim P. Bean
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK;
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| |
Collapse
|
39
|
Nieuwenhuijse DF, Oude Munnink BB, Phan MVT, Munk P, Venkatakrishnan S, Aarestrup FM, Cotten M, Koopmans MPG. Setting a baseline for global urban virome surveillance in sewage. Sci Rep 2020; 10:13748. [PMID: 32792677 PMCID: PMC7426863 DOI: 10.1038/s41598-020-69869-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/29/2020] [Indexed: 11/09/2022] Open
Abstract
The rapid development of megacities, and their growing connectedness across the world is becoming a distinct driver for emerging disease outbreaks. Early detection of unusual disease emergence and spread should therefore include such cities as part of risk-based surveillance. A catch-all metagenomic sequencing approach of urban sewage could potentially provide an unbiased insight into the dynamics of viral pathogens circulating in a community irrespective of access to care, a potential which already has been proven for the surveillance of poliovirus. Here, we present a detailed characterization of sewage viromes from a snapshot of 81 high density urban areas across the globe, including in-depth assessment of potential biases, as a proof of concept for catch-all viral pathogen surveillance. We show the ability to detect a wide range of viruses and geographical and seasonal differences for specific viral groups. Our findings offer a cross-sectional baseline for further research in viral surveillance from urban sewage samples and place previous studies in a global perspective.
Collapse
Affiliation(s)
| | - Bas B Oude Munnink
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | - My V T Phan
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Patrick Munk
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | - Frank M Aarestrup
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Matthew Cotten
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
40
|
Bramley JC, Yenkin AL, Zaydman MA, DiAntonio A, Milbrandt JD, Buchser WJ. Domain-centric database to uncover structure of minimally characterized viral genomes. Sci Data 2020; 7:202. [PMID: 32587259 PMCID: PMC7316859 DOI: 10.1038/s41597-020-0536-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Protein domain-based approaches to analyzing sequence data are valuable tools for examining and exploring genomic architecture across genomes of different organisms. Here, we present a complete dataset of domains from the publicly available sequence data of 9,051 reference viral genomes. The data provided contain information such as sequence position and neighboring domains from 30,947 pHMM-identified domains from each reference viral genome. Domains were identified from viral whole-genome sequence using automated profile Hidden Markov Models (pHMM). This study also describes the framework for constructing "domain neighborhoods", as well as the dataset representing it. These data can be used to examine shared and differing domain architectures across viral genomes, to elucidate potential functional properties of genes, and potentially to classify viruses.
Collapse
Affiliation(s)
- John C Bramley
- Department of Genetics, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Alex L Yenkin
- Department of Genetics, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Mark A Zaydman
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Aaron DiAntonio
- Department of Genetics, Washington University School of Medicine, St Louis, MO, 63110, USA
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, 63110, MO, USA
| | - Jeffrey D Milbrandt
- Department of Genetics, Washington University School of Medicine, St Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - William J Buchser
- Department of Genetics, Washington University School of Medicine, St Louis, MO, 63110, USA.
| |
Collapse
|
41
|
Young F, Rogers S, Robertson DL. Predicting host taxonomic information from viral genomes: A comparison of feature representations. PLoS Comput Biol 2020; 16:e1007894. [PMID: 32453718 PMCID: PMC7307784 DOI: 10.1371/journal.pcbi.1007894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 06/22/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
The rise in metagenomics has led to an exponential growth in virus discovery. However, the majority of these new virus sequences have no assigned host. Current machine learning approaches to predicting virus host interactions have a tendency to focus on nucleotide features, ignoring other representations of genomic information. Here we investigate the predictive potential of features generated from four different ‘levels’ of viral genome representation: nucleotide, amino acid, amino acid properties and protein domains. This more fully exploits the biological information present in the virus genomes. Over a hundred and eighty binary datasets for infecting versus non-infecting viruses at all taxonomic ranks of both eukaryote and prokaryote hosts were compiled. The viral genomes were converted into the four different levels of genome representation and twenty feature sets were generated by extracting k-mer compositions and predicted protein domains. We trained and tested Support Vector Machine, SVM, classifiers to compare the predictive capacity of each of these feature sets for each dataset. Our results show that all levels of genome representation are consistently predictive of host taxonomy and that prediction k-mer composition improves with increasing k-mer length for all k-mer based features. Using a phylogenetically aware holdout method, we demonstrate that the predictive feature sets contain signals reflecting both the evolutionary relationship between the viruses infecting related hosts, and host-mimicry. Our results demonstrate that incorporating a range of complementary features, generated purely from virus genome sequences, leads to improved accuracy for a range of virus host prediction tasks enabling computational assignment of host taxonomic information. Elucidating the host of a newly identified virus species is an important challenge, with applications from knowing the source species of a newly emerged pathogen to understanding the bacteriophage-host relationships within the microbiome of any of earth’s ecosystems. Current high throughput methods used to identify viruses within biological or environmental samples have resulted in an unprecedented increase in virus discovery. However, for the majority of these virus genomes the host species/taxonomic classification remains unknown. To address this gap in our knowledge there is a need for fast, accurate computational methods for the assignment of putative host taxonomic information. Machine learning is an ideal approach but to maximise predictive accuracy the viral genomes need to be represented in a format (sets of features) that makes the discriminative information available to the machine learning algorithm. Here, we compare different types of features derived from the same viral genomes for their ability to predict host information. Our results demonstrate that all these feature sets are predictive of host taxonomy and when combined have the potential to improve accuracy over the use of individual feature sets across many virus host prediction applications.
Collapse
Affiliation(s)
- Francesca Young
- MRC-University of Glasgow Centre For Virus Research, Glasgow, United Kingdom
| | - Simon Rogers
- School of Computing Science, University of Glasgow, Glasgow, United Kingdom
| | - David L. Robertson
- MRC-University of Glasgow Centre For Virus Research, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Taxonomy of prokaryotic viruses: 2018-2019 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch Virol 2020; 165:1253-1260. [PMID: 32162068 DOI: 10.1007/s00705-020-04577-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This article is a summary of the activities of the ICTV's Bacterial and Archaeal Viruses Subcommittee for the years 2018 and 2019. Highlights include the creation of a new order, 10 families, 22 subfamilies, 424 genera and 964 species. Some of our concerns about the ICTV's ability to adjust to and incorporate new DNA- and protein-based taxonomic tools are discussed.
Collapse
|
43
|
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths in both the USA and the world. Recent research has demonstrated the involvement of the gut microbiota in CRC development and progression. Microbial biomarkers of disease have focused primarily on the bacterial component of the microbiome; however, the viral portion of the microbiome, consisting of both bacteriophages and eukaryotic viruses, together known as the virome, has been lesser studied. Here we review the recent advancements in high-throughput sequencing (HTS) technologies and bioinformatics, which have enabled scientists to better understand how viruses might influence the development of colorectal cancer. We discuss the contemporary findings revealing modulations in the virome and their correlation with CRC development and progression. While a variety of challenges still face viral HTS detection in clinical specimens, we consider herein numerous next steps for future basic and clinical research. Clinicians need to move away from a single infectious agent model for disease etiology by grasping new, more encompassing etiological paradigms, in which communities of various microbial components interact with each other and the host. The reporting and indexing of patient health information, socioeconomic data, and other relevant metadata will enable identification of predictive variables and covariates of viral presence and CRC development. Altogether, the virome has a more profound role in carcinogenesis and cancer progression than once thought, and viruses, specific for either human cells or bacteria, are clinically relevant in understanding CRC pathology, patient prognosis, and treatment development.
Collapse
|
44
|
Barylski J, Enault F, Dutilh BE, Schuller MBP, Edwards RA, Gillis A, Klumpp J, Knezevic P, Krupovic M, Kuhn JH, Lavigne R, Oksanen HM, Sullivan MB, Jang HB, Simmonds P, Aiewsakun P, Wittmann J, Tolstoy I, Brister JR, Kropinski AM, Adriaenssens EM. Analysis of Spounaviruses as a Case Study for the Overdue Reclassification of Tailed Phages. Syst Biol 2020; 69:110-123. [PMID: 31127947 PMCID: PMC7409376 DOI: 10.1093/sysbio/syz036] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/17/2019] [Indexed: 01/01/2023] Open
Abstract
Tailed bacteriophages are the most abundant and diverse viruses in the world, with genome sizes ranging from 10 kbp to over 500 kbp. Yet, due to historical reasons, all this diversity is confined to a single virus order-Caudovirales, composed of just four families: Myoviridae, Siphoviridae, Podoviridae, and the newly created Ackermannviridae family. In recent years, this morphology-based classification scheme has started to crumble under the constant flood of phage sequences, revealing that tailed phages are even more genetically diverse than once thought. This prompted us, the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV), to consider overall reorganization of phage taxonomy. In this study, we used a wide range of complementary methods-including comparative genomics, core genome analysis, and marker gene phylogenetics-to show that the group of Bacillus phage SPO1-related viruses previously classified into the Spounavirinae subfamily, is clearly distinct from other members of the family Myoviridae and its diversity deserves the rank of an autonomous family. Thus, we removed this group from the Myoviridae family and created the family Herelleviridae-a new taxon of the same rank. In the process of the taxon evaluation, we explored the feasibility of different demarcation criteria and critically evaluated the usefulness of our methods for phage classification. The convergence of results, drawing a consistent and comprehensive picture of a new family with associated subfamilies, regardless of method, demonstrates that the tools applied here are particularly useful in phage taxonomy. We are convinced that creation of this novel family is a crucial milestone toward much-needed reclassification in the Caudovirales order.
Collapse
Affiliation(s)
- Jakub Barylski
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Collegium Biologicum - Umultowska 89, 61-614 Poznań, Poland
| | - François Enault
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Margo BP Schuller
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Robert A Edwards
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Department of Computer Science, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, Croix du Sud 2-L7.05.12, 1348 Louvain-la-Neuve, Belgium
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Petar Knezevic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 - box 2462, 3001 Leuven, Belgium
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 56 (Viikinkaari 9B), 00014 Helsinki, Finland
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, 496 W 12thAvenue, Columbus, OH 43210, USA
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, 496 W 12thAvenue, Columbus, OH 43210, USA
| | - Ho Bin Jang
- Department of Microbiology, The Ohio State University, 496 W 12thAvenue, Columbus, OH 43210, USA
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, 496 W 12thAvenue, Columbus, OH 43210, USA
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford OX1 3SY, UK
| | - Pakorn Aiewsakun
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford OX1 3SY, UK
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Johannes Wittmann
- Leibniz-Institut DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Igor Tolstoy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda MD 20894, USA
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda MD 20894, USA
| | - Andrew M Kropinski
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
- Department of Pathobiology, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada
| | - Evelien M Adriaenssens
- Department of Functional & Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
- Gut Microbes & Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich NR4 7UQ Norwich, UK
| |
Collapse
|
45
|
Newburn LR, White KA. Trans-Acting RNA-RNA Interactions in Segmented RNA Viruses. Viruses 2019; 11:v11080751. [PMID: 31416187 PMCID: PMC6723669 DOI: 10.3390/v11080751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 12/18/2022] Open
Abstract
RNA viruses represent a large and important group of pathogens that infect a broad range of hosts. Segmented RNA viruses are a subclass of this group that encode their genomes in two or more molecules and package all of their RNA segments in a single virus particle. These divided genomes come in different forms, including double-stranded RNA, coding-sense single-stranded RNA, and noncoding single-stranded RNA. Genera that possess these genome types include, respectively, Orbivirus (e.g., Bluetongue virus), Dianthovirus (e.g., Red clover necrotic mosaic virus) and Alphainfluenzavirus (e.g., Influenza A virus). Despite their distinct genomic features and diverse host ranges (i.e., animals, plants, and humans, respectively) each of these viruses uses trans-acting RNA–RNA interactions (tRRIs) to facilitate co-packaging of their segmented genome. The tRRIs occur between different viral genome segments and direct the selective packaging of a complete genome complement. Here we explore the current state of understanding of tRRI-mediated co-packaging in the abovementioned viruses and examine other known and potential functions for this class of RNA–RNA interaction.
Collapse
Affiliation(s)
- Laura R Newburn
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
46
|
Dougan TJ, Quake SR. Viral taxonomy derived from evolutionary genome relationships. PLoS One 2019; 14:e0220440. [PMID: 31412051 PMCID: PMC6693820 DOI: 10.1371/journal.pone.0220440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/16/2019] [Indexed: 11/23/2022] Open
Abstract
We describe a new genome alignment-based model for understanding the diversity of viruses based on evolutionary genetic relationships. This approach uses information theory and a physical model to determine the information shared by the genes in two genomes. Pairwise comparisons of genes from the viruses are created from alignments using NCBI BLAST, and their match scores are combined to produce a metric between genomes, which is in turn used to determine a global classification using the 5,817 viruses on RefSeq. In cases where there is no measurable alignment between any genes, the method falls back to a coarser measure of genome relationship: the mutual information of 4-mer frequency. This results in a principled model which depends only on the genome sequence, which captures many interesting relationships between viral families, and which creates clusters which correlate well with both the Baltimore and ICTV classifications. The incremental computational cost of classifying a novel virus is low and therefore newly discovered viruses can be quickly identified and classified. The model goes beyond alignment-free classifications by producing a full phylogeny similar to those constructed by virologists using qualitative features, while relying only on objective genes. These results bolster the case for mathematical models in microbiology which can characterize organisms using only their genetic material and provide an independent check for phylogenies constructed by humans, considerably faster and more cheaply than less modern approaches.
Collapse
Affiliation(s)
- Tyler J Dougan
- Department of Physics, Stanford University, Stanford, California, United States of America
| | - Stephen R Quake
- Departments of Bioengineering and Applied Physics, Stanford University and Chan Zuckerberg Biohub, Stanford, California, United States of America
| |
Collapse
|
47
|
Ye M, Sun M, Huang D, Zhang Z, Zhang H, Zhang S, Hu F, Jiang X, Jiao W. A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment. ENVIRONMENT INTERNATIONAL 2019; 129:488-496. [PMID: 31158595 DOI: 10.1016/j.envint.2019.05.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
The emerging contamination of pathogenic bacteria in the soil has caused a serious threat to public health and environmental security. Therefore, effective methods to inactivate pathogenic bacteria and decrease the environmental risks are urgently required. As a century-old technique, bacteriophage (phage) therapy has a high efficiency in targeting and inactivating pathogenic bacteria in different environmental systems. This review provides an update on the status of bacteriophage therapy for the inactivation of pathogenic bacteria in the soil environment. Specifically, the applications of phage therapy in soil-plant and soil-groundwater systems are summarized. In addition, the impact of phage therapy on soil functioning is described, including soil function gene transmission, soil microbial community stability, and soil nutrient cycling. Soil factors, such as soil temperature, pH, clay mineral, water content, and nutrient components, influence the survival and activity of phages in the soil. Finally, the future research prospects of phage therapy in soil environments are described.
Collapse
Affiliation(s)
- Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhongyun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hui Zhang
- Jiangsu Key Laboratory of Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shengtian Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing 210042, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Wentao Jiao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
48
|
Yang QX, Wang YX, Li FC, Zhang S, Luo YC, Li Y, Tang J, Li B, Chen YZ, Xue WW, Zhu F. Identification of the gene signature reflecting schizophrenia's etiology by constructing artificial intelligence-based method of enhanced reproducibility. CNS Neurosci Ther 2019; 25:1054-1063. [PMID: 31350824 PMCID: PMC6698965 DOI: 10.1111/cns.13196] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Aims As one of the most fundamental questions in modern science, “what causes schizophrenia (SZ)” remains a profound mystery due to the absence of objective gene markers. The reproducibility of the gene signatures identified by independent studies is found to be extremely low due to the incapability of available feature selection methods and the lack of measurement on validating signatures’ robustness. These irreproducible results have significantly limited our understanding of the etiology of SZ. Methods In this study, a new feature selection strategy was developed, and a comprehensive analysis was then conducted to ensure a reliable signature discovery. Particularly, the new strategy (a) combined multiple randomized sampling with consensus scoring and (b) assessed gene ranking consistency among different datasets, and a comprehensive analysis among nine independent studies was conducted. Results Based on a first‐ever evaluation of methods’ reproducibility that was cross‐validated by nine independent studies, the newly developed strategy was found to be superior to the traditional ones. As a result, 33 genes were consistently identified from multiple datasets by the new strategy as differentially expressed, which might facilitate our understanding of the mechanism underlying the etiology of SZ. Conclusion A new strategy capable of enhancing the reproducibility of feature selection in current SZ research was successfully constructed and validated. A group of candidate genes identified in this study should be considered as great potential for revealing the etiology of SZ.
Collapse
Affiliation(s)
- Qing-Xia Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yun-Xia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Feng-Cheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yong-Chao Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jing Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Bo Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yu-Zong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Wei-Wei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
49
|
Solving the species problem in viral taxonomy: recommendations on non-Latinized binomial species names and on abandoning attempts to assign metagenomic viral sequences to species taxa. Arch Virol 2019; 164:2223-2229. [DOI: 10.1007/s00705-019-04320-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/20/2019] [Indexed: 11/25/2022]
|
50
|
Vasilakis N, Tesh RB, Popov VL, Widen SG, Wood TG, Forrester NL, Gonzalez JP, Saluzzo JF, Alkhovsky S, Lam SK, Mackenzie JS, Walker PJ. Exploiting the Legacy of the Arbovirus Hunters. Viruses 2019; 11:E471. [PMID: 31126128 PMCID: PMC6563318 DOI: 10.3390/v11050471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022] Open
Abstract
In recent years, it has become evident that a generational gap has developed in the community of arbovirus research. This apparent gap is due to the dis-investment of training for the next generation of arbovirologists, which threatens to derail the rich history of virus discovery, field epidemiology, and understanding of the richness of diversity that surrounds us. On the other hand, new technologies have resulted in an explosion of virus discovery that is constantly redefining the virosphere and the evolutionary relationships between viruses. This paradox presents new challenges that may have immediate and disastrous consequences for public health when yet to be discovered arboviruses emerge. In this review we endeavor to bridge this gap by providing a historical context for the work being conducted today and provide continuity between the generations. To this end, we will provide a narrative of the thrill of scientific discovery and excitement and the challenges lying ahead.
Collapse
Affiliation(s)
- Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Robert B Tesh
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Vsevolod L Popov
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Steve G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston TX 77555, USA.
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston TX 77555, USA.
| | - Naomi L Forrester
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Jean Paul Gonzalez
- Center of Excellence for Emerging & Zoonotic Animal Disease, Kansas State University, Manhattan, KS 66502, USA.
| | | | - Sergey Alkhovsky
- Ivanovsky Institute of Virology, N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, 18 Gamaleya str., Moscow, Russia.
| | - Sai Kit Lam
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - John S Mackenzie
- Faculty of Medical Sciences, Curtin University, Perth, Western Australia 6102, Australia.
| | - Peter J Walker
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|