1
|
Puik JR, Le C, Kazemier G, Oprea-Lager DE, Swijnenburg RJ, Giovannetti E, Griffioen AW, Huijbers EJ. Prostate-specific membrane antigen as target for vasculature-directed therapeutic strategies in solid tumors. Crit Rev Oncol Hematol 2025; 205:104556. [PMID: 39551117 DOI: 10.1016/j.critrevonc.2024.104556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Prostate-specific membrane antigen (PSMA) is one of the few biomarkers which has been successfully translated to the clinic as theranostic biomarker for patients with prostate cancer. In the context of prostate cancer, PSMA is overexpressed on the cell membrane of tumor cells, making it a viable target for interventions with urea-based small molecule inhibitors or antibodies conjugated to radioactive isotopes. Interestingly, in several non-prostatic cancers, expression of PSMA appears to be associated with the tumor neovasculature. This offers novel therapeutic opportunities for treatments targeting the vasculature in non-prostatic cancers. In this review, we discuss PSMA and its potential as target for vasculature-directed therapeutic approaches, including radioligand therapy, fusion protein vaccination and CAR T-cell therapy.
Collapse
Affiliation(s)
- Jisce R Puik
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Surgery, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Chung Le
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Geert Kazemier
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Surgery, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Daniela E Oprea-Lager
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Rutger-Jan Swijnenburg
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Surgery, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Elisa Giovannetti
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands; Cancer Pharmacology Lab, Associazione Italiana per la Ricerca sul Cancro (AIRC), Fondazione Pisana per la Scienza, University of Pisa, Pisa, Italy.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Plesmanlaan 125, Amsterdam, the Netherlands
| | - Elisabeth Jm Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Plesmanlaan 125, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Acimovic I, Gabrielová V, Martínková S, Eid M, Vlažný J, Moravčík P, Hlavsa J, Moráň L, Cakmakci RC, Staňo P, Procházka V, Kala Z, Trnka J, Vaňhara P. Ex-Vivo 3D Cellular Models of Pancreatic Ductal Adenocarcinoma: From Embryonic Development to Precision Oncology. Pancreas 2025; 54:e57-e71. [PMID: 39074056 DOI: 10.1097/mpa.0000000000002393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
ABSTRACT Pancreas is a vital gland of gastrointestinal system with exocrine and endocrine secretory functions, interweaved into essential metabolic circuitries of the human body. Pancreatic ductal adenocarcinoma (PDAC) represents one of the most lethal malignancies, with a 5-year survival rate of 11%. This poor prognosis is primarily attributed to the absence of early symptoms, rapid metastatic dissemination, and the limited efficacy of current therapeutic interventions. Despite recent advancements in understanding the etiopathogenesis and treatment of PDAC, there remains a pressing need for improved individualized models, identification of novel molecular targets, and development of unbiased predictors of disease progression. Here we aim to explore the concept of precision medicine utilizing 3-dimensional, patient-specific cellular models of pancreatic tumors and discuss their potential applications in uncovering novel druggable molecular targets and predicting clinical parameters for individual patients.
Collapse
Affiliation(s)
- Ivana Acimovic
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Viktorie Gabrielová
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Stanislava Martínková
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague
| | - Michal Eid
- Departments of Internal Medicine, Hematology and Oncology
| | | | - Petr Moravčík
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Jan Hlavsa
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | | | - Riza Can Cakmakci
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Peter Staňo
- Departments of Internal Medicine, Hematology and Oncology
| | - Vladimír Procházka
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Zdeněk Kala
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague
| | | |
Collapse
|
3
|
Yang Z, Zuo H, Hou Y, Zhou S, Zhang Y, Yang W, He J, Shen X, Peng Q. Dual Oxygen-Supply Immunosuppression-Inhibiting Nanomedicine to Avoid the Intratumoral Recruitment of Myeloid-Derived Suppressor Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406860. [PMID: 39233543 DOI: 10.1002/smll.202406860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/23/2024] [Indexed: 09/06/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are reported to be responsible for the negative prognosis of colorectal cancer (CRC) patients due to the mediated immunosuppressive tumor microenvironment (TME). The selective and chronic circumvention of tumor-infiltrated MDSCs has potential clinical significance for CRC treatment, which unluckily remains a technical challenge. Because tumor hypoxia makes a significant contribution to the recruitment of MDSCs in tumor sites, a dual oxygen-supplied immunosuppression-inhibiting nanomedicine (DOIN) is demonstrated for overcoming tumor hypoxia, which achieves selective and long-term inhibition of intratumoral recruitment of MDSCs. The DOIN is constructed by the encasement of perfluorooctyl bromide (PFOB) and 4-methylumbelliferone (4-MU) into a TME-responsive amphiphilic polymer. This nanoplatform directly carries oxygen to the tumor region and simultaneously loosens the condensed tumor extracellular matrix for the normalization of tumor vasculature, which selectively remodels the TME toward one adverse to the intratumoral recruitment of MDSCs. Importantly, this nanoplatform offers a long-acting alleviation of the hypoxic TME, chronically avoiding the comeback of tumor-infiltrated MDSCs. Consequently, the immunosuppressive TME is relieved, and T cells are successfully proliferated and activated into cytotoxic T lymphocytes, which boosts a systemic immune response and contributes to lasting inhibition of tumor growth with a prolonged survival span of xenograft.
Collapse
Affiliation(s)
- Zhengyang Yang
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, China
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Huaqin Zuo
- Department of Hematology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Yuchen Hou
- Department of General Surgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, China
| | - Shuqin Zhou
- Department of Anesthesiology of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Ying Zhang
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Wanren Yang
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaofei Shen
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan RD, Nanjing, 210008, China
| | - Qing Peng
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, China
| |
Collapse
|
4
|
Du J, Chen X, Xu X, Que Z, Zhai M, Xiang Q, Zhang Z, Zhang Z, Shao Y, Yang X, Miao F, Zhang J, Xie J, Ju S. Enhancing the tissue penetration to improve sonodynamic immunotherapy for pancreatic ductal adenocarcinoma using membrane-camouflaged nanoplatform. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06952-y. [PMID: 39422735 DOI: 10.1007/s00259-024-06952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Sonodynamic therapy (SDT) is a promising strategy as an "in situ vaccine" to enhance activation of antitumor immune responses in solid tumors. However, the dense extracellular matrix (ECM) in pancreatic ductal adenocarcinoma (PDAC) lead to hypoxia and limited penetration of most drugs, aggravating the immunosuppressive tumor microenvironment and limiting the efficacy of synergistic sonodynamic immunotherapy. Therefore, it is essential to regulate ECM in order to alleviate tumor hypoxia and enhance the efficacy of sonodynamic immunotherapy for PDAC. METHODS The CPIM nanoplatform, consisting of a macrophage membrane-coated oxygen and drug delivery system (CM@PFOB-ICG-α-Mangostin), was synthesized using ultrasound and extrusion methods. The in vivo homologous targeting and hypoxia alleviation capabilities of CPIM were evaluated through near-infrared (NIR) imaging and photoacoustic (PA) imaging. The tumor growth inhibition potential and ability to reprogram the tumor microenvironment by the CPIM nanoplatform were also investigated. RESULTS Co-delivery of α-Mangostin inhibits CAFs and enhances stromal depletion, thereby facilitating better infiltration of macromolecules. Additionally, the nanoemulsion containing perfluorocarbon (PFC) can target tumor cells and accumulate within them through homologous targeting. The US irradiation results in the rapid release of oxygen, serving as a potential source of sonodynamic therapy for hypoxic tumors. Moreover, CPIM reshapes the immunosuppressive microenvironment increasing the population of cytotoxic T lymphocytes (CTLs), and enhancing their anti-tumor immune response through the use of anti-PDL1 antibodies to block immune checkpoints. CONCLUSION The present study offers a potential strategy for the co-delivery of oxygen and α-Mangostin, aiming to enhance the penetration of tumors to improve SDT. This approach effectively addresses the existing limitations of immune checkpoint blockade (ICB) treatment in solid tumors, while simultaneously boosting the immune response through synergistic sonodynamic immunotherapy.
Collapse
Affiliation(s)
- Jiawei Du
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
| | - Xin Chen
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, Nanjing, 210009, P.R. China
| | - Xiaoxuan Xu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
| | - Ziting Que
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing, 210009, P.R. China
| | - Mengyan Zhai
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing, 210009, P.R. China
| | - Qinyanqiu Xiang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
| | - Zhiwei Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
| | - Zhiqi Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
| | - Yong Shao
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing, 210009, P.R. China
| | - Xue Yang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
| | - Fengqin Miao
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing, 210009, P.R. China
| | - Jianqiong Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing, 210009, P.R. China
| | - Jinbing Xie
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China.
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China.
| |
Collapse
|
5
|
Ni R, Hu Z, Tao R. Advances of immune-checkpoint inhibition of CTLA-4 in pancreatic cancer. Biomed Pharmacother 2024; 179:117430. [PMID: 39260322 DOI: 10.1016/j.biopha.2024.117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Targeting checkpoints for immune cell activation has been acknowledged known as one of the most effective way to activate anti-tumor immune responses. Among them, drugs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are approved for clinical treatment though several more are in advanced stages of development, which demonstrated durable response rates and manageable safety profile. However, its therapy efficacy is unsatisfactory in pancreatic cancer (PC), which can be limited by the overall condition of patients, the pathological type of PC, the expression level of tumor related genes, etc. To improve clinical efficiency, various researches have been conducted, and the efficacy of combination therapy showed significantly improvement compared to monotherapy. This review analyzed current strategies based on anti-CTLA-4 combination immunotherapy, providing totally new idea for future research.
Collapse
Affiliation(s)
- Ran Ni
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhiming Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Hepatobiliary & Pancreatic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China.
| | - Ran Tao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Heidari-Foroozan M, Rezalotfi A, Rezaei N. The molecular landscape of T cell exhaustion in the tumor microenvironment and reinvigoration strategies. Int Rev Immunol 2024; 43:419-440. [PMID: 39257319 DOI: 10.1080/08830185.2024.2401352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2023] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Immunotherapy has emerged as a promising therapeutic approach for cancer treatment by harnessing the immune system to target cancer cells. However, the efficacy of immunotherapy is hindered by the tumor microenvironment (TME), comprising regulatory T cells (Tregs), macrophages, myeloid-derived suppressor cells (MDSCs), neutrophils, soluble factors (TGF-β, IL-35, IL-10), and hypoxia. These components interact with inhibitory receptors (IRs) on T cells, leading to alterations in T cell transcriptomes, epigenomes, and metabolism, ultimately resulting in T cell exhaustion and compromising the effectiveness of immunotherapy. T cell exhaustion occurs in two phases: pre-exhaustion and exhaustion. Pre-exhausted T cells exhibit reversibility and distinct molecular properties compared to terminally exhausted T cells. Understanding these differences is crucial for designing effective interventions. This comprehensive review summarizes the characteristics of pre-exhausted and exhausted T cells and elucidates the influence of TME components on T cell activity, transcriptomes, epigenomes, and metabolism, ultimately driving T cell exhaustion in cancer. Additionally, potential intervention strategies for reversing exhaustion are discussed. By gaining insights into the mechanisms underlying T cell exhaustion and the impact of the TME, this review aims to inform the development of innovative approaches for combating T cell exhaustion and enhancing the efficacy of immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Mahsa Heidari-Foroozan
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alaleh Rezalotfi
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Do CTP, Prochnau JY, Dominguez A, Wang P, Rao MK. The Road Ahead in Pancreatic Cancer: Emerging Trends and Therapeutic Prospects. Biomedicines 2024; 12:1979. [PMID: 39335494 PMCID: PMC11428787 DOI: 10.3390/biomedicines12091979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
This review explores the challenges and emerging trends in pancreatic cancer therapy. In particular, we focus on the tumor microenvironment and the potential of immunotherapy for pancreatic cancer. Pancreatic ductal adenocarcinoma, characterized by its dense stromal architecture, presents unique challenges for effective treatment. Recent advancements have emphasized the role of the tumor microenvironment in therapeutic resistance and disease progression. We discuss novel strategies targeting the desmoplastic barrier and immunosuppressive cells to enhance immune cell infiltration and activation. Recent clinical trials, particularly those involving novel immunotherapeutic agents and tumor vaccines, are examined to understand their efficacy and limitations. Our analysis reveals that combining immunotherapy with chemotherapy, radiation therapy, or drugs targeting epigenetic processes shows promise, improving overall survival rates and response to treatment. For instance, trials utilizing checkpoint inhibitors in combination with standard chemotherapies have extended disease-free survival by up to 6 months compared to chemotherapy alone. Importantly, vaccines targeting specific tumor neoantigens have shown the potential to increase patient survival. However, these approaches also face significant challenges, including overcoming the immunosuppressive tumor microenvironment and enhancing the delivery and efficacy of therapeutic agents. By providing an overview of both the promising results and the obstacles encountered, this review aims to highlight ongoing efforts to refine immunotherapy approaches for better patient outcomes.
Collapse
Affiliation(s)
- Chris T P Do
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jack Y Prochnau
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Angel Dominguez
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Pei Wang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Manjeet K Rao
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
8
|
Xu F, Yao X, Zhou N, Hu Z, Guo C, Zhou H, Yan X. Tumor hypoxia in immune infiltration and prognosis of bladder cancer. Transl Cancer Res 2024; 13:3273-3284. [PMID: 39145090 PMCID: PMC11319943 DOI: 10.21037/tcr-23-2375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/02/2024] [Indexed: 08/16/2024]
Abstract
Background Bladder cancer (BC) is the sixth most common cancer and the ninth leading cause of cancer death among men in the world. Previous studies have shown that tumor hypoxia plays an important role in the occurrence and development of BC, but the role of tumor hypoxia in the prognosis and immune infiltration of BC remains unclear. Our aim was to perform a bioinformatics analysis combined with a clinical analysis to explore the roles of hypoxia in BC. Methods We acquired datasets (GSE13507, GSE5287, and GSE1827) containing mRNA expression information from BC cohorts from the Gene Expression Omnibus (GEO) and measured the Hypoxia score using the Gene Set Variation Analysis (GSVA). Then we used X-tile method and log-rank test and Pearson's correlation test to analyze the relation among the Hypoxia score and the clinicopathological and immunological characteristics of BC and used stepwise Cox regression analysis to establish a Prognostic model. Results Hypoxia was found to be closely associated with tumor grade, pathological type, invasion, and prognosis of BC in our study. Moreover, we determined that hypoxia was closely related to the infiltration abundance of multiple immune cells through a correlation analysis, and the tumor immune cell infiltration was further found to be significantly associated with the tumor grade and tumor type of BC. Furthermore, we constructed several models based on the Hypoxia score and tumor immune infiltration with C-indexes ranging from 0.703 and 0.888, which showed good performance in predicting the prognosis of BC. Conclusions Our study showed that hypoxia plays an important role in the progression, prognosis, and tumor immune infiltration of BC. Our models based on hypoxia and tumor immune infiltration play a guiding role in the prognosis and treatment of BC patients.
Collapse
Affiliation(s)
- Fanghong Xu
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xinyue Yao
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Nanjing Zhou
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zuohuai Hu
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chenrui Guo
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hang Zhou
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaokai Yan
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
9
|
Schlenker R, Schwalie PC, Dettling S, Huesser T, Irmisch A, Mariani M, Martínez Gómez JM, Ribeiro A, Limani F, Herter S, Yángüez E, Hoves S, Somandin J, Siebourg-Polster J, Kam-Thong T, de Matos IG, Umana P, Dummer R, Levesque MP, Bacac M. Myeloid-T cell interplay and cell state transitions associated with checkpoint inhibitor response in melanoma. MED 2024; 5:759-779.e7. [PMID: 38593812 DOI: 10.1016/j.medj.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/23/2023] [Accepted: 03/17/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND The treatment of melanoma, the deadliest form of skin cancer, has greatly benefited from immunotherapy. However, many patients do not show a durable response, which is only partially explained by known resistance mechanisms. METHODS We performed single-cell RNA sequencing of tumor immune infiltrates and matched peripheral blood mononuclear cells of 22 checkpoint inhibitor (CPI)-naive stage III-IV metastatic melanoma patients. After sample collection, the same patients received CPI treatment, and their response was assessed. FINDINGS CPI responders showed high levels of classical monocytes in peripheral blood, which preferentially transitioned toward CXCL9-expressing macrophages in tumors. Trajectories of tumor-infiltrating CD8+ T cells diverged at the level of effector memory/stem-like T cells, with non-responder cells progressing into a state characterized by cellular stress and apoptosis-related gene expression. Consistently, predicted non-responder-enriched myeloid-T/natural killer cell interactions were primarily immunosuppressive, while responder-enriched interactions were supportive of T cell priming and effector function. CONCLUSIONS Our study illustrates that the tumor immune microenvironment prior to CPI treatment can be indicative of response. In perspective, modulating the myeloid and/or effector cell compartment by altering the described cell interactions and transitions could improve immunotherapy response. FUNDING This research was funded by Roche Pharma Research and Early Development.
Collapse
Affiliation(s)
- Ramona Schlenker
- Roche Innovation Center Munich, Roche Pharma Research and Early Development (pRED), Penzberg, Germany.
| | | | - Steffen Dettling
- Roche Innovation Center Munich, Roche Pharma Research and Early Development (pRED), Penzberg, Germany
| | - Tamara Huesser
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Anja Irmisch
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marisa Mariani
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Julia M Martínez Gómez
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alison Ribeiro
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Florian Limani
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Sylvia Herter
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Emilio Yángüez
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Sabine Hoves
- Roche Innovation Center Munich, Roche Pharma Research and Early Development (pRED), Penzberg, Germany
| | - Jitka Somandin
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | | | | | | | - Pablo Umana
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marina Bacac
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| |
Collapse
|
10
|
Ren M, Zhang J, Zong R, Sun H. A Novel Pancreatic Cancer Hypoxia Status Related Gene Signature for Prognosis and Therapeutic Responses. Mol Biotechnol 2024; 66:1684-1703. [PMID: 37405638 DOI: 10.1007/s12033-023-00807-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
Pancreatic cancer (PAC) is a highly fatal and aggressive type of cancer. Hypoxia is a common feature of PAC. The aim of this study was to develop a hypoxia status-related prognostic model for predicting the survival outcomes in PAC. The data sets of PAC from The Cancer Genome Atlas and the International Cancer Genome Consortium were used to construct and validate the signature. A 6 hypoxia status-related differential expression genes prognostic model for predicting the survival outcomes was established. The Kaplan-Meier analysis and Received operating characteristic curve indicated the good performance of the signature at predicting overall survival. Univariate and Multivariate Cox regression revealed that the signature was an independent prognostic factor in PAC. Weighted Gene Co-expression Network Analysis and immune infiltration analysis indicated that Immune-related pathways and immune cell infiltration was mostly enriched in the low-risk group, which presented a better prognosis. We also evaluated the predictive of the signature for immunotherapy and chemoradiotherapy. Risk gene LY6D may be a potential prognostic predictor of PAC. This model can be used as an independent prognostic factor for predicting clinical outcomes and a possible classifier for response to chemotherapy.
Collapse
Affiliation(s)
- Min Ren
- College of Life Science, Yan'an University, Yan'an, 716000, China.
| | - Jianing Zhang
- College of Life Science, Yan'an University, Yan'an, 716000, China
| | - Rongrong Zong
- College of Life Science, Yan'an University, Yan'an, 716000, China
| | - Huiru Sun
- College of Life Science, Yan'an University, Yan'an, 716000, China.
| |
Collapse
|
11
|
Wu Q, Mao H, Jiang Z, Tang D. Tumour-associated neutrophils: Potential therapeutic targets in pancreatic cancer immunotherapy. Immunology 2024; 172:343-361. [PMID: 38402904 DOI: 10.1111/imm.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024] Open
Abstract
Pancreatic cancer (PC) is a highly malignant tumour of the digestive system with poor therapeutic response and low survival rates. Immunotherapy has rapidly developed in recent years and has achieved significant outcomes in numerous malignant neoplasms. However, responses to immunotherapy in PC are rare, and the immunosuppressive and desmoplastic tumour microenvironment (TME) significantly hinders their efficacy in PC. Tumour-associated neutrophils (TANs) play a crucial role in the PC microenvironment and exert a profound influence on PC immunotherapy by establishing a robust stromal shelter and restraining immune cells to assist PC cells in immune escape, which may subvert the current status of PC immunotherapy. The present review aims to offer a comprehensive summary of the latest progress in understanding the involvement of TANs in PC desmoplastic and immunosuppressive functions and to emphasise the potential therapeutic implications of focusing on TANs in the immunotherapy of this deleterious disease. Finally, we provide an outlook for the future use of TANs in PC immunotherapy.
Collapse
Affiliation(s)
- Qihang Wu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Han Mao
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
12
|
Wang L, Izadmehr S, Sfakianos JP, Tran M, Beaumont KG, Brody R, Cordon-Cardo C, Horowitz A, Sebra R, Oh WK, Bhardwaj N, Galsky MD, Zhu J. Single-cell transcriptomic-informed deconvolution of bulk data identifies immune checkpoint blockade resistance in urothelial cancer. iScience 2024; 27:109928. [PMID: 38812546 PMCID: PMC11133924 DOI: 10.1016/j.isci.2024.109928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/23/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Interactions within the tumor microenvironment (TME) significantly influence tumor progression and treatment responses. While single-cell RNA sequencing (scRNA-seq) and spatial genomics facilitate TME exploration, many clinical cohorts are assessed at the bulk tissue level. Integrating scRNA-seq and bulk tissue RNA-seq data through computational deconvolution is essential for obtaining clinically relevant insights. Our method, ProM, enables the examination of major and minor cell types. Through evaluation against existing methods using paired single-cell and bulk RNA sequencing of human urothelial cancer (UC) samples, ProM demonstrates superiority. Application to UC cohorts treated with immune checkpoint inhibitors reveals pre-treatment cellular features associated with poor outcomes, such as elevated SPP1 expression in macrophage/monocytes (MM). Our deconvolution method and paired single-cell and bulk tissue RNA-seq dataset contribute novel insights into TME heterogeneity and resistance to immune checkpoint blockade.
Collapse
Affiliation(s)
- Li Wang
- Department of Precision Medicine, Aitia, Somerville, MA 02143, USA
- Department of Medicine, Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY 10029, USA
| | - Sudeh Izadmehr
- Department of Medicine, Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY 10029, USA
| | - John P. Sfakianos
- Department of Urology; Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle Tran
- Department of Medicine, Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY 10029, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristin G. Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rachel Brody
- Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Cordon-Cardo
- Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amir Horowitz
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William K. Oh
- Department of Medicine, Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY 10029, USA
| | - Nina Bhardwaj
- Department of Medicine, Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY 10029, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew D. Galsky
- Department of Medicine, Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY 10029, USA
| | - Jun Zhu
- Department of Medicine, Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY 10029, USA
| |
Collapse
|
13
|
Wu SY, Wang CH, Kang ST, Yu CF, Chen FH, Chiang CS. Power-Doppler-based NH002 microbubble sonoporation with chemotherapy relieves hypoxia and enhances the efficacy of chemotherapy and immunotherapy for pancreatic tumors. Sci Rep 2024; 14:8532. [PMID: 38830912 PMCID: PMC11148017 DOI: 10.1038/s41598-024-54432-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/13/2024] [Indexed: 06/05/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses challenges due to late-stage diagnosis and limited treatment response, often attributed to the hypoxic tumor microenvironment (TME). Sonoporation, combining ultrasound and microbubbles, holds promise for enhancing therapy. However, additional preclinical research utilizing commercially available ultrasound equipment for PDAC treatment while delving into the TME's intricacies is necessary. This study investigated the potential of using a clinically available ultrasound system and phase 2-proven microbubbles to relieve tumor hypoxia and enhance the efficacy of chemotherapy and immunotherapy in a murine PDAC model. This approach enables early PDAC detection and blood-flow-sensitive Power-Doppler sonoporation in combination with chemotherapy. It significantly extended treated mice's median survival compared to chemotherapy alone. Mechanistically, this combination therapy enhanced tumor perfusion and substantially reduced tumor hypoxia (77% and 67%, 1- and 3-days post-treatment). Additionally, cluster of differentiation 8 (CD8) T-cell infiltration increased four-fold afterward. The combined treatment demonstrated a strengthening of the anti-programmed death-ligand 1(αPDL1) therapy against PDAC. Our study illustrates the feasibility of using a clinically available ultrasound system with NH-002 microbubbles for early tumor detection, alleviating hypoxic TME, and improving chemotherapy and immunotherapy. It suggests the development of an adjuvant theragnostic protocol incorporating Power-Doppler sonoporation for pancreatic tumor treatment.
Collapse
Affiliation(s)
- Sheng-Yan Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | | | | | - Ching-Fang Yu
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, 33382, Taiwan
| | - Fang-Hsin Chen
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- The BNCT Research Center, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- The BNCT Research Center, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
14
|
Mohan CD, Shanmugam MK, Gowda SGS, Chinnathambi A, Rangappa KS, Sethi G. c-MET pathway in human malignancies and its targeting by natural compounds for cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155379. [PMID: 38503157 DOI: 10.1016/j.phymed.2024.155379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND c-MET is a receptor tyrosine kinase which is classically activated by HGF to activate its downstream signaling cascades such as MAPK, PI3K/Akt/mTOR, and STAT3. The c-MET modulates cell proliferation, epithelial-mesenchymal transition (EMT), immune response, morphogenesis, apoptosis, and angiogenesis. The c-MET has been shown to serve a prominent role in embryogenesis and early development. The c-MET pathway is deregulated in a broad range of malignancies, due to overexpression of ligands or receptors, genomic amplification, and MET mutations. The link between the deregulation of c-MET signaling and tumor progression has been well-documented. Overexpression or overactivation of c-MET is associated with dismal clinical outcomes and acquired resistance to targeted therapies. Since c-MET activation results in the triggering of oncogenic pathways, abrogating the c-MET pathway is considered to be a pivotal strategy in cancer therapeutics. Herein, an analysis of role of the c-MET pathway in human cancers and its relevance in bone metastasis and therapeutic resistance has been undertaken. Also, an attempt has been made to summarize the inhibitory activity of selected natural compounds towards c-MET signaling in cancers. METHODS The publications related to c-MET pathway in malignancies and its natural compound modulators were obtained from databases such as PubMed, Scopus, and Google Scholar and summarized based on PRISMA guidelines. Some of the keywords used for extracting relevant literature are c-MET, natural compound inhibitors of c-MET, c-MET in liver cancer, c-MET in breast cancer, c-MET in lung cancer, c-MET in pancreatic cancer, c-MET in head and neck cancer, c-MET in bone metastasis, c-MET in therapeutic resistance, and combination of c-MET inhibitors and chemotherapeutic agents. The chemical structure of natural compounds was verified in PubChem database. RESULTS The search yielded 3935 publications, of which 195 reference publications were used for our analysis. Clinical trials were referenced using ClinicalTrials.gov identifier. The c-MET pathway has been recognized as a prominent target to combat the growth, metastasis, and chemotherapeutic resistance in cancers. The key role of the c-MET in bone metastasis as well as therapeutic resistance has been elaborated. Also, suppressive effect of selected natural compounds on the c-MET pathway in clinical/preclinical studies has been discussed.
Collapse
Affiliation(s)
- Chakrabhavi Dhananjaya Mohan
- FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226 001, India
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | | | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kanchugarakoppal S Rangappa
- Institution of Excellence, Vijnana Bhavan, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
15
|
Wang L, Zhang L, Dunmall LC, Wang YY, Fan Z, Cheng Z, Wang Y. The dilemmas and possible solutions for CAR-T cell therapy application in solid tumors. Cancer Lett 2024; 591:216871. [PMID: 38604310 DOI: 10.1016/j.canlet.2024.216871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy, as an adoptive immunotherapy, is playing an increasingly important role in the treatment of malignant tumors. CAR-T cells are referred to as "living drugs" as they not only target tumor cells directly, but also induce long-term immune memory that has the potential to provide long-lasting protection. CD19.CAR-T cells have achieved complete response rates of over 90 % for acute lymphoblastic leukemia and over 60 % for non-Hodgkin's lymphoma. However, the response rate of CAR-T cells in the treatment of solid tumors remains extremely low and the side effects potentially severe. In this review, we discuss the limitations that the solid tumor microenvironment poses for CAR-T application and the solutions that are being developed to address these limitations, in the hope that in the near future, CAR-T cell therapy for solid tumors can attain the same success rates as are now being seen clinically for hematological malignancies.
Collapse
Affiliation(s)
- Lihong Wang
- Department of Oncology, Air Force Medical Center, PLA, Beijing, China; National Centre for International Research in Cell and Gene Therapy, Sino British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lufang Zhang
- National Centre for International Research in Cell and Gene Therapy, Sino British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yang Yang Wang
- Department of General Pediatrics, Newham General Hospital, E13 8SL, London, United Kingdom
| | - Zaiwen Fan
- Department of Oncology, Air Force Medical Center, PLA, Beijing, China
| | - Zhenguo Cheng
- National Centre for International Research in Cell and Gene Therapy, Sino British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, Sino British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China; Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
16
|
Cao Y, Li Y, Ren C, Yang C, Hao R, Mu T. Manganese-based nanomaterials promote synergistic photo-immunotherapy: green synthesis, underlying mechanisms, and multiple applications. J Mater Chem B 2024; 12:4097-4117. [PMID: 38587869 DOI: 10.1039/d3tb02844e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Single phototherapy and immunotherapy have individually made great achievements in tumor treatment. However, monotherapy has difficulty in balancing accuracy and efficiency. Combining phototherapy with immunotherapy can realize the growth inhibition of distal metastatic tumors and enable the remote monitoring of tumor treatment. The development of nanomaterials with photo-responsiveness and anti-tumor immunity activation ability is crucial for achieving photo-immunotherapy. As immune adjuvants, photosensitizers and photothermal agents, manganese-based nanoparticles (Mn-based NPs) have become a research hotspot owing to their multiple ways of anti-tumor immunity regulation, photothermal conversion and multimodal imaging. However, systematic studies on the synergistic photo-immunotherapy applications of Mn-based NPs are still limited; especially, the green synthesis and mechanism of Mn-based NPs applied in immunotherapy are rarely comprehensively discussed. In this review, the synthesis strategies and function of Mn-based NPs in immunotherapy are first introduced. Next, the different mechanisms and leading applications of Mn-based NPs in immunotherapy are reviewed. In addition, the advantages of Mn-based NPs in synergistic photo-immunotherapy are highlighted. Finally, the challenges and research focus of Mn-based NPs in combination therapy are discussed, which might provide guidance for future personalized cancer therapy.
Collapse
Affiliation(s)
- Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Caixia Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Chengkai Yang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Rongzhang Hao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| |
Collapse
|
17
|
He M, Zhang M, Xu T, Xue S, Li D, Zhao Y, Zhi F, Ding D. Enhancing photodynamic immunotherapy by reprograming the immunosuppressive tumor microenvironment with hypoxia relief. J Control Release 2024; 368:233-250. [PMID: 38395154 DOI: 10.1016/j.jconrel.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Tumor hypoxia impairs the generation of reactive oxygen species and the induction of immunogenic cell death (ICD) for photodynamic therapy (PDT), thus impeding its efficacy and the subsequent immunotherapy. In addition, hypoxia plays a critical role in forming immunosuppressive tumor microenvironments (TME) by regulating the infiltration of immunosuppressive tumor-associated macrophages (TAMs) and the expression of programmed death ligand 1 (PD-L1). To simultaneously tackle these issues, a MnO2-containing albumin nanoplatform co-delivering IR780, NLG919, and a paclitaxel (PTX) dimer is designed to boost photodynamic immunotherapy. The MnO2-catalyzed oxygen supply bolsters the efficacy of PDT and PTX-mediated chemotherapy, collectively amplifying the induction of ICD and the expansion of tumor-specific cytotoxic T lymphocytes (CTLs). More importantly, hypoxia releif reshapes the immunosuppressive TME via down-regulating the intratumoral infiltration of M2-type TAMs and the PD-L1 expression of tumor cells to enhance the infiltration and efficacy of CTLs in combination with immune checkpoint blockade (ICB) by NLG919, consequently eradicating primary tumors and almost completely preventing tumor relapse and metastasis. This study sets an example of enhanced immunotherapy for breast cancers through dual ICD induction and simultaneous immunosuppression modulation via both hypoxia relief and ICB, providing a strategy for the treatment of other hypoxic and immunosuppressive cancers.
Collapse
Affiliation(s)
- Mengying He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mengyao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin D02 NY74, Ireland
| | - Shujuan Xue
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Dazhao Li
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou 213003, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yanan Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Feng Zhi
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou 213003, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| | - Dawei Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
18
|
Huang H, Lu W, Zhang X, Pan J, Cao F, Wen L. Fibroblast subtypes in pancreatic cancer and pancreatitis: from mechanisms to therapeutic strategies. Cell Oncol (Dordr) 2024; 47:383-396. [PMID: 37721678 DOI: 10.1007/s13402-023-00874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
Excessive fibrosis is a predominant feature of pancreatic stroma and plays a crucial role in the development and progression of pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP). Emerging evidence showed diversity and heterogeneity of fibroblasts play crucial and somewhat contradictory roles, the interactions between fibroblasts and pancreatic cells or infiltrating immune cells are of great importance during PDAC and CP progression, with some promising therapeutic strategies being tested. Therefore, in this review, we describe the classification of fibroblasts and their functions in PDAC and pancreatitis, the mechanisms by which fibroblasts mediate the development and progression of PDAC and CP through direct or indirect interaction between fibroblast and pancreatic parenchymal cells, or by remodeling the pancreatic immune microenvironment mediates the development and progression of PDAC and CP. Finally, we summarized the current therapeutic strategies and agents that directly target subtypes of fibroblasts or interfere with their essential functions.
Collapse
Affiliation(s)
- Huizhen Huang
- Department of Gastroenterology, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Nanjing Medical University, Shanghai, China
| | - Wanyi Lu
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiuli Zhang
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jiachun Pan
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Li Wen
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| |
Collapse
|
19
|
Wang L, Zhou S, Ruan Y, Wu X, Zhang X, Li Y, Ying D, Lu Y, Tian Y, Cheng G, Zhang J, Lv K, Zhou X. Hypoxia-Challenged Pancreatic Adenocarcinoma Cell-Derived Exosomal circR3HCC1L Drives Tumor Growth Via Upregulating PKM2 Through Sequestering miR-873-5p. Mol Biotechnol 2024:10.1007/s12033-024-01091-z. [PMID: 38526683 DOI: 10.1007/s12033-024-01091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/24/2024] [Indexed: 03/27/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) is a fatal disease with poor survival. Increasing evidence show that hypoxia-induced exosomes are associated with cancer progression. Here, we aimed to investigate the function of hsa_circ_0007678 (circR3HCC1L) and hypoxic PAAD cell-derived exosomal circR3HCC1L in PAAD progression. Through the exoRBase 2.0 database, we screened for a circular RNA circR3HCC1L related to PAAD. Changes of circR3HCC1L in PAAD samples and cells were analyzed with real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, migration, invasion were analyzed by colony formation, cell counting, and transwell assays. Measurements of glucose uptake and lactate production were done using corresponding kits. Several protein levels were detected by western blotting. The regulation mechanism of circR3HCC1L was verified by dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays. Exosomes were separated by differential ultracentrifugation. Animal experiments were used to verify the function of hypoxia-derived exosomal circR3HCC1L. CircR3HCC1L was upregulated in PAAD samples and hypoxic PAAD cells. Knockdown of circR3HCC1L decreased hypoxia-driven PAAD cell proliferation, migration, invasion, and glycolysis. Hypoxic PAAD cell-derived exosomes had higher levels of circR3HCC1L, hypoxic PAAD cell-derived exosomal circR3HCC1L promoted normoxic cancer cell malignant transformation and glycolysis in vitro and xenograft tumor growth in mouse models in vivo. Mechanistically, circR3HCC1L regulated pyruvate kinase M2 (PKM2) expression via sponging miR-873-5p. Also, PKM2 overexpression or miR-873-5p silencing offset circR3HCC1L knockdown-mediated effects on hypoxia-challenged PAAD cell malignant transformation and glycolysis. Hypoxic PAAD cell-derived exosomal circR3HCC1L facilitated PAAD progression through the miR-873-5p/PKM2 axis, highlighting the contribution of hypoxic PAAD cell-derived exosomal circR3HCC1L in PAAD.
Collapse
Affiliation(s)
- Luoluo Wang
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Shuping Zhou
- Ningbo College of Health Sciences, No.51, Xuefu Road, Yinzhou District, Ningbo, 315040, Zhejiang, China.
| | - Yi Ruan
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Xiang Wu
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
- Medical School of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Xueming Zhang
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Yi Li
- College of Computer Science and Artificial Intelligence Wenzhou University, Wenzhou, 325000, Zhejiang, China
| | - Dongjian Ying
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Yeting Lu
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Yuan Tian
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Gong Cheng
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Jing Zhang
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Kaiji Lv
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Xinhua Zhou
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
20
|
Sharma A, Verwilst P, Li M, Ma D, Singh N, Yoo J, Kim Y, Yang Y, Zhu JH, Huang H, Hu XL, He XP, Zeng L, James TD, Peng X, Sessler JL, Kim JS. Theranostic Fluorescent Probes. Chem Rev 2024; 124:2699-2804. [PMID: 38422393 PMCID: PMC11132561 DOI: 10.1021/acs.chemrev.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.
Collapse
Affiliation(s)
- Amit Sharma
- Amity
School of Chemical Sciences, Amity University
Punjab, Sector 82A, Mohali 140 306, India
| | - Peter Verwilst
- Rega
Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Mingle Li
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Dandan Ma
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nem Singh
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiyoung Yoo
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Yujin Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Ying Yang
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Jing-Hui Zhu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haiqiao Huang
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi-Le Hu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Peng He
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- National
Center for Liver Cancer, the International Cooperation Laboratory
on Signal Transduction, Eastern Hepatobiliary
Surgery Hospital, Shanghai 200438, China
| | - Lintao Zeng
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaojun Peng
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at
Austin, Texas 78712-1224, United
States
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
21
|
Salu P, Reindl KM. Advancements in Preclinical Models of Pancreatic Cancer. Pancreas 2024; 53:e205-e220. [PMID: 38206758 PMCID: PMC10842038 DOI: 10.1097/mpa.0000000000002277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
ABSTRACT Pancreatic cancer remains one of the deadliest of all cancer types with a 5-year overall survival rate of just 12%. Preclinical models available for understanding the disease pathophysiology have evolved significantly in recent years. Traditionally, commercially available 2-dimensional cell lines were developed to investigate mechanisms underlying tumorigenesis, metastasis, and drug resistance. However, these cells grow as monolayer cultures that lack heterogeneity and do not effectively represent tumor biology. Developing patient-derived xenografts and genetically engineered mouse models led to increased cellular heterogeneity, molecular diversity, and tissues that histologically represent the original patient tumors. However, these models are relatively expensive and very timing consuming. More recently, the advancement of fast and inexpensive in vitro models that better mimic disease conditions in vivo are on the rise. Three-dimensional cultures like organoids and spheroids have gained popularity and are considered to recapitulate complex disease characteristics. In addition, computational genomics, transcriptomics, and metabolomic models are being developed to simulate pancreatic cancer progression and predict better treatment strategies. Herein, we review the challenges associated with pancreatic cancer research and available analytical models. We suggest that an integrated approach toward using these models may allow for developing new strategies for pancreatic cancer precision medicine.
Collapse
Affiliation(s)
- Philip Salu
- From the Department of Biological Sciences, North Dakota State University, Fargo, ND
| | | |
Collapse
|
22
|
Li P, Sun Q, Bai S, Wang H, Zhao L. Combination of the cuproptosis inducer disulfiram and anti‑PD‑L1 abolishes NSCLC resistance by ATP7B to regulate the HIF‑1 signaling pathway. Int J Mol Med 2024; 53:19. [PMID: 38186308 PMCID: PMC10781418 DOI: 10.3892/ijmm.2023.5343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/25/2023] [Indexed: 01/09/2024] Open
Abstract
Disulfiram (DSF) is used to treat non‑small cell lung cancer (NSCLC). DSF significantly increases expression of programmed death‑ligand 1 (PD‑L1), which may enhance immunosuppression and immune escape of tumors. Therefore, the present study aimed to investigate the role of combined treatment of DSF and anti‑PD‑L1 in NSCLC resistance. The viability and apoptosis of A549 cells were detected by the Cell Counting Kit‑8 assay and flow cytometry, respectively. The expression levels of ATPase copper‑transporting β (ATP7B) and PD‑L1 in A549 cells were detected by reverse transcription‑quantitative PCR and western blot analysis. The levels of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) in A549 cells were detected by respective assay kits. The expression levels of cuproptosis‑associated proteins ferredoxin‑1 (FDX1), ATP7B, solute carrier family 31 member 1 (SLC31A1), succinate dehydrogenase B (SDHB), PD‑L1 and hypoxia inducible factor (HIF)‑1A were analyzed by western blotting in A549 cells. DSF inhibited the viability of A549 cells and promoted expression levels of ATP7B and PD‑L1 at both mRNA and protein levels in A549 cells. The viability of cisplatin (DPP)‑treated A549 cells was increased following DSF treatment. JQ‑1 (a PD‑L1 inhibitor) suppressed the viability of DPP‑treated A549 cells pretreated with DSF. DSF increased expression levels of ATP7B and PD‑L1. The combination treatment of DSF and JQ‑1 in A549 cells increased levels of ROS and MDA, as well as expression levels of FDX1 and SLC31A1; however, combination treatment decreased levels of SOD, as well as expression levels of ATP7B, SDHB, PD‑L1, and HIF‑1A. PX478 (an HIF‑1 inhibitor) acted with DSF to enhance the inhibitory effects on the viability and on the induction of apoptosis of A549 cells. PX478 upregulated the levels of ROS and MDA, while it downregulated levels of SOD in DSF‑treated A549 cells. PX478 promoted expression levels of FDX1 and SLC31A1, while it suppressed expression levels of ATP7B, PD‑L1, and HIF‑1A in DSF‑treated A549 cells. In conclusion, the combined treatment of A549 cells with anti‑PD‑L1 and DSF enhanced the effect of cuproptosis on the inhibition of NSCLC cell viability.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Qi Sun
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Shuping Bai
- The Second Department of Respiratory, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Haitao Wang
- The Second Department of Respiratory, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Ling Zhao
- The Second Department of Respiratory, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
23
|
Cao M, Xiao L, Chen S, Huang J. Characterization of hypoxia-responsive states in ovarian cancer to identify hot tumors and aid adjuvant therapy. Discov Oncol 2024; 15:23. [PMID: 38294583 PMCID: PMC10831007 DOI: 10.1007/s12672-024-00859-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUNDS The hypoxia-responsive state of cancer is a complex pathophysiological process involving numerous genes playing different roles. Due to the rapid proliferation of cancer cells and chaotic angiogenesis, the clinical features of hypoxia-responsive states are not yet clear in patients with ovarian cancer. METHODS Based on the RNA expression levels of 14 hypoxic markers, our study screened out hypoxia-related genes and construct a hypoxic score pattern to quantify the hypoxia-responsive states of a single tumor. Combining clinical prognosis, tumor mutation burden, microsatellite instability, the expression level of the immune checkpoint, IC50, and other indicators to evaluate the impact of different hypoxia-responsive states on clinical prognosis and therapeutic sensitivity. RESULTS Our study identified a subgroup with an active hypoxia-responsive state and they have a worse clinical prognosis but exhibit higher immunogenicity and higher sensitivity to immunotherapy. CONCLUSIONS This work revealed that hypoxia-responsive states played an important role in formation of tumor immunogenicity. Evaluating the hypoxia-responsive state will contribute to guiding more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Minghui Cao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liwei Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangzhou, 510080, Guangdong, China
| | - Shuo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangzhou, 510080, Guangdong, China
| | - Jiaming Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
24
|
Li J, Hu B, Chen Z, Li J, Jin W, Wang Y, Wan Y, Lv Y, Pei Y, Liu H, Pei Z. Mn(iii)-mediated carbon-centered radicals generate an enhanced immunotherapeutic effect. Chem Sci 2024; 15:765-777. [PMID: 38179519 PMCID: PMC10763560 DOI: 10.1039/d3sc03635a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
A strategy for designing cancer therapeutic nanovaccines based on immunogenic cell death (ICD)-inducing therapeutic modalities is particularly attractive for optimal therapeutic efficacy. In this work, a highly effective cancer therapeutic nanovaccine (denoted as MPL@ICC) based on immunogenic photodynamic therapy (PDT) was rationally designed and fabricated. MPL@ICC was composed of a nanovehicle of MnO2 modified with a host-guest complex using amino pillar[6]arene and lactose-pyridine, a prodrug of isoniazid (INH), and chlorine e6 (Ce6). The nanovaccine exhibited excellent biosafety, good targeting ability to hepatoma cells and enrichment at tumor sites. Most importantly, it could modulate the tumor microenvironment (TME) to facilitate the existence of Mn(iii) and Mn(iii)-mediated carbon-centered radical generation with INH released from the prodrug in situ to further strengthen ICD. This is the first report on Mn(iii)-mediated generation of carbon-centered radicals for successful anti-tumor immunotherapy using ICD, which provides a novel strategy for designing highly efficient cancer therapeutic nanovaccines.
Collapse
Affiliation(s)
- Jiaxuan Li
- College of Chemistry & Pharmacy, Northwest A&F University Yangling Shaanxi 712100 P. R. China
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine Huangjiahu West Road 16 Wuhan 430065 P. R. China
| | - Zelong Chen
- College of Chemistry & Pharmacy, Northwest A&F University Yangling Shaanxi 712100 P. R. China
| | - Jiahui Li
- College of Chemistry & Pharmacy, Northwest A&F University Yangling Shaanxi 712100 P. R. China
| | - Wenjuan Jin
- College of Chemistry & Pharmacy, Northwest A&F University Yangling Shaanxi 712100 P. R. China
| | - Yi Wang
- College of Chemistry & Pharmacy, Northwest A&F University Yangling Shaanxi 712100 P. R. China
| | - Yichen Wan
- College of Chemistry & Pharmacy, Northwest A&F University Yangling Shaanxi 712100 P. R. China
| | - Yinghua Lv
- College of Chemistry & Pharmacy, Northwest A&F University Yangling Shaanxi 712100 P. R. China
| | - Yuxin Pei
- College of Chemistry & Pharmacy, Northwest A&F University Yangling Shaanxi 712100 P. R. China
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine Huangjiahu West Road 16 Wuhan 430065 P. R. China
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University Yangling Shaanxi 712100 P. R. China
| |
Collapse
|
25
|
Ren M, Fan B, Cao G, Zong R, Feng L, Sun H. Exploration and validation of a combined Hypoxia and m6A/m5C/m1A regulated gene signature for prognosis prediction of liver cancer. BMC Genomics 2023; 24:776. [PMID: 38097948 PMCID: PMC10722758 DOI: 10.1186/s12864-023-09876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND It is widely acknowledged that hypoxia and m6A/m5C/m1A RNA modifications promote the occurrence and development of tumors by regulating the tumor microenvironment. This study aimed to establish a novel liver cancer risk signature based on hypoxia and m6A/m5C/m1A modifications. METHODS We collected data from The Cancer Genome Atlas (TCGA-LIHC), the National Omics Data Encyclopedia (NODE-HCC), the International Cancer Genome Consortium (ICGC), and the Gene Expression Omnibus (GEO) databases for our study (GSE59729, GSE41666). Using Cox regression and least absolute shrinkage and selection operator (LASSO) method, we developed a risk signature for liver cancer based on differentially expressed genes related to hypoxia and genes regulated by m6A/m5C/m1A modifications. We stratified patients into high- and low-risk groups and assessed differences between these groups in terms of gene mutations, copy number variations, pathway enrichment, stemness scores, immune infiltration, and predictive capabilities of the model for immunotherapy and chemotherapy efficacy. RESULTS Our analysis revealed a significantly correlated between hypoxia and methylation as well as m6A/m5C/m1A RNA methylation. The three-gene prognosis signature (CEP55, DPH2, SMS) combining hypoxia and m6A/m5C/m1A regulated genes exhibited strong predictive performance in TCGA-LIHC, NODE-HCC, and ICGC-LIHC-JP cohorts. The low-risk group demonstrated a significantly better overall survival compared to the high-risk group (p < 0.0001 in TCGA, p = 0.0043 in NODE, p = 0.0015 in ICGC). The area under the curve (AUC) values for survival at 1, 2, and 3 years are all greater than 0.65 in the three cohorts. Univariate and Multivariate Cox regression analyses of the three datasets indicated that the signature could serve as an independent prognostic predictor (p < 0.001 in the three cohorts). The high-risk group exhibited more genome changes and higher homologous recombination deficiency scores and stemness scores. Analysis of immune infiltration and immune activation confirmed that the signature was associated with various immune microenvironment characteristics. Finally, patients in the high-risk group experienced a more favorable response to immunotherapy, and various common chemotherapy drugs. CONCLUSION Our prognostic signature which integrates hypoxia and m6A/m5C/m1A-regulated genes, provides valuable insights for clinical prediction and treatment guidance for liver cancer patients.
Collapse
Affiliation(s)
- Min Ren
- College of Life Science, Yan'an University, 716000, Yan'an, China
| | - Bei Fan
- College of Life Science, Yan'an University, 716000, Yan'an, China
| | - Guangcai Cao
- The First Clinical Medical College, Yan'an University, 716000, Yan'an, China
| | - Rongrong Zong
- College of Life Science, Yan'an University, 716000, Yan'an, China
| | - Liaoliao Feng
- College of Life Science, Yan'an University, 716000, Yan'an, China
| | - Huiru Sun
- College of Life Science, Yan'an University, 716000, Yan'an, China.
| |
Collapse
|
26
|
Abou Khouzam R, Janji B, Thiery J, Zaarour RF, Chamseddine AN, Mayr H, Savagner P, Kieda C, Gad S, Buart S, Lehn JM, Limani P, Chouaib S. Hypoxia as a potential inducer of immune tolerance, tumor plasticity and a driver of tumor mutational burden: Impact on cancer immunotherapy. Semin Cancer Biol 2023; 97:104-123. [PMID: 38029865 DOI: 10.1016/j.semcancer.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
In cancer patients, immune cells are often functionally compromised due to the immunosuppressive features of the tumor microenvironment (TME) which contribute to the failures in cancer therapies. Clinical and experimental evidence indicates that developing tumors adapt to the immunological environment and create a local microenvironment that impairs immune function by inducing immune tolerance and invasion. In this context, microenvironmental hypoxia, which is an established hallmark of solid tumors, significantly contributes to tumor aggressiveness and therapy resistance through the induction of tumor plasticity/heterogeneity and, more importantly, through the differentiation and expansion of immune-suppressive stromal cells. We and others have provided evidence indicating that hypoxia also drives genomic instability in cancer cells and interferes with DNA damage response and repair suggesting that hypoxia could be a potential driver of tumor mutational burden. Here, we reviewed the current knowledge on how hypoxic stress in the TME impacts tumor angiogenesis, heterogeneity, plasticity, and immune resistance, with a special interest in tumor immunogenicity and hypoxia targeting. An integrated understanding of the complexity of the effect of hypoxia on the immune and microenvironmental components could lead to the identification of better adapted and more effective combinational strategies in cancer immunotherapy. Clearly, the discovery and validation of therapeutic targets derived from the hypoxic tumor microenvironment is of major importance and the identification of critical hypoxia-associated pathways could generate targets that are undeniably attractive for combined cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Bassam Janji
- Department of Cancer Research, Luxembourg Institute of Health, Tumor Immunotherapy and Microenvironment (TIME) Group, 6A, rue Nicolas-Ernest Barblé, L-1210 Luxembourg city, Luxembourg.
| | - Jerome Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Ali N Chamseddine
- Gastroenterology Department, Cochin University Hospital, Université de Paris, APHP, Paris, France; Ambroise Paré - Hartmann Private Hospital Group, Oncology Unit, Neuilly-sur-Seine, France.
| | - Hemma Mayr
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland; Department of Surgery & Transplantation, University and University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| | - Pierre Savagner
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland; Centre for Molecular Biophysics, UPR 4301 CNRS, 45071 Orleans, France; Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland.
| | - Sophie Gad
- Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres University (PSL), 75014 Paris, France; UMR CNRS 9019, Genome Integrity and Cancers, Gustave Roussy, Paris-Saclay University, 94800 Villejuif, France.
| | - Stéphanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Jean-Marie Lehn
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg, France.
| | - Perparim Limani
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland; Department of Surgery & Transplantation, University and University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| |
Collapse
|
27
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
28
|
Zhang H, Cao K, Xiang J, Zhang M, Zhu M, Xi Q. Hypoxia induces immunosuppression, metastasis and drug resistance in pancreatic cancers. Cancer Lett 2023; 571:216345. [PMID: 37558084 DOI: 10.1016/j.canlet.2023.216345] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Pancreatic cancer is one of the common malignant tumors of the digestive system and is known as the "king of cancers". It is extremely difficult to diagnose at an early stage, the disease progresses rapidly, and the effect of chemotherapy and radiotherapy is poor, so the prognosis of pancreatic cancer patients is very poor. Numerous studies have suggested that hypoxia is closely related to the development and progression of pancreatic cancer. Inadequate blood supply and desmoplasia in the microenvironment of pancreatic cancer can result in its extreme hypoxia. This hypoxic microenvironment can further contribute to angiogenesis and desmoplasia. Hypoxia is mediated by the complex hypoxia inducible factor (HIF) signaling pathway and plays an important role in the formation of a highly immunosuppressive microenvironment and the metastasis of pancreatic cancer. Further work on the hypoxic microenvironment will help clarify the specific mechanisms of the role of hypoxia in pancreatic cancer and provide a basis for the realization of hypoxia-targeted therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Kailei Cao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Jingrong Xiang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mengting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mengxin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
29
|
Bandopadhyay S, Patranabis S. Mechanisms of HIF-driven immunosuppression in tumour microenvironment. J Egypt Natl Canc Inst 2023; 35:27. [PMID: 37646847 DOI: 10.1186/s43046-023-00186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023] Open
Abstract
Hypoxia arises due to insufficient oxygen delivery to rapidly proliferating tumour cells that outpace the available blood supply. It is a characteristic feature of most solid tumour microenvironments and plays a critical role in regulating anti-tumour immunity, enhancing tumoral heterogeneity, and promoting therapeutic resistance and poor clinical outcomes. Hypoxia-inducible factors (HIFs) are the major hypoxia-responsive transcription factors that are activated under low oxygenation conditions and have been identified to drive multifunctional roles in tumour immune evasion. The HIF signalling network serves as an attractive target for targeted therapeutic approaches. This review aims to provide a comprehensive overview of the most crucial mechanisms by which HIF controls the expression of immunosuppressive molecules and immune checkpoints, disrupts cancer immunogenicity, and induces immunotherapeutic resistance.
Collapse
Affiliation(s)
| | - Somi Patranabis
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India.
| |
Collapse
|
30
|
Ren M, Feng L, Zong R, Sun H. Novel prognostic gene signature for pancreatic ductal adenocarcinoma based on hypoxia. World J Surg Oncol 2023; 21:257. [PMID: 37605192 PMCID: PMC10464224 DOI: 10.1186/s12957-023-03142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Currently, there is lack of marker to accurately assess the prognosis of patients diagnosed with pancreatic ductal adenocarcinoma (PDAC). This study aims to establish a hypoxia-related risk scoring model that can effectively predict the prognosis and chemotherapy outcomes of PDAC patients. METHODS Using unsupervised consensus clustering algorithms, we comprehensively analyzed The Cancer Genome Atlas (TCGA) data to identify two distinct hypoxia clusters and used the weighted gene co-expression network analysis (WGCNA) to examine gene sets significantly associated with these hypoxia clusters. Then univariate Cox regression, the least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression were used to construct a signature and its efficacy was evaluated using the International Cancer Genome Consortium (ICGC) PDAC cohort. Further, the correlation between the risk scores obtained from the signature and carious clinical, pathological, immunophenotype, and immunoinfiltration factors as well as the differences in immunotherapy potential and response to common chemotherapy drugs between high-risk and low-risk groups were evaluated. RESULTS From a total of 8 significantly related modules and 4423 genes, 5 hypoxia-related signature genes were identified to construct a risk model. Further analysis revealed that the overall survival rate (OS) of patients in the low-risk group was significantly higher than the high-risk group. Univariate and multivariate Cox regression analysis showed that the risk scoring signature was an independent factor for prognosis prediction. Analysis of immunocyte infiltration and immunophenotype showed that the immune score and the anticancer immune response in the high-risk were significantly lower than that in the low-risk group. CONCLUSION The constructed hypoxia-associated prognostic signature demonstrated could be used as a potential risk classifier for PDAC.
Collapse
Affiliation(s)
- Min Ren
- College of Life Science, Yan'an University, Yan'an, 716000, China
| | - Liaoliao Feng
- College of Life Science, Yan'an University, Yan'an, 716000, China
| | - Rongrong Zong
- College of Life Science, Yan'an University, Yan'an, 716000, China
| | - Huiru Sun
- College of Life Science, Yan'an University, Yan'an, 716000, China.
| |
Collapse
|
31
|
Gao H, Nepovimova E, Heger Z, Valko M, Wu Q, Kuca K, Adam V. Role of hypoxia in cellular senescence. Pharmacol Res 2023; 194:106841. [PMID: 37385572 DOI: 10.1016/j.phrs.2023.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Senescent cells persist and continuously secrete proinflammatory and tissue-remodeling molecules that poison surrounding cells, leading to various age-related diseases, including diabetes, atherosclerosis, and Alzheimer's disease. The underlying mechanism of cellular senescence has not yet been fully explored. Emerging evidence indicates that hypoxia is involved in the regulation of cellular senescence. Hypoxia-inducible factor (HIF)- 1α accumulates under hypoxic conditions and regulates cellular senescence by modulating the levels of the senescence markers p16, p53, lamin B1, and cyclin D1. Hypoxia is a critical condition for maintaining tumor immune evasion, which is promoted by driving the expression of genetic factors (such as p53 and CD47) while triggering immunosenescence. Under hypoxic conditions, autophagy is activated by targeting BCL-2/adenovirus E1B 19-kDa interacting protein 3, which subsequently induces p21WAF1/CIP1 as well as p16Ink4a and increases β-galactosidase (β-gal) activity, thereby inducing cellular senescence. Deletion of the p21 gene increases the activity of the hypoxia response regulator poly (ADP-ribose) polymerase-1 (PARP-1) and the level of nonhomologous end joining (NHEJ) proteins, repairs DNA double-strand breaks, and alleviates cellular senescence. Moreover, cellular senescence is associated with intestinal dysbiosis and an accumulation of D-galactose derived from the gut microbiota. Chronic hypoxia leads to a striking reduction in the amount of Lactobacillus and D-galactose-degrading enzymes in the gut, producing excess reactive oxygen species (ROS) and inducing senescence in bone marrow mesenchymal stem cells. Exosomal microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) play important roles in cellular senescence. miR-424-5p levels are decreased under hypoxia, whereas lncRNA-MALAT1 levels are increased, both of which induce cellular senescence. The present review focuses on recent advances in understanding the role of hypoxia in cellular senescence. The effects of HIFs, immune evasion, PARP-1, gut microbiota, and exosomal mRNA in hypoxia-mediated cell senescence are specifically discussed. This review increases our understanding of the mechanism of hypoxia-mediated cellular senescence and provides new clues for anti-aging processes and the treatment of aging-related diseases.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava 812 37, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 500 05, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic.
| |
Collapse
|
32
|
Urzì O, Gasparro R, Costanzo E, De Luca A, Giavaresi G, Fontana S, Alessandro R. Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models. Int J Mol Sci 2023; 24:12046. [PMID: 37569426 PMCID: PMC10419178 DOI: 10.3390/ijms241512046] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Although historically, the traditional bidimensional in vitro cell system has been widely used in research, providing much fundamental information regarding cellular functions and signaling pathways as well as nuclear activities, the simplicity of this system does not fully reflect the heterogeneity and complexity of the in vivo systems. From this arises the need to use animals for experimental research and in vivo testing. Nevertheless, animal use in experimentation presents various aspects of complexity, such as ethical issues, which led Russell and Burch in 1959 to formulate the 3R (Replacement, Reduction, and Refinement) principle, underlying the urgent need to introduce non-animal-based methods in research. Considering this, three-dimensional (3D) models emerged in the scientific community as a bridge between in vitro and in vivo models, allowing for the achievement of cell differentiation and complexity while avoiding the use of animals in experimental research. The purpose of this review is to provide a general overview of the most common methods to establish 3D cell culture and to discuss their promising applications. Three-dimensional cell cultures have been employed as models to study both organ physiology and diseases; moreover, they represent a valuable tool for studying many aspects of cancer. Finally, the possibility of using 3D models for drug screening and regenerative medicine paves the way for the development of new therapeutic opportunities for many diseases.
Collapse
Affiliation(s)
- Ornella Urzì
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Roberta Gasparro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Elisa Costanzo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Simona Fontana
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| |
Collapse
|
33
|
Gautam SK, Batra SK, Jain M. Molecular and metabolic regulation of immunosuppression in metastatic pancreatic ductal adenocarcinoma. Mol Cancer 2023; 22:118. [PMID: 37488598 PMCID: PMC10367391 DOI: 10.1186/s12943-023-01813-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Immunosuppression is a hallmark of pancreatic ductal adenocarcinoma (PDAC), contributing to early metastasis and poor patient survival. Compared to the localized tumors, current standard-of-care therapies have failed to improve the survival of patients with metastatic PDAC, that necessecitates exploration of novel therapeutic approaches. While immunotherapies such as immune checkpoint blockade (ICB) and therapeutic vaccines have emerged as promising treatment modalities in certain cancers, limited responses have been achieved in PDAC. Therefore, specific mechanisms regulating the poor response to immunotherapy must be explored. The immunosuppressive microenvironment driven by oncogenic mutations, tumor secretome, non-coding RNAs, and tumor microbiome persists throughout PDAC progression, allowing neoplastic cells to grow locally and metastasize distantly. The metastatic cells escaping the host immune surveillance are unique in molecular, immunological, and metabolic characteristics. Following chemokine and exosomal guidance, these cells metastasize to the organ-specific pre-metastatic niches (PMNs) constituted by local resident cells, stromal fibroblasts, and suppressive immune cells, such as the metastasis-associated macrophages, neutrophils, and myeloid-derived suppressor cells. The metastatic immune microenvironment differs from primary tumors in stromal and immune cell composition, functionality, and metabolism. Thus far, multiple molecular and metabolic pathways, distinct from primary tumors, have been identified that dampen immune effector functions, confounding the immunotherapy response in metastatic PDAC. This review describes major immunoregulatory pathways that contribute to the metastatic progression and limit immunotherapy outcomes in PDAC. Overall, we highlight the therapeutic vulnerabilities attributable to immunosuppressive factors and discuss whether targeting these molecular and immunological "hot spots" could improve the outcomes of PDAC immunotherapies.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
34
|
Kao TW, Bai GH, Wang TL, Shih IM, Chuang CM, Lo CL, Tsai MC, Chiu LY, Lin CC, Shen YA. Novel cancer treatment paradigm targeting hypoxia-induced factor in conjunction with current therapies to overcome resistance. J Exp Clin Cancer Res 2023; 42:171. [PMID: 37460927 DOI: 10.1186/s13046-023-02724-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 07/20/2023] Open
Abstract
Chemotherapy, radiotherapy, targeted therapy, and immunotherapy are established cancer treatment modalities that are widely used due to their demonstrated efficacy against tumors and favorable safety profiles or tolerability. Nevertheless, treatment resistance continues to be one of the most pressing unsolved conundrums in cancer treatment. Hypoxia-inducible factors (HIFs) are a family of transcription factors that regulate cellular responses to hypoxia by activating genes involved in various adaptations, including erythropoiesis, glucose metabolism, angiogenesis, cell proliferation, and apoptosis. Despite this critical function, overexpression of HIFs has been observed in numerous cancers, leading to resistance to therapy and disease progression. In recent years, much effort has been poured into developing innovative cancer treatments that target the HIF pathway. Combining HIF inhibitors with current cancer therapies to increase anti-tumor activity and diminish treatment resistance is one strategy for combating therapeutic resistance. This review focuses on how HIF inhibitors could be applied in conjunction with current cancer treatments, including those now being evaluated in clinical trials, to usher in a new era of cancer therapy.
Collapse
Affiliation(s)
- Ting-Wan Kao
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Geng-Hao Bai
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, 100225, Taiwan
| | - Tian-Li Wang
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans StreetRoom 306, Baltimore, MD, CRB221231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ie-Ming Shih
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans StreetRoom 306, Baltimore, MD, CRB221231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chi-Mu Chuang
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Department of Midwifery and Women Health Care, National Taipei University of Nursing and Health Sciences, Taipei, 112303, Taiwan
| | - Chun-Liang Lo
- Department of Biomedical Engineering, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Meng-Chen Tsai
- Department of General Medicine, Taipei Medical University Hospital, Taipei, 110301, Taiwan
| | - Li-Yun Chiu
- Department of General Medicine, Mackay Memorial Hospital, Taipei, 104217, Taiwan
| | - Chu-Chien Lin
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei City, 110301, Taiwan
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
| |
Collapse
|
35
|
Bruni S, Mercogliano MF, Mauro FL, Cordo Russo RI, Schillaci R. Cancer immune exclusion: breaking the barricade for a successful immunotherapy. Front Oncol 2023; 13:1135456. [PMID: 37284199 PMCID: PMC10239871 DOI: 10.3389/fonc.2023.1135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Immunotherapy has changed the course of cancer treatment. The initial steps were made through tumor-specific antibodies that guided the setup of an antitumor immune response. A new and successful generation of antibodies are designed to target immune checkpoint molecules aimed to reinvigorate the antitumor immune response. The cellular counterpart is the adoptive cell therapy, where specific immune cells are expanded or engineered to target cancer cells. In all cases, the key for achieving positive clinical resolutions rests upon the access of immune cells to the tumor. In this review, we focus on how the tumor microenvironment architecture, including stromal cells, immunosuppressive cells and extracellular matrix, protects tumor cells from an immune attack leading to immunotherapy resistance, and on the available strategies to tackle immune evasion.
Collapse
|
36
|
Sun Z, Wang T, Wang J, Xu J, Shen T, Zhang T, Zhang B, Gao S, Zhao C, Yang M, Sheng F, Yu J, Hou Y. Self-Propelled Janus Nanocatalytic Robots Guided by Magnetic Resonance Imaging for Enhanced Tumor Penetration and Therapy. J Am Chem Soc 2023; 145:11019-11032. [PMID: 37190936 DOI: 10.1021/jacs.2c12219] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Biomedical micro/nanorobots as active delivery systems with the features of self-propulsion and controllable navigation have made tremendous progress in disease therapy and diagnosis, detection, and biodetoxification. However, existing micro/nanorobots are still suffering from complex drug loading, physiological drug stability, and uncontrollable drug release. To solve these problems, micro/nanorobots and nanocatalytic medicine as two independent research fields were integrated in this study to achieve self-propulsion-induced deeper tumor penetration and catalytic reaction-initiated tumor therapy in vivo. We presented self-propelled Janus nanocatalytic robots (JNCRs) guided by magnetic resonance imaging (MRI) for in vivo enhanced tumor therapy. These JNCRs exhibited active movement in H2O2 solution, and their migration in the tumor tissue could be tracked by non-invasive MRI in real time. Both increased temperature and reactive oxygen species production were induced by near-infrared light irradiation and iron-mediated Fenton reaction, showing great potential for tumor photothermal and chemodynamic therapy. In comparison with passive nanoparticles, these self-propelled JNCRs enabled deeper tumor penetration and enhanced tumor therapy after intratumoral injection. Importantly, these robots with biocompatible components and byproducts exhibited biosecurity in the mouse model. It is expected that our work could promote the combination of micro/nanorobots and nanocatalytic medicine, resulting in improved tumor therapy and potential clinical transformations.
Collapse
Affiliation(s)
- Zhaoli Sun
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China
| | - Tao Wang
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Jingjing Wang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Junjie Xu
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Tong Shen
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Center for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Teng Zhang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Biao Zhang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shen Gao
- Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Chenyang Zhao
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Meng Yang
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fugeng Sheng
- Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jing Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
37
|
Tang Q, Sun S, Wang P, Sun L, Wang Y, Zhang L, Xu M, Chen J, Wu R, Zhang J, Gong M, Chen Q, Liang X. Genetically Engineering Cell Membrane-Coated BTO Nanoparticles for MMP2-Activated Piezocatalysis-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300964. [PMID: 36809650 DOI: 10.1002/adma.202300964] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Indexed: 05/05/2023]
Abstract
Tumor immunotherapy based on immune checkpoint blockade (ICB) still suffers from low host response rate and non-specific distribution of immune checkpoint inhibitors, greatly compromising the therapeutic efficiency. Herein, cellular membrane stably expressing matrix metallopeptidase 2 (MMP2)-activated PD-L1 blockades is engineered to coat ultrasmall barium titanate (BTO) nanoparticle for overcoming the immunosuppressive microenvironment of tumors. The resulting M@BTO NPs can significantly promote the BTO's tumor accumulation, while the masking domains on membrane PD-L1 antibodies are cleaved when exposure to MMP2 highly expressed in tumor. With ultrasound (US) irradiation, M@BTO NPs can simultaneously generate reactive oxygen species (ROS) and O2 based on BTO mediated piezocatalysis and water splitting, significantly promoting the intratumoral infiltration of cytotoxic T lymphocytes (CTLs) and improving the PD-L1 blockade therapy to the tumor, resulting in effective tumor growth inhibition and lung metastasis suppression in a melanoma mouse model. This nanoplatform combines MMP2-activated genetic editing cell membrane with US responsive BTO for both immune stimulation and specific PD-L1 inhibition, providing a safe and robust strategy in enhancing immune response against tumor.
Collapse
Affiliation(s)
- Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Lihong Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Lulu Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Menghong Xu
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Jing Chen
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Ruiqi Wu
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Jinxia Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Ming Gong
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 138673, Singapore
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
38
|
Deng C, Deng G, Chu H, Chen S, Chen X, Li X, He Y, Sun C, Zhang C. Construction of a hypoxia-immune-related prognostic panel based on integrated single-cell and bulk RNA sequencing analyses in gastric cancer. Front Immunol 2023; 14:1140328. [PMID: 37180146 PMCID: PMC10169567 DOI: 10.3389/fimmu.2023.1140328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Gastric cancer (GC) is the fifth most common tumor, contributing to the third-highest number of cancer-related deaths. Hypoxia is a major feature of the tumor microenvironment. This study aimed to explore the influence of hypoxia in GC and establish a hypoxia-related prognostic panel. Methods The GC scRNA-seq data and bulk RNA-seq data were downloaded from the GEO and TCGA databases, respectively. AddModuleScore() and AUCell() were used to calculate module scores and fractions of enrichment for hypoxia-related gene expression in single cells. Least absolute shrinkage and selection operator cox (LASSO-COX) regression analysis was utilized to build a prognostic panel, and hub RNAs were validated by qPCR. The CIBERSORT algorithm was adopted to evaluate immune infiltration. The finding of immune infiltration was validated by a dual immunohistochemistry staining. The TIDE score, TIS score and ESTIMATE were used to evaluate the immunotherapy predictive efficacy. Results Hypoxia-related scores were the highest in fibroblasts, and 166 differentially expressed genes were identified. Five hypoxia-related genes were incorporated into the hypoxia-related prognostic panel. 4 hypoxia-related genes (including POSTN, BMP4, MXRA5 and LBH) were significantly upregulated in clinical GC samples compared with the normal group, while APOD expression decreased in GC samples. Similar results were found between cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs). A high hypoxia score was associated with advanced grade, TNM stage, N stage, and poorer prognosis. Decreased antitumor immune cells and increased cancer-promoting immune cells were found in patients with high hypoxia scores. Dual immunohistochemistry staining showed high expression of CD8 and ACTA2 in gastric cancer tissue. In addition, the high hypoxia score group possessed higher TIDE scores, indicating poor immunotherapy benefit. A high hypoxia score was also firmly related to sensitivity to chemotherapeutic drugs. Discussion This hypoxia-related prognostic panel may be effective in predicting the clinical prognosis, immune infiltrations, immunotherapy, and chemotherapy in GC.
Collapse
Affiliation(s)
- Cuncan Deng
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Guofei Deng
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongwu Chu
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Songyao Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiancong Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xing Li
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chunhui Sun
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
39
|
Naik A, Leask A. Tumor-Associated Fibrosis Impairs the Response to Immunotherapy. Matrix Biol 2023; 119:125-140. [PMID: 37080324 DOI: 10.1016/j.matbio.2023.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Previously, impaired responses to immunotherapy in cancer had been attributed mainly to inherent tumor characteristics (tumor cell intrinsic factors) such as low immunogenicity, (low) mutational burden, weak host immune system, etc. However, mapping the responses of immunotherapeutic regimes in clinical trials for different types of cancer has pointed towards an obvious commonality - that tumors with a rich fibrotic stroma respond poorly or not at all. This has prompted a harder look on tumor cell extrinsic factors such as the surrounding tumor microenvironment (TME), and specifically, the fibrotic stroma as a potential enabler of immunotherapy failure. Indeed, the role of cancer-associated fibrosis in impeding efficacy of immunotherapy is now well-established. In fact, recent studies reveal a complex interconnection between fibrosis and treatment efficacy. Accordingly, in this review we provide a general overview of what a tumor associated fibrotic reaction is and how it interacts with the members of immune system that are frequently seen to be modulated in a failed immunotherapeutic regime.
Collapse
Affiliation(s)
- Angha Naik
- University of Saskatchewan, College of Dentistry, 105 Wiggins Road, Saskatoon, SK, Canada
| | - Andrew Leask
- University of Saskatchewan, College of Dentistry, 105 Wiggins Road, Saskatoon, SK, Canada.
| |
Collapse
|
40
|
Qu S, Huang C, Zhu T, Wang K, Zhang H, Wang L, Xu R, Zheng H, Yuan X, Liu G, Zhu R, Qu J, Yi G, Qi S. OLFML3, as a potential predictor of prognosis and therapeutic target for glioma, is closely related to immune cell infiltration. VIEW 2023. [DOI: 10.1002/viw.20220052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Affiliation(s)
- Shanqiang Qu
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- The Laboratory for Precision Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Chengying Huang
- Department of Obstetrics and Gynecology Baiyun Branch, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Taichen Zhu
- The First Clinical Medical College of Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Kaicheng Wang
- The First Clinical Medical College of Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Huayang Zhang
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- The Laboratory for Precision Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Luyao Wang
- The First Clinical Medical College of Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Rongyang Xu
- The First Clinical Medical College of Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Haojie Zheng
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- The Laboratory for Precision Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Xi Yuan
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- The Laboratory for Precision Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Guangjie Liu
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- The Laboratory for Precision Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Rongzhang Zhu
- The First Clinical Medical College of Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Jiayi Qu
- Department of Plant Sciences University of California Davis Davis California USA
| | - Guozhong Yi
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- Nanfang Glioma Center Guangzhou Guangdong People's Republic of China
- Institute of Brain disease Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Songtao Qi
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- Nanfang Glioma Center Guangzhou Guangdong People's Republic of China
- Institute of Brain disease Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| |
Collapse
|
41
|
Correlation between hypoxia and HGF/c-MET expression in the management of pancreatic cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188869. [PMID: 36842767 DOI: 10.1016/j.bbcan.2023.188869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/28/2023]
Abstract
Pancreatic cancer (PC) is very deadly and difficult to treat. The presence of hypoxia has been shown to increase the probability of cancer developing and spreading. Pancreatic ductal adenocarcinoma (PDAC/PC) has traditionally viewed a highly lethal form of cancer due to its high occurrence of early metastases. Desmoplasia/stroma is often thick and collagenous, with pancreatic stellate cells as the primary source (PSCs). Cancer cells and other stromal cells interact with PSCs, promoting disease development. The hepatocyte growth factor (HGF)/c-MET pathway have been proposed as a growth factor mechanism mediating this interaction. Human growth factor (HGF) is secreted by pancreatic stellate cells (PSCs), and its receptor, c-MET, is generated by pancreatic cancer cells and endothelial cells. Hypoxia is frequent in malignant tumors, particularly pancreatic (PC). Hypoxia results from limitless tumor development and promotes survival, progression, and invasion. Hypoxic is becoming a critical driver and therapeutic target of pancreatic cancer as its hypoxia microenvironment is defined. Recent breakthroughs in cancer biology show that hypoxia promotes tumor proliferation, aggressiveness, and therapeutic resistance. Hypoxia-inducible factors (HIFs) stabilize hypoxia signaling. Hypoxia cMet is a key component of pancreatic tumor microenvironments, which also have a fibrotic response, that hypoxia, promotes and modulates. c-Met is a tyrosine-protein kinase. As describe it simply, the MET gene in humans' codes for a protein called hepatocyte growth factor receptor (HGFR). Most cancerous tumors and pancreatic cancer in particular, suffer from a lack of oxygen (PC). Due to unrestrained tumor development, hypoxia develops, actively contributing to tumor survival, progression, and invasion. As the processes by which hypoxia signaling promotes invasion and metastasis become clear, c-MET has emerged as an important determinant of pancreatic cancer malignancy and a potential pharmacological target. This manuscript provides the most current findings on the role of hypoxia and HGF/c-MET expression in the treatment of pancreatic cancer.
Collapse
|
42
|
Jantz-Naeem N, Böttcher-Loschinski R, Borucki K, Mitchell-Flack M, Böttcher M, Schraven B, Mougiakakos D, Kahlfuss S. TIGIT signaling and its influence on T cell metabolism and immune cell function in the tumor microenvironment. Front Oncol 2023; 13:1060112. [PMID: 36874131 PMCID: PMC9982004 DOI: 10.3389/fonc.2023.1060112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/11/2023] [Indexed: 02/19/2023] Open
Abstract
One of the key challenges for successful cancer therapy is the capacity of tumors to evade immune surveillance. Tumor immune evasion can be accomplished through the induction of T cell exhaustion via the activation of various immune checkpoint molecules. The most prominent examples of immune checkpoints are PD-1 and CTLA-4. Meanwhile, several other immune checkpoint molecules have since been identified. One of these is the T cell immunoglobulin and ITIM domain (TIGIT), which was first described in 2009. Interestingly, many studies have established a synergistic reciprocity between TIGIT and PD-1. TIGIT has also been described to interfere with the energy metabolism of T cells and thereby affect adaptive anti-tumor immunity. In this context, recent studies have reported a link between TIGIT and the hypoxia-inducible factor 1-α (HIF1-α), a master transcription factor sensing hypoxia in several tissues including tumors that among others regulates the expression of metabolically relevant genes. Furthermore, distinct cancer types were shown to inhibit glucose uptake and effector function by inducing TIGIT expression in CD8+ T cells, resulting in an impaired anti-tumor immunity. In addition, TIGIT was associated with adenosine receptor signaling in T cells and the kynurenine pathway in tumor cells, both altering the tumor microenvironment and T cell-mediated immunity against tumors. Here, we review the most recent literature on the reciprocal interaction of TIGIT and T cell metabolism and specifically how TIGIT affects anti-tumor immunity. We believe understanding this interaction may pave the way for improved immunotherapy to treat cancer.
Collapse
Affiliation(s)
- Nouria Jantz-Naeem
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Romy Böttcher-Loschinski
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katrin Borucki
- Institute of Clinical Chemistry, Department of Pathobiochemistry, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marisa Mitchell-Flack
- Department of Oncology, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Martin Böttcher
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
43
|
Abou Khouzam R, Lehn JM, Mayr H, Clavien PA, Wallace MB, Ducreux M, Limani P, Chouaib S. Hypoxia, a Targetable Culprit to Counter Pancreatic Cancer Resistance to Therapy. Cancers (Basel) 2023; 15:cancers15041235. [PMID: 36831579 PMCID: PMC9953896 DOI: 10.3390/cancers15041235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, and it is a disease of dismal prognosis. While immunotherapy has revolutionized the treatment of various solid tumors, it has achieved little success in PDAC. Hypoxia within the stroma-rich tumor microenvironment is associated with resistance to therapies and promotes angiogenesis, giving rise to a chaotic and leaky vasculature that is inefficient at shuttling oxygen and nutrients. Hypoxia and its downstream effectors have been implicated in immune resistance and could be contributing to the lack of response to immunotherapy experienced by patients with PDAC. Paradoxically, increasing evidence has shown hypoxia to augment genomic instability and mutagenesis in cancer, suggesting that hypoxic tumor cells could have increased production of neoantigens that can potentially enable their clearance by cytotoxic immune cells. Strategies aimed at relieving this condition have been on the rise, and one such approach opts for normalizing the tumor vasculature to reverse hypoxia and its downstream support of tumor pathogenesis. An important consideration for the successful implementation of such strategies in the clinic is that not all PDACs are equally hypoxic, therefore hypoxia-detection approaches should be integrated to enable optimal patient selection for achieving improved patient outcomes.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
| | - Jean-Marie Lehn
- Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| | - Hemma Mayr
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Pierre-Alain Clavien
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Michael Bradley Wallace
- Gastroenterology, Mayo Clinic, Jacksonville, FL 32224, USA
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi P.O. Box 11001, United Arab Emirates
| | - Michel Ducreux
- Department of Cancer Medicine, Gustave Roussy Cancer Institute, F-94805 Villejuif, France
| | - Perparim Limani
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Correspondence: (P.L.); (S.C.); Tel.: +41-78-859-68-07 (P.L.); +33-(0)1-42-11-45-47 (S.C.)
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, F-94805 Villejuif, France
- Correspondence: (P.L.); (S.C.); Tel.: +41-78-859-68-07 (P.L.); +33-(0)1-42-11-45-47 (S.C.)
| |
Collapse
|
44
|
Tang S, Liu D, Fang Y, Yong L, Zhang Y, Guan M, Lin X, Wang H, Cai F. Low expression of HIF1AN accompanied by less immune infiltration is associated with poor prognosis in breast cancer. Front Oncol 2023; 13:1080910. [PMID: 36816977 PMCID: PMC9932925 DOI: 10.3389/fonc.2023.1080910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Background Hypoxia-inducible factor 1-alpha (HIF-1α) stability and transcriptional action are reduced by the hypoxia-inducible factor 1-alpha subunit suppressor (HIF1AN). Its inappropriate expression is associated with the development of cancer and immune control. It is yet unknown how HIF1AN, clinical outcomes, and immune involvement in breast cancer (BC) are related. Methods Using the GEPIA, UALCAN, TIMER, Kaplan-Meier plotter, and TISIDB datasets, a thorough analysis of HIF1AN differential expression, medical prognosis, and the relationship between HIF1AN and tumor-infiltrating immune cells in BC was conducted. Quantitative real-time PCR (qRT-PCR) analysis of BC cells were used for external validation. Results The findings revealed that, as compared to standard specimens, BC cells had significantly lower levels of HIF1AN expression. Good overall survival (OS) for BC was associated with higher HIF1AN expression. Additionally, in BC, the expression of HIF1AN was closely associated with the chemokines and immune cell infiltration, including neutrophils, macrophages, T helper cells, B cells, Tregs, monocytes, dendritic cells, and NK cells. A high correlation between HIF1AN expression and several immunological indicators of T-cell exhaustion was particularly revealed by the bioinformatic study. Conclusions HIF1AN is a predictive indicator for breast tumors, and it is useful for predicting survival rates.
Collapse
Affiliation(s)
- Shasha Tang
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dongyang Liu
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Fang
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liyun Yong
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Zhang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengying Guan
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoyan Lin
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Wang
- Laboratory of Tumor Molecular Biology, School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Fengfeng Cai, ; Hui Wang,
| | - Fengfeng Cai
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,*Correspondence: Fengfeng Cai, ; Hui Wang,
| |
Collapse
|
45
|
Geyer M, Schreyer D, Gaul LM, Pfeffer S, Pilarsky C, Queiroz K. A microfluidic-based PDAC organoid system reveals the impact of hypoxia in response to treatment. Cell Death Dis 2023; 9:20. [PMID: 36681673 PMCID: PMC9867742 DOI: 10.1038/s41420-023-01334-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is estimated to become the second leading cause of cancer-related deaths by 2030 with mortality rates of up to 93%. Standard of care chemotherapeutic treatment only prolongs the survival of patients for a short timeframe. Therefore, it is important to understand events driving treatment failure in PDAC as well as identify potential more effective treatment opportunities. PDAC is characterized by a high-density stroma, high interstitial pressure and very low oxygen tension. The aim of this study was to establish a PDAC platform that supported the understanding of treatment response of PDAC organoids in mono-, and co-culture with pancreatic stellate cells (PSCs) under hypoxic and normoxic conditions. Cultures were exposed to Gemcitabine in combination with molecules targeting relevant molecular programs that could explain treatment specific responses under different oxygen pressure conditions. Two groups of treatment responses were identified, showing either a better effect in monoculture or co-culture. Moreover, treatment response also differed between normoxia and hypoxia. Modulation of response to Gemcitabine was also observed in presence of a Hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD) inhibitor and HIF inhibitors. Altogether this highlights the importance of adjusting experimental conditions to include relevant oxygen levels in drug response studies in PDAC.
Collapse
Affiliation(s)
- Marlene Geyer
- grid.474144.60000 0004 9414 4776MIMETAS BV, De Limes 7, 2342DH Oegstgeest, The Netherlands
| | - Daniel Schreyer
- grid.8756.c0000 0001 2193 314XSchool of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, G61 1BD Glasgow, United Kingdom
| | - Lisa-Marie Gaul
- grid.474144.60000 0004 9414 4776MIMETAS BV, De Limes 7, 2342DH Oegstgeest, The Netherlands
| | - Susanne Pfeffer
- grid.411668.c0000 0000 9935 6525Universitätsklinikum Erlangen, Schwabachanlage 12, 91054 Erlangen, Germany
| | - Christian Pilarsky
- grid.411668.c0000 0000 9935 6525Universitätsklinikum Erlangen, Schwabachanlage 12, 91054 Erlangen, Germany
| | - Karla Queiroz
- grid.474144.60000 0004 9414 4776MIMETAS BV, De Limes 7, 2342DH Oegstgeest, The Netherlands
| |
Collapse
|
46
|
Tiwari A, Oravecz T, Dillon LA, Italiano A, Audoly L, Fridman WH, Clifton GT. Towards a consensus definition of immune exclusion in cancer. Front Immunol 2023; 14:1084887. [PMID: 37033994 PMCID: PMC10073666 DOI: 10.3389/fimmu.2023.1084887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 04/11/2023] Open
Abstract
Background The immune cell topography of solid tumors has been increasingly recognized as an important predictive factor for progression of disease and response to immunotherapy. The distribution pattern of immune cells in solid tumors is commonly classified into three categories - namely, "Immune inflamed", "Immune desert" and "Immune excluded" - which, to some degree, connect immune cell presence and positioning within the tumor microenvironment to anti-tumor activity. Materials and methods In this review, we look at the ways immune exclusion has been defined in published literature and identify opportunities to develop consistent, quantifiable definitions, which in turn, will allow better determination of the underlying mechanisms that span cancer types and, ultimately, aid in the development of treatments to target these mechanisms. Results The definitions of tumor immune phenotypes, especially immune exclusion, have largely been conceptual. The existing literature lacks in consistency when it comes to practically defining immune exclusion, and there is no consensus on a definition. Majority of the definitions use somewhat arbitrary cut-offs in an attempt to place each tumor into a distinct phenotypic category. Tumor heterogeneity is often not accounted for, which limits the practical application of a definition. Conclusions We have identified two key issues in existing definitions of immune exclusion, establishing clinically relevant cut-offs within the spectrum of immune cell infiltration as well as tumor heterogeneity. We propose an approach to overcome these limitations, by reporting the degree of immune cell infiltration, tying cut-offs to clinically meaningful outcome measures, maximizing the number of regions of a tumor that are analyzed and reporting the degree of heterogeneity. This will allow for a consensus practical definition for operationalizing this categorization into clinical trial and signal-seeking endpoints.
Collapse
Affiliation(s)
- Ankur Tiwari
- Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | | | | | | | | | - Wolf Hervé Fridman
- Centre de Recherche des Cordeliers, National Institute for Health and Medical Research (INSERM), Sorbonne Université, Université Sorbonne Paris-Cité (USPC), Université de Paris, Equipe Inflammation, Paris, France
| | - Guy Travis Clifton
- Parthenon Therapeutics, Boston, MA, United States
- *Correspondence: Guy Travis Clifton,
| |
Collapse
|
47
|
Prospects for hypoxia-based drug delivery platforms for the elimination of advanced metastatic tumors: From 3D modeling to clinical concepts. J Control Release 2023; 353:1002-1022. [PMID: 36516901 DOI: 10.1016/j.jconrel.2022.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Hypoxia is a unique characteristic of the solid tumor microenvironment. Hypoxia contributes to multi-drug resistance, metastasis and cancer relapse through numerous molecular pathways, but at the same time provides an opportunity for the development of novel drugs or modalities specifically targeting hypoxic tumor regions. Given the high significance of tumor hypoxia in therapeutic results, we here discuss a variety of hypoxia-adopted strategies, and their potential and utility in the treatment of deep-seated hypoxic tumor cells. We discuss the merits and demerits of these approaches, as well as their combination with other approaches such as photodynamic therapy. We also survey the currently available 3D hypoxia modeling systems, in particular organoid-based microfluidics. Finally, we discuss the potential and the current status of preclinical tumor hypoxia approaches in clinical trials for advanced cancer. We believe that multi-modal imaging and therapeutic hypoxia adopted drug delivery platforms could provide better efficacy and safety profiles, and more importantly personalized therapy. Determining the hypoxia status of tumors could offer a second chance for the clinical translation of hypoxia-based agents, such as hypoxia activated prodrugs (HAPs) from bench to bedside.
Collapse
|
48
|
Cancer-Associated Fibroblast Diversity Shapes Tumor Metabolism in Pancreatic Cancer. Cancers (Basel) 2022; 15:cancers15010061. [PMID: 36612058 PMCID: PMC9817728 DOI: 10.3390/cancers15010061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Despite extensive research, the 5-year survival rate of pancreatic cancer (PDAC) patients remains at only 9%. Patients often show poor treatment response, due partly to a highly complex tumor microenvironment (TME). Cancer-associated fibroblast (CAF) heterogeneity is characteristic of the pancreatic TME, where several CAF subpopulations have been identified, such as myofibroblastic CAFs (myCAFs), inflammatory CAFs (iCAFs), and antigen presenting CAFs (apCAFs). In PDAC, cancer cells continuously adapt their metabolism (metabolic switch) to environmental changes in pH, oxygenation, and nutrient availability. Recent advances show that these environmental alterations are all heavily driven by stromal CAFs. CAFs and cancer cells exchange cytokines and metabolites, engaging in a tight bidirectional crosstalk, which promotes tumor aggressiveness and allows constant adaptation to external stress, such as chemotherapy. In this review, we summarize CAF diversity and CAF-mediated metabolic rewiring, in a PDAC-specific context. First, we recapitulate the most recently identified CAF subtypes, focusing on the cell of origin, activation mechanism, species-dependent markers, and functions. Next, we describe in detail the metabolic crosstalk between CAFs and tumor cells. Additionally, we elucidate how CAF-driven paracrine signaling, desmoplasia, and acidosis orchestrate cancer cell metabolism. Finally, we highlight how the CAF/cancer cell crosstalk could pave the way for new therapeutic strategies.
Collapse
|
49
|
Development of an Independent Prognostic Signature Based on Three Hypoxia-Related Genes for Breast Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2974126. [DOI: 10.1155/2022/2974126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Background. Hypoxia was considered to be a prognostic indicator in a variety of solid tumors. This study aims at identifying the hypoxia-related genes (HRGs) in breast cancer (BC) and the feasibility of HRGs as a prognostic indicator. Methods. We downloaded the mRNA expression data of BC patients from TCGA and GEO databases. The LASSO Cox regression analysis was applied to screen the hub HRGs to establish a prognostic Risk Score. The independence of Risk Score was assessed by multivariate Cox regression analysis. And the immune checkpoint analysis was also performed. In addition, we also detected the expression level of hub HRGs in MCF-10A cells, MCF-7 cells, and SK-BR-3 cells by RT-qPCR. Results. Three HRGs were identified as hub genes with prognostic value in BC, including CA9, PGK1, and SDC1. The Risk Score constructed by these three genes could efficiently distinguish the prognosis of different BC patients and has been shown to be an independent prognostic indicator. In the high-risk group, patients had lower overall survival and poorer prognosis. In addition, the expression levels of five immune checkpoints (PD1, CTLA4, TIGIT, LAG3, and TIM3) in the high-risk group were significantly higher than those in the low-risk group. Moreover, the expression levels of PGK1 and SDC1 in BC cells were significantly increased. Conclusion. In this study, we established an efficiently model based on three optimal HRGs (CA9, PGK1, and SDC1) could clearly distinguish the prognosis of different BC patients.
Collapse
|
50
|
The microbiota and aging microenvironment in pancreatic cancer: Cell origin and fate. Biochim Biophys Acta Rev Cancer 2022; 1877:188826. [DOI: 10.1016/j.bbcan.2022.188826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022]
|