1
|
Zhang L, Liu J, Miao Z, Zhou R, Wang H, Li X, Liu J, Zhang J, Yan J, Xie Z, Jiang H. The Association of Fructose Metabolism With Anesthesia/Surgery-Induced Lactate Production. Anesth Analg 2024:00000539-990000000-01075. [PMID: 39689012 DOI: 10.1213/ane.0000000000007350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
BACKGROUND In elderly individuals, excessive lactate levels in the brain may be associated with the development of cognitive impairment after surgery, including delayed neurocognitive recovery (dNCR). Since the origin of this increased lactate is unknown, here we assessed associations between metabolic pathways and postoperative dNCR. METHODS This study included 43 patients (≥60 years old) who had surgery under general anesthesia. We also used a mouse model in which 20-month-old mice were exposed to sevoflurane to induce postoperative dNCR, while control mice were exposed to 40% oxygen. Mice in the control group and anesthesia/surgery group were injected with fructose or glucose intracerebroventricularly, or fructose metabolism inhibitor intraperitoneally. Barnes maze test and Y maze were used to measure cognitive function in mice. Metabolomics was used to measure metabolites in the serum of patients and the brains of mice after anesthesia/surgery. Isotope labeling and metabolic flux were used to analyze flow and distribution of specific metabolites in metabolic pathways. RESULTS Among 43 patients, 17 developed dNCR. Metabolomics showed significantly decreased postoperative serum fructose 1-phosphate levels in dNCR compared to nondNCR patients (mean difference [×104] = -0.164 ± 0.070; P = .024). Similar results were found in the brains of mice (mean difference = -1.669 ± 0.555; *P = .014). Isotope labeling and metabolic flux experiments in mice showed fructose but not glucose entered glycolysis, increasing lactate levels in the brain after anesthesia/surgery (P < .05). Administration of intraperitoneal fructose inhibitors to mice effectively inhibited increased lactate levels in the brain (mean difference =96.0 ± 4.36, P = .0237) and cognitive dysfunction after anesthesia/surgery (mean difference =69.0 ± 3.94, P = .0237). In a small subsample, we also found anesthesia/surgery increased interleukin-6 (IL-6) levels in the brains of mice (mean difference =88.3 ± 3.44, P = .0237) and that IL-6 may function upstream in fructose activation. CONCLUSIONS These results suggest that anesthesia/surgery activates fructose metabolism, producing excessive lactate in the brain that is associated with postoperative cognitive impairment. Fructose metabolism is thus a potential therapeutic target for dNCR.
Collapse
Affiliation(s)
- Lei Zhang
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Shandong Provincial Key Medical and Health Laboratory of Anesthesia and Brain Function, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jianhui Liu
- Department of Anesthesiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhengjie Miao
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren Zhou
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wang
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Jiehui Liu
- Department of Anesthesiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingya Zhang
- Department of Anesthesiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia Yan
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Hong Jiang
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Li J, Zhang Y, Fu T, Wang S, Cai H, Xu F, Xing G, Tong Y. Fatty acid traits mediate the effects of uric acid on cancers: a Mendelian randomization study. Front Genet 2024; 15:1449205. [PMID: 39687737 PMCID: PMC11646984 DOI: 10.3389/fgene.2024.1449205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Previous findings on the association between uric acid (UA) levels and cancer risk are conflicting. Moreover, the mechanisms underlying the interactions between UA levels, fatty acid traits, and cancer outcomes remain complex; it is still unclear whether elevated UA levels influence fatty acid traits and, thereby, contribute to an increased cancer risk. Therefore, we aimed to investigate the association between UA levels and cancer risk, with a specific focus on the potential mediating role of fatty acid traits. Methods We employed a Mendelian randomization (MR) analysis utilizing genetic data from large-scale genome-wide association studies to assess the causal relationships among UA levels, fatty acid traits, and cancer risk. The primary method used was the inverse variance-weighted approach alongside Bayesian-weighted Mendelian randomization. Other MR models were also applied for comparison. Sensitivity analyses, based on various statistical assumptions, were also performed to evaluate the robustness of the findings. A two-step MR analysis was conducted to explore the mediating effects of fatty acid traits on the relationship between UA levels and cancer risk. Results and Discussion Elevated UA levels were associated with an increased risk of in situ neoplasms, cervical cancer, and invasive mucinous ovarian cancer, while they were linked to a decreased risk of cancers of the eye and adnexa, small cell lung cancer, bronchus and lung cancer, respiratory system and intrathoracic organ cancers, as well as lung cancer. Mediation analysis revealed that fatty acid traits, particularly the docosahexaenoic acid/trans fatty acid ratio, mediated the relationship between UA levels and lung cancer risk. These findings underscore the potential of fatty acid traits to mediate the association between UA levels and cancer risk, offering new insights for targeted interventions and potentially improving clinical outcomes.
Collapse
Affiliation(s)
- Jianing Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | | | - Tong Fu
- Brandeis University, Waltham, MA, United States
| | - Songyan Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongbo Cai
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fenghua Xu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guoli Xing
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Tong
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Medeiros HCD, Lunt SY. The liver converts fructose into lipids to fuel tumours. Nature 2024; 636:580-581. [PMID: 39633121 DOI: 10.1038/d41586-024-03653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
|
4
|
Fowle-Grider R, Rowles JL, Shen I, Wang Y, Schwaiger-Haber M, Dunham AJ, Jayachandran K, Inkman M, Zahner M, Naser FJ, Jackstadt MM, Spalding JL, Chiang S, McCommis KS, Dolle RE, Kramer ET, Zimmerman SM, Souroullas GP, Finck BN, Shriver LP, Kaufman CK, Schwarz JK, Zhang J, Patti GJ. Dietary fructose enhances tumour growth indirectly via interorgan lipid transfer. Nature 2024; 636:737-744. [PMID: 39633044 DOI: 10.1038/s41586-024-08258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/21/2024] [Indexed: 12/07/2024]
Abstract
Fructose consumption has increased considerably over the past five decades, largely due to the widespread use of high-fructose corn syrup as a sweetener1. It has been proposed that fructose promotes the growth of some tumours directly by serving as a fuel2,3. Here we show that fructose supplementation enhances tumour growth in animal models of melanoma, breast cancer and cervical cancer without causing weight gain or insulin resistance. The cancer cells themselves were unable to use fructose readily as a nutrient because they did not express ketohexokinase-C (KHK-C). Primary hepatocytes did express KHK-C, resulting in fructolysis and the excretion of a variety of lipid species, including lysophosphatidylcholines (LPCs). In co-culture experiments, hepatocyte-derived LPCs were consumed by cancer cells and used to generate phosphatidylcholines, the major phospholipid of cell membranes. In vivo, supplementation with high-fructose corn syrup increased several LPC species by more than sevenfold in the serum. Administration of LPCs to mice was sufficient to increase tumour growth. Pharmacological inhibition of ketohexokinase had no direct effect on cancer cells, but it decreased circulating LPC levels and prevented fructose-mediated tumour growth in vivo. These findings reveal that fructose supplementation increases circulating nutrients such as LPCs, which can enhance tumour growth through a cell non-autonomous mechanism.
Collapse
Affiliation(s)
- Ronald Fowle-Grider
- Department of Chemistry, Washington University, St Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Joe L Rowles
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Isabel Shen
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Yahui Wang
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Michaela Schwaiger-Haber
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Alden J Dunham
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Kay Jayachandran
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Matthew Inkman
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Michael Zahner
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
- Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Fuad J Naser
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Madelyn M Jackstadt
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Jonathan L Spalding
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Sarah Chiang
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Kyle S McCommis
- Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Roland E Dolle
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Eva T Kramer
- Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Sarah M Zimmerman
- Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - George P Souroullas
- Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
| | - Brian N Finck
- Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Leah P Shriver
- Department of Chemistry, Washington University, St Louis, MO, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA
| | - Charles K Kaufman
- Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Julie K Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jin Zhang
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
- Institute for Informatics, Data Science & Biostatistics (I2DB), Washington University School of Medicine, St Louis, MO, USA
| | - Gary J Patti
- Department of Chemistry, Washington University, St Louis, MO, USA.
- Center for Mass Spectrometry and Metabolic Tracing, Washington University, St Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA.
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
5
|
Narongkiatikhun P, Choi YJ, Hampson H, Gotzamanis J, Zhang G, van Raalte DH, de Boer IH, Nelson RG, Tommerdahl KL, McCown PJ, Kanter J, Sharma K, Bjornstad P, Saulnier PJ. Unraveling Diabetic Kidney Disease: The Roles of Mitochondrial Dysfunction and Immunometabolism. Kidney Int Rep 2024; 9:3386-3402. [PMID: 39698345 PMCID: PMC11652104 DOI: 10.1016/j.ekir.2024.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 12/20/2024] Open
Abstract
Mitochondria are essential for cellular energy production and are implicated in numerous diseases, including diabetic kidney disease (DKD). Current evidence indicates that mitochondrial dysfunction results in alterations in several metabolic pathways within kidney cells, thereby contributing to the progression of DKD. Furthermore, mitochondrial dysfunction can engender an inflammatory milieu, leading to the activation and recruitment of immune cells to the kidney tissue, potentially perturbing intrarenal metabolism. In addition, this inflammatory microenvironment has the potential to modify immune cell metabolism, which may further accentuate the immune-mediated kidney injury. This understanding has led to the emerging field of immunometabolism, which views DKD as not just a metabolic disorder caused by hyperglycemia but also one with significant immune contributions. Targeting mitochondrial function and immunometabolism may offer protective effects for the kidneys, complementing current therapies and potentially mitigating the risk of DKD progression. This comprehensive review examines the impact of mitochondrial dysfunction and the potential role of immunometabolism in DKD. We also discuss tools for investigating these mechanisms and propose avenues for integrating this research with existing therapies. These insights underscore the modulation of mitochondrial function and immunometabolism as a critical strategy for decelerating DKD progression.
Collapse
Affiliation(s)
- Phoom Narongkiatikhun
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ye Ji Choi
- Department of Pediatrics, Section of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Hailey Hampson
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jimmy Gotzamanis
- INSERM Centre d’Investigation Clinique 1402, CHU Poitiers, University of Poitiers, Poitiers, France
| | - Guanshi Zhang
- Department of Medicine, Section of Nephrology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Daniel H. van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Ian H. de Boer
- Division of Nephrology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Kalie L. Tommerdahl
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| | - Phillip J. McCown
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jenny Kanter
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kumar Sharma
- Department of Medicine, Section of Nephrology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Petter Bjornstad
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| | - Pierre Jean Saulnier
- INSERM Centre d’Investigation Clinique 1402, CHU Poitiers, University of Poitiers, Poitiers, France
| |
Collapse
|
6
|
Frezza C. Fructose: the sweet(er) side of the Warburg effect. Cell Death Differ 2024; 31:1395-1397. [PMID: 39367240 PMCID: PMC11519325 DOI: 10.1038/s41418-024-01395-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Affiliation(s)
- Christian Frezza
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University Hospital Cologne, Cologne, Germany.
- Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
7
|
Li Y, Ma L, He R, Teng F, Qin X, Liang X, Wang J. Pregnancy Metabolic Adaptation and Changes in Placental Metabolism in Preeclampsia. Geburtshilfe Frauenheilkd 2024; 84:1033-1042. [PMID: 39524034 PMCID: PMC11543110 DOI: 10.1055/a-2403-4855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/24/2024] [Indexed: 11/16/2024] Open
Abstract
Pregnancy is a unique physiological state in which the maternal body undergoes a series of changes in the metabolism of glucose, lipids, amino acids, and other nutrients in order to adapt to the altered state of pregnancy and provide adequate nutrients for the fetus' growth and development. The metabolism of various nutrients is regulated by one another in order to maintain homeostasis in the body. Failure to adapt to the altered physiological conditions of pregnancy can lead to a range of pregnancy issues, including fetal growth limitation and preeclampsia. A failure of metabolic adaptation during pregnancy is linked to the emergence of preeclampsia. The treatment of preeclampsia by focusing on metabolic changes may provide new therapeutic alternatives.
Collapse
Affiliation(s)
- Yaxi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ling Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Fei Teng
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xue Qin
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| | - Jing Wang
- The First Clinical Medical College of Lanzhou University, the First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| |
Collapse
|
8
|
Bazer FW, Wu G, Johnson GA. Fructose metabolism is unregulated in cancers and placentae. Exp Biol Med (Maywood) 2024; 249:10200. [PMID: 39529665 PMCID: PMC11550943 DOI: 10.3389/ebm.2024.10200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Fructose and lactate are present in high concentrations in uterine luminal fluid, fetal fluids and fetal blood of ungulates and cetaceans, but their roles have been ignored and they have been considered waste products of pregnancy. This review provides evidence for key roles of both fructose and lactate in support of key metabolic pathways required for growth and development of fetal-placental tissues, implantation and placentation. The uterus and placenta of ungulates convert glucose to fructose via the polyol pathway. Fructose is sequestered within the uterus and cannot be transported back into the maternal circulation. Fructose is phosphorylated by ketohexokinase to fructose-1-PO4 (F1P) by that is metabolized via the fructolysis pathway to yield dihydoxyacetone phosphate and glyceraldehyde-3-PO4 that are downstream of phosphofructokinase. Thus, there is no inhibition of the fructolysis pathway by low pH, citrate or ATP which allows F1P to continuously generate substrates for the pentose cycle, hexosamine biosynthesis pathway, one-carbon metabolism and tricarboxylic acid cycle, as well as lactate. Lactate sustains the activity of hypoxia-inducible factor alpha and its downstream targets such as vascular endothelial growth factor to increase utero-placental blood flow critical to growth and development of the fetal-placental tissues and a successful outcome of pregnancy. Pregnancy has been referred to as a controlled cancer and this review addresses similarities regarding metabolic aspects of tumors and the placenta.
Collapse
Affiliation(s)
- Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Gregory A. Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
9
|
Huang XH, Huang CY. Fructose shields human colorectal cancer cells from hypoxia-induced necroptosis. NPJ Sci Food 2024; 8:71. [PMID: 39353947 PMCID: PMC11445490 DOI: 10.1038/s41538-024-00318-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Recent studies have shown that high dietary fructose intake enhances intestinal tumor growth in mice. Our previous work indicated that glucose enables hypoxic colorectal cancer (CRC) cells to resist receptor-interacting protein (RIP)-dependent necroptosis. Despite having the same chemical formula, glucose and fructose are absorbed through different transporters yet both can enter the glycolytic metabolic pathway. The excessive intake of dietary fructose, leading to its overflow into the colon, allows colonic cells to absorb fructose apically. This study explores the mechanisms behind apical fructose-mediated death resistance in CRC cells under hypoxic stress. Utilizing three CRC cell lines (Caco-2, HT29, and T84) under normoxic and hypoxic conditions with varying fructose concentrations, we assessed lactate dehydrogenase (LDH) activity, RIP1/3 complex formation (a necroptosis marker), and cell integrity. We investigated the role of fructose in glycolytic-mediated death resistance using glycolytic inhibitors iodoacetate (IA, a glycolytic inhibitor to glyceraldehyde 3-phosphate dehydrogenase), and UK5099 (UK, an inhibitor to mitochondrial pyruvate carrier). Our findings reveal that apical fructose prevents the hypoxia-induced RIP-dependent necroptosis in Caco-2 and HT29 cells. Fructose exposure under hypoxia also preserved epithelial integrity. IA, but not UK, blocked fructose-mediated glycolytic metabolite production and necrosis, indicating that anaerobic glycolytic metabolites facilitate death resistance. Notably, fructose treatment upregulated pyruvate kinase (PK)-M1 mRNA in hypoxic Caco-2 and HT29 cells, while PKM2 upregulation was exclusive to HT29 cells. In conclusion, apical fructose utilization through glycolysis effectively inhibits hypoxia-induced RIP-dependent necroptosis in CRC cells, shedding light on potential metabolic adaptation mechanisms in the tumor microenvironment and suggesting novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Xiang-Han Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Ying Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
10
|
Naeimzadeh Y, Tajbakhsh A, Nemati M, Fallahi J. Exploring the anti-cancer potential of SGLT2 inhibitors in breast cancer treatment in pre-clinical and clinical studies. Eur J Pharmacol 2024; 978:176803. [PMID: 38950839 DOI: 10.1016/j.ejphar.2024.176803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
The link between type 2 diabetes mellitus (T2DM) and an increased risk of breast cancer (BC) has prompted the exploration of novel therapeutic strategies targeting shared metabolic pathways. This review focuses on the emerging evidence surrounding the potential anti-cancer effects of sodium-glucose cotransporter-2 (SGLT2) inhibitors in the context of BC. Preclinical studies have demonstrated that various SGLT2 inhibitors, such as canagliflozin, dapagliflozin, ipragliflozin, and empagliflozin, can inhibit the proliferation of BC cells, induce apoptosis, and modulate key cellular signaling pathways. These mechanisms include the activation of AMP-activated protein kinase (AMPK), suppression of mammalian target of rapamycin (mTOR) signaling, and regulation of lipid metabolism and inflammatory mediators. The combination of SGLT2 inhibitors with conventional treatments, including chemotherapy and radiotherapy, as well as targeted therapies like phosphoinositide 3-kinases (PI3K) inhibitors, has shown promising results in enhancing the anti-cancer efficacy and potentially reducing treatment-related toxicities. The identification of specific biomarkers or genetic signatures that predict responsiveness to SGLT2 inhibitor therapy could enable more personalized treatment selection and optimization, particularly for challenging BC subtypes [e, g., triple negative BC (TNBC)]. Ongoing and future clinical trials investigating the use of SGLT2 inhibitors, both as monotherapy and in combination with other agents, will be crucial in elucidating their translational potential and guiding their integration into comprehensive BC care. Overall, SGLT2 inhibitors represent a novel and promising therapeutic approach with the potential to improve clinical outcomes for patients with various subtypes of BC, including the aggressive and chemo-resistant TNBC.
Collapse
Affiliation(s)
- Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran.
| |
Collapse
|
11
|
Shimi G. Dietary approaches for controlling cancer by limiting the Warburg effect: a review. Nutr Rev 2024; 82:1281-1291. [PMID: 37903372 DOI: 10.1093/nutrit/nuad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Cancer is a mysterious disease. Among other alterations, tumor cells, importantly, have metabolic modifications. A well-known metabolic modification commonly observed in cancer cells has been termed the Warburg effect. This phenomenon is defined as a high preference for glucose uptake, and increased lactate production from that glucose, even when oxygen is readily available. Some anti-cancer drugs target the proposed Warburg effect, and some dietary regimens can function similarly. However, the most suitable dietary strategies for treating particular cancers are not yet well understood. The aim of this review was to describe findings regarding the impact of various proposed dietary regimens targeting the Warburg effect. The evidence suggests that combining routine cancer therapies with diet-based strategies may improve the outcome in treating cancer. However, designing individualized therapies must be our ultimate goal.
Collapse
Affiliation(s)
- Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
McCallum N, Najlah M. The Anticancer Activity of Monosaccharides: Perspectives and Outlooks. Cancers (Basel) 2024; 16:2775. [PMID: 39199548 PMCID: PMC11353049 DOI: 10.3390/cancers16162775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
A major hallmark of cancer is the reprogramming of cellular metabolism from oxidative phosphorylation (OXPHOS) to glycolysis, a phenomenon known as the Warburg effect. To sustain high rates of glycolysis, cancer cells overexpress GLUT transporters and glycolytic enzymes, allowing for the enhanced uptake and consumption of glucose. The Warburg effect may be exploited in the treatment of cancer; certain epimers and derivatives of glucose can enter cancer cells and inhibit glycolytic enzymes, stunting metabolism and causing cell death. These include common dietary monosaccharides (ᴅ-mannose, ᴅ-galactose, ᴅ-glucosamine, ʟ-fucose), as well as some rare monosaccharides (xylitol, ᴅ-allose, ʟ-sorbose, ʟ-rhamnose). This article reviews the literature on these sugars in in vitro and in vivo models of cancer, discussing their mechanisms of cytotoxicity. In addition to this, the anticancer potential of some synthetically modified monosaccharides, such as 2-deoxy-ᴅ-glucose and its acetylated and halogenated derivatives, is reviewed. Further, this article reviews how certain monosaccharides can be used in combination with anticancer drugs to potentiate conventional chemotherapies and to help overcome chemoresistance. Finally, the limitations of administering two separate agents, a sugar and a chemotherapeutic drug, are discussed. The potential of the glycoconjugation of classical or repurposed chemotherapy drugs as a solution to these limitations is reviewed.
Collapse
Affiliation(s)
| | - Mohammad Najlah
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Bishops Hall Lane, Chelmsford CM1 1SQ, UK;
| |
Collapse
|
13
|
Anil A, Raheja R, Gibu D, Raj AS, Spurthi S. Uncovering the Links Between Dietary Sugar and Cancer: A Narrative Review Exploring the Impact of Dietary Sugar and Fasting on Cancer Risk and Prevention. Cureus 2024; 16:e67434. [PMID: 39310400 PMCID: PMC11415310 DOI: 10.7759/cureus.67434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Over the last several years, the scientific community has grown concerned about the relationship between dietary sugar intake and cancer development. The main causes of concern are the increasing intake of processed foods rich in sugar and the rising incidence of cancer cases. This study aims to uncover the complex relationship between sugar consumption and cancer development and its progression, with a particular focus on investigating whether fasting can protect against this condition. Our review provides a detailed discussion of the molecular aspects of the sugar-cancer relationship and an analysis of the existing literature. It explains how sugar affects cell signaling, inflammation, and hormonal pathways associated with the development of cancer. We also explored the new role of fasting in the prevention of cancer and its impact on cancer patients. This encompasses fasting-triggered autophagy, metabolic alterations, and possible health benefits, which form the major concern of this paper. Thus, by deepening the knowledge of these relations and providing the results of the analysis accompanied by concise and meaningful illustrations to facilitate the understanding of the data, we open the door to the further development of ideas to minimize the rates of cancer and improve overall well-being.
Collapse
Affiliation(s)
- Ashik Anil
- Pharmacology and Therapeutics, East Point Hospital and Research Centre, Bangalore, IND
| | - Ronak Raheja
- Hematology and Medical Oncology, Manipal Hospitals, Bangalore, IND
| | - Diya Gibu
- Biotechnology, SRM Institute of Science and Technology, Chennai, IND
| | - Aravind S Raj
- General Practice, Amrita Institute of Medical Science, Kochi, IND
| | - S Spurthi
- Immuno-Oncology Research, KLE University, Bangalore, IND
| |
Collapse
|
14
|
Moses RM, Stenhouse C, Halloran KM, Sah N, Hoskins EC, Washburn SE, Johnson GA, Wu G, Bazer FW. Metabolic pathways for glucose and fructose: I synthesis and metabolism of fructose by ovine conceptuses†. Biol Reprod 2024; 111:148-158. [PMID: 38501845 DOI: 10.1093/biolre/ioae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 02/24/2024] [Indexed: 03/20/2024] Open
Abstract
Fructose, the most abundant hexose sugar in fetal fluids and the blood of sheep and other ungulates and cetaceans, is synthesized from glucose via the polyol pathway in trophectoderm and chorion. However, the cell-specific and temporal expression of enzymes for the synthesis and metabolism of fructose in sheep conceptuses (embryo and placental membranes) and placentomes has not been characterized. This study characterized key enzymes involved in fructose synthesis and metabolism by ovine conceptuses throughout pregnancy. Day 17 conceptuses expressed mRNAs for the polyol pathway (SORD and AKR1B1) and glucose and fructose metabolism (HK1, HK2, G6PD, OGT, and FBP), but not those required for gluconeogenesis (G6Pase or PCK). Ovine placentomes also expressed mRNAs for SORD, AKR1B1, HK1, and OGT. Fructose can be metabolized via the ketohexokinase (KHK) pathway, and isoforms, KHK-A and KHK-C, were expressed in ovine conceptuses from Day 16 of pregnancy and placentomes during pregnancy in a cell-specific manner. The KHK-A protein was more abundant in the trophectoderm and cotyledons of placentomes, while KHK-C protein was more abundant in the endoderm of Day 16 conceptuses and the chorionic epithelium in placentomes. Expression of KHK mRNAs in placentomes was greatest at Day 30 of pregnancy (P < 0.05), but not different among days later in gestation. These results provide novel insights into the synthesis and metabolism of fructose via the uninhibited KHK pathway in ovine conceptuses to generate ATP via the tricarboxylic cycle, as well as substrates for the pentose cycle, hexosamine biosynthesis pathway, and one-carbon metabolism required for conceptus development throughout pregnancy.
Collapse
Affiliation(s)
- Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Claire Stenhouse
- Department of Animal Science, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Katherine M Halloran
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nirvay Sah
- Department of Pathology, University of California-San Diego, San Diego, California, USA
| | - Emily C Hoskins
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Shannon E Washburn
- Department of Veterinary Physiology and Pathology, Texas A&M University, College Station Texas, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
15
|
Peng C, Yang P, Zhang D, Jin C, Peng W, Wang T, Sun Q, Chen Z, Feng Y, Sun Y. KHK-A promotes fructose-dependent colorectal cancer liver metastasis by facilitating the phosphorylation and translocation of PKM2. Acta Pharm Sin B 2024; 14:2959-2976. [PMID: 39027256 PMCID: PMC11252482 DOI: 10.1016/j.apsb.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/01/2024] [Accepted: 04/15/2024] [Indexed: 07/20/2024] Open
Abstract
Excessive fructose diet is closely associated with colorectal cancer (CRC) progression. Nevertheless, fructose's specific function and precise mechanism in colorectal cancer liver metastasis (CRLM) is rarely known. Here, this study reported that the fructose absorbed by primary colorectal cancer could accelerate CRLM, and the expression of KHK-A, not KHK-C, in liver metastasis was higher than in paired primary tumors. Furthermore, KHK-A facilitated fructose-dependent CRLM in vitro and in vivo by phosphorylating PKM2 at Ser37. PKM2 phosphorylated by KHK-A inhibited its tetramer formation and pyruvic acid kinase activity but promoted the nuclear accumulation of PKM2. EMT and aerobic glycolysis activated by nuclear PKM2 enhance CRC cells' migration ability and anoikis resistance during CRLM progression. TEPP-46 treatment, targeting the phosphorylation of PKM2, inhibited the pro-metastatic effect of KHK-A. Besides, c-myc activated by nuclear PKM2 promotes alternative splicing of KHK-A, forming a positive feedback loop.
Collapse
Affiliation(s)
- Chaofan Peng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Colorectal Institute of Nanjing Medical University, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Peng Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Colorectal Institute of Nanjing Medical University, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Dongsheng Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Colorectal Institute of Nanjing Medical University, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Chi Jin
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Colorectal Institute of Nanjing Medical University, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Wen Peng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Colorectal Institute of Nanjing Medical University, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Tuo Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Colorectal Institute of Nanjing Medical University, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Qingyang Sun
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Colorectal Institute of Nanjing Medical University, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Zhihao Chen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Colorectal Institute of Nanjing Medical University, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Yifei Feng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Colorectal Institute of Nanjing Medical University, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing 210029, China
| | - Yueming Sun
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Colorectal Institute of Nanjing Medical University, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing 210029, China
| |
Collapse
|
16
|
Zhao J, Ma X, Gao P, Han X, Zhao P, Xie F, Liu M. Advancing glioblastoma treatment by targeting metabolism. Neoplasia 2024; 51:100985. [PMID: 38479191 PMCID: PMC10950892 DOI: 10.1016/j.neo.2024.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
Alterations in cellular metabolism are important hallmarks of glioblastoma(GBM). Metabolic reprogramming is a critical feature as it meets the higher nutritional demand of tumor cells, including proliferation, growth, and survival. Many genes, proteins, and metabolites associated with GBM metabolism reprogramming have been found to be aberrantly expressed, which may provide potential targets for cancer treatment. Therefore, it is becoming increasingly important to explore the role of internal and external factors in metabolic regulation in order to identify more precise therapeutic targets and diagnostic markers for GBM. In this review, we define the metabolic characteristics of GBM, investigate metabolic specificities such as targetable vulnerabilities and therapeutic resistance, as well as present current efforts to target GBM metabolism to improve the standard of care.
Collapse
Affiliation(s)
- Jinyi Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Xuemei Ma
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Peixian Gao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Xueqi Han
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Pengxiang Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Fei Xie
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Mengyu Liu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China.
| |
Collapse
|
17
|
Xu J, Zhao Y, Tyler Mertens R, Ding Y, Xiao P. Sweet regulation - The emerging immunoregulatory roles of hexoses. J Adv Res 2024:S2090-1232(24)00157-7. [PMID: 38631430 DOI: 10.1016/j.jare.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/20/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND It is widely acknowledged that dietary habits have profound impacts on human health and diseases. As the most important sweeteners and energy sources in human diets, hexoses take part in a broad range of physiopathological processes. In recent years, emerging evidence has uncovered the crucial roles of hexoses, such as glucose, fructose, mannose, and galactose, in controlling the differentiation or function of immune cells. AIM OF REVIEW Herein, we reviewed the latest research progresses in the hexose-mediated modulation of immune responses, provided in-depth analyses of the underlying mechanisms, and discussed the unresolved issues in this field. KEY SCIENTIFIC CONCEPTS OF REVIEW Owing to their immunoregulatory effects, hexoses affect the onset and progression of various types of immune disorders, including inflammatory diseases, autoimmune diseases, and tumor immune evasion. Thus, targeting hexose metabolism is becoming a promising strategy for reversing immune abnormalities in diseases.
Collapse
Affiliation(s)
- Junjie Xu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuening Zhao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Yimin Ding
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
18
|
Kopec M, Beton-Mysur K. The role of glucose and fructose on lipid droplet metabolism in human normal bronchial and cancer lung cells by Raman spectroscopy. Chem Phys Lipids 2024; 259:105375. [PMID: 38159659 DOI: 10.1016/j.chemphyslip.2023.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Fructose is one of the most important monosaccharides in the human diet that the human body needs for proper metabolism. This paper presents an approach to study biochemical changes caused by sugars in human normal bronchial cells (BEpiC) and human cancer lung cells (A549) by Raman spectroscopy and Raman imaging. Results after supplementation of human bronchial and lung cells with fructose are also discussed and compared with results obtained for pure human bronchial and lung cells. Based on Raman techniques we have proved that peaks at 750 cm-1, 1126 cm-1, 1444 cm-1, 1584 cm-1 and 2845 cm-1 can be treated as biomarkers to monitor fructose changes in cells. Results for fructose have been compared with results for glucose. Raman analysis of the bands at 750 cm-1, 1126 cm-1, 1584 cm-1 and 2845 cm-1 for pure BEpiC and A549 cells and BEpiC and A549 after supplementation with fructose and glucose are higher after supplementation with fructose in comparison to glucose. The obtained results shed light on the uninvestigated influence of glucose and fructose on lipid droplet metabolism by Raman spectroscopy methods.
Collapse
Affiliation(s)
- Monika Kopec
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Karolina Beton-Mysur
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
19
|
Menyhárt O, Győrffy B. Dietary approaches for exploiting metabolic vulnerabilities in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189062. [PMID: 38158024 DOI: 10.1016/j.bbcan.2023.189062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Renewed interest in tumor metabolism sparked an enthusiasm for dietary interventions to prevent and treat cancer. Changes in diet impact circulating nutrient levels in the plasma and the tumor microenvironment, and preclinical studies suggest that dietary approaches, including caloric and nutrient restrictions, can modulate tumor initiation, progression, and metastasis. Cancers are heterogeneous in their metabolic dependencies and preferred energy sources and can be addicted to glucose, fructose, amino acids, or lipids for survival and growth. This dependence is influenced by tumor type, anatomical location, tissue of origin, aberrant signaling, and the microenvironment. This review summarizes nutrient dependencies and the related signaling pathway activations that provide targets for nutritional interventions. We examine popular dietary approaches used as adjuvants to anticancer therapies, encompassing caloric restrictions, including time-restricted feeding, intermittent fasting, fasting-mimicking diets (FMDs), and nutrient restrictions, notably the ketogenic diet. Despite promising results, much of the knowledge on dietary restrictions comes from in vitro and animal studies, which may not accurately reflect real-life situations. Further research is needed to determine the optimal duration, timing, safety, and efficacy of dietary restrictions for different cancers and treatments. In addition, well-designed human trials are necessary to establish the link between specific metabolic vulnerabilities and targeted dietary interventions. However, low patient compliance in clinical trials remains a significant challenge.
Collapse
Affiliation(s)
- Otília Menyhárt
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Balázs Győrffy
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
20
|
Zhao L, Zhang R, Yang G, Wang Y, Gai S, Zhao X, Huang M, Yang P. CeO 2 and Glucose Oxidase Co-Enriched Ti 3C 2T x MXene for Hyperthermia-Augmented Nanocatalytic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9968-9979. [PMID: 38358298 DOI: 10.1021/acsami.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Foreseen as foundational in forthcoming oncology interventions are multimodal therapeutic systems. Nevertheless, the tumor microenvironment (TME), marked by heightened glucose levels, hypoxia, and scant concentrations of endogenous hydrogen peroxide could potentially impair their effectiveness. In this research, two-dimensional (2D) Ti3C2 MXene nanosheets are engineered with CeO2 nanozymes and glucose oxidase (GOD), optimizing them for TME, specifically targeting cancer therapy. Following our therapeutic design, CeO2 nanozymes, embodying both peroxidase-like and catalase-like characteristics, enable transformation of H2O2 into hydroxyl radicals for catalytic therapy while also producing oxygen to mitigate hypoxia. Concurrently, GOD metabolizes glucose, thereby augmenting H2O2 levels and disrupting the intracellular energy supply. When subjected to a near-infrared laser, 2D Ti3C2 MXene accomplishes photothermal therapy (PTT) and photodynamic therapy (PDT), additionally amplifying cascade catalytic treatment via thermal enhancement. Empirical evidence demonstrates robust tumor suppression both in vitro and in vivo by the CeO2/Ti3C2-PEG-GOD nanocomposite. Consequently, this integrated approach, which combines PTT/PDT and enzymatic catalysis, could offer a valuable blueprint for the development of advanced oncology therapies.
Collapse
Affiliation(s)
- Leikai Zhao
- The School of Material Sciences and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Rui Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Guixin Yang
- The School of Material Sciences and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Yuhang Wang
- The School of Material Sciences and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Xin Zhao
- The School of Material Sciences and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Mengmeng Huang
- The School of Material Sciences and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
21
|
More TH, Hiller K, Seifert M, Illig T, Schmidt R, Gronauer R, von Hahn T, Weilert H, Stang A. Metabolomics analysis reveals novel serum metabolite alterations in cancer cachexia. Front Oncol 2024; 14:1286896. [PMID: 38450189 PMCID: PMC10915872 DOI: 10.3389/fonc.2024.1286896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Background Cachexia is a body wasting syndrome that significantly affects well-being and prognosis of cancer patients, without effective treatment. Serum metabolites take part in pathophysiological processes of cancer cachexia, but apart from altered levels of select serum metabolites, little is known on the global changes of the overall serum metabolome, which represents a functional readout of the whole-body metabolic state. Here, we aimed to comprehensively characterize serum metabolite alterations and analyze associated pathways in cachectic cancer patients to gain new insights that could help instruct strategies for novel interventions of greater clinical benefit. Methods Serum was sampled from 120 metastatic cancer patients (stage UICC IV). Patients were grouped as cachectic or non-cachectic according to the criteria for cancer cachexia agreed upon international consensus (main criterium: weight loss adjusted to body mass index). Samples were pooled by cachexia phenotype and assayed using non-targeted gas chromatography-mass spectrometry (GC-MS). Normalized metabolite levels were compared using t-test (p < 0.05, adjusted for false discovery rate) and partial least squares discriminant analysis (PLS-DA). Machine-learning models were applied to identify metabolite signatures for separating cachexia states. Significant metabolites underwent MetaboAnalyst 5.0 pathway analysis. Results Comparative analyses included 78 cachectic and 42 non-cachectic patients. Cachectic patients exhibited 19 annotable, significantly elevated (including glucose and fructose) or decreased (mostly amino acids) metabolites associating with aminoacyl-tRNA, glutathione and amino acid metabolism pathways. PLS-DA showed distinct clusters (accuracy: 85.6%), and machine-learning models identified metabolic signatures for separating cachectic states (accuracy: 83.2%; area under ROC: 88.0%). We newly identified altered blood levels of erythronic acid and glucuronic acid in human cancer cachexia, potentially linked to pentose-phosphate and detoxification pathways. Conclusion We found both known and yet unknown serum metabolite and metabolic pathway alterations in cachectic cancer patients that collectively support a whole-body metabolic state with impaired detoxification capability, altered glucose and fructose metabolism, and substrate supply for increased and/or distinct metabolic needs of cachexia-associated tumors. These findings together imply vulnerabilities, dependencies and targets for novel interventions that have potential to make a significant impact on future research in an important field of cancer patient care.
Collapse
Affiliation(s)
- Tushar H. More
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Martin Seifert
- Asklepios Precision Medicine, Asklepios Hospitals GmbH & Co KgaA, Königstein (Taunus), Germany
- Connexome GmbH, Fischen, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Hannover Unified Biobank (HUB), Hannover, Germany
| | - Rudi Schmidt
- Asklepios Precision Medicine, Asklepios Hospitals GmbH & Co KgaA, Königstein (Taunus), Germany
- Immunetrue, Cologne, Germany
| | - Raphael Gronauer
- Asklepios Precision Medicine, Asklepios Hospitals GmbH & Co KgaA, Königstein (Taunus), Germany
- Connexome GmbH, Fischen, Germany
| | - Thomas von Hahn
- Asklepios Hospital Barmbek, Department of Gastroenterology, Hepatology and Endoscopy, Hamburg, Germany
- Asklepios Tumorzentrum Hamburg, Hamburg, Germany
- Semmelweis University, Asklepios Campus Hamburg, Budapest, Hungary
| | - Hauke Weilert
- Asklepios Tumorzentrum Hamburg, Hamburg, Germany
- Semmelweis University, Asklepios Campus Hamburg, Budapest, Hungary
- Asklepios Hospital Barmbek, Department of Hematology, Oncology and Palliative Care Medicine, Hamburg, Germany
| | - Axel Stang
- Asklepios Tumorzentrum Hamburg, Hamburg, Germany
- Semmelweis University, Asklepios Campus Hamburg, Budapest, Hungary
- Asklepios Hospital Barmbek, Department of Hematology, Oncology and Palliative Care Medicine, Hamburg, Germany
| |
Collapse
|
22
|
Syamprasad NP, Jain S, Rajdev B, Panda SR, Kumar GJ, Shaik KM, Shantanu P, Challa VS, Jorvekar SB, Borkar RM, Vaidya JR, Tripathi DM, Naidu V. AKR1B1 drives hyperglycemia-induced metabolic reprogramming in MASLD-associated hepatocellular carcinoma. JHEP Rep 2024; 6:100974. [PMID: 38283757 PMCID: PMC10820337 DOI: 10.1016/j.jhepr.2023.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 01/30/2024] Open
Abstract
Background & Aims The mechanism behind the progressive pathological alteration in metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH)-associated hepatocellular carcinoma (HCC) is poorly understood. In the present study, we investigated the role of the polyol pathway enzyme AKR1B1 in metabolic switching associated with MASLD/MASH and in the progression of HCC. Methods AKR1B1 expression was estimated in the tissue and plasma of patients with MASLD/MASH, HCC, and HCC with diabetes mellitus. The role of AKR1B1 in metabolic switching in vitro was assessed through media conditioning, lentiviral transfection, and pharmacological probes. A proteomic and metabolomic approach was applied for the in-depth investigation of metabolic pathways. Preclinically, mice were subjected to a high-fructose diet and diethylnitrosamine to investigate the role of AKR1B1 in the hyperglycemia-mediated metabolic switching characteristic of MASLD-HCC. Results A significant increase in the expression of AKR1B1 was observed in tissue and plasma samples from patients with MASLD/MASH, HCC, and HCC with diabetes mellitus compared to normal samples. Mechanistically, in vitro assays revealed that AKR1B1 modulates the Warburg effect, mitochondrial dynamics, the tricarboxylic acid cycle, and lipogenesis to promote hyperglycemia-mediated MASLD and cancer progression. A pathological increase in the expression of AKR1B1 was observed in experimental MASLD-HCC, and expression was positively correlated with high blood glucose levels. High-fructose diet + diethylnitrosamine-treated animals also exhibited statistically significant elevation of metabolic markers and carcinogenesis markers. AKR1B1 inhibition with epalrestat or NARI-29 inhibited cellular metabolism in in vitro and in vivo models. Conclusions Pathological AKR1B1 modulates hepatic metabolism to promote MASLD-associated hepatocarcinogenesis. Aldose reductase inhibition modulates the glycolytic pathway to prevent precancerous hepatocyte formation. Impact and implications This research work highlights AKR1B1 as a druggable target in metabolic dysfunction-associated steatotic liver disease (MASLD) and hepatocellular carcinoma (HCC), which could provide the basis for the development of new chemotherapeutic agents. Moreover, our results indicate the potential of plasma AKR1B1 levels as a prognostic marker and diagnostic test for MASLD and associated HCC. Additionally, a major observation in this study was that AKR1B1 is associated with the promotion of the Warburg effect in HCC.
Collapse
Affiliation(s)
- NP Syamprasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Siddhi Jain
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Bishal Rajdev
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Samir Ranjan Panda
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Gangasani Jagadeesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Khaja Moinuddin Shaik
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - P.A. Shantanu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Veerabhadra Swamy Challa
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Sachin B. Jorvekar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Roshan M. Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Jayathirtha Rao Vaidya
- Fluoro Agro Chemicals Department and AcSIR-Ghaziabad, CSIR-Indian Institute of Chemical Technology, Uppal Road Tarnaka, Hyderabad, Telangana, 500007, India
| | - Dinesh Mani Tripathi
- Liver Physiology & Vascular Biology Lab, Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, ILBS, D-1, Vasant Kunj, New Delhi, Delhi 110070, India
| | - V.G.M. Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| |
Collapse
|
23
|
Neagu AN, Whitham D, Bruno P, Arshad A, Seymour L, Morrissiey H, Hukovic AI, Darie CC. Onco-Breastomics: An Eco-Evo-Devo Holistic Approach. Int J Mol Sci 2024; 25:1628. [PMID: 38338903 PMCID: PMC10855488 DOI: 10.3390/ijms25031628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Known as a diverse collection of neoplastic diseases, breast cancer (BC) can be hyperbolically characterized as a dynamic pseudo-organ, a living organism able to build a complex, open, hierarchically organized, self-sustainable, and self-renewable tumor system, a population, a species, a local community, a biocenosis, or an evolving dynamical ecosystem (i.e., immune or metabolic ecosystem) that emphasizes both developmental continuity and spatio-temporal change. Moreover, a cancer cell community, also known as an oncobiota, has been described as non-sexually reproducing species, as well as a migratory or invasive species that expresses intelligent behavior, or an endangered or parasite species that fights to survive, to optimize its features inside the host's ecosystem, or that is able to exploit or to disrupt its host circadian cycle for improving the own proliferation and spreading. BC tumorigenesis has also been compared with the early embryo and placenta development that may suggest new strategies for research and therapy. Furthermore, BC has also been characterized as an environmental disease or as an ecological disorder. Many mechanisms of cancer progression have been explained by principles of ecology, developmental biology, and evolutionary paradigms. Many authors have discussed ecological, developmental, and evolutionary strategies for more successful anti-cancer therapies, or for understanding the ecological, developmental, and evolutionary bases of BC exploitable vulnerabilities. Herein, we used the integrated framework of three well known ecological theories: the Bronfenbrenner's theory of human development, the Vannote's River Continuum Concept (RCC), and the Ecological Evolutionary Developmental Biology (Eco-Evo-Devo) theory, to explain and understand several eco-evo-devo-based principles that govern BC progression. Multi-omics fields, taken together as onco-breastomics, offer better opportunities to integrate, analyze, and interpret large amounts of complex heterogeneous data, such as various and big-omics data obtained by multiple investigative modalities, for understanding the eco-evo-devo-based principles that drive BC progression and treatment. These integrative eco-evo-devo theories can help clinicians better diagnose and treat BC, for example, by using non-invasive biomarkers in liquid-biopsies that have emerged from integrated omics-based data that accurately reflect the biomolecular landscape of the primary tumor in order to avoid mutilating preventive surgery, like bilateral mastectomy. From the perspective of preventive, personalized, and participatory medicine, these hypotheses may help patients to think about this disease as a process governed by natural rules, to understand the possible causes of the disease, and to gain control on their own health.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Angiolina I. Hukovic
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| |
Collapse
|
24
|
Johnson RJ, Sánchez-Lozada LG, Lanaspa MA. The fructose survival hypothesis as a mechanism for unifying the various obesity hypotheses. Obesity (Silver Spring) 2024; 32:12-22. [PMID: 37846155 DOI: 10.1002/oby.23920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 10/18/2023]
Abstract
The pathogenesis of obesity remains contested. Although genetics is important, the rapid rise in obesity with Western culture and diet suggests an environmental component. Today, some of the major hypotheses for obesity include the energy balance hypothesis, the carbohydrate-insulin model, the protein-leverage hypothesis, and the seed oil hypothesis. Each hypothesis has its own support, creating controversy over their respective roles in driving obesity. Here we propose that all hypotheses are largely correct and can be unified by another dietary hypothesis, the fructose survival hypothesis. Fructose is unique in resetting ATP levels to a lower level in the cell as a consequence of suppressing mitochondrial function, while blocking the replacement of ATP from fat. The low intracellular ATP levels result in carbohydrate-dependent hunger, impaired satiety (leptin resistance), and metabolic effects that result in the increased intake of energy-dense fats. This hypothesis emphasizes the unique role of carbohydrates in stimulating intake while fat provides the main source of energy. Thus, obesity is a disorder of energy metabolism, in which there is low usable energy (ATP) in the setting of elevated total energy. This leads to metabolic effects independent of excess energy while the excess energy drives weight gain.
Collapse
Affiliation(s)
- Richard J Johnson
- Division of Nephrology, Rocky Mountain VA Medical Center, Aurora, Colorado, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laura G Sánchez-Lozada
- Laboratory of Renal Physiopathology, Instituto Nacional de Cardiologia Ignacio Chavez, Mexico City, Mexico
| | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
25
|
Hansen HH, Pors S, Andersen MW, Vyberg M, Nøhr-Meldgaard J, Nielsen MH, Oró D, Madsen MR, Lewinska M, Møllerhøj MB, Madsen AN, Feigh M. Semaglutide reduces tumor burden in the GAN diet-induced obese and biopsy-confirmed mouse model of NASH-HCC with advanced fibrosis. Sci Rep 2023; 13:23056. [PMID: 38155202 PMCID: PMC10754821 DOI: 10.1038/s41598-023-50328-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is emerging as a major cause of hepatocellular carcinoma (HCC), however, it is not resolved if compounds in late-stage clinical development for NASH may have additional therapeutic benefits in NASH-driven HCC (NASH-HCC). Here, we profiled monotherapy with semaglutide (glucagon-like-receptor-1 receptor agonist) and lanifibranor (pan-peroxisome proliferator-activated receptor agonist) in a diet-induced obese (DIO) mouse model of NASH-HCC. Disease progression was characterized in male C57BL/6 J mice fed the GAN (Gubra Amylin NASH) diet high in fat, fructose and cholesterol for 12-72 weeks (n = 15 per group). Other GAN DIO-NASH-HCC mice fed the GAN diet for 54 weeks and with biopsy-confirmed NASH (NAFLD Activity Score ≥ 5) and advanced fibrosis (stage F3) received vehicle (n = 16), semaglutide (30 nmol/kg, s.c., n = 15), or lanifibranor (30 mg/kg, p.o., n = 15) once daily for 14 weeks. GAN DIO-NASH-HCC mice demonstrated progressive NASH, fibrosis and HCC burden. Tumors presented with histological and molecular signatures of poor prognostic HCC. Consistent with clinical trial outcomes in NASH patients, both lanifibranor and semaglutide improved NASH while only lanifibranor reduced fibrosis in GAN DIO-NASH-HCC mice. Notably, only semaglutide reduced tumor burden in GAN DIO-NASH-HCC mice. In conclusion, the GAN DIO-NASH-HCC mouse is a clinical translational model of NASH-HCC. Semaglutide improves both NASH and tumor burden in GAN DIO-NASH-HCC mice, highlighting the suitability of this preclinical model for profiling novel drug therapies targeting NASH-HCC.
Collapse
Affiliation(s)
| | - Susanne Pors
- Gubra, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| | | | - Mogens Vyberg
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | | | | | - Denise Oró
- Gubra, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| | | | | | | | | | - Michael Feigh
- Gubra, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| |
Collapse
|
26
|
Cui Y, Tian J, Wang Z, Guo H, Zhang H, Wang Z, Liu H, Song W, Liu L, Tian R, Zuo X, Ren S, Niu R, Zhang F. Fructose-Induced mTORC1 Activation Promotes Pancreatic Cancer Progression through Inhibition of Autophagy. Cancer Res 2023; 83:4063-4079. [PMID: 37738413 PMCID: PMC10722142 DOI: 10.1158/0008-5472.can-23-0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Excessive fructose intake is associated with the occurrence, progression, and poor prognosis of various tumors. A better understanding of the mechanisms underlying the functions of fructose in cancer could facilitate the development of better treatment and prevention strategies. In this study, we investigated the functional association between fructose utilization and pancreatic ductal adenocarcinoma (PDAC) progression. Fructose could be taken up and metabolized by PDAC cells and provided an adaptive survival mechanism for PDAC cells under glucose-deficient conditions. GLUT5-mediated fructose metabolism maintained the survival, proliferation, and invasion capacities of PDAC cells in vivo and in vitro. Fructose metabolism not only provided ATP and biomass to PDAC cells but also conferred metabolic plasticity to the cells, making them more adaptable to the tumor microenvironment. Mechanistically, fructose activated the AMP-activated protein kinase (AMPK)-mTORC1 signaling pathway to inhibit glucose deficiency-induced autophagic cell death. Moreover, the fructose-specific transporter GLUT5 was highly expressed in PDAC tissues and was an independent marker of disease progression in patients with PDAC. These findings provide mechanistic insights into the role of fructose in promoting PDAC progression and offer potential strategies for targeting metabolism to treat PDAC. SIGNIFICANCE Fructose activates AMPK-mTORC1 signaling to inhibit autophagy-mediated cell death in pancreatic cancer cells caused by glucose deficiency, facilitating metabolic adaptation to the tumor microenvironment and supporting tumor growth.
Collapse
Affiliation(s)
- Yanfen Cui
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jianfei Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhaosong Wang
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hui Guo
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - He Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hui Liu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Weijie Song
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Liming Liu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ruinan Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoyan Zuo
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Sixin Ren
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
27
|
Zhou X, Wang Z, Yuan K. The effect of diet and nutrition on T cell function in cancer. Int J Cancer 2023; 153:1954-1966. [PMID: 37504380 DOI: 10.1002/ijc.34668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Cancer can be considered one of the most threatening diseases to human health, and immunotherapy, especially T-cell immunotherapy, is the most promising treatment for cancers. Diet therapy is widely concerned in cancer because of its safety and fewer side effects. Many studies have shown that both the function of T cells and the progression of cancer can be affected by nutrients in the diet. In fact, it is challenging for T cells to infiltrate and eliminate cancer cells in tumor microenvironment, because of the harsh metabolic condition. The intake of different nutrients has a great influence on the proliferation, activation, differentiation and exhaustion of T cells. In this review, we summarize the effects of typical amino acids, lipids, carbohydrates and other nutritional factors on T cell functions and provide future perspectives for dietary treatment of cancer based on modifications of T cell functions.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Wang
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kefei Yuan
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Ríos-Rodríguez JA, Montalvo-Casimiro M, Álvarez-López DI, Reynoso-Noverón N, Cuevas-Estrada B, Mendoza-Pérez J, Jiménez-Ríos MA, Wegman-Ostrosky T, Salcedo-Tello P, Scavuzzo A, Castro-Hernández C, Herrera LA, González-Barrios R. Understanding Sociodemographic Factors among Hispanics Through a Population-Based Study on Testicular Cancer in Mexico. J Racial Ethn Health Disparities 2023:10.1007/s40615-023-01859-0. [PMID: 37962789 DOI: 10.1007/s40615-023-01859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Testicular cancer (TCa) is a rare malignancy affecting young men worldwide. Sociodemographic factors, especially socioeconomic level (SEL) and healthcare access, seem to impact TCa incidence and outcomes, particularly among Hispanic populations. However, limited research has explored these variables in Hispanic groups. This study aimed to investigate sociodemographic and clinical factors in Mexico and their role in health disparities among Hispanic TCa patients. We retrospectively analyzed 244 Mexican TCa cases between 2007 and 2020 of a representative cohort with diverse social backgrounds from a national reference cancer center. Logistic regression identified risk factors for fatality: non-seminoma histology, advanced stage, and lower education levels. Age showed a significant trend as a risk factor. Patient delay and healthcare distance lacked significant associations. Inadequate treatment response and chemotherapy resistance were more likely in advanced stages, while higher education positively impacted treatment response. Cox regression highlighted non-seminoma histology, below-median SEL, higher education, and advanced-stage survival rates. Survival disparities emerged based on tumor histology and patient SEL. This research underscores the importance of comprehensive approaches that integrate sociodemographic, biological, and environmental factors to address health disparities improving outcomes through personalized interventions in Hispanic individuals with TCa.
Collapse
Affiliation(s)
- Juan Alberto Ríos-Rodríguez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, 14080, México
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de La Salud, Monterrey, 64710, México
| | - Michel Montalvo-Casimiro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, 14080, México
| | - Diego Ivar Álvarez-López
- Unidad de Epidemiología en Cáncer, Instituto Nacional de Cancerología, Mexico City, 14080, México
| | - Nancy Reynoso-Noverón
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, 14080, México
- Unidad de Epidemiología en Cáncer, Instituto Nacional de Cancerología, Mexico City, 14080, México
| | - Berenice Cuevas-Estrada
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, 14080, México
| | - Julia Mendoza-Pérez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Miguel A Jiménez-Ríos
- Departamento de Urología, Instituto Nacional de Cancerología, Mexico City, 14080, México
| | - Talia Wegman-Ostrosky
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, 14080, México
| | - Pamela Salcedo-Tello
- Departamento de Bioquímica, Facultad de Medicina, UNAM, Mexico City, 04510, México
| | - Anna Scavuzzo
- Departamento de Urología, Instituto Nacional de Cancerología, Mexico City, 14080, México
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, 14080, México
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, 14080, México.
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de La Salud, Monterrey, 64710, México.
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, 14080, México.
- Departamento de Biología Celular, Facultad de Ciencias, UNAM, Mexico City, 04510, México.
| |
Collapse
|
29
|
Margawati H, Yustisia I, Hardjo M, Natsir R, Azis I, Hafiyani L, Aswad H. GLUT5, GLUT7, and GLUT11 expression and Bcl-2/Bax ratio on Breast Cancer Cell Line MCF-7 Treated with Fructose and Glucose. Asian Pac J Cancer Prev 2023; 24:3917-3924. [PMID: 38019251 PMCID: PMC10772771 DOI: 10.31557/apjcp.2023.24.11.3917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE Fructose and glucose are types of sugars commonly found in the diet that have been linked to cancer development. Glucose transporters (GLUTs) are facilitating the uptake of these hexoses. Expression of GLUT5 is higher in cancer cells than in healthy tissue. GLUT7 and GLUT11 facilitate the transport of glucose and fructose; however, their expression in breast cancer has not been extensively studied. The Bcl-2 family has been known as a regulator of the cell's survival and death. Here, we investigated the effect of the fructose-glucose combination in MCF-7 breast cancer cells on the viability, migration, and expression of GLUT5, GLUT7, GLUT11, and Bcl-2/Bax ratio. METHODS Breast cancer cells MCF-7 were treated with fructose, glucose, and combinations of fructose:glucose (75%:25%, 50%:50%, 25%:75%). Cell viability was assessed using an MTT test. Cell migration was examined with a wound-healing assay. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to evaluate the mRNA expression of GLUT5, GLUT7, GLUT11, and Bcl-2/Bax. RESULTS The viability and migration of MCF-7 breast cancer cells elevated when treated with a combination of fructose and glucose, and glucose alone, compared to fructose alone. The expression levels of GLUT5 and GLUT7 were highest in combination of fructose:glucose (75%:25%). Conversely, the expression of GLUT11 was consistently low across all treated media. The highest Bcl-2/Bax ratio was shown in fructose:glucose combination (25%:75%). CONCLUSION The viability, migration, and Bcl-2/Bax ratio are enhanced in the combination media with higher glucose. In contrast, when the fructose composition was higher in the media, expression of GLUT5 and GLUT7 increased.
Collapse
Affiliation(s)
- Harlindah Margawati
- Master Programme of Biomedical Sciences, Graduate School Universitas Hasanuddin, Makassar, Indonesia.
- Makassar Medical State Laboratory, Indonesian Ministry of Health, Makassar, Indonesia.
| | - Ika Yustisia
- Department of Biochemistry, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
| | - Marhaen Hardjo
- Department of Biochemistry, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
| | - Rosdiana Natsir
- Department of Biochemistry, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
| | - Ilhamuddin Azis
- Department of Biochemistry, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
| | - Lia Hafiyani
- Department of Pharmacology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
| | - Hijral Aswad
- Hasanuddin University Medical Research Centre (HUMRC), Makassar, Indonesia.
| |
Collapse
|
30
|
Soma Nyansa M, Oronova A, Gora N, Geborkoff MR, Ostlund NR, Fritz DR, Werner T, Tanasova M. Turn-on Rhodamine Glycoconjugates Enable Real-Time GLUT Activity Monitoring in Live Cells and In Vivo. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:637-647. [PMID: 37873027 PMCID: PMC10593130 DOI: 10.1021/cbmi.3c00063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 10/25/2023]
Abstract
The direct relationship between facilitative glucose transporters (GLUTs) and metabolic diseases opens new avenues for sensing metabolic deregulations and drives the development of molecular probes for GLUT-targeted detection of metabolic diseases. Radiotracer-based molecular imaging probes have been effectively utilized in reporting alterations in sugar uptake as an indication of metabolic deregulations, cancer development, or inflammation. Progress in developing fluorophore-based tools facilitated GLUT-specific analyses using more accessible fluorescence-based instrumentation. However, restrictions on the emission range of fluorophores and the requirement for substantial post-treatments to reduce background fluorescence have brought to light the critical directions for improvement of the technology for broader use in screening applications. Here we present turn-on GLUT activity reporters activated upon cells' internalization. We demonstrate a specific delivery of a sizable rhodamine B fluorophore through GLUT5 and showcase a stringent requirement in conjugate structure for maintaining a GLUT-specific uptake. With the turn-on GLUT probes, we demonstrate the feasibility of high-throughput fluorescence microscopy and flow cytometry-based GLUT activity screening in live cells and the probes' applicability for assessing sugar uptake alterations in vivo.
Collapse
Affiliation(s)
- Monica
Mame Soma Nyansa
- Department
of Chemistry, Michigan Technological University,1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Adelina Oronova
- Department
of Chemistry, Michigan Technological University,1400 Townsend Drive, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Nazar Gora
- Department
of Chemistry, Michigan Technological University,1400 Townsend Drive, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Micaela Rayne Geborkoff
- Department
of Biological Sciences, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Nathan Randal Ostlund
- Department
of Biological Sciences, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Delaney Raine Fritz
- Department
of Biological Sciences, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Department
of Biological Sciences, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Marina Tanasova
- Department
of Chemistry, Michigan Technological University,1400 Townsend Drive, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| |
Collapse
|
31
|
Chen Z, Yue Z, Yang K, Shen C, Cheng Z, Zhou X, Li S. Four Ounces Can Move a Thousand Pounds: The Enormous Value of Nanomaterials in Tumor Immunotherapy. Adv Healthc Mater 2023; 12:e2300882. [PMID: 37539730 DOI: 10.1002/adhm.202300882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/17/2023] [Indexed: 08/05/2023]
Abstract
The application of nanomaterials in healthcare has emerged as a promising strategy due to their unique structural diversity, surface properties, and compositional diversity. In particular, nanomaterials have found a significant role in improving drug delivery and inhibiting the growth and metastasis of tumor cells. Moreover, recent studies have highlighted their potential in modulating the tumor microenvironment (TME) and enhancing the activity of immune cells to improve tumor therapy efficacy. Various types of nanomaterials are currently utilized as drug carriers, immunosuppressants, immune activators, immunoassay reagents, and more for tumor immunotherapy. Necessarily, nanomaterials used for tumor immunotherapy can be grouped into two categories: organic and inorganic nanomaterials. Though both have shown the ability to achieve the purpose of tumor immunotherapy, their composition and structural properties result in differences in their mechanisms and modes of action. Organic nanomaterials can be further divided into organic polymers, cell membranes, nanoemulsion-modified, and hydrogel forms. At the same time, inorganic nanomaterials can be broadly classified as nonmetallic and metallic nanomaterials. The current work aims to explore the mechanisms of action of these different types of nanomaterials and their prospects for promoting tumor immunotherapy.
Collapse
Affiliation(s)
- Ziyin Chen
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Ziqi Yue
- Department of Forensic Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Kaiqi Yang
- Clinical Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Congrong Shen
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Zhe Cheng
- Department of Forensic Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Xiaofeng Zhou
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 110042, Shenyang, P. R. China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, 110042, China
| |
Collapse
|
32
|
Johnson RJ, Lanaspa MA, Sanchez-Lozada LG, Tolan D, Nakagawa T, Ishimoto T, Andres-Hernando A, Rodriguez-Iturbe B, Stenvinkel P. The fructose survival hypothesis for obesity. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220230. [PMID: 37482773 PMCID: PMC10363705 DOI: 10.1098/rstb.2022.0230] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/04/2023] [Indexed: 07/25/2023] Open
Abstract
The fructose survival hypothesis proposes that obesity and metabolic disorders may have developed from over-stimulation of an evolutionary-based biologic response (survival switch) that aims to protect animals in advance of crisis. The response is characterized by hunger, thirst, foraging, weight gain, fat accumulation, insulin resistance, systemic inflammation and increased blood pressure. The process is initiated by the ingestion of fructose or by stimulating endogenous fructose production via the polyol pathway. Unlike other nutrients, fructose reduces the active energy (adenosine triphosphate) in the cell, while blocking its regeneration from fat stores. This is mediated by intracellular uric acid, mitochondrial oxidative stress, the inhibition of AMP kinase and stimulation of vasopressin. Mitochondrial oxidative phosphorylation is suppressed, and glycolysis stimulated. While this response is aimed to be modest and short-lived, the response in humans is exaggerated due to gain of 'thrifty genes' coupled with a western diet rich in foods that contain or generate fructose. We propose excessive fructose metabolism not only explains obesity but the epidemics of diabetes, hypertension, non-alcoholic fatty liver disease, obesity-associated cancers, vascular and Alzheimer's dementia, and even ageing. Moreover, the hypothesis unites current hypotheses on obesity. Reducing activation and/or blocking this pathway and stimulating mitochondrial regeneration may benefit health-span. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.
Collapse
Affiliation(s)
- Richard J. Johnson
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80016, USA
| | - Miguel A. Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80016, USA
| | - L. Gabriela Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología ‘Ignacio Chavez’, Mexico City 14080, Mexico
| | - Dean Tolan
- Biology Department, Boston University, Boston, MA 02215, USA
| | - Takahiko Nakagawa
- Department of Nephrology, Rakuwakai-Otowa Hospital, Kyoto 607-8062, Japan
| | - Takuji Ishimoto
- Department of Nephrology and Rheumatology, Aichi Medical University, Aichi 480-1103, Japan
| | - Ana Andres-Hernando
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80016, USA
| | - Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición ‘Salvador Zubirán’, Mexico City 14080, Mexico
| | - Peter Stenvinkel
- Department of Renal Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
33
|
Estevez H, Garcia-Calvo E, Mena ML, Alvarez-Fernandez Garcia R, Luque-Garcia JL. Unraveling the Mechanisms of Ch-SeNP Cytotoxicity against Cancer Cells: Insights from Targeted and Untargeted Metabolomics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2204. [PMID: 37570523 PMCID: PMC10420838 DOI: 10.3390/nano13152204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Although chitosan-stabilized selenium nanoparticles (Ch-SeNPs) have emerged as a promising chemical form of selenium for anticancer purposes, gathering more profound knowledge related to molecular dysfunctions contributes significantly to the promotion of their evolution as a chemotherapeutic drug. In this sense, metabolites are the end products in the flow of gene expression and, thus, the most sensitive to changes in the physiological state of a biological system. Therefore, metabolomics provides a functional readout of the biochemical activity and cell state. In the present study, we evaluated alterations in the metabolomes of HepG2 cells after the exposure to Ch-SeNPs to elucidate the biomolecular mechanisms involved in their therapeutic effect. A targeted metabolomic approach was conducted to evaluate the levels of four of the main energy-related metabolites (adenosine triphosphate (ATP); adenosine diphosphate (ADP); nicotinamide adenine dinucleotide (NAD+); and 1,4-dihydronicotinamide adenine dinucleotide (NADH)), revealing alterations as a result of exposure to Ch-SeNPs related to a shortage in the energy supply system in the cell. In addition, an untargeted metabolomic experiment was performed, which allowed for the study of alterations in the global metabolic profile as a consequence of Ch-SeNP exposure. The results indicate that the TCA cycle and glycolytic pathways were impaired, while alternative pathways such as glutaminolysis and cysteine metabolism were upregulated. Additionally, increased fructose levels suggested the induction of hypoxia-like conditions. These findings highlight the potential of Ch-SeNPs to disrupt cancer cell metabolism and provide insights into the mechanisms underlying their antitumor effects.
Collapse
Affiliation(s)
| | | | | | | | - Jose L. Luque-Garcia
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (H.E.); (E.G.-C.); (M.L.M.); (R.A.-F.G.)
| |
Collapse
|
34
|
Cui Y, Liu H, Wang Z, Zhang H, Tian J, Wang Z, Song W, Guo H, Liu L, Tian R, Zuo X, Ren S, Zhang F, Niu R. Fructose promotes angiogenesis by improving vascular endothelial cell function and upregulating VEGF expression in cancer cells. J Exp Clin Cancer Res 2023; 42:184. [PMID: 37507736 PMCID: PMC10375648 DOI: 10.1186/s13046-023-02765-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Fructose is a very common sugar found in natural foods, while current studies demonstrate that high fructose intake is significantly associated with increased risk of multiple cancers and more aggressive tumor behavior, but the relevant mechanisms are not fully understood. METHODS Tumor-grafting experiments and in vitro angiogenesis assays were conducted to detect the effect of fructose and the conditioned medium of fructose-cultured tumor cells on biological function of vascular endothelial cells (VECs) and angiogenesis. 448 colorectal cancer specimens were utilized to analyze the relationship between Glut5 expression levels in VECs and tumor cells and microvascular density (MVD). RESULTS We found that fructose can be metabolized by VECs and activate the Akt and Src signaling pathways, thereby enhancing the proliferation, migration, and tube-forming abilities of VECs and thereby promoting angiogenesis. Moreover, fructose can also improve the expression of vascular endothelial growth factor (VEGF) by upregulating the production of reactive oxygen species (ROS) in colorectal cancer cells, thus indirectly enhancing the biological function of VECs. Furthermore, this pro-angiogenic effect of fructose metabolism has also been well validated in clinical colorectal cancer tissues and mouse models. Fructose contributes to angiogenesis in mouse subcutaneous tumor grafts, and MVD is positively correlated with Glut5 expression levels of both endothelial cells and tumor cells of human colorectal cancer specimens. CONCLUSIONS These findings establish the direct role and mechanism by which fructose promotes tumor progression through increased angiogenesis, and provide reliable evidence for a better understanding of tumor metabolic reprogramming.
Collapse
Affiliation(s)
- Yanfen Cui
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui Liu
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhaosong Wang
- Laboratory Animal Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - He Zhang
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jianfei Tian
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhiyong Wang
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Weijie Song
- Laboratory Animal Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui Guo
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Liming Liu
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ruinan Tian
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiaoyan Zuo
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Sixin Ren
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Fei Zhang
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Ruifang Niu
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
35
|
Gora N, Weselinski LJ, Begoyan VV, Cooper A, Choe JY, Tanasova M. Discrimination of GLUTs by Fructose Isomers Enables Simultaneous Screening of GLUT5 and GLUT2 Activity in Live Cells. ACS Chem Biol 2023; 18:1089-1100. [PMID: 37116192 PMCID: PMC10566446 DOI: 10.1021/acschembio.2c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Facilitative carbohydrate transporters (GLUTs, SLC2 gene family) are transmembrane proteins transporting hexoses and other sugars based on cellular metabolic demands. While a direct link between GLUTs and metabolic disorders has framed them as important biological and medicinal targets, targeting disease-relevant GLUTs remains challenging. In this study, we aimed to identify substrate-GLUT interactions that would discriminate between major fructose transporters. We examined the uptake distribution for conformational and configurational isomers of fructose using the corresponding conformationally locked fluorescently labeled mimetics as probes for assessing GLUT preferences in real time. Through comparative analysis of the uptake of the probes in the yeast-based single GLUT expression systems and the multi-GLUT mammalian cell environment, we established the ability of fructose transporters to discriminate between fructose conformers and epimers. We demonstrated that recreating the conformational and configurational mixture of fructose with molecular probes allows for the specific probe distribution, with fructofuranose mimetic being taken up preferentially through GLUT5 and β-d-fructopyranose mimetic passing through GLUT2. The uptake of α-d-fructopyranose mimetic was found to be independent of GLUT5 or GLUT2. The results of this study provide a new approach to analyzing GLUT5 and GLUT2 activity in live cells, and the findings can be used as a proof-of-concept for multi-GLUT activity screening in live cells. The research also provides new knowledge on substrate-GLUT interactions and new tools for monitoring alterations in GLUT activities.
Collapse
Affiliation(s)
- Nazar Gora
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Lukasz J Weselinski
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Vagarshak V Begoyan
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Andrew Cooper
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Jun-Yong Choe
- Department of Chemistry, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina 27834, United States
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, United States
| | - Marina Tanasova
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| |
Collapse
|
36
|
Sohn EJ, Kim JH, Oh SO, Kim JY. Regulation of self-renewal in ovarian cancer stem cells by fructose via chaperone-mediated autophagy. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166723. [PMID: 37087023 DOI: 10.1016/j.bbadis.2023.166723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
The chaperone-mediated autophagy (CMA) pathway is deregulated in different types of cancers; however, its role in cancer stem cells (CSCs) is unknown yet. Development of ovarian cancer, the most lethal gynecological type of cancer, involves the metastasis of CSCs to the abdominal cavity. This study aims to determine the role of CMA in ovarian CSCs. We found that the transcription factor EB (TFEB) and trehalose, a disaccharide that induces TFEB activation, enhance the expression of octamer-binding transcription factor 4 (OCT4) stem cell and lysosomal-associated membrane protein 2A (LAMP2A) CMA markers. However, trehalose did not increase the level of the LC3II macroautophagy marker in ovarian CSCs. In A2780 and SKOV3 ovarian CSCs, LAMP2A and heat shock protein 70 (HSC70) exhibited higher expression levels than in normal adherent cells. Our results showed that the silencing of the LAMP2A gene resulted in reduced sphere formation and enhanced GLUT5 expression in ovarian CSCs. Moreover, the treatment with fructose reduced sphere formation and enhanced the expression levels of LAMP2A, SOX2, and OCT4 in ovarian CSCs. The KEGG functional analysis revealed that differentially expressed genes were enriched in the ferroptosis pathway in A2780-spheroid (SP) cells after treatment with fructose. In A2780-SP and SKOV3-SP cells, the level of SLC7A11 decreased whereas FTH increased after treatment with fructose. Taken together, our results suggest that CMA is mediated in CSCs via fructose metabolism.
Collapse
Affiliation(s)
- Eun Jung Sohn
- College of Medicine, Pusan National University, Yangsan, Republic of Korea.; Inje University, 197 Injero, Gimhae 50834, Republic of Korea.
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sec-Ok Oh
- Department of Anatomy, School of Medicine, Yangsan, Republic of Korea; Korea School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jin-Young Kim
- The School of Korean Medicine Pusan National University, Yangsan 50612, Republic of Korea; Korea Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
37
|
Syamprasad NP, Jain S, Rajdev B, Prasad N, Kallipalli R, Naidu VGM. Aldose reductase and cancer metabolism: The master regulator in the limelight. Biochem Pharmacol 2023; 211:115528. [PMID: 37011733 DOI: 10.1016/j.bcp.2023.115528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
It is strongly established that metabolic reprogramming mediates the initiation, progression, and metastasis of a variety of cancers. However, there is no common biomarker identified to link the dysregulated metabolism and cancer progression. Recent studies strongly advise the involvement of aldose reductase (AR) in cancer metabolism. AR-mediated glucose metabolism creates a Warburg-like effect and an acidic tumour microenvironment in cancer cells. Moreover, AR overexpression is associated with the impairment of mitochondria and the accumulation of free fatty acids in cancer cells. Further, AR-mediated reduction of lipid aldehydes and chemotherapeutics are involved in the activation of factors promoting proliferation and chemo-resistance. In this review, we have delineated the possible mechanisms by which AR modulates cellular metabolism for cancer proliferation and survival. An in-depth understanding of cancer metabolism and the role of AR might lead to the use of AR inhibitors as metabolic modulating agents for the therapy of cancer.
Collapse
Affiliation(s)
- N P Syamprasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Siddhi Jain
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Bishal Rajdev
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Neethu Prasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Ravindra Kallipalli
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India.
| |
Collapse
|
38
|
De Vitis C, Battaglia AM, Pallocca M, Santamaria G, Mimmi MC, Sacco A, De Nicola F, Gaspari M, Salvati V, Ascenzi F, Bruschini S, Esposito A, Ricci G, Sperandio E, Massacci A, Prestagiacomo LE, Vecchione A, Ricci A, Sciacchitano S, Salerno G, French D, Aversa I, Cereda C, Fanciulli M, Chiaradonna F, Solito E, Cuda G, Costanzo F, Ciliberto G, Mancini R, Biamonte F. ALDOC- and ENO2- driven glucose metabolism sustains 3D tumor spheroids growth regardless of nutrient environmental conditions: a multi-omics analysis. J Exp Clin Cancer Res 2023; 42:69. [PMID: 36945054 PMCID: PMC10031988 DOI: 10.1186/s13046-023-02641-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Metastases are the major cause of cancer-related morbidity and mortality. By the time cancer cells detach from their primary site to eventually spread to distant sites, they need to acquire the ability to survive in non-adherent conditions and to proliferate within a new microenvironment in spite of stressing conditions that may severely constrain the metastatic process. In this study, we gained insight into the molecular mechanisms allowing cancer cells to survive and proliferate in an anchorage-independent manner, regardless of both tumor-intrinsic variables and nutrient culture conditions. METHODS 3D spheroids derived from lung adenocarcinoma (LUAD) and breast cancer cells were cultured in either nutrient-rich or -restricted culture conditions. A multi-omics approach, including transcriptomics, proteomics, and metabolomics, was used to explore the molecular changes underlying the transition from 2 to 3D cultures. Small interfering RNA-mediated loss of function assays were used to validate the role of the identified differentially expressed genes and proteins in H460 and HCC827 LUAD as well as in MCF7 and T47D breast cancer cell lines. RESULTS We found that the transition from 2 to 3D cultures of H460 and MCF7 cells is associated with significant changes in the expression of genes and proteins involved in metabolic reprogramming. In particular, we observed that 3D tumor spheroid growth implies the overexpression of ALDOC and ENO2 glycolytic enzymes concomitant with the enhanced consumption of glucose and fructose and the enhanced production of lactate. Transfection with siRNA against both ALDOC and ENO2 determined a significant reduction in lactate production, viability and size of 3D tumor spheroids produced by H460, HCC827, MCF7, and T47D cell lines. CONCLUSIONS Our results show that anchorage-independent survival and growth of cancer cells are supported by changes in genes and proteins that drive glucose metabolism towards an enhanced lactate production. Notably, this finding is valid for all lung and breast cancer cell lines we have analyzed in different nutrient environmental conditions. broader Validation of this mechanism in other cancer cells of different origin will be necessary to broaden the role of ALDOC and ENO2 to other tumor types. Future in vivo studies will be necessary to assess the role of ALDOC and ENO2 in cancer metastasis.
Collapse
Affiliation(s)
- Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Anna Martina Battaglia
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Matteo Pallocca
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | | | - Alessandro Sacco
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Francesca De Nicola
- SAFU Laboratory, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Marco Gaspari
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Valentina Salvati
- Preclinical Models and New Therapeutic Agents Unit, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Francesca Ascenzi
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Sara Bruschini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Antonella Esposito
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Università Degli Studi Della Campania ''Luigi Vanvitelli'', Naples, Italy
| | - Eleonora Sperandio
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Alice Massacci
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Licia Elvira Prestagiacomo
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Alberto Ricci
- Respiratory Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Gerardo Salerno
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Deborah French
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Ilenia Aversa
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Maurizio Fanciulli
- SAFU Laboratory, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | | | - Egle Solito
- Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
- Magna Graecia University of Catanzaro, Interdepartmental Centre of Services, Catanzaro, Italy
| | - Gennaro Ciliberto
- Scientific Director, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy.
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
- Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, E1 2AT, UK
| |
Collapse
|
39
|
Johnson RJ, Tolan DR, Bredesen D, Nagel M, Sánchez-Lozada LG, Fini M, Burtis S, Lanaspa MA, Perlmutter D. Could Alzheimer's disease be a maladaptation of an evolutionary survival pathway mediated by intracerebral fructose and uric acid metabolism? Am J Clin Nutr 2023; 117:455-466. [PMID: 36774227 PMCID: PMC10196606 DOI: 10.1016/j.ajcnut.2023.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
An important aspect of survival is to assure enough food, water, and oxygen. Here, we describe a recently discovered response that favors survival in times of scarcity, and it is initiated by either ingestion or production of fructose. Unlike glucose, which is a source for immediate energy needs, fructose metabolism results in an orchestrated response to encourage food and water intake, reduce resting metabolism, stimulate fat and glycogen accumulation, and induce insulin resistance as a means to reduce metabolism and preserve glucose supply for the brain. How this survival mechanism affects brain metabolism, which in a resting human amounts to 20% of the overall energy demand, is only beginning to be understood. Here, we review and extend a previous hypothesis that this survival mechanism has a major role in the development of Alzheimer's disease and may account for many of the early features, including cerebral glucose hypometabolism, mitochondrial dysfunction, and neuroinflammation. We propose that the pathway can be engaged in multiple ways, including diets high in sugar, high glycemic carbohydrates, and salt. In summary, we propose that Alzheimer's disease may be the consequence of a maladaptation to an evolutionary-based survival pathway and what had served to enhance survival acutely becomes injurious when engaged for extensive periods. Although more studies are needed on the role of fructose metabolism and its metabolite, uric acid, in Alzheimer's disease, we suggest that both dietary and pharmacologic trials to reduce fructose exposure or block fructose metabolism should be performed to determine whether there is potential benefit in the prevention, management, or treatment of this disease.
Collapse
Affiliation(s)
- Richard J Johnson
- Department of Medicine, Rocky Mountain VA Medical Center, Aurora, CO, USA; Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| | - Dean R Tolan
- Biology Department, Boston University, Boston, MA, USA
| | - Dale Bredesen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Maria Nagel
- Department of Neurology, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Laura G Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico
| | - Mehdi Fini
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | | | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | | |
Collapse
|
40
|
Fructose might be a clue to the origin of preeclampsia insights from nature and evolution. Hypertens Res 2023; 46:646-653. [PMID: 36539464 PMCID: PMC10015507 DOI: 10.1038/s41440-022-01121-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/20/2022] [Accepted: 11/05/2022] [Indexed: 12/24/2022]
Abstract
Preeclampsia is a hypertensive disorder of pregnancy and is due to abnormal placentation. The pathogenesis remains unclear. Fructose is biologically distinct from glucose and has a critical role in fetal growth in early pregnancy. Many species, including humans, produce fructose in their placenta during the first trimester to assist fetal growth and survival during a time when hypoxia is significant. Fructose is preferred over glucose in hypoxic tissues, and in the developing fetus, fructose has a critical role in stimulating the production of nucleic acids, lipids and glycosaminoglycans. Fructose production normally decreases significantly following the establishment of maternal-fetal circulation following placentation. However, if there is impaired placentation, local hypoxia will continue to drive fructose production. Excessive fructose metabolism drives endothelial dysfunction, oxidative stress, elevated blood pressure, insulin resistance, fatty liver, and a rise in uric acid and vasopressin levels, all of which are features of the preeclamptic state. In addition to fructose production, dietary fructose, for example, from soft drinks, would be additive and has been reported to be a strong independent risk factor for preeclampsia. Uric acid-associated endothelial dysfunction disturbs the invasion of the spiral artery, leading to placental ischemia and further placental hypoxia. Here, we summarize the previous literature regarding the physiological and pathological roles of fructose in pregnancy and propose studies to further investigate the pathogenesis of preeclampsia. Fructose might be a Clue to the Origin of Preeclampsia Insights from Nature and Evolution Preeclampsia is a hypertensive disorder of pregnancy. The pathogenesis remains unclear. Fructose has a critical role in fetal growth in early pregnancy, and might be a key role to developing preeclampsia. Here, we summarize the previous literatures regarding the physiological andpathological roles of fructose in pregnancy to propose studies to further investigate the pathogenesis of preeclampsia.
Collapse
|
41
|
Kanbay M, Altıntas A, Yavuz F, Copur S, Sanchez-Lozada LG, Lanaspa MA, Johnson RJ. Responses to Hypoxia: How Fructose Metabolism and Hypoxia-Inducible Factor-1a Pathways Converge in Health and Disease. Curr Nutr Rep 2023; 12:181-190. [PMID: 36708463 DOI: 10.1007/s13668-023-00452-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW Oxygen is critical for the high output of energy (adenosine triphosphate) generated by oxidative phosphorylation in the mitochondria, and when oxygen delivery is impaired due to systemic hypoxia, impaired or reduced delivery of red blood cells, or from local ischemia, survival processes are activated. RECENT FINDINGS One major mechanism is the activation of hypoxia-inducible factors (HIFs) that act to reduce oxygen needs by blocking mitochondrial function and stimulating glucose uptake and glycolysis while also stimulating red blood cell production and local angiogenesis. Recently, endogenous fructose production with uric acid generation has also been shown to occur in hypoxic and ischemic tissues where it also appears to drive the same functions, and indeed, there is evidence that many of hypoxia-inducible factors effects may be mediated by the stimulation of fructose production and metabolism. Unfortunately, while being acutely protective, these same systems in overdrive lead to chronic inflammation and disease and may also be involved in the development of metabolic syndrome and related disease. The benefit of SGLT2 inhibitors may act in part by reducing the delivery of glucose with the stimulation of fructose formation, thereby allowing a conversion from the glycolytic metabolism to one involving mitochondrial metabolism. The use of hypoxia-inducible factor stabilizers is expected to aid the treatment of anemia but, in the long-term, could potentially lead to worsening cardiovascular and metabolic outcomes. We suggest more studies are needed on the use of these agents.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey.
| | - Alara Altıntas
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Furkan Yavuz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Laura G Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chavez, Mexico City, Mexico
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
42
|
Oronova A, Tanasova M. Late-Stage Functionalization through Click Chemistry Provides GLUT5-Targeting Glycoconjugate as a Potential PET Imaging Probe. Int J Mol Sci 2022; 24:173. [PMID: 36613618 PMCID: PMC9820411 DOI: 10.3390/ijms24010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The targeting of facilitative sugar transporters (GLUTs) has been utilized in the development of tools for diagnostics and therapy. The interest in this area is promoted by the phenomenon of alterations in cellular metabolic processes that are linked to multitudes of metabolic disorders and diseases. However, nonspecific targeting (e.g., glucose-transporting GLUTs) leads to a lack of disease detection efficiency. Among GLUTs, GLUT5 stands out as a prominent target for developing specific molecular tools due to its association with metabolic diseases, including cancer. This work reports a non-radiolabeled fluoride (19F) coumarin-based glycoconjugate of 2,5-anhydro-D-mannitol as a potential PET imaging probe that targets the GLUT5 transporter. Inherent fluorescent properties of the coumarin fluorophore allowed us to establish the probe's uptake efficiency and GLUT5-specificity in a GLUT5-positive breast cell line using fluorescence detection techniques. The click chemistry approach employed in the design of the probe enables late-stage functionalization, an essential requirement for obtaining the radiolabeled analog of the probe for future in vivo cancer imaging applications. The high affinity of the probe to GLUT5 allowed for the effective uptake in nutrition-rich media.
Collapse
Affiliation(s)
- Adelina Oronova
- Chemistry Department, Michigan Technological University, Houghton, MI 49931, USA
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Marina Tanasova
- Chemistry Department, Michigan Technological University, Houghton, MI 49931, USA
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
43
|
Zhao J, Lv J, Chen Y, Dong Q, Dong H. Recent progress of amino acid transporters as a novel antitumor target. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abstract
Glutamine transporters transport different amino acids for cell growth and metabolism. In tumor cells, glutamine transporters are often highly expressed and play a crucial role in their growth. By inhibiting the amino acid transport of these transporters, the growth of cancer cells can be inhibited. In recent years, more and more attention has been paid to the study of glutamine transporter. In this article, the differences between the ASC system amino acid transporter 2 (ASCT2), L-type amino acid transporter 1 (LAT1), and the cystine–glutamate exchange (xCT) transporters research progress on the mechanism of action and corresponding small molecule inhibitors are summarized. This article introduces 62 related small molecule inhibitors of different transporters of ASCT2, LAT1, and xCT. These novel chemical structures provide ideas for the research and design of targeted inhibitors of glutamine transporters, as well as important references and clues for the design of new anti-tumor drugs.
Collapse
Affiliation(s)
- Jiye Zhao
- Department of Innovation and Entrepreneurship, School of Teacher Education, Nanjing Xiaozhuang University , No. 3601 Hongjing Avenue, Jiangning District , Nanjing 211171 , China
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , No. 639 Longmian Avenue, Jiangning District , Nanjing 211198 , China
| | - Jiayi Lv
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , No. 639 Longmian Avenue, Jiangning District , Nanjing 211198 , China
| | - Yang Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , No. 639 Longmian Avenue, Jiangning District , Nanjing 211198 , China
| | - Qile Dong
- Department of Innovation and Entrepreneurship, School of Teacher Education, Nanjing Xiaozhuang University , No. 3601 Hongjing Avenue, Jiangning District , Nanjing 211171 , China
| | - Hao Dong
- Department of Innovation and Entrepreneurship, School of Teacher Education, Nanjing Xiaozhuang University , No. 3601 Hongjing Avenue, Jiangning District , Nanjing 211171 , China
| |
Collapse
|
44
|
Weng JR, Wu CW, Chen YC, Fu MH, Tain YL, Hung CY, Chen IC, Lee CW, Wu KLH. Fructose milieu undermines the therapeutic effect of Tribulus terrestris extract on neuroblastoma cell line via maintaining mitochondrial function. ENVIRONMENTAL TOXICOLOGY 2022; 37:2728-2742. [PMID: 36214339 DOI: 10.1002/tox.23632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
Fructose overconsumption promotes tumor progression. Neuroblastoma is a common extracranial tumor with about 50% 5-year survival rate in high-risk children. The anti-tumor effect of Tribulus terrestris might bring new hope to neuroblastoma therapy. However, whether fructose disturbs the therapeutic effect of T. terrestris is currently unknown. In this study, the mouse neuroblastoma cell line, Neuro 2a (N2a) cells, was used to investigate the therapeutic effects of T. terrestris extract at various dosages (0.01, 1, 100 ng/ml) in regular EMEM medium or extra added fructose (20 mM) for 24 h. 100 ng/ml T. terrestris treatment significantly reduced the cell viability, whereas the cell viabilities were enhanced at the dosages of 0.01 or 1 ng/ml T. terrestris in the fructose milieu instead. The inhibition effect of T. terrestris on N2a migration was blunted in the fructose milieu. Moreover, T. terrestris effectively suppressed mitochondrial functions, including oxygen consumption rates, the activities of electron transport enzymes, the expressions of mitochondrial respiratory enzymes, and mitochondrial membrane potential. These suppressions were reversed in the fructose group. In addition, the T. terrestris-suppressed mitofusin and the T. terrestris-enhance mitochondrial fission 1 protein were maintained at basal levels in the fructose milieu. Together, these results demonstrated that T. terrestris extract effectively suppressed the survival and migration of neuroblastoma via inhibiting mitochondrial oxidative phosphorylation and disturbing mitochondrial dynamics. Whereas, the fructose milieu blunted the therapeutic effect of T. terrestris, particularly, when the dosage is reduced.
Collapse
Affiliation(s)
- Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China
| | - Chih-Wei Wu
- Plastic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
- Department of Counseling, National Chia-Yi University, Hia-Yi, Taiwan, Republic of China
| | - Yu-Chia Chen
- Division of General Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Mu-Hui Fu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China
| | - You-Lin Tain
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
- College of Medicine, Chang Gung University, Kaohsiung, Taiwan, Republic of China
| | - Chun-Ying Hung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - I-Chun Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Chu-Wan Lee
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan, Republic of China
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
- Department of Senior Citizen Services, National Tainan Institute of Nursing, Tainan, Taiwan, Republic of China
| |
Collapse
|
45
|
Allegrini S, Garcia-Gil M, Pesi R, Camici M, Tozzi MG. The Good, the Bad and the New about Uric Acid in Cancer. Cancers (Basel) 2022; 14:cancers14194959. [PMID: 36230882 PMCID: PMC9561999 DOI: 10.3390/cancers14194959] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The concentration of uric acid in blood is sex-, age- and diet-dependent and is maintained close to its maximal solubility, indicating that it plays some important role. Indeed, it has been demonstrated that, at physiological concentrations, uric acid is a powerful antioxidant and is a scavenger of singlet oxygen and radicals. At high intracellular concentration, uric acid has been demonstrated to act as a pro-oxidant molecule. Recently, uric acid has been reported to affect the properties of several proteins involved in metabolic regulation and signaling, and the relationship between uric acid and cancer has been extensively investigated. In this review, we present the most recent results on the positive and negative effects played by uric acid in cancer and some new findings and hypotheses about the implication of this metabolite in the pathogenesis of several diseases such as metabolic syndrome, diabetes, and inflammation, thus favoring the development of cancer. Abstract Uric acid is the final product of purine catabolism in man and apes. The serum concentration of uric acid is sex-, age- and diet-dependent and is maintained close to its maximal solubility, indicating that it plays some important role. Indeed, it has been demonstrated that, at physiological concentrations, uric acid is a powerful antioxidant, while at high intracellular concentrations, it is a pro-oxidant molecule. In this review, we describe the possible causes of uric acid accumulation or depletion and some of the metabolic and regulatory pathways it may impact. Particular attention has been given to fructose, which, because of the complex correlation between carbohydrate and nucleotide metabolism, causes uric acid accumulation. We also present recent results on the positive and negative effects played by uric acid in cancer and some new findings and hypotheses about the implication of this metabolite in a variety of signaling pathways, which can play a role in the pathogenesis of diseases such as metabolic syndrome, diabetes, and inflammation, thus favoring the development of cancer. The loss of uricase in Homo sapiens and great apes, although exposing these species to the potentially adverse effects of uric acid, appears to be associated with evolutionary advantages.
Collapse
Affiliation(s)
- Simone Allegrini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, Università di Pisa, 56126 Pisa, Italy
- CISUP, Centro per L’Integrazione della Strumentazione dell’Università di Pisa, 56127 Pisa, Italy
- Correspondence:
| | - Mercedes Garcia-Gil
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, Università di Pisa, 56126 Pisa, Italy
- CISUP, Centro per L’Integrazione della Strumentazione dell’Università di Pisa, 56127 Pisa, Italy
- Unità di Fisiologia Generale, Dipartimento di Biologia, Università di Pisa, Via San Zeno 31, 56127 Pisa, Italy
| | - Rossana Pesi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Marcella Camici
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Maria Grazia Tozzi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
46
|
Arnone D, Chabot C, Heba AC, Kökten T, Caron B, Hansmannel F, Dreumont N, Ananthakrishnan AN, Quilliot D, Peyrin-Biroulet L. Sugars and Gastrointestinal Health. Clin Gastroenterol Hepatol 2022; 20:1912-1924.e7. [PMID: 34902573 DOI: 10.1016/j.cgh.2021.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/18/2022]
Abstract
Sugar overconsumption is linked to a rise in the incidence of noncommunicable diseases such as diabetes, cardiovascular diseases, and cancer. This increased incidence is becoming a real public health problem that is more severe than infectious diseases, contributing to 35 million deaths annually. Excessive intake of free sugars can cause many of the same health problems as excessive alcohol consumption. Many recent international recommendations have expressed concerns about sugar consumption in Westernized societies, as current consumption levels represent quantities with no precedent during hominin evolution. In both adults and children, the World Health Organization strongly recommends reducing free sugar intake to <10% of total energy intake and suggests a further reduction to below 5%. Most studies have focused on the deleterious effects of Western dietary patterns on global health and the intestine. Whereas excessive dietary fat consumption is well studied, the specific impact of sugar is poorly described, while refined sugars represent up to 40% of caloric intake within industrialized countries. However, high sugar intake is associated with multiple tissue and organ dysfunctions. Both hyperglycemia and excessive sugar intake disrupt the intestinal barrier, thus increasing gut permeability and causing profound gut microbiota dysbiosis, which results in a disturbance in mucosal immunity that enhances infection susceptibility. This review aims to highlight the roles of different types of dietary carbohydrates and the consequences of their excessive intake for intestinal homeostasis.
Collapse
Affiliation(s)
- Djésia Arnone
- Délégation à la Recherche Clinique et de l'Innovation, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France; Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | - Caroline Chabot
- Inserm U1256, Pediatric Hepato-Gastroenterology and Nutrition Unit, Department of Child Medicine and Clinical Genetics, Université de Lorraine, Nancy, France
| | - Anne-Charlotte Heba
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | - Tunay Kökten
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | - Bénédicte Caron
- Department of Gastroenterology, Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Nancy, France
| | - Franck Hansmannel
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | - Natacha Dreumont
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | | | - Didier Quilliot
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France; Department of Diabetology-Endocrinology-Nutrition, Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Nancy, France
| | - Laurent Peyrin-Biroulet
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France; Department of Gastroenterology, Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Nancy, France.
| |
Collapse
|
47
|
Xie J, Shi S, Liu Y, Wang S, Rajput SA, Song T. Fructose metabolism and its role in pig production: A mini-review. Front Nutr 2022; 9:922051. [PMID: 35967778 PMCID: PMC9373593 DOI: 10.3389/fnut.2022.922051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Epidemiological studies have shown that excessive intake of fructose is largely responsible for the increasing incidence of non-alcoholic fatty liver, obesity, and diabetes. However, depending on the amount of fructose consumption from diet, the metabolic role of fructose is controversial. Recently, there have been increasing studies reporting that diets low in fructose expand the surface area of the gut and increase nutrient absorption in mouse model, which is widely used in fructose-related studies. However, excessive fructose consumption spills over from the small intestine into the liver for steatosis and increases the risk of colon cancer. Therefore, suitable animal models may be needed to study fructose-induced metabolic changes. Along with its use in global meat production, pig is well-known as a biomedical model with an advantage over murine and other animal models as it has similar nutrition and metabolism to human in anatomical and physiological aspects. Here, we review the characteristics and metabolism of fructose and summarize observations of fructose in pig reproduction, growth, and development as well as acting as a human biomedical model. This review highlights fructose metabolism from the intestine to the blood cycle and presents the critical role of fructose in pig, which could provide new strategies for curbing human metabolic diseases and promoting pig production.
Collapse
Affiliation(s)
- Jiahao Xie
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shiyi Shi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yucheng Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaoshuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shahid Ali Rajput
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan, Multan, Pakistan
| | - Tongxing Song
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
48
|
Moses RM, Halloran KM, Stenhouse C, Sah N, Kramer AC, McLendon BA, Seo H, Johnson GA, Wu G, Bazer FW. Ovine conceptus homogenates metabolize fructose for metabolic support during the peri-implantation period of pregnancy. Biol Reprod 2022; 107:1084-1096. [PMID: 35835585 DOI: 10.1093/biolre/ioac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Roles of fructose in elongating ovine conceptuses are poorly understood, despite it being the major hexose sugar in fetal fluids and plasma throughout gestation. Therefore, we determined if elongating ovine conceptuses utilize fructose via metabolic pathways for survival and development. Immunohistochemical analyses revealed that trophectoderm and extra-embryonic endoderm express ketohexokinase and aldolase B during the peri-implantation period of pregnancy for conversion of fructose into fructose-1-phosphate for entry into glycolysis and related metabolic pathways. Conceptus homogenates were cultured with 14C-labeled glucose and/or fructose under oxygenated and hypoxic conditions to assess contributions of glucose and fructose to the pentose cycle (PC), tricarboxylic acid cycle, glycoproteins, and lipid synthesis. Results indicated that both glucose and fructose contributed carbons to each of these pathways, except for lipid synthesis, and metabolized to pyruvate and lactate, with lactate being the primary product of glycolysis under oxygenated and hypoxic conditions. We also found that: 1) conceptuses preferentially oxidized glucose over fructose (P < 0.05); 2) incorporation of fructose and glucose at 4 mM each into the PC by Day 17 conceptus homogenates was similar in the presence or absence of glucose, but incorporation of glucose into the PC was enhanced by the presence of fructose (P < 0.05); 3) incorporation of fructose into the PC in the absence of glucose was greater under oxygenated conditions (P < 0.01); and 4) incorporation of glucose into the PC under oxygenated conditions was greater in the presence of fructose (P = 0.05). These results indicate that fructose is an important metabolic substrate for ovine conceptuses.
Collapse
Affiliation(s)
- Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, TX
| | | | - Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Nirvay Sah
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Avery C Kramer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Bryan A McLendon
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
49
|
Chen MM, Meng LH. The double faced role of xanthine oxidoreductase in cancer. Acta Pharmacol Sin 2022; 43:1623-1632. [PMID: 34811515 PMCID: PMC9253144 DOI: 10.1038/s41401-021-00800-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023] Open
Abstract
Xanthine oxidoreductase (XOR) is a critical, rate-limiting enzyme that controls the last two steps of purine catabolism by converting hypoxanthine to xanthine and xanthine to uric acid. It also produces reactive oxygen species (ROS) during the catalytic process. The enzyme is generally recognized as a drug target for the therapy of gout and hyperuricemia. The catalytic products uric acid and ROS act as antioxidants or oxidants, respectively, and are involved in pro/anti-inflammatory actions, which are associated with various disease manifestations, including metabolic syndrome, ischemia reperfusion injury, cardiovascular disorders, and cancer. Recently, extensive efforts have been devoted to understanding the paradoxical roles of XOR in tumor promotion. Here, we summarize the expression of XOR in different types of cancer and decipher the dual roles of XOR in cancer by its enzymatic or nonenzymatic activity to provide an updated understanding of the mechanistic function of XOR in cancer. We also discuss the potential to modulate XOR in cancer therapy.
Collapse
Affiliation(s)
- Man-man Chen
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ling-hua Meng
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
50
|
Obesity: The Fat Tissue Disease Version of Cancer. Cells 2022; 11:cells11121872. [PMID: 35741001 PMCID: PMC9221301 DOI: 10.3390/cells11121872] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity is a disease with high potential for fatality. It perfectly fits the disease definition, as cancer does. This is because it damages body structure and functions, both mechanically and biologically, and alters physical, mental, and social health. In addition, it shares many common morbid characteristics with the most feared disease, cancer. For example, it is influenced by a sophisticated interaction between a person’s genetics, the environment, and an increasing number of other backgrounds. Furthermore, it displays abnormal cell growth and proliferation events, only limited to white fat, resulting in adipose tissue taking up an increasing amount of space within the body. This occurs through fat “metastases” and via altered signaling that further aggravates the pathology of obesity by inducing ubiquitous dishomeostasis. These metastases can be made graver by angiogenesis, which might boost diseased tissue growth. More common features with cancer include its progressive escalation through different levels of severity and its possibility of re-onset after recovery. Despite all these similarities with cancer, obesity is substantially less agitating for most people. Thus, the ideas proposed herein could have utility to sensitize the public opinion about the hard reality of obesity. This is increasingly needed, as the obesity pandemic has waged a fierce war against our bodies and society in general, while there is still doubt about whether it is a real disease or not. Hence, raising public consciousness to properly face health issues is crucial to improving our health instead of gaining weight unhealthily. It is obviously illogical to fight cancer extremely seriously on the one hand and to consider dying with obesity as self-inflicted on the other. In fact, obesity merits a top position among the most lethal diseases besides cancer.
Collapse
|