1
|
Ciufolini G, Zampieri S, Cesaroni S, Pasquale V, Bonanomi M, Gaglio D, Sacco E, Vanoni M, Pastore M, Marra F, Cicero DO, Raggi C, Petrella G. 3D Modeling: Insights into the Metabolic Reprogramming of Cholangiocarcinoma Cells. Cells 2024; 13:1536. [PMID: 39329720 PMCID: PMC11430555 DOI: 10.3390/cells13181536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024] Open
Abstract
Developing accurate in vitro models that replicate the in vivo tumor environment is essential for advancing cancer research and therapeutic development. Traditional 2D cell cultures often fail to capture the complex structural and functional heterogeneity of tumors, limiting the translational relevance of findings. In contrast, 3D culture systems, such as spheroids, provide a more physiologically relevant context by replicating key aspects of the tumor microenvironment. This study aimed to compare the metabolism of three intrahepatic cholangiocarcinoma cell lines in 2D and 3D cultures to identify metabolic shifts associated with spheroid formation. Cells were cultured in 2D on adhesion plates and in 3D using ultra-low attachment plates. Metabolic exchange rates were measured using NMR, and intracellular metabolites were analyzed using LC-MS. Significant metabolic differences were observed between 2D and 3D cultures, with notable changes in central carbon and glutathione metabolism in 3D spheroids. The results suggest that 3D cultures, which more closely mimic the in vivo environment, may offer a more accurate platform for cancer research and drug testing.
Collapse
Affiliation(s)
- Giorgia Ciufolini
- Department of Chemical Science and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.C.); (S.Z.); (S.C.); (D.O.C.)
| | - Serena Zampieri
- Department of Chemical Science and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.C.); (S.Z.); (S.C.); (D.O.C.)
| | - Simona Cesaroni
- Department of Chemical Science and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.C.); (S.Z.); (S.C.); (D.O.C.)
| | - Valentina Pasquale
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy; (V.P.); (E.S.); (M.V.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy; (M.B.); (D.G.)
| | - Marcella Bonanomi
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy; (M.B.); (D.G.)
- Institute of Bioimaging and Complex Biological Systems (IBSBC), 20054 Segrate, Italy
| | - Daniela Gaglio
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy; (M.B.); (D.G.)
- Institute of Bioimaging and Complex Biological Systems (IBSBC), 20054 Segrate, Italy
| | - Elena Sacco
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy; (V.P.); (E.S.); (M.V.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy; (M.B.); (D.G.)
| | - Marco Vanoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy; (V.P.); (E.S.); (M.V.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy; (M.B.); (D.G.)
| | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (M.P.); (F.M.)
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (M.P.); (F.M.)
| | - Daniel Oscar Cicero
- Department of Chemical Science and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.C.); (S.Z.); (S.C.); (D.O.C.)
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (M.P.); (F.M.)
| | - Greta Petrella
- Department of Chemical Science and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.C.); (S.Z.); (S.C.); (D.O.C.)
| |
Collapse
|
2
|
Guerrero L, Carmona-Rodríguez L, Santos FM, Ciordia S, Stark L, Hierro L, Pérez-Montero P, Vicent D, Corrales FJ. Molecular basis of progressive familial intrahepatic cholestasis 3. A proteomics study. Biofactors 2024; 50:794-809. [PMID: 38284625 DOI: 10.1002/biof.2041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024]
Abstract
Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a severe rare liver disease that affects between 1/50,000 and 1/100,000 children. In physiological conditions, bile is produced by the liver and stored in the gallbladder, and then it flows to the small intestine to play its role in fat digestion. To prevent tissue damage, bile acids (BAs) are kept in phospholipid micelles. Mutations in phosphatidyl choline transporter ABCB4 (MDR3) lead to intrahepatic accumulation of free BAs that result in liver damage. PFIC3 onset usually occurs at early ages, progresses rapidly, and the prognosis is poor. Currently, besides the palliative use of ursodeoxycholate, the only available treatment for this disease is liver transplantation, which is really challenging for short-aged patients. To gain insight into the pathogenesis of PFIC3 we have performed an integrated proteomics and phosphoproteomics study in human liver samples to then validate the emerging functional hypotheses in a PFIC3 murine model. We identified 6246 protein groups, 324 proteins among them showing differential expression between control and PFIC3. The phosphoproteomic analysis allowed the identification of 5090 phosphopeptides, from which 215 corresponding to 157 protein groups, were differentially phosphorylated in PFIC3, including MDR3. Regulation of essential cellular processes and structures, such as inflammation, metabolic reprogramming, cytoskeleton and extracellular matrix remodeling, and cell proliferation, were identified as the main drivers of the disease. Our results provide a strong molecular background that significantly contributes to a better understanding of PFIC3 and provides new concepts that might prove useful in the clinical management of patients.
Collapse
Affiliation(s)
- Laura Guerrero
- Functional Proteomics Labortory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Fátima Milhano Santos
- Functional Proteomics Labortory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Sergio Ciordia
- Functional Proteomics Labortory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Luiz Stark
- IdiPAZ, Instituto de Investigación Sanitaria [Health Research Institute] of Hospital Universitario La Paz, Madrid, Spain
| | - Loreto Hierro
- IdiPAZ, Instituto de Investigación Sanitaria [Health Research Institute] of Hospital Universitario La Paz, Madrid, Spain
| | - Pablo Pérez-Montero
- Servicio de Anatomía Patológica, Hospital Universitario La Paz, Madrid, Spain
| | - David Vicent
- IdiPAZ, Instituto de Investigación Sanitaria [Health Research Institute] of Hospital Universitario La Paz, Madrid, Spain
| | - Fernando J Corrales
- Functional Proteomics Labortory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
3
|
Benej M, Papandreou I, Denko NC. Hypoxic adaptation of mitochondria and its impact on tumor cell function. Semin Cancer Biol 2024; 100:28-38. [PMID: 38556040 PMCID: PMC11320707 DOI: 10.1016/j.semcancer.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Mitochondria are the major sink for oxygen in the cell, consuming it during ATP production. Therefore, when environmental oxygen levels drop in the tumor, significant adaptation is required. Mitochondrial activity is also a major producer of biosynthetic precursors and a regulator of cellular oxidative and reductive balance. Because of the complex biochemistry, mitochondrial adaptation to hypoxia occurs through multiple mechanisms and has significant impact on other cellular processes such as macromolecule synthesis and gene regulation. In tumor hypoxia, mitochondria shift their location in the cell and accelerate the fission and quality control pathways. Hypoxic mitochondria also undergo significant changes to fundamental metabolic pathways of carbon metabolism and electron transport. These metabolic changes further impact the nuclear epigenome because mitochondrial metabolites are used as enzymatic substrates for modifying chromatin. This coordinated response delivers physiological flexibility and increased tumor cell robustness during the environmental stress of low oxygen.
Collapse
Affiliation(s)
- Martin Benej
- Department of Radiation Oncology, OSU Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, USA
| | - Ioanna Papandreou
- Department of Radiation Oncology, OSU Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Nicholas C Denko
- Department of Radiation Oncology, OSU Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
4
|
Huang B, Ren J, Ma Q, Yang F, Pan X, Zhang Y, Liu Y, Wang C, Zhang D, Wei L, Ran L, Zhao H, Liang C, Wang X, Wang S, Li H, Ning H, Ran A, Li W, Wang Y, Xiao B. A novel peptide PDHK1-241aa encoded by circPDHK1 promotes ccRCC progression via interacting with PPP1CA to inhibit AKT dephosphorylation and activate the AKT-mTOR signaling pathway. Mol Cancer 2024; 23:34. [PMID: 38360682 PMCID: PMC10870583 DOI: 10.1186/s12943-024-01940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer with high aggressive phenotype and poor prognosis. Accumulating evidence suggests that circRNAs have been identified as pivotal mediators in cancers. However, the role of circRNAs in ccRCC progression remains elusive. METHODS The differentially expressed circRNAs in 4 paired human ccRCC and adjacent noncancerous tissues ccRCC were screened using circRNA microarrays and the candidate target was selected based on circRNA expression level using weighted gene correlation network analysis (WGCNA) and the gene expression omnibus (GEO) database. CircPDHK1 expression in ccRCC and adjacent noncancerous tissues (n = 148) were evaluated along with clinically relevant information. RT-qPCR, RNase R digestion, and actinomycin D (ActD) stability test were conducted to identify the characteristics of circPDHK1. The subcellular distribution of circPDHK1 was analyzed by subcellular fractionation assay and fluorescence in situ hybridization (FISH). Immunoprecipitation-mass spectrometry (IP-MS) and immunofluorescence (IF) were employed to evaluate the protein-coding ability of circPDHK1. ccRCC cells were transfected with siRNAs, plasmids or lentivirus approach, and cell proliferation, migration and invasion, as well as tumorigenesis and metastasis in nude mice were assessed to clarify the functional roles of circPDHK1 and its encoded peptide PDHK1-241aa. RNA-sequencing, western blot analysis, immunoprecipitation (IP) and chromatin immunoprecipitation (ChIP) assays were further employed to identify the underlying mechanisms regulated by PDHK1-241aa. RESULTS CircPDHK1 was upregulated in ccRCC tissues and closely related to WHO/ISUP stage, T stage, distant metastasis, VHL mutation and Ki-67 levels. CircPDHK1 had a functional internal ribosome entry site (IRES) and encoded a novel peptide PDHK1-241aa. Functionally, we confirmed that PDHK1-241aa and not the circPDHK1 promoted the proliferation, migration and invasion of ccRCC. Mechanistically, circPDHK1 was activated by HIF-2A at the transcriptional level. PDHK1-241aa was upregulated and interacted with PPP1CA, causing the relocation of PPP1CA to the nucleus. This thereby inhibited AKT dephosphorylation and activated the AKT-mTOR signaling pathway. CONCLUSIONS Our data indicated that circPDHK1-encoded PDHK1-241aa promotes ccRCC progression by interacting with PPP1CA to inhibit AKT dephosphorylation. This study provides novel insights into the multiplicity of circRNAs and highlights the potential use of circPDHK1 or PDHK1-241aa as a therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Bo Huang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563006, P.R. China
| | - Junwu Ren
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Qiang Ma
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Feifei Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Xiaojuan Pan
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yuying Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yuying Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Cong Wang
- Department of Urology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Dawei Zhang
- Department of Urology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Ling Wei
- Department of Urology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Lingyu Ran
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Hongwen Zhao
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Ce Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Xiaolin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Shiming Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Haiping Li
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Hao Ning
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Ai Ran
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Wei Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, P.R. China.
| | - Yongquan Wang
- Department of Urology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China.
| | - Bin Xiao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China.
| |
Collapse
|
5
|
Zhang P, Chen H, Zhang Y, Liu Y, Zhu G, Zhao W, Shang Q, He J, Zhou Z, Shen G, Yu X, Zhang Z, Chen G, Yu F, Liang D, Tang J, Liu Z, Cui J, Jiang X, Ren H. Dry and wet experiments reveal diagnostic clustering and immune landscapes of cuproptosis patterns in patients with ankylosing spondylitis. Int Immunopharmacol 2024; 127:111326. [PMID: 38091828 DOI: 10.1016/j.intimp.2023.111326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Cuproptosis is a new manner of mitochondrial cell death induced by copper. There is evidence that serum copper has a crucial impact on ankylosing spondylitis (AS) by copper-induced inflammatory response. However, the molecular mechanisms of cuproptosis modulators in AS remain unknown. We aimed to use a bioinformatics-based method to comprehensively investigate cuproptosis-related subtype identification and immune microenvironment infiltration of AS. Additionally, we further verified the results by in vitro experiments, in which peripheral blood and fibroblast cells from AS patients were used to evaluate the functions of significant cuproptosis modulators on AS. Finally, eight significant cuproptosis modulators were identified by analysis of differences between controls and AS cases from GSE73754 dataset. Eight prognostic cuproptosis modulators (LIPT1, DLD, PDHA1, PDHB, SLC31A1, ATP7A, MTF1, CDKN2A) were identified using a random forest model for prediction of AS risk. A nomogram model of the 8 prognostic cuproptosis modulators was then constructed; the model could be beneficial in clinical settings, as indicated by decision curve analysis. Consensus clustering analysis was used to divide AS patients into two cuproptosis subtypes (clusterA & B) according to significant cuproptosis modulators. The cuproptosis score of each sample was calculated by principal component analysis to quantify cuproptosis subtypes. The cuproptosis scores were higher in clusterB than in clusterA. Additionally, cases in clusterA were closely associated with the immunity of activated B cells, Activated CD4 T cell, Type17 T helper cell and Type2 T helper cell, while cases in clusterB were linked to Mast cell, Neutrophil, Plasmacytoid dendritic cell immunity, indicating that clusterB may be more correlated with AS. Notably, key cuproptosis genes including ATP7A, MTF1, SLC31A1 detected by RT-qPCR with peripheral blood exhibited significantly higher expression levels in AS cases than controls; LIPT1 showed the opposite results; High MTF1 expression is correlated with increased osteogenic capacity. In general, this study of cuproptosis patterns may provide promising biomarkers and immunotherapeutic strategies for future AS treatment.
Collapse
Affiliation(s)
- Peng Zhang
- The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Honglin Chen
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - You Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yu Liu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guangye Zhu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215007, China
| | - Wenhua Zhao
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Qi Shang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiahui He
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510130, China
| | - Zelin Zhou
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Gengyang Shen
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| | - Xiang Yu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhida Zhang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510130, China
| | - Guifeng Chen
- Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Fuyong Yu
- Qianxinan Autonomous Prefecture Hospital of TCM, Xingyi 562400, China
| | - De Liang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jingjing Tang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhixiang Liu
- Affiliated Huadu Hospital, Southern Medical University, Guangzhou 510800, China
| | - Jianchao Cui
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaobing Jiang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| | - Hui Ren
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
6
|
Sajad M, Zahoor I, Rashid F, Cerghet M, Rattan R, Giri S. Pyruvate Dehydrogenase-Dependent Metabolic Programming Affects the Oligodendrocyte Maturation and Remyelination. Mol Neurobiol 2024; 61:397-410. [PMID: 37620688 DOI: 10.1007/s12035-023-03546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023]
Abstract
The metabolic needs of the premature/premyelinating oligodendrocytes (pre-OLs) and mature oligodendrocytes (OLs) are distinct. The metabolic control of oligodendrocyte maturation from the pre-OLs to the OLs is not fully understood. Here, we show that the terminal maturation and higher mitochondrial respiration in the OLs is an integrated process controlled through pyruvate dehydrogenase complex (Pdh). Combined bioenergetics and metabolic studies show that OLs show elevated mitochondrial respiration than the pre-OLs. Our signaling studies show that the increased mitochondrial respiration activity in the OLs is mediated by the activation of Pdh due to inhibition of the pyruvate dehydrogenase kinase-1 (Pdhk1) that phosphorylates and inhibits Pdh activity. Accordingly, when Pdhk1 is directly expressed in the pre-OLs, they fail to mature into the OLs. While Pdh converts pyruvate into the acetyl-CoA by its oxidative decarboxylation, our study shows that Pdh-dependent acetyl-CoA generation from pyruvate contributes to the acetylation of the bHLH family transcription factor, oligodendrocyte transcription factor 1 (Olig1) which is known to be involved in the OL maturation. Pdh inhibition via direct expression of Pdhk1 in the pre-OLs blocks the Olig1-acetylation and OL maturation. Using the cuprizone model of demyelination, we show that Pdh is deactivated during the demyelination phase, which is however reversed in the remyelination phase upon cuprizone withdrawal. In addition, Pdh activity status correlates with the Olig1-acetylation status in the cuprizone model. Hence, the Pdh metabolic node activation allows a robust mitochondrial respiration and activation of a molecular program necessary for the terminal maturation of oligodendrocytes. Our findings open a new dialogue in the developmental biology that links cellular development and metabolism. These findings have far-reaching implications in the development of therapies for a variety of demyelinating disorders including multiple sclerosis.
Collapse
Affiliation(s)
- M Sajad
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA.
| | - Insha Zahoor
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
| | - Faraz Rashid
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
| | - Mirela Cerghet
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
| | - Ramandeep Rattan
- Gynecologic Oncology and Developmental Therapeutics Research Program, Henry Ford Health Hospital, Detroit, MI, 48202, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA.
| |
Collapse
|
7
|
Zhang P, He J, Gan Y, Shang Q, Chen H, Zhao W, Cui J, Shen G, Li Y, Jiang X, Zhu G, Ren H. Unravelling diagnostic clusters and immune landscapes of cuproptosis patterns in intervertebral disc degeneration through dry and wet experiments. Aging (Albany NY) 2023; 15:15599-15623. [PMID: 38159257 PMCID: PMC10781477 DOI: 10.18632/aging.205449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Cuproptosis is a manner of mitochondrial cell death induced by copper. However, cuproptosis modulators' molecular processes in intervertebral disc degeneration (IDD) are still unclear. To better understand the processes of cuproptosis regulators in IDD, a thorough analysis of cuproptosis regulators in the diagnostic biomarkers and subtype determination of IDD was conducted. Then we collected clinical IDD samples and successfully established IDD model in vivo and in vitro, and carried out real-time quantitative polymerase chain reaction (RT-qPCR) validation of significant cuproptosis modulators. Totally we identified 8 crucial cuproptosis regulators in the present research. Using a random forest model, we isolated 8 diagnostic cuproptosis modulators for the prediction of IDD risk. Then, based on our following decision curve analysis, we selected the five diagnostic cuproptosis regulators with importance scores greater than two and built a nomogram model. Using a consensus clustering method, we divided IDD patients into two cuproptosis clusters (clusterA and clusterB) based on the important cuproptosis regulators. Additionally, each sample's cuproptosis value was evaluated using principal component analysis in order to quantify the cuproptosis clusters. Patients in clusterB had higher cuproptosis scores than patients in clusterA. Moreover, we found that clusterB was involved in the immunity of natural killer cell, while clusterA was related to activated CD4 T cell, activated B cell, etc. Notably, cuproptosis modulators detected by RT-qPCR showed generally consistent expression levels with the bioinformatics results. To sum up, cuproptosis modulators play a crucial role in the pathogenic process of IDD, providing biomarkers and immunotherapeutic approaches for IDD.
Collapse
Affiliation(s)
- Peng Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiahui He
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510130, China
| | - Yanchi Gan
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Honglin Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wenhua Zhao
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Jianchao Cui
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Gengyang Shen
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yuwei Li
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215007, China
| | - Xiaobing Jiang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Guangye Zhu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215007, China
| | - Hui Ren
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
8
|
Wang J, Lu Y, Sun G, Fang Z, Xing Z, Nong W, Wei Y, Wang S, Shi G, Dong M, Wang J. Machine learning algorithms for a novel cuproptosis-related gene signature of diagnostic and immune infiltration in endometriosis. Sci Rep 2023; 13:21603. [PMID: 38062233 PMCID: PMC10703883 DOI: 10.1038/s41598-023-48990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Endometriosis (EMT) is an aggressive disease of the reproductive system, also called "benign cancer". However, effective treatments for EMT are still lacking in clinical practice. Interestingly, immune infiltration is significantly involved in EMT pathogenesis. Currently, no studies have shown the involvement of cuproptosis-related genes (CRGs) in regulating immune infiltration in EMT. This study identified three CRGs such as GLS, NFE2L2, and PDHA1, associated with EMT using machine learning algorithms. These three CRGs were upregulated in the endometrium of patients with moderate/severe EMT and downregulated in patients with infertility. Single sample genomic enrichment analysis (ssGSEA) revealed that these CRGs were closely correlated with autoimmune diseases such as systemic lupus erythematosus. Furthermore, these CRGs were correlated with immune cells such as eosinophils, natural killer cells, and macrophages. Therefore, profiling patients based on these genes aid in a more accurate diagnosis of EMT progression. The mRNA and protein expression levels of GLS, NFE2L2 and PDHA1 were validated by qRT-PCR and WB studies in EMT samples. These findings provide a new idea for the pathology and treatment of endometriosis, suggesting that CRGs such as GLS, NFE2L2 and PDHA1 may play a key role in the occurrence and development of endometriosis.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Yiming Lu
- Graduate School of Youjiang, Medical University for Nationalities, Baise, 533000, China
| | - Guangyu Sun
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, 515600, China
| | - Zhihao Fang
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, 515600, China
| | - Zhiyong Xing
- School of Medical Laboratory, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Weihua Nong
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Yunbao Wei
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Shan Wang
- Department of Stomatology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Guiling Shi
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Mingyou Dong
- School of Medical Laboratory, Youjiang Medical University for Nationalities, Baise, 533000, China.
| | - Junli Wang
- School of Medical Laboratory, Youjiang Medical University for Nationalities, Baise, 533000, China.
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
| |
Collapse
|
9
|
Nong J, Lu G, Huang Y, Liu J, Chen L, Pan H, Xiong B. Identification of cuproptosis-related subtypes, characterization of immune microenvironment infiltration, and development of a prognosis model for osteoarthritis. Front Immunol 2023; 14:1178794. [PMID: 37809099 PMCID: PMC10551149 DOI: 10.3389/fimmu.2023.1178794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/07/2023] [Indexed: 10/10/2023] Open
Abstract
Background Osteoarthritis (OA) is a prevalent chronic joint disease with an obscure underlying molecular signature. Cuproptosis plays a crucial role in various biological processes. However, the association between cuproptosis-mediated immune infifiltration and OA progression remains unexplored. Therefore, this study elucidates the pathological process and potential mechanisms underlying cuproptosis in OA by constructing a columnar line graph model and performing consensus clustering analysis. Methods Gene expression profifile datasets GSE12021, GSE32317, GSE55235, and GSE55457 of OA were obtained from the comprehensive gene expression database. Cuproptosis signature genes were screened by random forest (RF) and support vector machine (SVM). A nomogram was developed based on cuproptosis signature genes. A consensus clustering was used to distinguish OA patients into different cuproptosis patterns. To quantify the cuproptosis pattern, a principal component analysis was developed to generate the cuproptosis score for each sample. Single-sample gene set enrichment analysis (ssGSEA) was used to provide the abundance of immune cells in each sample and the relationship between these significant cuproptosis signature genes and immune cells.To quantify the cuproptosis pattern, a principal component analysis technique was developed to generate the cuproptosis score for each sample. Cuproptosis-related genes were extracted and subjected to differential expression analysis to construct a disease prediction model and confifirmed by RT-qPCR. Results Seven cuproptosis signature genes were screened (DBT, LIPT1, GLS, PDHB, FDX1, DLAT, and PDHA1) to predict the risk of OA disease. A column line graph model was developed based on these seven cuproptosis signature genes, which may assist patients based on decision curve analysis. A consensus clustering method was used to distinguish patients with disorder into two cuproptosis patterns (clusters A and B). To quantify the cuproptosis pattern, a principal component analysis technique was developed to generate the cuproptosis score for each sample. Furthermore, the OA characteristics of patients in cluster A were associated with the inflflammatory factors IL-1b, IL-17, IL-21, and IL-22, suggesting that the cuproptosis signature genes play a vital role in the development of OA. Discussion In this study, a risk prediction model based on cuproptosis signature genes was established for the fifirst time, and accurately predicted OA risk. In addition, patients with OA were classifified into two cuproptosis molecule subtypes (clusters A and B); cluster A was highly associated with Th17 immune responses, with higher IL-1b, IL-17, and IL-21 IL-22 expression levels, while cluster B had a higher correlation with cuproptosis. Our analysis will help facilitate future research related cuproptosis-associated OA immunotherapy. However, the specifific mechanisms remain to be elucidated.
Collapse
Affiliation(s)
- Jiao Nong
- Teaching Department, First Affiliated Hospital of the Guangxi University of Chinese Medicine, Nanning, China
| | - Guanyu Lu
- Postgraduate Schools, Guangxi University of Chinese Medicine, Nanning, China
| | - Yue Huang
- Postgraduate Schools, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinfu Liu
- Postgraduate Schools, Guangxi University of Chinese Medicine, Nanning, China
| | - Lihua Chen
- Postgraduate Schools, Guangxi University of Chinese Medicine, Nanning, China
| | - Haida Pan
- Postgraduate Schools, Guangxi University of Chinese Medicine, Nanning, China
| | - Bo Xiong
- Department of Knee Arthropathy and Sports Injuries, Yulin Orthopedic Hospital of Integrated Traditional Chinese and Western Medicine, Yulin, China
| |
Collapse
|
10
|
Chang J, Lo ZHY, Alenizi S, Kovacevic Z. Re-Shaping the Pancreatic Cancer Tumor Microenvironment: A New Role for the Metastasis Suppressor NDRG1. Cancers (Basel) 2023; 15:2779. [PMID: 37345116 DOI: 10.3390/cancers15102779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Pancreatic cancer (PaC) is a highly aggressive disease, with poor response to current treatments and 5-year survival rates of 10-15%. PaC progression is facilitated by its interaction with the complex and multifaceted tumor microenvironment (TME). In the TME, cancer cells and surrounding stromal cells constantly communicate with each other via the secretion and uptake of factors including cytokines, chemokines, growth factors, metabolites, and extracellular vesicles (EVs), reshaping the landscape of PaC. Recent studies demonstrated that the metastasis suppressor N-myc downstream regulated 1 (NDRG1) not only inhibits oncogenic signaling pathways in PaC cells but also alters the communication between PaC cells and the surrounding stroma. In fact, NDRG1 was found to influence the secretome of PaC cells, alter cancer cell metabolism, and interfere with intracellular trafficking and intercellular communication between PaC cells and surrounding fibroblasts. This review will present recent advancements in understanding the role of NDRG1 in PaC progression, with a focus on how this molecule influences PaC-stroma communication and its potential for re-shaping the PaC TME.
Collapse
Affiliation(s)
- Jiawei Chang
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia
| | - Zoe H Y Lo
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
| | - Shafi Alenizi
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
| | - Zaklina Kovacevic
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia
| |
Collapse
|
11
|
Popescu RG, Marinescu GC, Rădulescu AL, Marin DE, Țăranu I, Dinischiotu A. Natural Antioxidant By-Product Mixture Counteracts the Effects of Aflatoxin B1 and Ochratoxin A Exposure of Piglets after Weaning: A Proteomic Survey on Liver Microsomal Fraction. Toxins (Basel) 2023; 15:toxins15040299. [PMID: 37104237 PMCID: PMC10143337 DOI: 10.3390/toxins15040299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
Mycotoxins are toxic compounds produced by certain strains of fungi that can contaminate raw feed materials. Once ingested, even in small doses, they cause multiple health issues for animals and, downstream, for people consuming meat. It was proposed that inclusion of antioxidant-rich plant-derived feed might diminish the harmful effects of mycotoxins, maintaining the farm animals' health and meat quality for human consumption. This work investigates the large scale proteomic effects on piglets' liver of aflatoxin B1 and ochratoxin A mycotoxins and the potential compensatory effects of grapeseed and sea buckthorn meal administration as dietary byproduct antioxidants against mycotoxins' damage. Forty cross-bred TOPIGS-40 hybrid piglets after weaning were assigned to three (n = 10) experimental groups (A, M, AM) and one control group (C) and fed with experimental diets for 30 days. After 4 weeks, liver samples were collected, and the microsomal fraction was isolated. Unbiased label-free, library-free, data-independent acquisition (DIA) mass spectrometry SWATH methods were able to relatively quantify 1878 proteins from piglets' liver microsomes, confirming previously reported effects on metabolism of xenobiotics by cytochrome P450, TCA cycle, glutathione synthesis and use, and oxidative phosphorylation. Pathways enrichment revealed that fatty acid metabolism, steroid biosynthesis, regulation of actin cytoskeleton, regulation of gene expression by spliceosomes, membrane trafficking, peroxisome, thermogenesis, retinol, pyruvate, and amino acids metabolism pathways are also affected by the mycotoxins. Antioxidants restored expression level of proteins PRDX3, AGL, PYGL, fatty acids biosynthesis, endoplasmic reticulum, peroxisome, amino acid synthesis pathways, and, partially, OXPHOS mitochondrial subunits. However, excess of antioxidants might cause significant changes in CYP2C301, PPP4R4, COL18A1, UBASH3A, and other proteins expression levels. Future analysis of proteomics data corelated to animals growing performance and meat quality studies are necessary.
Collapse
Affiliation(s)
- Roua Gabriela Popescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91-95, 050095 Bucharest, Romania
- Independent Research Association, Timisului No. 58, 012416 Bucharest, Romania
| | - George Cătălin Marinescu
- Independent Research Association, Timisului No. 58, 012416 Bucharest, Romania
- Blue Screen SRL, Timisului No. 58, 012416 Bucharest, Romania
| | - Andreea Luminița Rădulescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91-95, 050095 Bucharest, Romania
| | - Daniela Eliza Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015 Balotesti, Romania
| | - Ionelia Țăranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015 Balotesti, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91-95, 050095 Bucharest, Romania
| |
Collapse
|
12
|
Zhang F, Yan Y, Liang Q, Liu Y, Wu G, Xu Z, Yang K. A combined analysis of bulk and single-cell sequencing data reveals metabolic enzyme, pyruvate dehydrogenase E1 subunit beta (PDHB), as a prediction biomarker for the tumor immune response and immunotherapy. Heliyon 2023; 9:e13456. [PMID: 36816316 PMCID: PMC9929299 DOI: 10.1016/j.heliyon.2023.e13456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Pyruvate dehydrogenase E1 subunit beta (PDHB) is located in mitochondria and catalyzes the conversion of glucose-derived acetyl-CoA. The detailed roles of PDHB in human cancers is unclear. Here, through comprehensive bioinformatics analysis, we found that PDHB was aberrantly expressed in multiple human cancers and is associated with patients' clinical stage. The abnormal expression of PDHB was related to the prognostic values of cancers, such as kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP). The Wanderer database with clinical data from Cancer Genome Atlas (TCGA) showed a significant correlation between PDHB expression and the pathologic stage of KIRP patients. We also evaluated the mutation profiles of PDHB in pan-cancer, and showed its roles on the patients' prognosis. At last, from several immunity algorithms, we demonstrated that the expression of PDHB was correlated with the infiltration of various immune cells in pan-cancer. Moreover, the aberrant PDHB had effects on the response to immune checkpoint inhibitors in cancer patients, such as anti-PD-1. Taken together, our study demonstrated the prognostic values of PDHB in pan-cancers. PDHB may be a potential molecular marker to predicting the immune response in cancer patients.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China,Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Geting Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China,Corresponding author. Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Keda Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China,Corresponding author. National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
13
|
Identification of Cuproptosis-Related Genes in Nonalcoholic Fatty Liver Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9245667. [PMID: 36865349 PMCID: PMC9974253 DOI: 10.1155/2023/9245667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent hepatic pathology worldwide. However, the precise molecular mechanisms for NAFLD are still not sufficiently explained. Recently, a new mode of cell death (cuproptosis) is found. However, the relationship between NAFLD and cuproptosis remains unclear. We analyzed three public datasets (GSE89632, GSE130970, and GSE135251) to identify cuproptosis-related genes stably expressed in NAFLD. Then, we performed a series of bioinformatics analyses to explore the relationship between NAFLD and cuproptosis-related genes. Finally, 6 high-fat diet- (HFD-) induced NAFLD C57BL/6J mouse models were established to carry out transcriptome analysis. The results of gene set variation analysis (GSVA) revealed that the cuproptosis pathway was abnormally activated to a certain degree (p = 0.035 in GSE89632, p = 0.016 in GSE130970, p = 0.22 in GSE135251), and the principal component analysis (PCA) of the cuproptosis-related genes showed that the NAFLD group separated from the control group, with the first two principal components accounting for 58.63%-74.88% of the variation. Among three datasets, two cuproptosis-related genes (DLD and PDHB, p < 0.01 or 0.001) were stably upregulated in NAFLD. Additionally, both DLD (AUC = 0.786-0.856) and PDHB (AUC = 0.771-0.836) had favorable diagnostic properties, and the multivariate logistics regression model further improved the diagnostic properties (AUC = 0.839-0.889). NADH, flavin adenine dinucleotide, and glycine targeted DLD, and pyruvic acid and NADH targeted PDHB in the DrugBank database. The DLD and PDHB were also associated with clinical pathology, especially with steatosis (DLD, p = 0.0013-0.025; PDHB, p = 0.002-0.0026) and NAFLD activity score (DLD, p = 0.004-0.02; PDHB, p = 0.003-0.031). What is more, DLD and PDHB were correlated with stromal score (DLD, R = 0.38, p < 0.001; PDHB, R = 0.31, p < 0.001) and immune score (DLD, R = 0.26, p < 0.001; PDHB, R = 0.27, p < 0.001) in NAFLD. Furthermore, Dld and Pdhb were also significantly upregulated in the NAFLD mouse model. In conclusion, cuproptosis pathways, especially DLD and PDHB, could be potential candidate genes for NAFLD diagnostic and therapeutic options.
Collapse
|
14
|
Zhu H, Wan Q, Tan J, Ouyang H, Pan X, Li M, Zhao Y. A novel prognostic signature of cuproptosis-related genes and the prognostic value of FDX1 in gliomas. Front Genet 2022; 13:992995. [PMID: 36579333 PMCID: PMC9792093 DOI: 10.3389/fgene.2022.992995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Gliomas are the most common malignant tumors of the central nervous system, with extremely bad prognoses. Cuproptosis is a novel form of regulated cell death. The impact of cuproptosis-related genes on glioma development has not been reported. Methods: The TCGA, GTEx, and CGGA databases were used to retrieve transcriptomic expression data. We employed Cox's regressions to determine the associations between clinical factors and cuproptosis-related gene expression. Overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) were evaluated using the Kaplan-Meier method. We also used the least absolute shrinkage and selection operator (LASSO) regression technique. Results: The expression levels of all 10 CRGs varied considerably between glioma tumors and healthy tissues. In glioma patients, the levels of CDKN2A, FDX1, DLD, DLAT, LIAS, LIPT1, and PDHA1 were significantly associated with the OS, disease-specific survival, and progression-free interval. We used LASSO Cox's regression to create a prognostic model; the risk score was (0.882340) *FDX1 expression + (0.141089) *DLD expression + (-0.333875) *LIAS expression + (0.356469) *LIPT1 expression + (-0.123851) *PDHA1 expression. A high-risk score/signature was associated with poor OS (hazard ratio = 3.50, 95% confidence interval 2, -4.55, log-rank p < 0.001). Cox's regression revealed that the FDX1 level independently predicted prognosis; FDX1 may control immune cell infiltration of the tumor microenvironment. Conclusion: The CRG signature may be prognostic in glioma patients, and the FDX1 level may independently predict glioma prognosis. These data may afford new insights into treatment.
Collapse
Affiliation(s)
- HuaXin Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qinsi Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiacong Tan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hengyang Ouyang
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, China
| | - Xinyi Pan
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, China
| | - MeiHua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,*Correspondence: MeiHua Li, ; YeYu Zhao,
| | - YeYu Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,*Correspondence: MeiHua Li, ; YeYu Zhao,
| |
Collapse
|
15
|
Fernández-Vizarra E, López-Calcerrada S, Sierra-Magro A, Pérez-Pérez R, Formosa LE, Hock DH, Illescas M, Peñas A, Brischigliaro M, Ding S, Fearnley IM, Tzoulis C, Pitceathly RDS, Arenas J, Martín MA, Stroud DA, Zeviani M, Ryan MT, Ugalde C. Two independent respiratory chains adapt OXPHOS performance to glycolytic switch. Cell Metab 2022; 34:1792-1808.e6. [PMID: 36198313 DOI: 10.1016/j.cmet.2022.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/21/2022] [Accepted: 09/08/2022] [Indexed: 01/11/2023]
Abstract
The structural and functional organization of the mitochondrial respiratory chain (MRC) remains intensely debated. Here, we show the co-existence of two separate MRC organizations in human cells and postmitotic tissues, C-MRC and S-MRC, defined by the preferential expression of three COX7A subunit isoforms, COX7A1/2 and SCAFI (COX7A2L). COX7A isoforms promote the functional reorganization of distinct co-existing MRC structures to prevent metabolic exhaustion and MRC deficiency. Notably, prevalence of each MRC organization is reversibly regulated by the activation state of the pyruvate dehydrogenase complex (PDC). Under oxidative conditions, the C-MRC is bioenergetically more efficient, whereas the S-MRC preferentially maintains oxidative phosphorylation (OXPHOS) upon metabolic rewiring toward glycolysis. We show a link between the metabolic signatures converging at the PDC and the structural and functional organization of the MRC, challenging the widespread notion of the MRC as a single functional unit and concluding that its structural heterogeneity warrants optimal adaptation to metabolic function.
Collapse
Affiliation(s)
- Erika Fernández-Vizarra
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
| | | | - Ana Sierra-Magro
- Instituto de Investigación Hospital 12 de Octubre, Madrid 28041, Spain
| | | | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800 Melbourne, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3052 Melbourne, Australia
| | - María Illescas
- Instituto de Investigación Hospital 12 de Octubre, Madrid 28041, Spain
| | - Ana Peñas
- Instituto de Investigación Hospital 12 de Octubre, Madrid 28041, Spain
| | | | - Shujing Ding
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ian M Fearnley
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Charalampos Tzoulis
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital and Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Joaquín Arenas
- Instituto de Investigación Hospital 12 de Octubre, Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723 Madrid, Spain
| | - Miguel A Martín
- Instituto de Investigación Hospital 12 de Octubre, Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723 Madrid, Spain
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3052 Melbourne, Australia
| | - Massimo Zeviani
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Neurosciences, University of Padova, 35128 Padova, Italy
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800 Melbourne, Australia
| | - Cristina Ugalde
- Instituto de Investigación Hospital 12 de Octubre, Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723 Madrid, Spain.
| |
Collapse
|
16
|
Zhang Z, Wang B, Xu X, Xin T. Cuproptosis-related gene signature stratifies lower-grade glioma patients and predicts immune characteristics. Front Genet 2022; 13:1036460. [PMID: 36386799 PMCID: PMC9640744 DOI: 10.3389/fgene.2022.1036460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Cuproptosis is the most recently discovered type of regulated cell death and is mediated by copper ions. Studies show that cuproptosis plays a significant role in cancer development and progression. Lower-grade gliomas (LGGs) are slow-growing brain tumors. The majority of LGGs progress to high-grade glioma, which makes it difficult to predict the prognosis. However, the prognostic value of cuproptosis-related genes (CRGs) in LGG needs to be further explored. mRNA expression profiles and clinical data of LGG patients were collected from public sources for this study. Univariate Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression model were used to build a multigene signature that could divide patients into different risk groups. The differences in clinical pathological characteristics, immune infiltration characteristics, and mutation status were evaluated in risk subgroups. In addition, drug sensitivity and immune checkpoint scores were estimated in risk subgroups to provide LGG patients with precision medication. We found that all CRGs were differentially expressed in LGG and normal tissues. Patients were divided into high- and low-risk groups based on the risk score of the CRG signature. Patients in the high-risk group had a considerably lower overall survival rate than those in the low-risk group. According to functional analysis, pathways related to the immune system were enriched, and the immune state differed across the two risk groups. Immune characteristic analysis showed that the immune cell proportion and immune scores were different in the different groups. High-risk group was characterized by low sensitivity to chemotherapy but high sensitivity to immune checkpoint inhibitors. The current study revealed that the novel CRG signature was related to the prognosis, clinicopathological features, immune characteristics, and treatment perference of LGG.
Collapse
Affiliation(s)
- Zihao Zhang
- Department of Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Bingcheng Wang
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Shandong Medicine and Health Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaoqin Xu
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Shandong Medicine and Health Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, China
- *Correspondence: Tao Xin,
| |
Collapse
|
17
|
Wang S, Xing N, Meng X, Xiang L, Zhang Y. Comprehensive bioinformatics analysis to identify a novel cuproptosis-related prognostic signature and its ceRNA regulatory axis and candidate traditional Chinese medicine active ingredients in lung adenocarcinoma. Front Pharmacol 2022; 13:971867. [PMID: 36110528 PMCID: PMC9468865 DOI: 10.3389/fphar.2022.971867] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 01/10/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most ordinary histological subtype of lung cancer, and regulatory cell death is an attractive target for cancer therapy. Recent reports suggested that cuproptosis is a novel copper-dependent modulated form of cell death dependent on mitochondrial respiration. However, the role of cuproptosis-related genes (CRGs) in the LUAD process is unclear. In the current study, we found that DLD, LIAS, PDHB, DLAT and LIPA1 in 10 differentially expressed CRGs were central genes. GO and KEGG enrichment results showed that these 10 CRGs were mainly enriched in acetyl-CoA biosynthetic process, mitochondrial matrix, citrate cycle (TCA cycle) and pyruvate metabolism. Furthermore, we constructed a prognostic gene signature model based on the six prognostic CRGs, which demonstrated good predictive potential. Excitedly, we found that these six prognostic CRGs were significantly associated with most immune cell types, with DLD being the most significant (19 types). Significant correlations were noted between some prognostic CRGs and tumor mutation burden and microsatellite instability. Clinical correlation analysis showed that DLD was related to the pathological stage, T stage, and M stage of patients with LUAD. Lastly, we constructed the lncRNA UCA1/miR-1-3p/DLD axis that may play a key role in the progression of LUAD and screened nine active components of traditional Chinese medicine (TCM) that may regulate DLD. Further, in vitro cell experiments and molecular docking were used to verify this. In conclusion, we analyzed the potential value of CRGs in the progression of LUAD, constructed the potential regulatory axis of ceRNA, and obtained the targeted regulatory TCM active ingredients through comprehensive bioinformatics combined with experimental validation strategies. This work not only provides new insights into the treatment of LUAD but also includes a basis for the development of new immunotherapy drugs that target cuproptosis.
Collapse
Affiliation(s)
- Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yi Zhang, ; Li Xiang,
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yi Zhang, ; Li Xiang,
| |
Collapse
|
18
|
Scalable multiplex co-fractionation/mass spectrometry platform for accelerated protein interactome discovery. Nat Commun 2022; 13:4043. [PMID: 35831314 PMCID: PMC9279285 DOI: 10.1038/s41467-022-31809-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 06/29/2022] [Indexed: 12/14/2022] Open
Abstract
Co-fractionation/mass spectrometry (CF/MS) enables the mapping of endogenous macromolecular networks on a proteome scale, but current methods are experimentally laborious, resource intensive and afford lesser quantitative accuracy. Here, we present a technically efficient, cost-effective and reproducible multiplex CF/MS (mCF/MS) platform for measuring and comparing, simultaneously, multi-protein assemblies across different experimental samples at a rate that is up to an order of magnitude faster than previous approaches. We apply mCF/MS to map the protein interaction landscape of non-transformed mammary epithelia versus breast cancer cells in parallel, revealing large-scale differences in protein-protein interactions and the relative abundance of associated macromolecules connected with cancer-related pathways and altered cellular processes. The integration of multiplexing capability within an optimized workflow renders mCF/MS as a powerful tool for systematically exploring physical interaction networks in a comparative manner. Co-fractionation/mass spectrometry (CF/MS) allows mapping protein interactomes but efficiency and quantitative accuracy are limited. Here, the authors develop a reproducible multiplexed CF/MS method and apply it to characterize interactome rewiring in breast cancer cells.
Collapse
|
19
|
Marx C, Sonnemann J, Maddocks ODK, Marx-Blümel L, Beyer M, Hoelzer D, Thierbach R, Maletzki C, Linnebacher M, Heinzel T, Krämer OH. Global metabolic alterations in colorectal cancer cells during irinotecan-induced DNA replication stress. Cancer Metab 2022; 10:10. [PMID: 35787728 PMCID: PMC9251592 DOI: 10.1186/s40170-022-00286-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/09/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Metabolic adaptations can allow cancer cells to survive DNA-damaging chemotherapy. This unmet clinical challenge is a potential vulnerability of cancer. Accordingly, there is an intense search for mechanisms that modulate cell metabolism during anti-tumor therapy. We set out to define how colorectal cancer CRC cells alter their metabolism upon DNA replication stress and whether this provides opportunities to eliminate such cells more efficiently. METHODS We incubated p53-positive and p53-negative permanent CRC cells and short-term cultured primary CRC cells with the topoisomerase-1 inhibitor irinotecan and other drugs that cause DNA replication stress and consequently DNA damage. We analyzed pro-apoptotic mitochondrial membrane depolarization and cell death with flow cytometry. We evaluated cellular metabolism with immunoblotting of electron transport chain (ETC) complex subunits, analysis of mitochondrial mRNA expression by qPCR, MTT assay, measurements of oxygen consumption and reactive oxygen species (ROS), and metabolic flux analysis with the Seahorse platform. Global metabolic alterations were assessed using targeted mass spectrometric analysis of extra- and intracellular metabolites. RESULTS Chemotherapeutics that cause DNA replication stress induce metabolic changes in p53-positive and p53-negative CRC cells. Irinotecan enhances glycolysis, oxygen consumption, mitochondrial ETC activation, and ROS production in CRC cells. This is connected to increased levels of electron transport chain complexes involving mitochondrial translation. Mass spectrometric analysis reveals global metabolic adaptations of CRC cells to irinotecan, including the glycolysis, tricarboxylic acid cycle, and pentose phosphate pathways. P53-proficient CRC cells, however, have a more active metabolism upon DNA replication stress than their p53-deficient counterparts. This metabolic switch is a vulnerability of p53-positive cells to irinotecan-induced apoptosis under glucose-restricted conditions. CONCLUSION Drugs that cause DNA replication stress increase the metabolism of CRC cells. Glucose restriction might improve the effectiveness of classical chemotherapy against p53-positive CRC cells. The topoisomerase-1 inhibitor irinotecan and other chemotherapeutics that cause DNA damage induce metabolic adaptations in colorectal cancer (CRC) cells irrespective of their p53 status. Irinotecan enhances the glycolysis and oxygen consumption in CRC cells to deliver energy and biomolecules necessary for DNA repair and their survival. Compared to p53-deficient cells, p53-proficient CRC cells have a more active metabolism and use their intracellular metabolites more extensively. This metabolic switch creates a vulnerability to chemotherapy under glucose-restricted conditions for p53-positive cells.
Collapse
Affiliation(s)
- Christian Marx
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Building 905, Mainz, Germany.
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Institute for Biochemistry and Biophysics, Friedrich Schiller University of Jena, Jena, Germany.
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
- Current Address: Center for Pandemic Vaccines and Therapeutics (ZEPAI), Paul Ehrlich Institute, Langen, Germany.
| | - Jürgen Sonnemann
- Department of Paediatric Haematology and Oncology, Jena University Hospital, Children's Clinic, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Oliver D K Maddocks
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lisa Marx-Blümel
- Department of Paediatric Haematology and Oncology, Jena University Hospital, Children's Clinic, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Mandy Beyer
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Building 905, Mainz, Germany
| | - Doerte Hoelzer
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University of Jena, Jena, Germany
- Current address: Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - René Thierbach
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University of Jena, Jena, Germany
| | - Claudia Maletzki
- Molecular Oncology and Immunotherapy, Thoracic, Vascular and Transplantation Surgery, Clinic of General, University of Rostock, VisceralRostock, Germany
- Current address: Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Thoracic, Vascular and Transplantation Surgery, Clinic of General, University of Rostock, VisceralRostock, Germany
| | - Thorsten Heinzel
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Institute for Biochemistry and Biophysics, Friedrich Schiller University of Jena, Jena, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Building 905, Mainz, Germany.
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Institute for Biochemistry and Biophysics, Friedrich Schiller University of Jena, Jena, Germany.
| |
Collapse
|
20
|
The Critical Role Played by Mitochondrial MITF Serine 73 Phosphorylation in Immunologically Activated Mast Cells. Cells 2022; 11:cells11030589. [PMID: 35159398 PMCID: PMC8834024 DOI: 10.3390/cells11030589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, growing evidence has indicated the pivotal role of mitochondria in mast cell immunological activation. We have previously reported a decrease in degranulation and cytokine secretion following the inhibition of pyruvate dehydrogenase (PDH) either by CPI-613 (PDH inhibitor/anti-cancer drug) or through its interaction with mitochondrial microphthalmia-associated transcription factor (MITF). In the present study, we further explored the role played by mitochondrial MITF in mast cell exocytosis using rat basophil leukemia cells [RBL], as well as mouse bone marrow-derived mast cells (BMMCs). Here, we report that mast cell degranulation, cytokine secretion and oxidative phosphorylation (OXPHOS) activities were associated with phosphorylation of Serine 73 of mitochondrial MITF, controlled by extracellular signals regulated by protein kinase (ERK1/2) activity. Also, we report here that decreased OXPHOS activity following ERK1/2 inhibition (U0126 treatment) during IgE-Ag activation was mediated by the dephosphorylation of Serine 73 mitochondrial MITF, which inhibited its association with PDH. This led to a reduction in mast cell reactivity. In addition, a phosphorylation-mimicking mitochondrial MITF-S73D positively regulated the mitochondrial activity, thereby supporting mast cell degranulation. Thus, the present research findings highlight the prominence of mitochondrial MITF Serine 73 phosphorylation in immunologically activated mast cells.
Collapse
|