1
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RV. Green synthesis and characterization of iron nanoparticles synthesized from bioflocculant for wastewater treatment: A review. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 6:10-31. [PMID: 39811780 PMCID: PMC11731503 DOI: 10.1016/j.biotno.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
Nanotechnology is a rapidly expanding field with diverse healthcare, agriculture, and industry applications. Central to this discipline is manipulating materials at the nanoscale, particularly nanoparticles (NPs) ranging from 1 to 100 nm. These NPs can be synthesized through various methods, including chemical, physical, and biological processes. Among these, biological synthesis has gained significant attention due to its eco-friendly nature, utilizing natural resources such as microbes and plants as reducing and capping agents. However, information is scarce regarding the production of iron nanoparticles (FeNPs) using biological approaches, and even less is available on the synthesis of FeNPs employing microbial bioflocculants. This review aims to provide a comprehensive examination of the synthesis of FeNPs using microbial bioflocculants, highlighting the methodologies involved and their implications for environmental applications. Recent findings indicate that microbial bioflocculants enhance the stability and efficiency of FeNP synthesis while promoting environmentally friendly production methods. The synthesized FeNPs demonstrated effective removal of contaminants from wastewater, achieving removal rates of up to 93 % for specific dyes and significant reductions in chemical oxygen demand (COD) and biological oxygen demand (BOD). Additionally, these FeNPs exhibited notable antimicrobial properties against both Gram-positive and Gram-negative bacteria. This review encompasses studies conducted between January 2015 and December 2023, providing detailed characterization of the synthesized FeNPs and underscoring their potential applications in wastewater treatment and environmental remediation.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, KwaDlangezwa, 3886, South Africa
| | - Albertus K. Basson
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, KwaDlangezwa, 3886, South Africa
| | - Zuzingcebo G. Ntombela
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, KwaDlangezwa, 3886, South Africa
| | - Nkosinathi G. Dlamini
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, KwaDlangezwa, 3886, South Africa
| | - Rajasekhar V.S.R. Pullabhotla
- Department of Chemistry, Faculty of Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, KwaDlangezwa, 3886, South Africa
| |
Collapse
|
2
|
Mbuyazi TB, Ajibade PA. Magnetic iron oxides nanocomposites: synthetic techniques and environmental applications for wastewater treatment. DISCOVER NANO 2024; 19:158. [PMID: 39342049 PMCID: PMC11438764 DOI: 10.1186/s11671-024-04102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Nanomaterials are an emerging class of compounds with potential to advance technology for wastewater treatment. There are many toxic substances in industrial wastewater that are dangerous to the aquatic ecosystem and public health. These pollutants require the development of novel techniques to remove them from the environment. Iron oxide nanoparticles are being studied and develop as new technology to address the problem of environmental pollution due to their unique properties and effectiveness against different kind of pollutants. A variety of modified iron oxide nanoparticles have been developed through extensive research that mitigates the shortcomings of aggregation or oxidation and enhances their efficiency as novel remediator against environmental pollutants. In this review, we present synthetic approaches used for the preparation of iron oxide nanoparticles and their corresponding nanocomposites, along with the processes in which the materials are used as adsorbent/photocatalysts for environmental remediation. Applications explored includes adsorption of dyes, photocatalytic degradation of dyes, and adsorption of heavy metal ions. The use of iron oxides nanocomposite in real wastewater samples and recyclability of adsorbents and photocatalysts were also explored.
Collapse
Affiliation(s)
- Thandi B Mbuyazi
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa
| | - Peter A Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
3
|
Sarkar S, Roy A, Mitra R, Kundu S, Banerjee P, Acharya Chowdhury A, Ghosh S. Escaping the ESKAPE pathogens: A review on antibiofilm potential of nanoparticles. Microb Pathog 2024; 194:106842. [PMID: 39117012 DOI: 10.1016/j.micpath.2024.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
ESKAPE pathogens, a notorious consortium comprising Enterococcusfaecium, Staphylococcusaureus, Klebsiellapneumoniae, Acinetobacterbaumannii, Pseudomonasaeruginosa, and Enterobacter species, pose formidable challenges in healthcare settings due to their multidrug-resistant nature. The increasing global cases of antimicrobial-resistant ESKAPE pathogens are closely related to their remarkable ability to form biofilms. Thus, understanding the unique mechanisms of antimicrobial resistance of ESKAPE pathogens and the innate resilience of biofilms against traditional antimicrobial agents is important for developing innovative strategies to establish effective control methods against them. This review offers a thorough analysis of biofilm dynamics, with a focus on the general mechanisms of biofilm formation, the significant contribution of persister cells in the resistance mechanisms, and the recurrence of biofilms in comparison to planktonic cells. Additionally, this review highlights the potential strategies of nanoparticles for managing biofilms in the ESKAPE group of pathogens. Nanoparticles, with their unique physicochemical properties, provide promising opportunities for disrupting biofilm structures and improving antimicrobial effectiveness. The review has explored interactions between nanoparticles and biofilms, covering a range of nanoparticle types such as metal, metal-oxide, surface-modified, and functionalized nanoparticles, along with organic nanoparticles and nanomaterials. The additional focus of this review also encompasses green synthesis techniques of nanoparticles that involve plant extract and supernatants from bacterial and fungal cultures as reducing agents. Furthermore, the use of nanocomposites and nano emulsions in biofilm management of ESKAPE is also discussed. To conclude, the review addresses the current obstacles and future outlooks in nanoparticle-based biofilm management, stressing the necessity for further research and development to fully exploit the potential of nanoparticles in addressing biofilm-related challenges.
Collapse
Affiliation(s)
| | - Ankita Roy
- Department of Biosciences, JIS University, Kolkata, India
| | - Rangan Mitra
- Department of Biosciences, JIS University, Kolkata, India
| | - Sweta Kundu
- Department of Biosciences, JIS University, Kolkata, India
| | | | | | - Suparna Ghosh
- Department of Biosciences, JIS University, Kolkata, India.
| |
Collapse
|
4
|
Haider FU, Zulfiqar U, Ul Ain N, Hussain S, Maqsood MF, Ejaz M, Yong JWH, Li Y. Harnessing plant extracts for eco-friendly synthesis of iron nanoparticle (Fe-NPs): Characterization and their potential applications for ameliorating environmental pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116620. [PMID: 38905935 DOI: 10.1016/j.ecoenv.2024.116620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/11/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Iron-nanoparticles (Fe-NPs) are increasingly been utilized in environmental applications due to their efficacy and strong catalytic activities. The novelty of nanoparticle science had attracted many researchers and especially for their green synthesis, which can effectively reuse biological resources during the polymerization reactions. Thus, the synthesis of Fe-NPs utilizing plant extracts could be considered as the eco-friendly, simple, rapid, energy-efficient, sustainable, and cost-effective. The green synthesis route can be recognized as a practical, valuable, and economically effective alternative for large-scale production. During the production process, some biomolecules present in the extracts undergo metal salts reduction, which can serve as both a capping and reducing mechanism, enhancing the reactivity and stability of green-synthesized Fe-NPs. The diversity of species provided a wide range of potential sources for green synthesis of Fe-NPs. With improved understanding of the specific biomolecules involved in the bioreduction and stabilization processes, it will become easier to identify and utilize new, potential plant materials for Fe-NPs synthesis. Newly synthesized Fe-NPs require different characterization techniques such as transmission electron microscope, ultraviolet-visible spectrophotometry, and X-ray absorption fine structure, etc, for the determination of size, composition, and structure. This review described and assessed the recent advancements in understanding green-synthesized Fe-NPs derived from plant-based material. Detailed information on various plant materials suitable of yielding valuable biomolecules with potential diverse applications in environmental safety. Additionally, this review examined the characterization techniques employed to analyze Fe-NPs, their stability, accumulation, mobility, and fate in the environment. Holistically, the review assessed the applications of Fe-NPs in remediating wastewaters, organic residues, and inorganic contaminants. The toxicity of Fe-NPs was also addressed; emphasizing the need to refine the synthesis of green Fe-NPs to ensure safety and environmental friendliness. Moving forward, the future challenges and opportunities associated with the green synthesis of Fe-NPs would motivate novel research about nanoparticles in new directions.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Noor Ul Ain
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan
| | | | - Mukkaram Ejaz
- Silesian University of Technology, Institute of Physics-Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Konarskiego 22B, Gliwice 44-100, Poland.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
5
|
S SP, Sr S. Sustainable carbon dots from Borreria hispida: enhanced colorimetric sensing of Fe 3+ ions and biological applications in live cell imaging. RSC Adv 2024; 14:17471-17479. [PMID: 38818362 PMCID: PMC11137498 DOI: 10.1039/d4ra01686f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
This study presents the synthesis of advanced nanomaterials derived from the hedge-grown herbal plant, Borreria hispida, and explores their environmental and biological applications. Using a one-step hydrothermal synthesis method, carbon dots derived from Borreria hispida (BHCD) were fabricated and thoroughly characterized through XRD, TEM, FTIR, CHNS, UV-visible, and PL spectroscopy analyses. Under UV illumination, these plant-based carbon dots demonstrated exceptional water solubility, notable photo stability, and a high quantum yield of 40.8%. The average particle size of BHCD was absorbed around 0.5 to 3.5 nm, contributing to superior selectivity and sensitivity in detecting Fe3+ ions, with a limit of detection of 1.2 × 10-6 M. Investigation into the sensing mechanism revealed a binding model wherein two carbon atom molecules bind to one Fe3+ atom in a 2 : 1 ratio for BHCDs and Fe3+ interactions. Additionally, the effectiveness of the developed fluorescent probe for Fe3+ detection was validated using real water samples from ponds and lakes, highlighting its potential for environmental monitoring applications. Furthermore, the biological effects of BHCD were evaluated through cytotoxic assays, demonstrating significant inhibitory effects on MCF7 breast cancer cell lines, with a maximum cell viability of 60%. This research underscores the multifaceted potential of BHCD in environmental monitoring and biomedical applications.
Collapse
Affiliation(s)
- Shanmuga Priya S
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tami Nadu India
| | - Suseem Sr
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tami Nadu India
| |
Collapse
|
6
|
Rathod S, Preetam S, Pandey C, Bera SP. Exploring synthesis and applications of green nanoparticles and the role of nanotechnology in wastewater treatment. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00830. [PMID: 38332899 PMCID: PMC10850744 DOI: 10.1016/j.btre.2024.e00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Current research endeavours are progressively focussing towards discovering sustainable methods for synthesising eco-friendly materials. In this environment, nanotechnology has emerged as a key frontier, especially in bioremediation and biotechnology. A few areas of nanotechnology including membrane technology, sophisticated oxidation processes, and biosensors. It is possible to create nanoparticles (NPs) via physical, chemical, or biological pathways in a variety of sizes and forms. These days, the investigation of plants as substitutes for NP synthesis methods has drawn a lot of interest. Toxic water contaminants such as methyl blue have been shown to be removed upto 70% by nanoparticles. In our article, we aimed at focussing the environmental sustainability and cost-effectiveness towards the green synthesis of nanoparticles. Furthermore it offers a comprehensive thorough summary of green NP synthesis methods which can be distinguished by their ease of use, financial sustainability, and environmentally favourable utilization of plant extracts. This study highlights how green synthesis methods have the potential to transform manufacturing of NPs while adhering to environmental stewardship principles and resource efficiency.
Collapse
Affiliation(s)
- Shreya Rathod
- School of Sciences, P P Savani University, Surat, Gujarat, 391425, India
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika, 59053, Sweden
- Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu, 42988, Republic of Korea
| | - Chetan Pandey
- Department of Botany, Hindu College, University of Delhi, New Delhi, 110007, India
| | | |
Collapse
|
7
|
Camparotto NG, de Figueiredo Neves T, de Souza Vendemiatti J, Dos Santos BT, Vieira MGA, Prediger P. Adsorption of contaminants by nanomaterials synthesized by green and conventional routes: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12683-12721. [PMID: 38253828 DOI: 10.1007/s11356-024-31922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Nanomaterials, due to their large surface area and selectivity, have stood out as an alternative for the adsorption of contaminants from water and effluents. Synthesized from green or traditional protocols, the main advantages and disadvantages of green nanomaterials are the elimination of the use of toxic chemicals and difficulty of reproducing the preparation of nanomaterials, respectively, while traditional nanomaterials have the main advantage of being able to prepare nanomaterials with well-defined morphological properties and the disadvantage of using potentially toxic chemicals. Thus, based on the particularities of green and conventional nanomaterials, this review aims to fill a gap in the literature on the comparison of the synthesis, morphology, and application of these nanomaterials in the adsorption of contaminants in water. Focusing on the adsorption of heavy metals, pesticides, pharmaceuticals, dyes, polyaromatic hydrocarbons, and phenol derivatives in water, for the first time, a review article explored and compared how chemical and morphological changes in nanoadsorbents synthesized by green and conventional protocols affect performance in the adsorption of contaminants in water. Despite advances in the area, there is still a lack of review articles on the topic.
Collapse
Affiliation(s)
| | | | | | - Bruna Toledo Dos Santos
- School of Technology, University of Campinas - Unicamp, Limeira , São Paulo, CEP: 13484-332, Brazil
| | - Melissa Gurgel Adeodato Vieira
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, 500, Campinas, São Paulo, 13083-852, Brazil
| | - Patrícia Prediger
- School of Technology, University of Campinas - Unicamp, Limeira , São Paulo, CEP: 13484-332, Brazil.
| |
Collapse
|
8
|
Khursheed S, Dutta J, Ahmad I, Rather MA, Badroo IA, Bhat TA, Ahmad I, Amin A, Shah A, Qadri T, Habib H. Biogenic silver nanoparticles: Synthesis, applications and challenges in food sector with special emphasis on aquaculture. Food Chem X 2023; 20:101051. [PMID: 38144846 PMCID: PMC10740048 DOI: 10.1016/j.fochx.2023.101051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023] Open
Abstract
Aquaculture, a rapidly expanding global food sector faces challenges like pathogenic infections, water quality management and sustainability. Silver nanoparticles (AgNPs) have emerged as promising tools in aquaculture due to their antimicrobial, antiviral and antifungal properties. AgNPs offer alternatives to traditional antimicrobial agents. Their small size and unique physicochemical properties enhance antimicrobial activity, effectively inhibiting pathogen growth and reducing disease incidence in aquatic organisms. Additionally, AgNPs can improve water quality by catalyzing the removal of pollutants, heavy metals and nutrients, reducing environmental impacts. Despite their potential benefits, several challenges and knowledge gaps exist in the utilization of AgNPs in aquaculture. Addressing challenges related to regulation, sustainability and environmental impact will be crucial for realizing their full potential in the industry. Therefore, the present review aims to provide insight into the role of AgNPs, its challenges in aquaculture and also highlights key areas for future research.
Collapse
Affiliation(s)
- Saba Khursheed
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Joydeep Dutta
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ishtiyaq Ahmad
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Irfan Ashraf Badroo
- Government Degree College Women Sopore, Kashmir, Jammu and Kashmir 193201, India
| | - Tashooq Ahmad Bhat
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Jammu and Kashmir 190025, India
| | - Irfan Ahmad
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Adnan Amin
- Division of Aquatic Environmental Management, Faculty of Fisheries, Rangil, Ganderbal, SKUAST-Kashmir, 190006, India
| | - Azra Shah
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Tahiya Qadri
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Jammu and Kashmir 190025, India
| | - Huraiya Habib
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
9
|
Öter Ç. Removal of nafcillin from aqueous solution with green synthesis iron oxide nanoparticles. Toxicol Res (Camb) 2023; 12:1095-1104. [PMID: 38145101 PMCID: PMC10734607 DOI: 10.1093/toxres/tfad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 12/26/2023] Open
Abstract
In this study, iron oxide nanoparticles were synthesized from Solanum nigrum L. extract and used to remove nafcillin, which exhibits toxic properties in aqueous solutions. To understand the adsorption behavior of naphcillin on the nanoadsorbent, the optimum conditions, kinetics and isotherm of adsorption were studied in detail. It was found that the adsorption process was consistent with the pseudo-second order kinetic model and Langmuir's isothermal model. The FeONPs adsorbent achieved an adsorption capacity of 116.3 mg/g for nafcillin. It was also found that FeONPs retained ~90% of its adsorption capacity after five adsorption-desorption cycles. Apart from the fact that the nanoparticles synthesized in the study are composed of natural ingredients, S. nigrum L. which causes problems in plant cultivation, serves a useful purpose by being used in this method. The results show that this new nanoadsorbent provides an alternative option for the removal of pharmaceuticals and various pollutants in wastewater.
Collapse
Affiliation(s)
- Çiğdem Öter
- Faculty of Science, Department of Chemistry, Van Yuzuncu Yil University, Tuşba/Van 65080, Turkey
| |
Collapse
|
10
|
Zúñiga-Miranda J, Guerra J, Mueller A, Mayorga-Ramos A, Carrera-Pacheco SE, Barba-Ostria C, Heredia-Moya J, Guamán LP. Iron Oxide Nanoparticles: Green Synthesis and Their Antimicrobial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2919. [PMID: 37999273 PMCID: PMC10674528 DOI: 10.3390/nano13222919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
The rise of antimicrobial resistance caused by inappropriate use of these agents in various settings has become a global health threat. Nanotechnology offers the potential for the synthesis of nanoparticles (NPs) with antimicrobial activity, such as iron oxide nanoparticles (IONPs). The use of IONPs is a promising way to overcome antimicrobial resistance or pathogenicity because of their ability to interact with several biological molecules and to inhibit microbial growth. In this review, we outline the pivotal findings over the past decade concerning methods for the green synthesis of IONPs using bacteria, fungi, plants, and organic waste. Subsequently, we delve into the primary challenges encountered in green synthesis utilizing diverse organisms and organic materials. Furthermore, we compile the most common methods employed for the characterization of these IONPs. To conclude, we highlight the applications of these IONPs as promising antibacterial, antifungal, antiparasitic, and antiviral agents.
Collapse
Affiliation(s)
- Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Julio Guerra
- Facultad de Ingeniería en Ciencias Aplicadas, Universidad Técnica del Norte, Ibarra 100107, Ecuador;
| | - Alexander Mueller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| |
Collapse
|
11
|
Sharma R, Garg R, Bali M, Eddy NO. Potential applications of green-synthesized iron oxide NPs for environmental remediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1397. [PMID: 37910248 DOI: 10.1007/s10661-023-12035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Water pollution is a significant issue worldwide due to an increase in anthropogenic activities. Heavy metals and dyes are among the most problematic contaminants that threaten the environment and negatively impact human health. Iron oxide nanoparticles (IONPs) synthesized using green methods have shown potential in these areas due to their significant adsorption capacity and photocatalytic potential. The size and morphology of biogenic IONPs can be tailored depending upon the concentration of the reducing medium and metal salt precursor. Green-synthesized IONPs have been found to be effective, economical, and environmentally friendly with their large surface area, making them suitable for removing toxic matter from contaminated water. Furthermore, they exhibit antibacterial potential against harmful microorganisms. The study emphasizes the importance of using such environmentally friendly tools to remove heavy metal ions and organic compounds from contaminated water. The underlying mechanism for the adsorption of heavy metal ions, photocatalytic degradation of organic compounds, and antimicrobial action has been explored in detail. The future prospective for the beneficial utilization of biogenic IONPs has also been signified to provide a detailed overview.
Collapse
Affiliation(s)
- Rajat Sharma
- Department of Chemistry, USS, Rayat-Bahra University, Mohali, Punjab, 140104, India
| | - Rajni Garg
- Department of Applied Sciences, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India.
| | - Manoj Bali
- Department of Chemistry, USS, Rayat-Bahra University, Mohali, Punjab, 140104, India
| | - Nnabuk O Eddy
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
12
|
Narwal N, Katyal D, Kataria N, Rose PK, Warkar SG, Pugazhendhi A, Ghotekar S, Khoo KS. Emerging micropollutants in aquatic ecosystems and nanotechnology-based removal alternatives: A review. CHEMOSPHERE 2023; 341:139945. [PMID: 37648158 DOI: 10.1016/j.chemosphere.2023.139945] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
There is a significant concern about the accessibility of uncontaminated and safe drinking water, a fundamental necessity for human beings. This concern is attributed to the toxic micropollutants from several emission sources, including industrial toxins, agricultural runoff, wastewater discharges, sewer overflows, landfills, algal blooms and microbiota. Emerging micropollutants (EMs) encompass a broad spectrum of compounds, including pharmaceutically active chemicals, personal care products, pesticides, industrial chemicals, steroid hormones, toxic nanomaterials, microplastics, heavy metals, and microorganisms. The pervasive and enduring nature of EMs has resulted in a detrimental impact on global urban water systems. Of late, these contaminants are receiving more attention due to their inherent potential to generate environmental toxicity and adverse health effects on humans and aquatic life. Although little progress has been made in discovering removal methodologies for EMs, a basic categorization procedure is required to identify and restrict the EMs to tackle the problem of these emerging contaminants. The present review paper provides a crude classification of EMs and their associated negative impact on aquatic life. Furthermore, it delves into various nanotechnology-based approaches as effective solutions to address the challenge of removing EMs from water, thereby ensuring potable drinking water. To conclude, this review paper addresses the challenges associated with the commercialization of nanomaterial, such as toxicity, high cost, inadequate government policies, and incompatibility with the present water purification system and recommends crucial directions for further research that should be pursued.
Collapse
Affiliation(s)
- Nishita Narwal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India.
| | - Navish Kataria
- Department of Environmental Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India.
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Sudhir Gopalrao Warkar
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur Village, Rohini, 110042, New Delhi, India
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Suresh Ghotekar
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
13
|
Sharma R, Garg R, Bali M, Eddy NO. Biogenic synthesis of iron oxide nanoparticles using leaf extract of Spilanthes acmella: antioxidation potential and adsorptive removal of heavy metal ions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1345. [PMID: 37857875 DOI: 10.1007/s10661-023-11860-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
The sequestration of contaminants from wastewater, such as heavy metals, has become a major global issue. Multiple technologies have been developed to address this issue. Nanotechnology is attracting significant interest as a new technology, and numerous nanomaterials have been produced for sequestrating heavy metals from polluted water due to their superior properties arising from the nanoscale effect. This study reports biosynthesis of iron oxide nanoparticles (IO-NPs) and their applications for adsorptive sequestration of various metal ions from aqueous solutions. Biosynthesis of IO-NPs has been carried out by using leaf extract of Spilanthes acmella, a medicinal plant. FTIR analysis of the leaf extract and biosynthesized IO-NPs marked the role of various functional groups in biosynthesis of IO-NPs. FESEM analysis revealed the average size range of IO-NPs as 50 to 80 nm, while polydisperse nature was confirmed by DLS analysis. EDX analysis revealed the presence of Fe, O, and C atoms in the elemental composition of the NPs. The antioxidant potential of the biosynthesized IO-NPs (IC50 = 136.84 µg/mL) was confirmed by DPPH assay. IO-NPs were also used for the adsorptive removal of As3+, Co2+, Cd2+, and Cu2+ ions from aqueous solutions with process optimization at an optimized pH (7.0) using dosage of IO-NPs as 0.6 g/L (As3+ and Co2+) and 0.8 g/L (Cd2+ and Cu2+). Adsorption isotherm analysis revealed the maximum adsorption efficiency for As3+ (21.83 mg/g) followed by Co2+ (20.43 mg/g), Cu2+ (15.29 mg/g), and Cd2+ (13.54 mg/g) using Langmuir isotherm model. The biosynthesized IO-NPs were equally efficient in the simultaneous sequestration of these heavy metal ions signifying their potential as effective nanoadsorbents.
Collapse
Affiliation(s)
- Rajat Sharma
- Department of Chemistry, USS, Rayat-Bahra University, Chandigarh, 140104, India
| | - Rajni Garg
- Department of Applied Sciences, Galgotias College of Engineering and Technology, Greater Noida (UP), 201310, India.
| | - Manoj Bali
- Department of Chemistry, USS, Rayat-Bahra University, Chandigarh, 140104, India
| | - Nnabuk O Eddy
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
14
|
Garg R, Garg R, Khan MA, Bansal M, Garg VK. Utilization of biosynthesized silica-supported iron oxide nanocomposites for the adsorptive removal of heavy metal ions from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:81319-81332. [PMID: 35672639 DOI: 10.1007/s11356-022-21111-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
This study deals with heavy metal ions removal from simulated water using biosynthesized silica-supported iron oxide nanocomposites (nano-IOS). Agricultural and garden wastes have been utilized to prepare nano-IOS through a green synthesis process. Nano-IOS was characterized by XRD, SEM, FTIR, and zeta potential analysis. The nanocomposites were used to remove five heavy metals, viz., Pb2+, Cd2+, Ni2+, Cu2+, and Zn2+, with optimization of reaction parameters including pH, the concentration of heavy metals, adsorbent dosage, and contact time in batch mode experiments. The optimized dose of nano-IOS was 0.75 g/L for the adsorption of Pb2+, Cd2+, Ni2+, Cu2+, and Zn2+ (10.0 mg/L) with a contact duration of 70 min at pH 5.0 for Pb2+, Cd2+, and Cu2+ and 6.0 for Ni2+ and Zn2+. The adsorption behavior of the nano-adsorbent was well described by Langmuir adsorption isotherm and pseudo-second-order kinetic model indicating chemisorption on the surface of nano-IOS. The adsorption was also found spontaneous and endothermic. Thus, the environmentally benign and bio-synthesized nano-IOS can be utilized as an effective nano-adsorbent for the rapid sequestration of heavy metal ions from water and wastewater.
Collapse
Affiliation(s)
- Rishav Garg
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Rajni Garg
- R&D Department, Institute of Sci-Tech Affairs, Mohali, Punjab, 140301, India.
| | - Md Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Manjeet Bansal
- Department of Civil Engineering, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Vinod Kumar Garg
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, 151001, Punjab, India.
| |
Collapse
|
15
|
Singh S, N P, Naik TSSK, Basavaraju U, Thamaraiselvan C, Behera SK, Kour R, Dwivedi P, Subramanian S, Khan NA, Singh J, Ramamurthy PC. Removal of Pb ions using green Co 3O 4 nanoparticles: Simulation, modeling, adsorption, and biological studies. ENVIRONMENTAL RESEARCH 2023; 222:115335. [PMID: 36693464 DOI: 10.1016/j.envres.2023.115335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/27/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Chemical co-precipitation synthesized novel and green cobalt-oxide nanoparticles (Co3O4-NPs) utilizing cobalt nitrate as cobalt precursors. FTIR, Raman, scanning electron microscopy, UV visible, X-ray powder diffraction, and BET was used to analyze the surface characteristics, composition, and morphology, of the NPs. These green Co3O4-NPs were employed to remove Pb ions from simulated wastewater solutions at various pH, adsorbate, temperature, and dose concentrations. At dose 20 mg/L, pH 6.0, 20 mg/L (Pb(II) solution, 25 °C of temperature, and 45 min for equilibrium, nearly 99.44% of Pb ions were removed. To evaluate the kinetic data, four different kinetic equations were used. The data fit the Elovich rate equation better than the other three models. Thermodynamic and isothermal studies were also evaluated, and the maximum adsorption capacity of 450.45 mg/g was observed at 298.15 K. 0.1 M HNO3, and 0.1 HCl were used to regenerate used Co3O4-NPs. Simulation results show the strong correlation of the Co atom in the Co3O4-NPs generates active delocalized surface states, which are energetically most favorable for heavy metal (Pb ions) adsorption and removal, supporting the experimental outcomes. In concluding remarks, green Co3O4-NPs can also be used as an adsorbent to remove Pb ions from wastewater bodies.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Pavithra N
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - T S S K Naik
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - U Basavaraju
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - C Thamaraiselvan
- Inter Disciplinary Centre for Energy Research (ICER), Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - S K Behera
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Retinder Kour
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - S Subramanian
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Nadeem A Khan
- Department of Civil Engineering, Mewat Engineering College, Nuh, Haryana, 122107, India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
16
|
Feng H, Xu T, Zhu Y, Chen Y, Su J, Ha E, Jia R, Zhang K, Ma L, Wang L. A facile room temperature method to recycle Cd from CdS. Heliyon 2023; 9:e15229. [PMID: 37095936 PMCID: PMC10122037 DOI: 10.1016/j.heliyon.2023.e15229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Cadmium-based semiconductors have a wide range of applications in light-emitting, energy conversion, photodetection and artificial photosynthesis. With the concern about the potential toxicity of Cd, it is necessary to recycle the element from the Cd based semiconductors. Commonly, the precipitation of Cd cations with S2- is deemed as the end point of recycling. However, actually, CdS is easy to be oxidized and released into the environment and accumulate in the food chain. It still remains challenges on how to refine the Cd element and convert it to the raw material. Herein, we demonstrate a facile room temperature method for recycling Cd from CdS. Cd can be produced from CdS within 3 h with the help of the lithium-ethylenediamine solution. DFT calculations further confirm that the high surface energy of (100) and (101) planes are selectively attacked by the solvated electrons in the solution, which is in good accordance with the XRD, STEM-HAADF and XPS characterizations. With a total recovery efficiency of 88%, Cd is successfully recovered from the CdS powder. This method provides a new perspective on the treatment of Cd-based semiconductor waste, which is of great significance for the recycling of cadmium metal.
Collapse
|
17
|
Alhalili Z. Metal Oxides Nanoparticles: General Structural Description, Chemical, Physical, and Biological Synthesis Methods, Role in Pesticides and Heavy Metal Removal through Wastewater Treatment. Molecules 2023; 28:3086. [PMID: 37049850 PMCID: PMC10096196 DOI: 10.3390/molecules28073086] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Nanotechnology (NT) is now firmly established in both the private home and commercial markets. Due to its unique properties, NT has been fully applied within multiple sectors like pharmacy and medicine, as well as industries like chemical, electrical, food manufacturing, and military, besides other economic sectors. With the growing demand for environmental resources from an ever-growing world population, NT application is a very advanced new area in the environmental sector and offers several advantages. A novel template synthesis approach is being used for the promising metal oxide nanostructures preparation. Synthesis of template-assisted nanomaterials promotes a greener and more promising protocol compared to traditional synthesis methods such as sol-gel and hydrothermal synthesis, and endows products with desirable properties and applications. It provides a comprehensive general view of current developments in the areas of drinking water treatment, wastewater treatment, agriculture, and remediation. In the field of wastewater treatment, we focus on the adsorption of heavy metals and persistent substances and the improved photocatalytic decomposition of the most common wastewater pollutants. The drinking water treatment section covers enhanced pathogen disinfection and heavy metal removal, point-of-use treatment, and organic removal applications, including the latest advances in pesticide removal.
Collapse
Affiliation(s)
- Zahrah Alhalili
- Department of Chemistry, College of Science and Arts-Sajir, Shaqra University, Sahqra 17684, Saudi Arabia
| |
Collapse
|
18
|
Synthesis and Surface Modification of Iron Oxide Nanoparticles for the Extraction of Cadmium Ions in Food and Water Samples: A Chemometric Study. SEPARATIONS 2023. [DOI: 10.3390/separations10020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
In this project, a prompt, efficient, and effective method for Cd2+ ions extraction from different food and water samples using magnetic dispersion-based solid phase extraction by functionalized iron oxide nanoparticles was proposed. Iron oxide nanoparticles were synthesized through the co-precipitation method followed by functionalization with tetraethyl orthosilicate (TEOS) and 3-aminopropyl silane (APTES) to obtain Fe3O4@SiO2@APTES. This composite was characterized through different techniques, including vibrating sample magnetometer, dynamic light scattering, zeta potential, FTIR, SEM, XRD, and BET. Variables studied were pH, temperature, sorbent amount, sonication time, and sample and eluent volume affecting the sorption efficacy of freshly synthesized sorbent. Plackett–Burman design was utilized for the identification of significant factors for microextraction of target analyte, while the central composite design was utilized for the optimization of significant factors. Detection and quantification limits obtained were 0.17 and 0.58 μgL−1, respectively, with an enhancement factor of 83.5. Under optimum conditions, Fe3O4@SiO2@APTES showed good stability even after >80 adsorption/desorption cycles run while maintaining over 96% analyte recoveries. The developed method was validated by assessing certified reference materials and standard addition methodology for Cd2+ detection in real samples. To confirm the precision, repeatability (RSDr) and reproducibility (RSDR) were calculated and found as <3.0 (n = 7) and <7.5 (n = 15), respectively. Furthermore, in accordance with the ISO/IEC 17025 recommendations, the validation was also confirmed through a “bottom-up” approach while considering all possible uncertainties in data.
Collapse
|
19
|
Adsorption of Arsenic, Lead, Cadmium, and Chromium Ions from Aqueous Solution Using a Protonated Chabazite: Preparation, Characterization, and Removal Mechanism. ADSORPT SCI TECHNOL 2023. [DOI: 10.1155/2023/2018121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The adsorption of As(V), Pb(II), Cd(II), and Cr(III) ions from aqueous solutions on natural and modified chabazite was studied. The functionalization of chabazite was performed via a protonation and calcination with the aim of generating Lewis acid sites to improve its anion exchange properties. The surface and physicochemical properties of both adsorbents were studied and compared. The adsorption isotherms of tested heavy metal ions were quantified and modeled to identify the best isotherm equation. Steric parameters for the adsorption of these ions were also calculated with a monolayer statistical physics model. Natural chabazite showed the maximum adsorption capacity for Pb(II), while the modified zeolite improved its As(V) properties in 79%. These results showed that the modified zeolite was able to remove both cations and anions from aqueous solution. The application of this functionalized chabazite can be extended for the removal of other anionic pollutants from water, thus opening the possibility of preparing new adsorbents with tailored properties for water treatment.
Collapse
|
20
|
Biocatalysis as a Green Approach for Synthesis of Iron Nanoparticles—Batch and Microflow Process Comparison. Catalysts 2023. [DOI: 10.3390/catal13010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
There is a growing need for production of iron particles due to their possible use in numerous systems (e.g., electrical, magnetic, catalytic, biological and others). Although severe reaction conditions and heavy solvents are frequently used in production of nanoparticles, green synthesis has arisen as an eco-friendly method that uses biological catalysts. Various precursors are combined with biological material (such as enzymes, herbal extracts, biomass, bacteria or yeasts) that contain chemicals from the main or secondary metabolism that can function as catalysts for production of nanoparticles. In this work, batch (“one-pot”) biosynthesis of iron nanoparticles is reviewed, as well as the possibilities of using microfluidic systems for continuous biosynthesis of iron nanoparticles, which could overcome the limitations of batch synthesis.
Collapse
|
21
|
Bioremediation of Hazardous Wastes Using Green Synthesis of Nanoparticles. Processes (Basel) 2023. [DOI: 10.3390/pr11010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Advanced agronomic methods, urbanisation, and industrial expansion contaminate air, water and soil, globally. Agricultural and industrial activities threaten living biota, causing biodiversity loss and serious diseases. Strategies such as bioremediation and physiochemical remediation have not been effectively beneficial at treating pollutants. Metal-based nanoparticles (NPs) such as copper, zinc, silver, gold, etc., in various nanoformulations and nanocomposites are used more and more as they effectively resist the uptake of toxic compounds via plants by facilitating their immobilisation. According to studies, bio-based NP synthesis is a recent and agroecologically friendly approach for remediating environmental waste, which is effective against carcinogens, heavy metal contamination, treating marine water polluted with excessive concentrations of phosphorus, nitrogen and harmful algae, and hazardous dye- and pesticide-contaminated water. Biogenic resources such as bacteria, fungi, algae and plants are extensively used for the biosynthesis of NPs, particularly metallic NPs. Strategies involving green synthesis of NPs are nontoxic and could be employed for commercial scale production. Here, the focus is on the green synthesis of NPs for reduction of hazardous wastes to help with the clean-up process.
Collapse
|
22
|
Bhutto AA, Baig JA, Sirajuddin, Kazi TG, Sierra-Alvarez R, Akhtar K, Hussain S, Afridi HI, Hol A, Samejo S. Biosynthesis and Analytical Characterization of Iron Oxide Nanobiocomposite for In-Depth Adsorption Strategy for the Removal of Toxic Metals from Drinking Water. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022; 48:7411-7424. [PMID: 36466582 PMCID: PMC9685060 DOI: 10.1007/s13369-022-07477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
Abstract
The biosynthesis of the iron oxide nanoparticles was done using Ixoro coccinea leaf extract, followed by the fabrication of iron oxide nanobiocomposites (I-Fe3O4-NBC) using chitosan biopolymer. Furthermore, the synthesized I-Fe3O4-NPs and I-Fe3O4-NBC were characterized, and I-Fe3O4-NBC was applied to remove toxic metals (TMs: Cd, Ni, and Pb) from water. The characterization study confirmed that the nanostructure, porous, rough, crystalline structure, and different functional groups of chitosan and I-Fe3O4-NPs in I-Fe3O4-NBCs showed their feasibility for the application as excellent adsorbents for quantitative removal of TMs. The batch mode strategy as feasibility testing was done to optimize different adsorption parameters (pH, concentrations of TMs, dose of I-Fe3O4-NBC, contact time, and temperature) for maximum removal of TMs from water by Fe3O4-NBC. The maximum adsorption capacities using nanocomposites for Cd, Ni, and Pb were 66.0, 60.0, and 66.4 mg g-1, respectively. The adsorption process follows the Freundlich isotherm model by I-Fe3O4-NBC to remove Cd and Ni, while the Pb may be adsorption followed by multilayer surface coverage. The proposed adsorption process was best fitted to follow pseudo-second-order kinetics and showed an exothermic, favorable, and spontaneous nature. In addition, the I-Fe3O4-NBC was applied to adsorption TMs from surface water (%recovery > 95%). Thus, it can be concluded that the proposed nanocomposite is most efficient in removing TMs from drinking water up to recommended permissible limit.
Collapse
Affiliation(s)
- Ashfaque Ali Bhutto
- Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Jameel Ahmed Baig
- Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Sirajuddin
- ICCBS, HEJ, University of Karachi, Karachi, 75270 Pakistan
| | - Tasneem Gul Kazi
- Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721-0011 USA
| | - Khalil Akhtar
- Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Sajjad Hussain
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, 05422 Pakistan
| | - Hassan Imran Afridi
- Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Aysen Hol
- Chemistry Department, Pamukkale University, 20017 Denizli, Turkey
| | - Suraya Samejo
- Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
- Chemistry Department, Pamukkale University, 20017 Denizli, Turkey
| |
Collapse
|
23
|
Vincent J, Lau KS, Evyan YCY, Chin SX, Sillanpää M, Chia CH. Biogenic Synthesis of Copper-Based Nanomaterials Using Plant Extracts and Their Applications: Current and Future Directions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3312. [PMID: 36234439 PMCID: PMC9565561 DOI: 10.3390/nano12193312] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Plants have been used for multiple purposes over thousands of years in various applications such as traditional Chinese medicine and Ayurveda. More recently, the special properties of phytochemicals within plant extracts have spurred researchers to pursue interdisciplinary studies uniting nanotechnology and biotechnology. Plant-mediated green synthesis of nanomaterials utilises the phytochemicals in plant extracts to produce nanomaterials. Previous publications have demonstrated that diverse types of nanomaterials can be produced from extracts of numerous plant components. This review aims to cover in detail the use of plant extracts to produce copper (Cu)-based nanomaterials, along with their robust applications. The working principles of plant-mediated Cu-based nanomaterials in biomedical and environmental applications are also addressed. In addition, it discusses potential biotechnological solutions and new applications and research directions concerning plant-mediated Cu-based nanomaterials that are yet to be discovered so as to realise the full potential of the plant-mediated green synthesis of nanomaterials in industrial-scale production and wider applications. This review provides readers with comprehensive information, guidance, and future research directions concerning: (1) plant extraction, (2) plant-mediated synthesis of Cu-based nanomaterials, (3) the applications of plant-mediated Cu-based nanomaterials in biomedical and environmental remediation, and (4) future research directions in this area.
Collapse
Affiliation(s)
- Jei Vincent
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Kam Sheng Lau
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Yang Chia-Yan Evyan
- Faculty of Engineering, Science and Technology, Nilai University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Siew Xian Chin
- ASASIpintar Program, Pusat GENIUS@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mika Sillanpää
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Sustainable Membrane Technology Research Group (SMTRG), Chemical Engineering Department, Persian Gulf University, Bushehr P.O. Box 75169-13817, Iran
- Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang 314213, China
| | - Chin Hua Chia
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
24
|
Poh Yan L, Gopinath SCB, Subramaniam S, Chen Y, Velusamy P, Chinni SV, Gobinath R, Lebaka VR. Greener synthesis of nanostructured iron oxide for medical and sustainable agro-environmental benefits. Front Chem 2022; 10:984218. [PMID: 36212054 PMCID: PMC9533193 DOI: 10.3389/fchem.2022.984218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/23/2022] [Indexed: 12/07/2022] Open
Abstract
Nanoscale iron oxide-based nanostructures are among the most apparent metallic nanostructures, having great potential and attracting substantial interest due to their unique superparamagnetic properties. The green production of nanostructures has received abundant attention and been actively explored recently because of their various beneficial applications and properties across different fields. The biosynthesis of the nanostructure using green technology by the manipulation of a wide variety of plant materials has been the focus because it is biocompatible, non-toxic, and does not include any harmful substances. Biological methods using agro-wastes under green synthesis have been found to be simple, environmentally friendly, and cost-effective in generating iron oxide-based nanostructures instead of physical and chemical methods. Polysaccharides and biomolecules in agro-wastes could be utilized as stabilizers and reducing agents for the green production of nanostructured iron oxide towards a wide range of benefits. This review discusses the green production of iron oxide-based nanostructures through a simple and eco-friendly method and its potential applications in medical and sustainable agro-environments. This overview provides different ways to expand the usage of iron oxide nanomaterials in different sectors. Further, provided the options to select an appropriate plant towards the specific applications in agriculture and other sectors with the recommended future directions.
Collapse
Affiliation(s)
- Leong Poh Yan
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, Perlis, Malaysia
- Centre for Chemical Biology (CCB), Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia
- *Correspondence: Subash C. B. Gopinath,
| | - Sreeramanan Subramaniam
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
- Centre for Chemical Biology (CCB), Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, Georgetown, Penang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Palaniyandi Velusamy
- Research & Development, Sree Balaji Medical College and Hospital (SBMCH)- BIHER, Chennai, Tamil Nadu, India
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Ramachawolran Gobinath
- Department of Foundation, RCSI & UCD Malaysia Campus, Georgetown, Pulau Pinang, Malaysia
| | | |
Collapse
|
25
|
Al-Qasmi N, Al-Gethami W, Alhashmialameer D, Ismail SH, Sadek AH. Evaluation of Green-Synthesized Cuprospinel Nanoparticles as a Nanosensor for Detection of Low-Concentration Cd(II) Ion in the Aqueous Solutions by the Quartz Crystal Microbalance Method. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6240. [PMID: 36143550 PMCID: PMC9502900 DOI: 10.3390/ma15186240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Cd(II) heavy metal is an extremely dangerous hazardous material for both humans and the environment. Its high toxicity is the reason behind the examination of new techniques for detecting very small concentrations of Cd(II). Recently, Quartz Crystal Microbalance (QCM) has been one of the techniques that have been widely used to detect trace heavy metal ions in solutions. It is a simple, inexpensive, portable, and sensitive gravimetric sensor due to its quality sensitivity lowest to nanograms. In this work, Cuprospinel nanoparticles were synthesized through the green synthesis approach using Psidium guajava L. leaf extract as a reducing agent, which is the first scientific description to report the preparation of these nanoparticles by this method. Subsequently, the synthesized nanoparticles were subjected to the characterization of their crystallinity, structure, and morphology by the XRD, N2 adsorption-desorption, zeta potential, DLS, AFM, SEM, and TEM analyzers. The prepared Cuprospinel nanoparticles were evaluated as a nanosensor for the detection of the very low concentration of Cd(II) ions in aqueous solutions using the QCM technique. The results of the characterization proved that the Cuprospinel nanoparticles have formed in the nanoscale with sub-spherical shapes and particles size ranging from 20 to 80 nm. The BET surface area and pore size analysis revealed that the synthesized Cuprospinel nanoparticles possess a surface area of 47.3 m2/g, an average pore size of 1.5 nm, and a micropore volume of 0.064 cc/g. The QCM results demonstrated the success of the Cuprospinel nanoparticles sensor in detecting the tiny amounts of Cd(II) ions in the aqueous solutions with concentrations reaching about 3.6 ng/L.
Collapse
Affiliation(s)
- Noha Al-Qasmi
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Wafa Al-Gethami
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Dalal Alhashmialameer
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Sameh H. Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Campus, Cairo University, 6th October City, Giza 12588, Egypt
| | - Ahmed H. Sadek
- Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Campus, Cairo University, 6th October City, Giza 12588, Egypt
- Zewail City of Science, Technology and Innovation, 6th October City, Giza 12578, Egypt
| |
Collapse
|
26
|
Mechanism of As(V) adsorption from aqueous solution by chitosan-modified diatomite adsorbent. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2021.1876592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
27
|
Ionic gelation synthesis, characterization and adsorption studies of cross-linked chitosan-tripolyphosphate (CS-TPP) nanoparticles for removal of As (V) ions from aqueous solution: kinetic and isotherm studies. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.1933532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
28
|
Plant-Derived Iron Nanoparticles for Removal of Heavy Metals. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1155/2022/1517849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Nanoparticle synthesis has seen exponential development recently as its characteristics of high surface area, high rate of adsorption, and easy, cost-effective synthesis have been exploited for the purpose of ground water purification via the removal of organic and inorganic compounds, along with the removal of heavy metals and microbes. The synthesis of Zero-Valent Iron Nanoparticles (ZVI NPs) by green methods has proved to be environmentally friendly in many ways as it employs the use of naturally occurring plant extracts. These nanoparticles have large surface areas and efficiently remove heavy metals. The reducing potential of these ZVI NPs is mostly −0.44 V, thus allowing them to reduce heavy metal compounds such as cadmium, lead, zinc, copper, and arsenic present in wastewater. Irradiated nanoparticles have also exhibited antimicrobial resistance and adsorption. It is also observed that nanoparticles show a higher rate of efficacy at a lower pH. The adsorbent, which is ZVI NPs in this case, when present in large doses reduces heavy metal compounds rapidly and effectively.
Collapse
|
29
|
Gürkan EH, İlyas B. Adsorption of copper, and zinc onto novel Ca-alginate-biochar composite prepared by biochars produced from pyrolysis of groundnut husk. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1350-1363. [PMID: 35234107 DOI: 10.1080/15226514.2022.2025759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alginate-based composites have been studied for adsorption technology as adsorbents due to their biocompatible, non-toxic, and cost-effective properties. In this work, groundnut husk biochar (GHB), calcium alginate (CA), and groundnut husk biochar/calcium alginate novel composites (%10) (CA-GHB1) and (% 20) (CA-GHB2) are synthesized and characterized using BET, SEM, EDX, FTIR, TGA. Adsorption performance is compared among GHB, CA, CA-GHB1, and CA-GHB2 composites to remove Cu(II), Zn (II) from aqueous solutions. Factors affecting adsorption, as well as kinetics, equilibrium, and thermal properties of adsorption, were studied using conventional equations. Adsorption isotherm models were used for two and three-parameter isotherm models to understand the interaction between the adsorbent and the adsorbate. 24.3, 44.6, 45.6, and 40.73 mg g-1 for removal of Cu(II) on GHB, CA, CA-GHB1, and CA-GHB2 and 32.16, 25.07, 36.09, and 40.55 mg g-1 for removal of Zn(II) on GHB, CA, CA-GHB1, and CA-GHB2 found maximum adsorption capacity (Qm) calculated from Langmuir isotherm. According to D-R isotherm data, the adsorption process is classified as physical adsorption. Thermodynamically, the adsorption process is non-spontaneous and endothermic.
Collapse
Affiliation(s)
- Elif Hatice Gürkan
- Department of Chemical Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun, Turkey
| | - Berkay İlyas
- Department of Chemical Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
30
|
Jafarzadeh N, Heidari K, Meshkinian A, Kamani H, Mohammadi AA, Conti GO. Non-carcinogenic risk assessment of exposure to heavy metals in underground water resources in Saraven, Iran: Spatial distribution, monte-carlo simulation, sensitive analysis. ENVIRONMENTAL RESEARCH 2022; 204:112002. [PMID: 34499897 DOI: 10.1016/j.envres.2021.112002] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 05/22/2023]
Abstract
Groundwater aquifers are considered the second most abundant water supply for drinking water all over the world. In Iran, ground waters are commonly employed for drinking water, irrigation, and industrial purposes. Heavy metals (HMs) pose human concerns about the groundwater contamination; these pollutants are recognized to be capable of bio-accumulation, long persistence in the natural environment, and toxic effects. In the present research, the content of HMs: Chromium (Cr), Cadmium (Cd), and Lead (Pb) were detected in 89 water samples collected in 2018 by underground water supplies (active wells) of Saravan city. Hazard Quotient (HQ) and Monte Carlo Simulation approach with 10,000 repetitions were applied to discover the human non-carcinogenic impacts of HMs in four groups of ages (adults, teenagers, children, and infants) of consumers. The concentrations of Cr, Pb, and Cd were in the range of 0.49-20, 0.1 to 58.34, and 0.11-12.8 μg/L, respectively. The mean HQ calculated due to exposure to Pb (0.0018-0.0023), Cr (0.0112-0.0186), and Cd (0.0370-0.0615) were lower than one. The findings of sensitivity analysis revealed that HMs concentration had the most contribution effect on human non-carcinogenic risk analysis in four different exposed populations. This study could assist researchers to perform more comprehensive studies with more samples. Therefore, further research is required for decision-makers to plan proper measurements properly.
Collapse
Affiliation(s)
- Naghmeh Jafarzadeh
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kambiz Heidari
- Department of Chemical Engineering, Payame Noor University, Tehran, Iran
| | - Ali Meshkinian
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hossein Kamani
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Gea Oliveri Conti
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy
| |
Collapse
|
31
|
Ahmed SF, Mofijur M, Rafa N, Chowdhury AT, Chowdhury S, Nahrin M, Islam ABMS, Ong HC. Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. ENVIRONMENTAL RESEARCH 2022; 204:111967. [PMID: 34450159 DOI: 10.1016/j.envres.2021.111967] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 05/27/2023]
Abstract
Green synthesis approaches of nanomaterials (NMs) have received considerable attention in recent years as it addresses the sustainability issues posed by conventional synthesis methods. However, recent works of literature do not present the complete picture of biogenic NMs. This paper addresses the previous gaps by providing insights into the stability and toxicity of NMs, critically reviewing the various biological agents and solvents required for synthesis, sheds light on the factors that affect biosynthesis, and outlines the applications of NMs across various sectors. Despite the advantages of green synthesis, current methods face challenges with safe and appropriate solvent selection, process parameters that affect the synthesis process, nanomaterial cytotoxicity, bulk production and NM morphology control, tedious maintenance, and knowledge deficiencies. Consequently, the green synthesis of NMs is largely trapped in the laboratory phase. Nevertheless, the environmental friendliness, biocompatibility, and sensitivities of the resulting NMs have wider applications in biomedical science, environmental remediation, and consumer industries. To the scale-up application of biogenic NMs, future research should be focused on understanding the mechanisms of the synthesis processes, identifying more biological and chemical agents that can be used in synthesis, and developing the practicality of green synthesis at the industrial scale, and optimizing the factors affecting the synthesis process.
Collapse
Affiliation(s)
- Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh.
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| | - Nazifa Rafa
- Environmental Sciences Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | | | - Sidratun Chowdhury
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh; Bangladesh Center for Advanced Studies (BCAS), Bangladesh
| | - Muntasha Nahrin
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - A B M Saiful Islam
- Department of Civil and Construction Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, 31451, Saudi Arabia
| | - Hwai Chyuan Ong
- Centre for Green Technology, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia.
| |
Collapse
|
32
|
Omran BA, Baek KH. Valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment: Approaching green chemistry and circular economy principles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114806. [PMID: 35240500 DOI: 10.1016/j.jenvman.2022.114806] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Water pollution is one of the most critical issues worldwide and is a priority in all scientific agendas. Green nanotechnology presents a plethora of promising avenues for wastewater treatment. This review discusses the current trends in the valorization of zero-cost, biodegradable, and readily available agro-industrial biowaste to produce green bio-nanocatalysts and bio-nanosorbents for wastewater treatment. The promising roles of green bio-nanocatalysts and bio-nanosorbents in removing organic and inorganic water contaminants are discussed. The potent antimicrobial activity of bio-derived nanodisinfectants against water-borne pathogenic microbes is reviewed. The bioactive molecules involved in the chelation and tailoring of green synthesized nanomaterials are highlighted along with the mechanisms involved. Furthermore, this review emphasizes how the valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment adheres to the fundamental principles of green chemistry, circular economy, nexus thinking, and zero-waste manufacturing. The potential economic, environmental, and health impacts of valorizing agro-industrial biowaste to green nanomaterials are highlighted. The challenges and future outlooks for the management of agro-industrial biowaste and safe application of green nanomaterials for wastewater treatment are summarized.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
33
|
Suhag R, Kumar R, Dhiman A, Sharma A, Prabhakar PK, Gopalakrishnan K, Kumar R, Singh A. Fruit peel bioactives, valorisation into nanoparticles and potential applications: A review. Crit Rev Food Sci Nutr 2022; 63:6757-6776. [PMID: 35196934 DOI: 10.1080/10408398.2022.2043237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nanotechnology is a rapidly growing field with profound applications in different domains, particularly in food science and technology. Nanoparticles (NPs) synthesis, an integral part of nanotechnology-based applications, is broadly classified into chemical, physical and biosynthesis methods. Chemically sensitive and energy-intensive procedures employed for NPs synthesis are some of the limits of traditional chemical approaches. Recent research has focused on developing easy, nontoxic, cost-effective, and environment-friendly NPs synthesis during the last decade. Biosynthesis approaches have been developed to achieve this goal as it is a viable alternative to existing chemical techniques for the synthesis of metallic nanomaterials. Fruit peels contain abundant bioactive compounds including phenols, flavonoids, tannins, triterpenoids, steroids, glycosides, carotenoids, anthocyanins, ellagitannins, vitamin C, and essential oils with substantial health benefits, anti-bacterial and antioxidant properties, generally discarded as byproduct or waste by the fruit processing industry. NPs synthesized using bioactive compounds from fruit peel has futuristic applications for an unrealized market potential for nutraceutical and pharmaceutical delivery. Numerous studies have been conducted for the biosynthesis of metallic NPs such as silver (AgNPs), gold (AuNPs), zinc oxide, iron, copper, palladium and titanium using fruit peel extract, and their synthesis mechanism have been reported in the present review. Additionally, NPs synthesis methods and applications of fruit peel NPs have been discussed.
Collapse
Affiliation(s)
- Rajat Suhag
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Rohit Kumar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
| | - Atul Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
| | - Arun Sharma
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pramod K Prabhakar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
| | - Krishna Gopalakrishnan
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
| | - Ritesh Kumar
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anurag Singh
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
| |
Collapse
|
34
|
Xu W, Yao S, Ji X, Zhang H, Chen X, Chen X. Effective Recovery of Au from Low-Concentration Solutions by a Self-Synthesized Mesoporous Resin Modified by Dimethylamine. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wenping Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640, PR China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, PR China
| | - Shimiao Yao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640, PR China
- CAS Key Laboratory of Renewable Energy, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640, PR China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640, PR China
| | - Xuran Ji
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640, PR China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, PR China
| | - Hairong Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640, PR China
- CAS Key Laboratory of Renewable Energy, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640, PR China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640, PR China
| | - Xuefang Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640, PR China
- CAS Key Laboratory of Renewable Energy, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640, PR China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640, PR China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, PR China
| | - Xinde Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640, PR China
- CAS Key Laboratory of Renewable Energy, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640, PR China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640, PR China
| |
Collapse
|
35
|
Phouthavong V, Yan R, Nijpanich S, Hagio T, Ichino R, Kong L, Li L. Magnetic Adsorbents for Wastewater Treatment: Advancements in Their Synthesis Methods. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1053. [PMID: 35160996 PMCID: PMC8838955 DOI: 10.3390/ma15031053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023]
Abstract
The remediation of water streams, polluted by various substances, is important for realizing a sustainable future. Magnetic adsorbents are promising materials for wastewater treatment. Although numerous techniques have been developed for the preparation of magnetic adsorbents, with effective adsorption performance, reviews that focus on the synthesis methods of magnetic adsorbents for wastewater treatment and their material structures have not been reported. In this review, advancements in the synthesis methods of magnetic adsorbents for the removal of substances from water streams has been comprehensively summarized and discussed. Generally, the synthesis methods are categorized into five groups, as follows: direct use of magnetic particles as adsorbents, attachment of pre-prepared adsorbents and pre-prepared magnetic particles, synthesis of magnetic particles on pre-prepared adsorbents, synthesis of adsorbents on preprepared magnetic particles, and co-synthesis of adsorbents and magnetic particles. The main improvements in the advanced methods involved making the conventional synthesis a less energy intensive, more efficient, and simpler process, while maintaining or increasing the adsorption performance. The key challenges, such as the enhancement of the adsorption performance of materials and the design of sophisticated material structures, are discussed as well.
Collapse
Affiliation(s)
- Vanpaseuth Phouthavong
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
| | - Ruixin Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Y.); (L.L.)
| | - Supinya Nijpanich
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
| | - Takeshi Hagio
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
- Institute of Materials Innovation, Institutes for Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ryoichi Ichino
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
- Institute of Materials Innovation, Institutes for Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Long Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Y.); (L.L.)
| | - Liang Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Y.); (L.L.)
| |
Collapse
|
36
|
Esfanjani L, Farhadyar N, Shahbazi HR, Fathi F. Development of a method for cadmium ion removal from the water using nano γ-alumina/β-cyclodextrin. Toxicol Rep 2021; 8:1877-1882. [PMID: 34900603 PMCID: PMC8639390 DOI: 10.1016/j.toxrep.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/17/2021] [Accepted: 11/08/2021] [Indexed: 12/07/2022] Open
Abstract
Cadmium is one of the heavy metals, which is harmful to humans and animals. The toxicity of this metal in the body has caused many studies to remove it in water and soil. Because according to WHO, the maximum concentration of cadmium in drinking water is 3 μg/L. In this study, trace amount of Cd ion or Cd(II) in water and in the industrial effluent sample were determined via the solid phase extraction approach based on the γ-Alumina/β-Cyclodextrin as a sorbent followed by flame atomic absorption spectrometry. The effects of various parameters such as pH, the Cd(II) concentration, amount of sorbent, and type and concentration of the eluting agents were determined on the removal efficiency. Maximum removal of Cd(II) was obtained at pH 7. The limit of detection (LOD) and repeatability (RSD%) values (0.389) obtained were found to be in the ranges of 6.77-6.81 μg/L. The results showed adsorbed cadmium ions are recovered on the nano γ- alumina/β-cyclodextrin surface with an optimum amount of 16 mL of 0.3 M nitric acid as eluting agent at pH 7.
Collapse
Affiliation(s)
- L Esfanjani
- Department of Chemistry, Varamin- Pishva Branch, Islamic Azad University, Varamin, Iran
| | - N Farhadyar
- Department of Chemistry, Varamin- Pishva Branch, Islamic Azad University, Varamin, Iran
| | - H R Shahbazi
- Department of Chemistry, Varamin- Pishva Branch, Islamic Azad University, Varamin, Iran
| | - F Fathi
- Department of Medicinal Chemistry, Pharmacy Faculty, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
37
|
Ahmad KS, Yaqoob S, Gul MM. Dynamic green synthesis of iron oxide and manganese oxide nanoparticles and their cogent antimicrobial, environmental and electrical applications. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
The scientific community is inclined towards addressing environmental and energy concerns through sustainable means. Conventional processes such as chemical synthesis, involve the usage of environmentally harmful ligands and high tech facilities, which are time-consuming, expensive, energy-intensive, and require extreme conditions for synthesis. Plant-based synthesis is valuable and sustainable for the ecosystem. The use of plant-based precursors for nanoparticle synthesis eliminates the menace of toxic waste contamination. The present review elucidates that the plant based synthesized iron oxide and manganese oxide nanoparticles have tremendous and exceptional applications in various fields such as antimicrobial and antioxidative domains, environmental, electrical and sensing properties. Hence, the literature reviewed explains that plant based synthesis of nanoparticles is an adept and preferred technique. These important transition oxide metal nanoparticles have great applicability in ecological, environmental science as well as electrochemistry and sensing technology. Both these metal oxides display a stable and adaptable nature, which can be functionalized for a specific application, thus exhibiting great potential for efficiency. The current review epitomizes all the latest reported work on the synthesis of iron and manganese oxide nanoparticles through a greener approach along with explaining various significant applications keeping in view the concept of sustainability.
Collapse
Affiliation(s)
- Khuram Shahzad Ahmad
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 , Rawalpindi , Pakistan
| | - Sidra Yaqoob
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 , Rawalpindi , Pakistan
| | - Mahwash Mahar Gul
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 , Rawalpindi , Pakistan
| |
Collapse
|
38
|
S, Misra M, Ghosh Sachan S. Nanobioremediation of heavy metals: Perspectives and challenges. J Basic Microbiol 2021. [DOI: 10.1002/jobm.202100384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Sunanda
- Department of Bioengineering and Biotechnology Birla Institute of Technology, Mesra Ranchi Jharkhand India
| | - Modhurima Misra
- Department of Bioengineering and Biotechnology Birla Institute of Technology, Mesra Ranchi Jharkhand India
| | - Shashwati Ghosh Sachan
- Department of Bioengineering and Biotechnology Birla Institute of Technology, Mesra Ranchi Jharkhand India
| |
Collapse
|
39
|
Haydar MS, Das D, Ghosh S, Mandal P. Implementation of mature tea leaves extract in bioinspired synthesis of iron oxide nanoparticles: preparation, process optimization, characterization, and assessment of therapeutic potential. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01872-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Ituen E, Yuanhua L, Verma C, Alfantazi A, Akaranta O, Ebenso EE. Synthesis and characterization of walnut husk extract-silver nanocomposites for removal of heavy metals from petroleum wastewater and its consequences on pipework steel corrosion. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Saeed AAH, Harun NY, Sufian S, Bilad MR, Zakaria ZY, Jagaba AH, Ghaleb AAS, Mohammed HG. Pristine and Magnetic Kenaf Fiber Biochar for Cd 2+ Adsorption from Aqueous Solution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7949. [PMID: 34360240 PMCID: PMC8345446 DOI: 10.3390/ijerph18157949] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 02/03/2023]
Abstract
Development of strategies for removing heavy metals from aquatic environments is in high demand. Cadmium is one of the most dangerous metals in the environment, even under extremely low quantities. In this study, kenaf and magnetic biochar composite were prepared for the adsorption of Cd2+. The synthesized biochar was characterized using (a vibrating-sample magnetometer VSM), Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The adsorption batch study was carried out to investigate the influence of pH, kinetics, isotherm, and thermodynamics on Cd2+ adsorption. The characterization results demonstrated that the biochar contained iron particles that help in improving the textural properties (i.e., surface area and pore volume), increasing the number of oxygen-containing groups, and forming inner-sphere complexes with oxygen-containing groups. The adsorption study results show that optimum adsorption was achieved under pH 5-6. An increase in initial ion concentration and solution temperature resulted in increased adsorption capacity. Surface modification of biochar using iron oxide for imposing magnetic property allowed for easy separation by external magnet and regeneration. The magnetic biochar composite also showed a higher affinity to Cd2+ than the pristine biochar. The adsorption data fit well with the pseudo-second-order and the Langmuir isotherm, with the maximum adsorption capacity of 47.90 mg/g.
Collapse
Affiliation(s)
- Anwar Ameen Hezam Saeed
- Department of Chemical Engineering, University Teknologi PETRONAS, Seri Iskandar 31750, Malaysia; (A.A.H.S.); (S.S.)
- Centre of Urban Resource Sustainability, University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
| | - Noorfidza Yub Harun
- Department of Chemical Engineering, University Teknologi PETRONAS, Seri Iskandar 31750, Malaysia; (A.A.H.S.); (S.S.)
- Centre of Urban Resource Sustainability, University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
| | - Suriati Sufian
- Department of Chemical Engineering, University Teknologi PETRONAS, Seri Iskandar 31750, Malaysia; (A.A.H.S.); (S.S.)
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, University Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei;
| | - Zaki Yamani Zakaria
- School of Chemical & Energy Engineering, University Teknologi Malaysia, Skudai 81310, Malaysia;
| | - Ahmad Hussaini Jagaba
- Department of Civil and Environmental Engineering, University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (A.H.J.); (A.A.S.G.)
| | - Aiban Abdulhakim Saeed Ghaleb
- Department of Civil and Environmental Engineering, University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (A.H.J.); (A.A.S.G.)
| | - Haetham G. Mohammed
- Department of Mechanical Engineering, University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia;
| |
Collapse
|
42
|
Abstract
The past decade has witnessed a phenomenal rise in nanotechnology research due to its broad range of applications in diverse fields including food safety, transportation, sustainable energy, environmental science, catalysis, and medicine. The distinctive properties of nanomaterials (nano-sized particles in the range of 1 to 100 nm) make them uniquely suitable for such wide range of functions. The nanoparticles when manufactured using green synthesis methods are especially desirable being devoid of harsh operating conditions (high temperature and pressure), hazardous chemicals, or addition of external stabilizing or capping agents. Numerous plants and microorganisms are being experimented upon for an eco–friendly, cost–effective, and biologically safe process optimization. This review provides a comprehensive overview on the green synthesis of metallic NPs using plants and microorganisms, factors affecting the synthesis, and characterization of synthesized NPs. The potential applications of metal NPs in various sectors have also been highlighted along with the major challenges involved with respect to toxicity and translational research.
Collapse
|
43
|
Singh NB, B H Susan MA, Guin M. Applications of Green Synthesized Nanomaterials in Water Remediation. Curr Pharm Biotechnol 2021; 22:733-761. [PMID: 33109041 DOI: 10.2174/1389201021666201027160029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/22/2020] [Accepted: 08/18/2020] [Indexed: 12/07/2022]
Abstract
Water is the most important component on the earth for living organisms. With industrial development, population increase and climate change, water pollution becomes a critical issue around the world. Its contamination with different types of pollutants created naturally or due to anthropogenic activities has become the most concerned global environmental issue. These contaminations destroy the quality of water and become harmful to living organisms. A number of physical, chemical and biological techniques have been used for the purification of water, but they suffer in one or the other respect. The development of nanomaterials and nanotechnology has provided a better path for the purification of water. Compared to conventional methods using activated carbon, nanomaterials offer a better and economical approach for water remediation. Different types of nanomaterials acting as nanocatalysts, nanosorbents, nanostructured catalytic membranes, bioactive nanoparticles, nanomembranes and nanoparticles provide an alternative and efficient methodology in solving water pollution problems. However, the major issue with nanomaterials synthesized in a conventional way is their toxicity. In recent days, a considerable amount of research is being carried out on the synthesis of nanomaterials using green routes. Nanomaterials synthesized by using the green method are now being used in different technologies, including water remediation. The remediation of water by using nanomaterials synthesized by the green method has been reviewed and discussed in this paper.
Collapse
Affiliation(s)
- Nakshatra B Singh
- Department of Chemistry and Biochemistry, Sharda University, Greater Noida, India
| | | | - Mridula Guin
- Department of Chemistry and Biochemistry, Sharda University, Greater Noida, India
| |
Collapse
|
44
|
|
45
|
Maine MA, Hadad HR, Camaño Silvestrini NE, Nocetti E, Sanchez GC, Campagnoli MA. Cr, Ni, and Zn removal from landfill leachate using vertical flow wetlands planted with Typha domingensis and Canna indica. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:66-75. [PMID: 34077330 DOI: 10.1080/15226514.2021.1926909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chromium (Cr), Nickel (Ni), and zinc (Zn) removal from landfill leachate using mesocosm-scale vertical flow wetlands, the effect of recirculation, and the ability of macrophytes to retain metals were evaluated. Wetlands were filled with coarse sand and light expanded clay aggregates and planted with Typha domingensis or Canna indica. Wetlands were operated using intermittent loading, with and without recirculation. Raw leachate was diluted and spiked with metals to reach the following concentrations: 0.2 mg L-1 Cr , 0.2 mg L-1 Ni, and0.2 mg L-1 Zn and 1.0 mg L-1 Cr, 1.0 mg L-1 Ni, and 1.0 mg L-1 Zn. Wetlands planted with T. domingensis presented higher metal removal than those planted with C. indica. Recirculation enhanced metal removal efficiencies significantly, being for T. domingensis/C. indica: 60/54, 49/47, 61/47% for Cr, Ni, and Zn at 0.2 mg L-1, and 80/71, 76/62, 73/59% for Cr, Ni, and Zn at 1.0 mg L-1, respectively. Metals were efficiently retained by macrophytes. Plant biomass and metal concentrations in roots were significantly higher than in shoots. Scanning electron microscopy and X-ray microanalysis showed that metals were absorbed by internal root tissues. A hybrid wetland planted with T. domingensis may be implemented to improve not only metal but also chemical oxygen demand and total nitrogen removals.
Collapse
Affiliation(s)
- María Alejandra Maine
- Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe Argentina, Argentina
| | - Hernán Ricardo Hadad
- Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe Argentina, Argentina
| | - Nahuel Ernesto Camaño Silvestrini
- Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe Argentina, Argentina
| | - Emanuel Nocetti
- Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe Argentina, Argentina
| | - Gabriela Cristina Sanchez
- Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe Argentina, Argentina
| | - Marcelo Abel Campagnoli
- Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe Argentina, Argentina
| |
Collapse
|
46
|
Amaku JF, Ngwu CM, Ogundare SA, Akpomie KG, Edozie OI, Conradie J. Thermodynamics, kinetics and isothermal studies of chromium (VI) biosorption onto Detarium senegalense stem bark extract coated shale and the regeneration potentials. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1486-1496. [PMID: 33969765 DOI: 10.1080/15226514.2021.1913991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A low-cost adsorbent (Detarium senegalense stem bark extract coated shale (DSMS)) comprising pristine shale (PSH) coated with D. senegalense stem bark extract was prepared and utilized for the adsorption of Cr(VI). The DSMS and PSH were characterized by the SEM, XRD, FTIR, EDX, TGA, and BET. The batch adsorption experiment results showed that DSMS exhibited an excellent ability to adsorb chromium with a maximum removal occurring at pH 2, dosage of 0.05 g and 180 min contact time. The adsorption process was best described by the pseudo-second-order for DSMS and Elovich model for PSH which depicts chemisorption as the major mechanism responsible for the uptake of Cr(VI) onto the adsorbents. Langmuir model provided the best fit to the isotherm analysis on both materials. The maximum adsorption capacity of DSMS and PSH were 64.98 mg g-1 and 29.97 mg g-1 respectively. The thermodynamics revealed that the adsorption of Cr(VI) was feasible, endothermic and entropy driven. Furthermore, after five cycles of reuse, both DSMS and PSH demonstrated effective regeneration and reusability for Cr(VI) uptake. The structural properties, reusability, and high adsorption capabilities of DSMS indicate that they could be used as low-cost adsorbents in large-scale Cr(VI) wastewater treatment. Novelty statement Plant extracts are packed with a variety of polyphenolic compounds, such as aldehydes, alcohols, carboxylics, ethers, ketones, and phenols which contains several functionalities useful in the adsorption of toxic metals. Despite this, research on the use of plant extracts in the modification of adsorbent materials for enhanced adsorption is rare. This study reports for the first time the use of Detarium senegalense stem bark extract coated shale adsorbent for the efficient uptake of Cr(VI) ion.
Collapse
Affiliation(s)
- James Friday Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Comfort M Ngwu
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Segun A Ogundare
- Chemical Sciences Department, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | | | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
47
|
Shaker Ardakani L, Alimardani V, Tamaddon AM, Amani AM, Taghizadeh S. Green synthesis of iron-based nanoparticles using Chlorophytum comosum leaf extract: methyl orange dye degradation and antimicrobial properties. Heliyon 2021; 7:e06159. [PMID: 33644459 PMCID: PMC7887398 DOI: 10.1016/j.heliyon.2021.e06159] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/13/2020] [Accepted: 01/27/2021] [Indexed: 01/05/2023] Open
Abstract
Nowadays, green synthesis methods have gained growing attention in nanotechnology owning to their versatile features including high efficiency, cost-effectiveness, and eco-friendliness. Here, the aqueous extract of Chlorophytum comosum leaf was applied for the preparation of iron nanoparticles (INPs) to obtain spherical and amorphous INPs with a particle size below 100 nm as confirmed by TEM. The synthesized INPs managed to eliminate methyl orange (MO) from the aqueous solution. The concentration of MO can be easily checked via ultraviolet-visible (UV-Vis) spectroscopy throughout the usage of INPs at the presence of H2O2. The synthesized INPs exhibited MO degradation efficiency of 77% after 6 h. Furthermore, the synthesized INPs exhibited antibacterial activity against both Gram-negative and Gram-positive bacteria. The prepared INPs have an impressive effect on Staphylococcus aureus at concentrations below 6 μg/ml. Overall, the synthesized INPs could considerably contribute to our combat against organic dyes and bacteria.
Collapse
Affiliation(s)
| | - Vahid Alimardani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
48
|
Spectroscopic and Antibacterial Properties of CuONPs from Orange, Lemon and Tangerine Peel Extracts: Potential for Combating Bacterial Resistance. Molecules 2021; 26:molecules26030586. [PMID: 33499352 PMCID: PMC7865892 DOI: 10.3390/molecules26030586] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/30/2022] Open
Abstract
Green synthesis of nanoparticles using citrus peel extracts is known to be environmentally friendly and non-toxic when compared to chemical methods. In this study, different citrus peel extracts obtained with the solvents acetone and distilled water were used to synthesize copper oxide nanoparticles (CuONPs). The nanoparticles were characterized using cyclic voltammetry, ultraviolet-visible spectroscopy, energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The absorption spectrum of CuONPs prepared with acetone exhibited characteristic peaks at the wavelengths between 280-293 nm, while those with distilled water had peaks at 290 nm. The acetone-synthesized CuONPs were spherical while those produced using distilled water were rod-shaped. Based on EDS, the analysis revealed a trace spectrum of CuO nanoparticles with different weight compositions that varied with the type of citrus peel and solvent used. FTIR measurements were carried out in the range of 500-4000 cm-1 for citrus peel extract mediated CuONPs. The spectra had five vibrations occurring at approximately 473, 477, 482, 607 and 616 cm-1 for all samples, which can be attributed to the vibrations of CuO, validating the formation of highly pure CuONPs.
Collapse
|
49
|
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123401. [PMID: 32763697 PMCID: PMC7606836 DOI: 10.1016/j.jhazmat.2020.123401] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/20/2020] [Accepted: 07/01/2020] [Indexed: 05/18/2023]
Abstract
Numerous hazardous environmental pollutants in water bodies, both organic and inorganic, have become a critical global issue. As greener and bio-synthesized versions of nanoparticles exhibit significant promise for wastewater treatment, this review discusses trends and future prospects exploiting the sustainable applications of green-synthesized nanocatalysts and nanomaterials for the removal of contaminants and metal ions from aqueous solutions. Recent trends and challenges about these nanocatalysts and nanomaterials and their potential applications in wastewater treatment and water purification are highlighted including toxicity and biosafety issues. This review delineates the pros and cons and critical issues pertaining to the deployment of these nanomaterials endowed with their superior surface area, mechanical properties, significant chemical reactivity, and cost-effectiveness with low energy consumption, for removal of hazardous materials and contaminants from water; comprehensive coverage of these materials for industrial wastewater remediation, and their recovery is underscored by recent advancements in nanofabrication, encompassing intelligent and smart nanomaterials.
Collapse
Affiliation(s)
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, USA; Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
50
|
Rehman AU, Nazir S, Irshad R, Tahir K, ur Rehman K, Islam RU, Wahab Z. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114455] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|