1
|
Ying Q, Wang M, Zhao Z, Wu Y, Sun C, Huang X, Zhang X, Guo J. White Matter Imaging Phenotypes Mediate the Negative Causality of Mitochondrial DNA Copy Number on Sleep Apnea: A Bidirectional Mendelian Randomization Study and Mediation Analysis. Nat Sci Sleep 2024; 16:2045-2061. [PMID: 39736987 PMCID: PMC11684874 DOI: 10.2147/nss.s487782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Purpose Sleep apnea (SA), associated with absent neural output, is characterised by recurrent episodes of hypoxemia and repeated arousals during sleep, resulting in decreased sleep quality and various health complications. Mitochondrial DNA copy number (mtDNA-CN), an easily accessible biomarker in blood, reflects mitochondrial function. However, the causal relationship between mtDNA-CN and SA remains unclear. This study aimed to investigate the causality between mtDNA-CN and SA while identifying potential mediating brain imaging phenotypes (BIPs). Methods Two-sample bidirectional Mendelian randomisation (MR) analysis was performed to estimate the causal relationship between mtDNA-CN and SA, with further validation using Bayesian framework-based MR analysis. A two-step approach was employed to evaluate causal relationships between BIPs, mtDNA-CN and SA, utilising the "product of coefficients" method to assess the mediating effects of BIPs. Multiple testing errors were corrected using the Benjamini-Hochberg method. Results Genetically predicted mtDNA-CN had a negative causal effect on SA (OR = 0.859, 95% CI = 0.785-0.939, P = 3.20×10-4), whereas SA did not have a causal effect on mtDNA-CN (OR = 1.0056, 95% CI = 0.9954-1.0159, P = 0.2825). Among 3935 BIPs, two features related to white matter microstructure served as partial mediators: the second eigenvalue from diffusion MRI data analysed by tract-based spatial statistics in the right posterior thalamic radiation, with a mediation proportion of 11.37% (P = 0.0450), and fractional anisotropy in the right sagittal stratum, with a mediation proportion of 12.79% (P = 0.0323). Conclusion This study demonstrated a causal relationship between mtDNA-CN and SA, with specific brain white matter microstructure phenotypes potentially acting as mediators. These findings highlight the potential of mtDNA-CN as a biomarker for SA and underscore its relevance in guiding future therapeutic strategies targeting mitochondrial health and brain white matter microstructure.
Collapse
Affiliation(s)
- Qiaohui Ying
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Mingwei Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, Republic of China.
| | - Zichen Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yongwei Wu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Changyun Sun
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Xinyi Huang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Xin Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Jie Guo
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
2
|
Tong T, Zhu C, Farrell JJ, Khurshid Z, Martin ER, Pericak-Vance MA, Wang LS, Bush WS, Schellenberg GD, Haines JL, Qiu WQ, Lunetta KL, Farrer LA, Zhang X. Blood-derived mitochondrial DNA copy number is associated with Alzheimer disease, Alzheimer-related biomarkers and serum metabolites. Alzheimers Res Ther 2024; 16:234. [PMID: 39444005 PMCID: PMC11515778 DOI: 10.1186/s13195-024-01601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Blood-derived mitochondrial DNA copy number (mtDNA-CN) is a proxy measurement of mitochondrial function in the peripheral and central systems. Abnormal mtDNA-CN not only indicates impaired mtDNA replication and transcription machinery but also dysregulated biological processes such as energy and lipid metabolism. However, the relationship between mtDNA-CN and Alzheimer disease (AD) is unclear. METHODS We performed two-sample Mendelian randomization (MR) using publicly available summary statistics from GWAS for mtDNA-CN and AD to investigate the causal relationship between mtDNA-CN and AD. We estimated mtDNA-CN using whole-genome sequence data from blood and brain samples of 13,799 individuals from the Alzheimer's Disease Sequencing Project. Linear and Cox proportional hazards models adjusting for age, sex, and study phase were used to assess the association of mtDNA-CN with AD. The association of AD biomarkers and serum metabolites with mtDNA-CN in blood was evaluated in Alzheimer's Disease Neuroimaging Initiative using linear regression. We conducted a causal mediation analysis to test the natural indirect effects of mtDNA-CN change on AD risk through the significantly associated biomarkers and metabolites. RESULTS MR analysis suggested a causal relationship between decreased blood-derived mtDNA-CN and increased risk of AD (OR = 0.68; P = 0.013). Survival analysis showed that decreased mtDNA-CN was significantly associated with higher risk of conversion from mild cognitive impairment to AD (HR = 0.80; P = 0.002). We also identified significant associations of mtDNA-CN with brain FDG-PET (β = 0.103; P = 0.022), amyloid-PET (β = 0.117; P = 0.034), CSF amyloid-β (Aβ) 42/40 (β=-0.124; P = 0.017), CSF t-Tau (β = 0.128; P = 0.015), p-Tau (β = 0.140; P = 0.008), and plasma NFL (β=-0.124; P = 0.004) in females. Several lipid species, amino acids, biogenic amines in serum were also significantly associated with mtDNA-CN. Causal mediation analyses showed that about a third of the effect of mtDNA-CN on AD risk was mediated by plasma NFL (P = 0.009), and this effect was more significant in females (P < 0.005). CONCLUSIONS Our study indicates that mtDNA-CN measured in blood is predictive of AD and is associated with AD biomarkers including plasma NFL particularly in females. Further, we illustrate that decreased mtDNA-CN possibly increases AD risk through dysregulation of mitochondrial lipid metabolism and inflammation.
Collapse
Affiliation(s)
- Tong Tong
- Bioinformatics Program, Boston University, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Congcong Zhu
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - John J Farrell
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Zainab Khurshid
- Bioinformatics Program, Boston University, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Eden R Martin
- Hussman Institute of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret A Pericak-Vance
- Hussman Institute of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Wei Qiao Qiu
- Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Lindsay A Farrer
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
- Departments of Neurology and Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
- Boston University Chobanian & Avedisian School of Medicine, Biomedical Genetics E223, 72 East Concord Street, 02118, Boston, MA, USA.
| | - Xiaoling Zhang
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
3
|
Ferreira T, Rodriguez S. Mitochondrial DNA: Inherent Complexities Relevant to Genetic Analyses. Genes (Basel) 2024; 15:617. [PMID: 38790246 PMCID: PMC11121663 DOI: 10.3390/genes15050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Mitochondrial DNA (mtDNA) exhibits distinct characteristics distinguishing it from the nuclear genome, necessitating specific analytical methods in genetic studies. This comprehensive review explores the complex role of mtDNA in a variety of genetic studies, including genome-wide, epigenome-wide, and phenome-wide association studies, with a focus on its implications for human traits and diseases. Here, we discuss the structure and gene-encoding properties of mtDNA, along with the influence of environmental factors and epigenetic modifications on its function and variability. Particularly significant are the challenges posed by mtDNA's high mutation rate, heteroplasmy, and copy number variations, and their impact on disease susceptibility and population genetic analyses. The review also highlights recent advances in methodological approaches that enhance our understanding of mtDNA associations, advocating for refined genetic research techniques that accommodate its complexities. By providing a comprehensive overview of the intricacies of mtDNA, this paper underscores the need for an integrated approach to genetic studies that considers the unique properties of mitochondrial genetics. Our findings aim to inform future research and encourage the development of innovative methodologies to better interpret the broad implications of mtDNA in human health and disease.
Collapse
Affiliation(s)
- Tomas Ferreira
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SL, UK
| | - Santiago Rodriguez
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| |
Collapse
|
4
|
Koller A, Filosi M, Weissensteiner H, Fazzini F, Gorski M, Pattaro C, Schönherr S, Forer L, Herold JM, Stark KJ, Döttelmayer P, Hicks AA, Pramstaller PP, Würzner R, Eckardt KU, Heid IM, Fuchsberger C, Lamina C, Kronenberg F. Nuclear and mitochondrial genetic variants associated with mitochondrial DNA copy number. Sci Rep 2024; 14:2083. [PMID: 38267512 PMCID: PMC10808213 DOI: 10.1038/s41598-024-52373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024] Open
Abstract
Mitochondrial DNA copy number (mtDNA-CN) is a biomarker for mitochondrial dysfunction associated with several diseases. Previous genome-wide association studies (GWAS) have been performed to unravel underlying mechanisms of mtDNA-CN regulation. However, the identified gene regions explain only a small fraction of mtDNA-CN variability. Most of this data has been estimated from microarrays based on various pipelines. In the present study we aimed to (1) identify genetic loci for qPCR-measured mtDNA-CN from three studies (16,130 participants) using GWAS, (2) identify potential systematic differences between our qPCR derived mtDNA-CN measurements compared to the published microarray intensity-based estimates, and (3) disentangle the nuclear from mitochondrial regulation of the mtDNA-CN phenotype. We identified two genome-wide significant autosomal loci associated with qPCR-measured mtDNA-CN: at HBS1L (rs4895440, p = 3.39 × 10-13) and GSDMA (rs56030650, p = 4.85 × 10-08) genes. Moreover, 113/115 of the previously published SNPs identified by microarray-based analyses were significantly equivalent with our findings. In our study, the mitochondrial genome itself contributed only marginally to mtDNA-CN regulation as we only detected a single rare mitochondrial variant associated with mtDNA-CN. Furthermore, we incorporated mitochondrial haplogroups into our analyses to explore their potential impact on mtDNA-CN. However, our findings indicate that they do not exert any significant influence on our results.
Collapse
Affiliation(s)
- Adriana Koller
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Michele Filosi
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Federica Fazzini
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Cristian Pattaro
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Janina M Herold
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Klaus J Stark
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Patricia Döttelmayer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Andrew A Hicks
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Peter P Pramstaller
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Chronic Kidney Disease Study, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Christian Fuchsberger
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria.
| |
Collapse
|
5
|
Hernández CL. Mitochondrial DNA in Human Diversity and Health: From the Golden Age to the Omics Era. Genes (Basel) 2023; 14:1534. [PMID: 37628587 PMCID: PMC10453943 DOI: 10.3390/genes14081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is a small fraction of our hereditary material. However, this molecule has had an overwhelming presence in scientific research for decades until the arrival of high-throughput studies. Several appealing properties justify the application of mtDNA to understand how human populations are-from a genetic perspective-and how individuals exhibit phenotypes of biomedical importance. Here, I review the basics of mitochondrial studies with a focus on the dawn of the field, analysis methods and the connection between two sides of mitochondrial genetics: anthropological and biomedical. The particularities of mtDNA, with respect to inheritance pattern, evolutionary rate and dependence on the nuclear genome, explain the challenges of associating mtDNA composition and diseases. Finally, I consider the relevance of this single locus in the context of omics research. The present work may serve as a tribute to a tool that has provided important insights into the past and present of humankind.
Collapse
Affiliation(s)
- Candela L Hernández
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Al-Kafaji G, Jahrami HA, Alwehaidah MS, Alshammari Y, Husni M. Mitochondrial DNA copy number in autism spectrum disorder and attention deficit hyperactivity disorder: a systematic review and meta-analysis. Front Psychiatry 2023; 14:1196035. [PMID: 37484684 PMCID: PMC10361772 DOI: 10.3389/fpsyt.2023.1196035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Background Several reports suggest that altered mitochondrial DNA copy number (mtDNA-cn), a common biomarker for aberrant mitochondrial function, is implicated in autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), but the results are still elusive. Methods A meta-analysis was performed to summarize the current indication and to provide a more precise assessment of the mtDNA-cn in ASD and ADHD. A search in the MEDLINE-PubMed, Scopus, and EMBASE databases was done to identify related studies up to the end of February 2023. The meta-analysis was conducted according to recommendations of the Cochrane Handbook of Systematic Reviews. Results Fourteen studies involving 666 cases with ASD and ADHD and 585 controls were collected and judged relevant for the systematic review and meta-analysis. The pooled results by a random effects meta-analysis was reported as a geometric mean of the estimated average response ratio and 95% confidence interval. Overall analysis of studies reported differences in mtDNA-cn in blood samples (k = 10) and non-blood samples (brain tissues and oral samples; k = 4) suggested significantly higher mtDNA-cn in patients compared to controls (p = 0.0275). Sub-analysis by stratifying studies based on tissue type, showed no significant increase in mtDNA-cn in blood samples among patients and controls (p = 0.284). Conversely, higher mtDNA-cn was observed in non-blood samples in patients than in controls (p = 0.0122). Further stratified analysis based on blood-cell compositions as potential confounds showed no significant difference in mtDNA-cn in peripheral blood samples of patients comparted to controls (p = 0.074). In addition, stratified analysis of aged-matched ASD and ADHD patients and controls revealed no significant difference in mtDNA-cn in blood samples between patients and controls (p = 0.214), whereas a significant increase in mtDNA-cn was observed in non-blood samples between patients and controls (p < 0.001). Finally, when the mtDNA-cn was analyzed in blood samples of aged-matched patients with ASD (peripheral blood, leukocytes, and PBMCs) or ADHD (peripheral blood), no significant difference in mtDNA-cn was observed between ASD patients and controls (p = 0.385), while a significant increase in mtDNA-cn was found between ADHD patients and controls (p = 0.033). Conclusion In this first meta-analysis of the evaluation of mtDNA-cn in ASD/ADHD, our results show elevated mtDNA-cn in ASD and ADHD, further emphasizing the implication of mitochondrial dysfunction in neurodevelopmental disorders. However, our results indicate that the mtDNA-cn in blood is not reflected in other tissues in ASD/ADHD, and the true relationship between blood-derived mtDNA-cn and ASD/ADHD remains to be defined in future studies. The importance of blood-cell compositions as confounders of blood-based mtDNA-cn measurement and the advantages of salivary mtDNA-cn should be considered in future studies. Moreover, the potential of mtDNA-cn as a biomarker for mitochondrial malfunction in neurodevelopmental disorders deserves further investigations.
Collapse
Affiliation(s)
- Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Haitham Ali Jahrami
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
- Government Hospital, Manama, Bahrain
| | - Materah Salem Alwehaidah
- Department of Medical Laboratory, Faculty of Allied Health, Kuwait University, Kuwait City, Kuwait
| | | | - Mariwan Husni
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
- Department of Psychiatry, Northern Ontarion School of Medicine University, Thunder Bay, ON, Canada
| |
Collapse
|
7
|
Przanowski P, Przanowska RK, Guertin MJ. ANKLE1 cleaves mitochondrial DNA and contributes to cancer risk by promoting apoptosis resistance and metabolic dysregulation. Commun Biol 2023; 6:231. [PMID: 36859531 PMCID: PMC9977882 DOI: 10.1038/s42003-023-04611-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Alleles within the chr19p13.1 locus are associated with increased risk of both ovarian and breast cancer and increased expression of the ANKLE1 gene. ANKLE1 is molecularly characterized as an endonuclease that efficiently cuts branched DNA and shuttles between the nucleus and cytoplasm. However, the role of ANKLE1 in mammalian development and homeostasis remains unknown. In normal development ANKLE1 expression is limited to the erythroblast lineage and we found that ANKLE1's role is to cleave the mitochondrial genome during erythropoiesis. We show that ectopic expression of ANKLE1 in breast epithelial-derived cells leads to genome instability and mitochondrial DNA (mtDNA) cleavage. mtDNA degradation then leads to mitophagy and causes a shift from oxidative phosphorylation to glycolysis (Warburg effect). Moreover, mtDNA degradation activates STAT1 and expression of epithelial-mesenchymal transition (EMT) genes. Reduction in mitochondrial content contributes to apoptosis resistance, which may allow precancerous cells to avoid apoptotic checkpoints and proliferate. These findings provide evidence that ANKLE1 is the causal cancer susceptibility gene in the chr19p13.1 locus and describe mechanisms by which higher ANKLE1 expression promotes cancer risk.
Collapse
Affiliation(s)
- Piotr Przanowski
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Róża K Przanowska
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Michael J Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
8
|
Sanglard LP, Kuehn LA, Snelling WM, Spangler ML. Influence of environmental factors and genetic variation on mitochondrial DNA copy number. J Anim Sci 2022; 100:6576804. [PMID: 35511236 PMCID: PMC9150079 DOI: 10.1093/jas/skac059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/24/2022] [Indexed: 01/21/2023] Open
Abstract
Mitochondrial DNA copy number (mtDNA CN) has been shown to be highly heritable and associated with traits of interest in humans. However, studies are lacking in the literature for livestock species such as beef cattle. In this study, 2,371 individuals from a crossbred beef population comprising the Germplasm Evaluation program from the U.S. Meat Animal Research Center had samples of blood, leucocyte, or semen collected for low-pass sequencing (LPS) that resulted in both nuclear DNA (nuDNA) and mitochondrial DNA (mtDNA) sequence reads. Mitochondrial DNA CN was estimated based on the ratio of mtDNA to nuDNA coverages. Genetic parameters for mtDNA CN were estimated from an animal model based on a genomic relationship matrix (~87K SNP from the nuDNA). Different models were used to test the effects of tissue, sex, age at sample collection, heterosis, and breed composition. Maternal effects, assessed by fitting a maternal additive component and by fitting eleven SNP on the mtDNA, were also obtained. As previously reported, mtDNA haplotypes were used to classify individuals into Taurine haplogroups (T1, T2, T3/T4, and T5). Estimates of heritability when fitting fixed effects in addition to the intercept were moderate, ranging from 0.11 to 0.31 depending on the model. From a model ignoring contemporary group, semen samples had the lowest mtDNA CN, as expected, followed by blood and leucocyte samples (P ≤ 0.001). The effect of sex and the linear and quadratic effects of age were significant (P ≤ 0.02) depending on the model. When significant, females had greater mtDNA CN than males. The effects of heterosis and maternal heterosis were not significant (P ≥ 0.47). The estimates of maternal and mtDNA heritability were near zero (≤0.03). Most of the samples (98%) were classified as haplogroup T3. Variation was observed in the mtDNA within Taurine haplogroups, which enabled the identification of 24 haplotypes. These results suggest that mtDNA CN is under nuclear genetic control and would respond favorably to selection.
Collapse
Affiliation(s)
- Leticia P Sanglard
- Department of Animal Science, University of Nebraska, Lincoln, NE 68583, USA
| | - Larry A Kuehn
- USDA, ARS, Roman L Hruska U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Warren M Snelling
- USDA, ARS, Roman L Hruska U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Matthew L Spangler
- Department of Animal Science, University of Nebraska, Lincoln, NE 68583, USA
| |
Collapse
|
9
|
Vilne B, Sawant A, Rudaka I. Examining the Association between Mitochondrial Genome Variation and Coronary Artery Disease. Genes (Basel) 2022; 13:genes13030516. [PMID: 35328073 PMCID: PMC8953999 DOI: 10.3390/genes13030516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
Large-scale genome-wide association studies have identified hundreds of single-nucleotide variants (SNVs) significantly associated with coronary artery disease (CAD). However, collectively, these explain <20% of the heritability. Hypothesis: Here, we hypothesize that mitochondrial (MT)-SNVs might present one potential source of this “missing heritability”. Methods: We analyzed 265 MT-SNVs in ~500,000 UK Biobank individuals, exploring two different CAD definitions: a more stringent (myocardial infarction and/or revascularization; HARD = 20,405), and a more inclusive (angina and chronic ischemic heart disease; SOFT = 34,782). Results: In HARD cases, the most significant (p < 0.05) associations were for m.295C>T (control region) and m.12612A>G (ND5), found more frequently in cases (OR = 1.05), potentially related to reduced cardiorespiratory fitness in response to exercise, as well as for m.12372G>A (ND5) and m.11467A>G (ND4), present more frequently in controls (OR = 0.97), previously associated with lower ROS production rate. In SOFT cases, four MT-SNVs survived multiple testing corrections (at FDR < 5%), all potentially conferring increased CAD risk. Of those, m.11251A>G (ND4) and m.15452C>A (CYB) have previously shown significant associations with body height. In line with this, we observed that CAD cases were slightly less physically active, and their average body height was ~2.00 cm lower compared to controls; both traits are known to be related to increased CAD risk. Gene-based tests identified CO2 associated with HARD/SOFT CAD, whereas ND3 and CYB associated with SOFT cases (p < 0.05), dysfunction of which has been related to MT oxidative stress, obesity/T2D (CO2), BMI (ND3), and angina/exercise intolerance (CYB). Finally, we observed that macro-haplogroup I was significantly (p < 0.05) more frequent in HARD cases vs. controls (3.35% vs. 3.08%), potentially associated with response to exercise. Conclusions: We found only spurious associations between MT genome variation and HARD/SOFT CAD and conclude that more MT-SNV data in even larger study cohorts may be needed to conclusively determine the role of MT DNA in CAD.
Collapse
Affiliation(s)
- Baiba Vilne
- Bioinformatics Lab, Rīga Stradiņš University, LV-1007 Riga, Latvia;
- Correspondence:
| | - Aniket Sawant
- Bioinformatics Lab, Rīga Stradiņš University, LV-1007 Riga, Latvia;
| | - Irina Rudaka
- Scientific Laboratory of Molecular Genetics, Rīga Stradiņš University, LV-1007 Riga, Latvia;
| |
Collapse
|
10
|
Chong M, Mohammadi-Shemirani P, Perrot N, Nelson W, Morton R, Narula S, Lali R, Khan I, Khan M, Judge C, Machipisa T, Cawte N, O'Donnell M, Pigeyre M, Akhabir L, Paré G. GWAS and ExWAS of blood mitochondrial DNA copy number identifies 71 loci and highlights a potential causal role in dementia. eLife 2022; 11:e70382. [PMID: 35023831 PMCID: PMC8865845 DOI: 10.7554/elife.70382] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Background Mitochondrial DNA copy number (mtDNA-CN) is an accessible blood-based measurement believed to capture underlying mitochondrial (MT) function. The specific biological processes underpinning its regulation, and whether those processes are causative for disease, is an area of active investigation. Methods We developed a novel method for array-based mtDNA-CN estimation suitable for biobank-scale studies, called 'automatic mitochondrial copy (AutoMitoC).' We applied AutoMitoC to 395,781 UKBiobank study participants and performed genome- and exome-wide association studies, identifying novel common and rare genetic determinants. Finally, we performed two-sample Mendelian randomization to assess whether genetically low mtDNA-CN influenced select MT phenotypes. Results Overall, genetic analyses identified 71 loci for mtDNA-CN, which implicated several genes involved in rare mtDNA depletion disorders, deoxynucleoside triphosphate (dNTP) metabolism, and the MT central dogma. Rare variant analysis identified SAMHD1 mutation carriers as having higher mtDNA-CN (beta = 0.23 SDs; 95% CI, 0.18-0.29; p=2.6 × 10-19), a potential therapeutic target for patients with mtDNA depletion disorders, but at increased risk of breast cancer (OR = 1.91; 95% CI, 1.52-2.40; p=2.7 × 10-8). Finally, Mendelian randomization analyses suggest a causal effect of low mtDNA-CN on dementia risk (OR = 1.94 per 1 SD decrease in mtDNA-CN; 95% CI, 1.55-2.32; p=7.5 × 10-4). Conclusions Altogether, our genetic findings indicate that mtDNA-CN is a complex biomarker reflecting specific MT processes related to mtDNA regulation, and that these processes are causally related to human diseases. Funding No funds supported this specific investigation. Awards and positions supporting authors include: Canadian Institutes of Health Research (CIHR) Frederick Banting and Charles Best Canada Graduate Scholarships Doctoral Award (MC, PM); CIHR Post-Doctoral Fellowship Award (RM); Wellcome Trust Grant number: 099313/B/12/A; Crasnow Travel Scholarship; Bongani Mayosi UCT-PHRI Scholarship 2019/2020 (TM); Wellcome Trust Health Research Board Irish Clinical Academic Training (ICAT) Programme Grant Number: 203930/B/16/Z (CJ); European Research Council COSIP Grant Number: 640580 (MO); E.J. Moran Campbell Internal Career Research Award (MP); CISCO Professorship in Integrated Health Systems and Canada Research Chair in Genetic and Molecular Epidemiology (GP).
Collapse
Affiliation(s)
- Michael Chong
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
- Department of Pathology and Molecular Medicine, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
| | - Pedrum Mohammadi-Shemirani
- Department of Pathology and Molecular Medicine, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Thrombosis and Atherosclerosis Research InstituteHamiltonCanada
| | - Nicolas Perrot
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
| | - Walter Nelson
- Centre for Data Science and Digital Health, Hamilton Health SciencesHamiltonCanada
| | - Robert Morton
- Department of Pathology and Molecular Medicine, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
| | - Sukrit Narula
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Health Research Methods, Evidence, and Impact, McMaster UniversityHamiltonCanada
| | - Ricky Lali
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Health Research Methods, Evidence, and Impact, McMaster UniversityHamiltonCanada
| | - Irfan Khan
- Department of Pathology and Molecular Medicine, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
| | - Mohammad Khan
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Medicine, McMaster University, Michael G. DeGroote School of MedicineHamiltonCanada
| | - Conor Judge
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- National University of Ireland, GalwayGalwayIreland
| | - Tafadzwa Machipisa
- Department of Pathology and Molecular Medicine, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Medicine, University of Cape Town & Groote Schuur HospitalCape TownSouth Africa
- Hatter Institute for Cardiovascular Diseases Research in Africa (HICRA) & Cape Heart Institute (CHI), Department of Medicine, University of Cape TownCape TownSouth Africa
| | - Nathan Cawte
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
| | - Martin O'Donnell
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- National University of Ireland, GalwayGalwayIreland
| | - Marie Pigeyre
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Medicine, McMaster University, Michael G. DeGroote School of MedicineHamiltonCanada
| | - Loubna Akhabir
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Medicine, McMaster University, Michael G. DeGroote School of MedicineHamiltonCanada
| | - Guillaume Paré
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
- Department of Pathology and Molecular Medicine, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Health Research Methods, Evidence, and Impact, McMaster UniversityHamiltonCanada
- Department of Medicine, McMaster University, Michael G. DeGroote School of MedicineHamiltonCanada
| |
Collapse
|
11
|
Longchamps RJ, Yang SY, Castellani CA, Shi W, Lane J, Grove ML, Bartz TM, Sarnowski C, Liu C, Burrows K, Guyatt AL, Gaunt TR, Kacprowski T, Yang J, De Jager PL, Yu L, Bergman A, Xia R, Fornage M, Feitosa MF, Wojczynski MK, Kraja AT, Province MA, Amin N, Rivadeneira F, Tiemeier H, Uitterlinden AG, Broer L, Van Meurs JBJ, Van Duijn CM, Raffield LM, Lange L, Rich SS, Lemaitre RN, Goodarzi MO, Sitlani CM, Mak ACY, Bennett DA, Rodriguez S, Murabito JM, Lunetta KL, Sotoodehnia N, Atzmon G, Ye K, Barzilai N, Brody JA, Psaty BM, Taylor KD, Rotter JI, Boerwinkle E, Pankratz N, Arking DE. Genome-wide analysis of mitochondrial DNA copy number reveals loci implicated in nucleotide metabolism, platelet activation, and megakaryocyte proliferation. Hum Genet 2022; 141:127-146. [PMID: 34859289 PMCID: PMC8758627 DOI: 10.1007/s00439-021-02394-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) measured from blood specimens is a minimally invasive marker of mitochondrial function that exhibits both inter-individual and intercellular variation. To identify genes involved in regulating mitochondrial function, we performed a genome-wide association study (GWAS) in 465,809 White individuals from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank (UKB). We identified 133 SNPs with statistically significant, independent effects associated with mtDNA-CN across 100 loci. A combination of fine-mapping, variant annotation, and co-localization analyses was used to prioritize genes within each of the 133 independent sites. Putative causal genes were enriched for known mitochondrial DNA depletion syndromes (p = 3.09 × 10-15) and the gene ontology (GO) terms for mtDNA metabolism (p = 1.43 × 10-8) and mtDNA replication (p = 1.2 × 10-7). A clustering approach leveraged pleiotropy between mtDNA-CN associated SNPs and 41 mtDNA-CN associated phenotypes to identify functional domains, revealing three distinct groups, including platelet activation, megakaryocyte proliferation, and mtDNA metabolism. Finally, using mitochondrial SNPs, we establish causal relationships between mitochondrial function and a variety of blood cell-related traits, kidney function, liver function and overall (p = 0.044) and non-cancer mortality (p = 6.56 × 10-4).
Collapse
Affiliation(s)
- R J Longchamps
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S Y Yang
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - C A Castellani
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - W Shi
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - M L Grove
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - T M Bartz
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, USA
| | - C Sarnowski
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - C Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - K Burrows
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - A L Guyatt
- Department of Health Sciences, University of Leicester, University Road, Leicester, UK
| | - T R Gaunt
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - T Kacprowski
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
- Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics, TU Braunschweig and Hannover Medical School, Brunswick, Germany
| | - J Yang
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - P L De Jager
- Center for Translational and Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - L Yu
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - A Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - R Xia
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - M Fornage
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, USA
| | - M F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - M K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - A T Kraja
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - M A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - N Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - F Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - H Tiemeier
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Social and Behavioral Science, Harvard T.H. School of Public Health, Boston, USA
| | - A G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L Broer
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J B J Van Meurs
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - C M Van Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - S S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - R N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - M O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - C M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - A C Y Mak
- Cardiovascular Research Institute and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - D A Bennett
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - S Rodriguez
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - J M Murabito
- Boston University School of Medicine, Boston University, Boston, MA, USA
| | - K L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - N Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, WA, USA
| | - G Atzmon
- Department of Natural Science, University of Haifa, Haifa, Israel
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - K Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - N Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - J A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - B M Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Medicine and Health Services, University of Washington, Seattle, WA, USA
| | - K D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - J I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - E Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Baylor College of Medicine, Human Genome Sequencing Center, Houston, TX, USA
| | - N Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - D E Arking
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Agius R, Pace NP, Fava S. Reduced leukocyte mitochondrial copy number in metabolic syndrome and metabolically healthy obesity. Front Endocrinol (Lausanne) 2022; 13:886957. [PMID: 35957819 PMCID: PMC9357898 DOI: 10.3389/fendo.2022.886957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the associations between peripheral blood leukocyte mitochondrial copy number, metabolic syndrome, and adiposity-related body composition phenotypes in a high prevalence population. METHODS A single center cross-sectional study was conducted, consisting of 521 middle-aged subjects of Maltese-Caucasian ethnicity. Participants were stratified according to the presence of metabolic syndrome and different metabolic health definitions based on NCEP-ATP III criteria. Relative leukocyte mitochondrial DNA copy number was determined by quantitative polymerase chain reaction and corrected for leukocyte and platelet count. The associations between mitochondrial copy number and metabolic syndrome components was evaluated and adjusted for age and gender. RESULTS Significant negative correlations between mtDNA copy number and BMI, waist circumference, triglyceride levels, fasting plasma glucose, HbA1c, HOMA-IR and hsCRP were observed, along with a positive correlation with HDL-C levels. Mitochondrial copy number was lower in individuals with metabolic syndrome. When compared to metabolically healthy normal weight subjects, a reduction in mtDNA copy number was observed in both the metabolically healthy and unhealthy obese categories. CONCLUSION Our data supports the association between reduced leukocyte mtDNA copy number, obesity, and metabolic syndrome. This investigation expands on the spectrum of associations between mtDNA copy number and metabolic phenotypes in different populations and underpins the role of mitochondrial dysfunction in the development and progression of metabolic syndrome and its components.
Collapse
Affiliation(s)
- Rachel Agius
- Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Department of Medicine, Mater Dei Hospital, Msida, Malta
| | - Nikolai Paul Pace
- Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- *Correspondence: Nikolai Paul Pace,
| | - Stephen Fava
- Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Department of Medicine, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
13
|
Gentiluomo M, Giaccherini M, Gào X, Guo F, Stocker H, Schöttker B, Brenner H, Canzian F, Campa D. Genome-wide association study of mitochondrial copy number. Hum Mol Genet 2021; 31:1346-1355. [PMID: 34964454 DOI: 10.1093/hmg/ddab341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial DNA copy number (mtDNAcn) variation has been associated with increased risk of several human diseases in epidemiological studies. The quantification of mtDNAcn performed with real-time PCR is currently considered the de facto standard among several techniques. However, the heterogeneity of the laboratory methods (DNA extraction, storage, processing) used could give rise to results that are difficult to compare and reproduce across different studies. Several lines of evidence suggest that mtDNAcn is influenced by nuclear and mitochondrial genetic variability, however this relation is largely unexplored. The aim of this work was to elucidate the genetic basis of mtDNAcn variation. We performed a genome-wide association study (GWAS) of mtDNAcn in 6836 subjects from the ESTHER prospective cohort, and included, as replication set, the summary statistics of a GWAS that used 295 150 participants from the UK Biobank. We observed two novel associations with mtDNAcn variation on chromosome 19 (rs117176661), and 12 (rs7136238) that reached statistical significance at the genome-wide level. A polygenic score that we called mitoscore including all known single nucleotide polymorphisms explained 1.11% of the variation of mtDNAcn (p = 5.93 × 10-7). In conclusion, we performed a GWAS on mtDNAcn, adding to the evidence of the genetic background of this trait.
Collapse
Affiliation(s)
- Manuel Gentiluomo
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy
| | - Matteo Giaccherini
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy.,Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Xīn Gào
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Feng Guo
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, 69120, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg, 69120, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Daniele Campa
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy
| |
Collapse
|
14
|
Giaccherini M, Gentiluomo M, Fornili M, Lucenteforte E, Baglietto L, Campa D. Association between telomere length and mitochondrial copy number and cancer risk in humans: A meta-analysis on more than 300,000 individuals. Crit Rev Oncol Hematol 2021; 167:103510. [PMID: 34695574 DOI: 10.1016/j.critrevonc.2021.103510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
In the last decades the association of leukocyte telomere length (LTL) and mitochondrial copy number (mtDNAcn) with cancer risk has been the focus of many reports, however the relation is not yet completely understood. A meta-analysis of 112 studies including 64,184 cancer cases and 278,641 controls that analysed LTL and mtDNAcn in relation to cancer risk has been conducted to further our understanding of the topic. Stratified analyses for tumor type were also performed. Overall, no association was observed for all cancer combined neither for LTL nor mtDNAcn. Significant associations were detected for these biomarkers and specific cancer type; however, a large degree of heterogeneity was present, even within the same tumor type. Alternatives approaches based on polymorphic variants, such as polygenic risk scores and mendelian randomization, could be adopted to unravel the causal correlation of telomere length and mitochondrial copy number with cancer risk.
Collapse
Affiliation(s)
| | | | - Marco Fornili
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Laura Baglietto
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Daniele Campa
- Department of Biology, University of Pisa, 56126, Pisa, Italy.
| |
Collapse
|
15
|
Ganel L, Chen L, Christ R, Vangipurapu J, Young E, Das I, Kanchi K, Larson D, Regier A, Abel H, Kang CJ, Scott A, Havulinna A, Chiang CWK, Service S, Freimer N, Palotie A, Ripatti S, Kuusisto J, Boehnke M, Laakso M, Locke A, Stitziel NO, Hall IM. Mitochondrial genome copy number measured by DNA sequencing in human blood is strongly associated with metabolic traits via cell-type composition differences. Hum Genomics 2021; 15:34. [PMID: 34099068 PMCID: PMC8185936 DOI: 10.1186/s40246-021-00335-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/26/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Mitochondrial genome copy number (MT-CN) varies among humans and across tissues and is highly heritable, but its causes and consequences are not well understood. When measured by bulk DNA sequencing in blood, MT-CN may reflect a combination of the number of mitochondria per cell and cell-type composition. Here, we studied MT-CN variation in blood-derived DNA from 19184 Finnish individuals using a combination of genome (N = 4163) and exome sequencing (N = 19034) data as well as imputed genotypes (N = 17718). RESULTS We identified two loci significantly associated with MT-CN variation: a common variant at the MYB-HBS1L locus (P = 1.6 × 10-8), which has previously been associated with numerous hematological parameters; and a burden of rare variants in the TMBIM1 gene (P = 3.0 × 10-8), which has been reported to protect against non-alcoholic fatty liver disease. We also found that MT-CN is strongly associated with insulin levels (P = 2.0 × 10-21) and other metabolic syndrome (metS)-related traits. Using a Mendelian randomization framework, we show evidence that MT-CN measured in blood is causally related to insulin levels. We then applied an MT-CN polygenic risk score (PRS) derived from Finnish data to the UK Biobank, where the association between the PRS and metS traits was replicated. Adjusting for cell counts largely eliminated these signals, suggesting that MT-CN affects metS via cell-type composition. CONCLUSION These results suggest that measurements of MT-CN in blood-derived DNA partially reflect differences in cell-type composition and that these differences are causally linked to insulin and related traits.
Collapse
Affiliation(s)
- Liron Ganel
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lei Chen
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Christ
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Erica Young
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Indraniel Das
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Krishna Kanchi
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - David Larson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Allison Regier
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Haley Abel
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Chul Joo Kang
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexandra Scott
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aki Havulinna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Quantitative and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Susan Service
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Nelson Freimer
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Analytical and Translational Genetics Unit (ATGU), Psychiatric & Neurodevelopmental Genetics Unit, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Adam Locke
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nathan O Stitziel
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Ira M Hall
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Nandakumar P, Tian C, O'Connell J, Hinds D, Paterson AD, Sondheimer N. Nuclear genome-wide associations with mitochondrial heteroplasmy. SCIENCE ADVANCES 2021; 7:7/12/eabe7520. [PMID: 33731350 PMCID: PMC7968846 DOI: 10.1126/sciadv.abe7520] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/27/2021] [Indexed: 05/10/2023]
Abstract
The role of the nuclear genome in maintaining the stability of the mitochondrial genome (mtDNA) is incompletely known. mtDNA sequence variants can exist in a state of heteroplasmy, which denotes the coexistence of organellar genomes with different sequences. Heteroplasmic variants that impair mitochondrial capacity cause disease, and the state of heteroplasmy itself is deleterious. However, mitochondrial heteroplasmy may provide an intermediate state in the emergence of novel mitochondrial haplogroups. We used genome-wide genotyping data from 982,072 European ancestry individuals to evaluate variation in mitochondrial heteroplasmy and to identify the regions of the nuclear genome that affect it. Age, sex, and mitochondrial haplogroup were associated with the extent of heteroplasmy. GWAS identified 20 loci for heteroplasmy that exceeded genome-wide significance. This included a region overlapping mitochondrial transcription factor A (TFAM), which has multiple roles in mtDNA packaging, replication, and transcription. These results show that mitochondrial heteroplasmy has a heritable nuclear component.
Collapse
Affiliation(s)
| | - Chao Tian
- 23andMe Inc., 223 N Mathilda Ave, Sunnyvale, CA, USA
| | | | - David Hinds
- 23andMe Inc., 223 N Mathilda Ave, Sunnyvale, CA, USA.
| | - Andrew D Paterson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Divisions of Epidemiology and Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Neal Sondheimer
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.
- Departments of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Deciphering the genetic and epidemiological landscape of mitochondrial DNA abundance. Hum Genet 2020; 140:849-861. [PMID: 33385171 PMCID: PMC8099832 DOI: 10.1007/s00439-020-02249-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022]
Abstract
Mitochondrial (MT) dysfunction is a hallmark of aging and has been associated with most aging-related diseases as well as immunological processes. However, little is known about aging, lifestyle and genetic factors influencing mitochondrial DNA (mtDNA) abundance. In this study, mtDNA abundance was estimated from the weighted intensities of probes mapping to the MT genome in 295,150 participants from the UK Biobank. We found that the abundance of mtDNA was significantly elevated in women compared to men, was negatively correlated with advanced age, higher smoking exposure, greater body-mass index, higher frailty index as well as elevated red and white blood cell count and lower mortality. In addition, several biochemistry markers in blood-related to cholesterol metabolism, ion homeostasis and kidney function were found to be significantly associated with mtDNA abundance. By performing a genome-wide association study, we identified 50 independent regions genome-wide significantly associated with mtDNA abundance which harbour multiple genes involved in the immune system, cancer as well as mitochondrial function. Using mixed effects models, we estimated the SNP-heritability of mtDNA abundance to be around 8%. To investigate the consequence of altered mtDNA abundance, we performed a phenome-wide association study and found that mtDNA abundance is involved in risk for leukaemia, hematologic diseases as well as hypertension. Thus, estimating mtDNA abundance from genotyping arrays has the potential to provide novel insights into age- and disease-relevant processes, particularly those related to immunity and established mitochondrial functions.
Collapse
|
18
|
Stewart JB, Chinnery PF. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat Rev Genet 2020; 22:106-118. [PMID: 32989265 DOI: 10.1038/s41576-020-00284-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Contrary to the long-held view that most humans harbour only identical mitochondrial genomes, deep resequencing has uncovered unanticipated extreme genetic variation within mitochondrial DNA (mtDNA). Most, if not all, humans contain multiple mtDNA genotypes (heteroplasmy); specific patterns of variants accumulate in different tissues, including cancers, over time; and some variants are preferentially passed down or suppressed in the maternal germ line. These findings cast light on the origin and spread of mtDNA mutations at multiple scales, from the organelle to the human population, and challenge the conventional view that high percentages of a mutation are required before a new variant has functional consequences.
Collapse
Affiliation(s)
- James B Stewart
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
de Oliveira VC, Gomes Mariano Junior C, Belizário JE, Krieger JE, Fernandes Bressan F, Roballo KCS, Fantinato-Neto P, Meirelles FV, Chiaratti MR, Concordet JP, Ambrósio CE. Characterization of post-edited cells modified in the TFAM gene by CRISPR/Cas9 technology in the bovine model. PLoS One 2020; 15:e0235856. [PMID: 32649732 PMCID: PMC7351154 DOI: 10.1371/journal.pone.0235856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Gene editing in large animal models for future applications in translational medicine and food production must be deeply investigated for an increase of knowledge. The mitochondrial transcription factor A (TFAM) is a member of the HMGB subfamily that binds to mtDNA promoters. This gene maintains mtDNA, and it is essential for the initiation of mtDNA transcription. Lately, we generated a new cell line through the disruption of the TFAM gene in bovine fibroblast cells by CRISPR/Cas 9 technology. We showed that the CRISPR/Cas9 design was efficient through the generation of heterozygous mutant clones. In this context, once this gene regulates the mtDNA replication specificity, the study aimed to determine if the post-edited cells are capable of in vitro maintenance and assess if they present changes in mtDNA copies and mitochondrial membrane potential after successive passages in culture. The post-edited cells were expanded in culture, and we performed a growth curve, doubling time, cell viability, mitochondrial DNA copy number, and mitochondrial membrane potential assays. The editing process did not make cell culture unfeasible, even though cell growth rate and viability were decreased compared to control since we observed the cells grow well when cultured in a medium supplemented with uridine and pyruvate. They also exhibited a classical fibroblastoid appearance. The RT-qPCR to determine the mtDNA copy number showed a decrease in the edited clones compared to the non-edited ones (control) in different cell passages. Cell staining with Mitotracker Green and red suggests a reduction in red fluorescence in the edited cells compared to the non-edited cells. Thus, through characterization, we demonstrated that the TFAM gene is critical to mitochondrial maintenance due to its interference in the stability of the mitochondrial DNA copy number in different cell passages and membrane potential confirming the decrease in mitochondrial activity in cells edited in heterozygosis.
Collapse
Affiliation(s)
- Vanessa Cristina de Oliveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
- * E-mail: ,
| | - Clésio Gomes Mariano Junior
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - José Ernesto Belizário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Kelly Cristine Santos Roballo
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
- School of Pharmacy at College of Health Sciences, University of Wyoming, Laramie, WY, United States of America
| | - Paulo Fantinato-Neto
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Jean-Paul Concordet
- Laboratoire Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, INSERM U1154, CNRS UMR7196, Paris, France
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
20
|
Genetic and phenotypic landscape of the mitochondrial genome in the Japanese population. Commun Biol 2020; 3:104. [PMID: 32139841 PMCID: PMC7058612 DOI: 10.1038/s42003-020-0812-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/30/2020] [Indexed: 12/31/2022] Open
Abstract
The genetic landscape of mitochondrial DNA (mtDNA) has been elusive. By analyzing mtDNA using the whole genome sequence (WGS) of Japanese individuals (n = 1928), we identified 2023 mtDNA variants and high-resolution haplogroups. Frequency spectra of the haplogroups were population-specific and were heterogeneous among geographic regions within Japan. Application of machine learning methods could finely classify the subjects corresponding to the high-digit mtDNA sub-haplogroups. mtDNA had distinct genetic structures from that of nuclear DNA (nDNA), characterized by no distance-dependent linkage disequilibrium decay, sparse tagging of common variants, and the existence of common haplotypes spanning the entire mtDNA. We did not detect any evidence of mtDNA–nDNA (or mtDNA copy number–nDNA) genotype associations. Together with WGS-based mtDNA variant imputation, we conducted a phenome-wide association study of 147,437 Japanese individuals with 99 clinical phenotypes. We observed pleiotropy of mtDNA genetic risk on the five late-onset human complex traits including creatine kinase (P = 1.7 × 10−12). Kenichi Yamamoto et al. report a genetic analysis of mitochondrial DNA (mtDNA) and a phenome-wide association study in Japanese individuals from the BioBank Japan Project. They describe the genetic landscape of the mitochondria and identify pleiotropic mtDNA variants associated with 5 late-onset complex traits.
Collapse
|
21
|
Müller-Nedebock AC, Brennan RR, Venter M, Pienaar IS, van der Westhuizen FH, Elson JL, Ross OA, Bardien S. The unresolved role of mitochondrial DNA in Parkinson's disease: An overview of published studies, their limitations, and future prospects. Neurochem Int 2019; 129:104495. [PMID: 31233840 PMCID: PMC6702091 DOI: 10.1016/j.neuint.2019.104495] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/27/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disorder, has long been associated with mitochondrial dysfunction in both sporadic and familial forms of the disease. Mitochondria are crucial for maintaining cellular homeostasis, and their dysfunction is detrimental to dopaminergic neurons. These neurons are highly dependent on mitochondrial adenosine triphosphate (ATP) and degenerate in PD. Mitochondria contain their own genomes (mtDNA). The role of mtDNA has been investigated in PD on the premise that it encodes vital components of the ATP-generating oxidative phosphorylation (OXPHOS) complexes and accumulates somatic variation with age. However, the association between mtDNA variation and PD remains controversial. Herein, we provide an overview of previously published studies on the role of inherited as well as somatic (acquired) mtDNA changes in PD including point mutations, deletions and depletion. We outline limitations of previous investigations and the difficulties associated with studying mtDNA, which have left its role unresolved in the context of PD. Lastly, we highlight the potential for further research in this field and provide suggestions for future studies. Overall, the mitochondrial genome is indispensable for proper cellular function and its contribution to PD requires further, more extensive investigation.
Collapse
Affiliation(s)
- Amica C Müller-Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | | | - Marianne Venter
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Ilse S Pienaar
- School of Life Sciences, University of Sussex, Falmer, BN1 9PH, United Kingdom; Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, United Kingdom
| | | | - Joanna L Elson
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
22
|
Miller B, Arpawong TE, Jiao H, Kim SJ, Yen K, Mehta HH, Wan J, Carpten JC, Cohen P. Comparing the Utility of Mitochondrial and Nuclear DNA to Adjust for Genetic Ancestry in Association Studies. Cells 2019; 8:E306. [PMID: 30987182 PMCID: PMC6523867 DOI: 10.3390/cells8040306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial genome-wide association studies identify mitochondrial single nucleotide polymorphisms (mtSNPs) that associate with disease or disease-related phenotypes. Most mitochondrial and nuclear genome-wide association studies adjust for genetic ancestry by including principal components derived from nuclear DNA, but not from mitochondrial DNA, as covariates in statistical regression analyses. Furthermore, there is no standard when controlling for genetic ancestry during mitochondrial and nuclear genetic interaction association scans, especially across ethnicities with substantial mitochondrial genetic heterogeneity. The purpose of this study is to (1) compare the degree of ethnic variation captured by principal components calculated from microarray-defined nuclear and mitochondrial DNA and (2) assess the utility of mitochondrial principal components for association studies. Analytic techniques used in this study include a principal component analysis for genetic ancestry, decision-tree classification for self-reported ethnicity, and linear regression for association tests. Data from the Health and Retirement Study, which includes self-reported White, Black, and Hispanic Americans, was used for all analyses. We report that (1) mitochondrial principal component analysis (PCA) captures ethnic variation to a similar or slightly greater degree than nuclear PCA in Blacks and Hispanics, (2) nuclear and mitochondrial DNA classify self-reported ethnicity to a high degree but with a similar level of error, and 3) mitochondrial principal components can be used as covariates to adjust for population stratification in association studies with complex traits, as demonstrated by our analysis of height-a phenotype with a high heritability. Overall, genetic association studies might reveal true and robust mtSNP associations when including mitochondrial principal components as regression covariates.
Collapse
Affiliation(s)
- Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Thalida E Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Henry Jiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - John C Carpten
- Department of Translational Genomics and Institute for Translational Genomics, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA.
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|