1
|
Kassaee SN, Richard D, Ayoko GA, Islam N. Lipid polymer hybrid nanoparticles against lung cancer and their application as inhalable formulation. Nanomedicine (Lond) 2024; 19:2113-2133. [PMID: 39143915 PMCID: PMC11486133 DOI: 10.1080/17435889.2024.2387530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
Lung cancer is a leading cause of global cancer mortality, often treated with chemotherapeutic agents. However, conventional approaches such as oral or intravenous administration of drugs yield low bioavailability and adverse effects. Nanotechnology has unlocked new gateways for delivering medicine to their target sites. Lipid-polymer hybrid nanoparticles (LPHNPs) are one of the nano-scaled delivery platforms that have been studied to exploit advantages of liposomes and polymers, enhancing stability, drug loading, biocompatibility and controlled release. Pulmonary administration of drug-loaded LPHNPs enables direct lung deposition, rapid onset of action and heightened efficacy at low doses of drugs. In this manuscript, we will review the potential of LPHNPs in management of lung cancer through pulmonary administration.
Collapse
Affiliation(s)
- Seyedeh Negin Kassaee
- School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Derek Richard
- Centre for Genomics & Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Godwin A. Ayoko
- School of Chemistry & Physics & Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Nazrul Islam
- School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| |
Collapse
|
2
|
Huang WC, Cheng WC, Chen CY, Liao WC, Wu BR, Chen WC, Tu CY, Chen CH, Hsu WH. Comparison of Budesonide/formoterol versus Fluticasone furoate/vilanterol as maintenance and reliever therapy for asthma control: a real-world observational study. BMC Pulm Med 2024; 24:374. [PMID: 39085818 PMCID: PMC11293254 DOI: 10.1186/s12890-024-03190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Previous studies have reported reduced acute exacerbation rates and improved symptom control in asthma patients treated using inhaled corticosteroids plus formoterol maintenance and reliever therapy (MART). Fluticasone furoate (FF) and vilanterol (VIL) also provide rapid bronchodilation and sustained anti-inflammatory effects, however no studies have investigated FF/VIL as MART for asthma control. METHODS From October 1, 2021 to September 30, 2023, this retrospective study included asthma patients classified as step 3 or 4 according to the Global Initiative for Asthma guidelines, who were then divided into two groups. One group received BUD/FOR as MART, while the other received FF/VIL as MART. Pulmonary function tests, exacerbation rates, Asthma Control Test (ACT), fractional exhaled nitric oxide (FeNO) levels, and blood eosinophil counts were measured before and after 12 months of treatment. RESULTS A total of 161 patients were included, of whom 36 received BUD/FOR twice daily as MART, and 125 received FF/VIL once daily as MART. After 12 months of treatment, the FF/VIL group showed a significant increase in ACT scores by 1.57 (p < 0.001), while the BUD/FOR group had an increase of 0.88 (p = 0.11). In terms of FeNO levels, the BUD/FOR group experienced a decline of -0.2 ppb (p = 0.98), whereas the FF/VIL group had a mild increase of + 0.8 ppb (p = 0.7). Notably, there was a significant difference in the change of FeNO between the two groups (∆ FeNO: -0.2 ppb in BUD/FOR; + 0.8 ppb in FF/VIL, p < 0.001). There were no significant alterations observed in FEV1, blood eosinophil count, or acute exacerbation decline in either group. CONCLUSIONS In the current study, patients treated with FF/VIL as MART showed improvements in ACT scores, while those treated with BUD/FOR as MART exhibited a reduction in FeNO levels. However, the difference between the two treatment groups did not reach clinical significance. Thus, FF/VIL as MART showed similar effectiveness to BUD/FOR as MART.
Collapse
Affiliation(s)
- Wei-Chun Huang
- Division of Pulmonary and Critical Care, Department of Internal Medicine, North District, China Medical University Hospital, No. 2, Yude Road, Taichung City, 40402, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Chien Cheng
- Division of Pulmonary and Critical Care, Department of Internal Medicine, North District, China Medical University Hospital, No. 2, Yude Road, Taichung City, 40402, Taiwan.
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
| | - Chih-Yu Chen
- Division of Pulmonary and Critical Care, Department of Internal Medicine, North District, China Medical University Hospital, No. 2, Yude Road, Taichung City, 40402, Taiwan
| | - Wei-Chih Liao
- Division of Pulmonary and Critical Care, Department of Internal Medicine, North District, China Medical University Hospital, No. 2, Yude Road, Taichung City, 40402, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Biing-Ru Wu
- Division of Pulmonary and Critical Care, Department of Internal Medicine, North District, China Medical University Hospital, No. 2, Yude Road, Taichung City, 40402, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chun Chen
- Division of Pulmonary and Critical Care, Department of Internal Medicine, North District, China Medical University Hospital, No. 2, Yude Road, Taichung City, 40402, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Yen Tu
- Division of Pulmonary and Critical Care, Department of Internal Medicine, North District, China Medical University Hospital, No. 2, Yude Road, Taichung City, 40402, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Hung Chen
- Division of Pulmonary and Critical Care, Department of Internal Medicine, North District, China Medical University Hospital, No. 2, Yude Road, Taichung City, 40402, Taiwan.
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
| | - Wu-Huei Hsu
- Division of Pulmonary and Critical Care, Department of Internal Medicine, North District, China Medical University Hospital, No. 2, Yude Road, Taichung City, 40402, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Pleasants RA, Henderson AG, Bayer V, Shaikh A, Drummond MB. Effect on Physical Position of Peak Inspiratory Flow in Stable COPD: An Observational Study. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2024; 11:174-186. [PMID: 38236166 DOI: 10.15326/jcopdf.2023.0460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Background We examined the effect of physical position on peak inspiratory flow (PIF) in patients with chronic obstructive pulmonary disease (COPD) using dry-powder inhalers (DPIs) with low‑medium internal resistance (R2) and/or high internal resistance (R5). Methods This prospective study in stable, ambulatory patients with spirometry-confirmed COPD evaluated the effect of 3 physical positions on maximal PIF achieved. Participants had PIFs of 30-90L/min (R5) or 60-90L/min (R2 DPIs) using the In-Check™ DIAL. PIF was measured in triplicate randomly in 3 positions that patients might be in while using their inhaler (standing, sitting, and semi-upright [supine position with the head of the bed at 45°, neck flexed forward]) against prescribed DPI resistance (R2/R5/both). Correlations between PIF and percentage decline in PIF between positions and differences in participant characteristics with >10% versus ≤10% PIF decline standing to semi-upright were calculated. Results A total of 76 participants (mean age, 65.2 years) had positional measurements; 59% reported seated DPI use at home. The mean (standard deviation) PIF standing, sitting, and semi-upright was 80.7 (13.4), 77.8 (14.3), and 74.0 (14.5) L/min, respectively, for R2 and 51.1 (9.52), 48.6 (9.84), and 45.8 (7.69) L/min, respectively, for R5 DPIs. PIF semi-upright was significantly lower than sitting and standing (R2; P < 0.0001) and standing (R5; P= 0.002). Approximately half of the participants had >10% decline in PIF from standing to semi-upright. Patient characteristics exceeding the 0.10 absolute standardized difference threshold with the decline in PIF for both the R2 and R5 DPIs were waist-to-hip ratio, modified Medical Research Council dyspnea score, and postbronchodilator percentage predicted forced vital capacity and PIF by spirometry. Conclusions PIF was significantly affected by physical position regardless of DPI resistance. PIF was highest when standing and lowest when semi-upright. We recommend that patients with COPD stand while using an R2 or R5 DPI. Where unfeasible, the position should be sitting rather than semi-upright. ClinicalTrials.gov identifier NCT04168775.
Collapse
Affiliation(s)
- Roy A Pleasants
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Ashley G Henderson
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Valentina Bayer
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States
| | - Asif Shaikh
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States
| | - M Bradley Drummond
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
4
|
Dal Negro RW. Usability of inhaler devices: a parameter currently misused. Multidiscip Respir Med 2024; 19:960. [PMID: 38577745 PMCID: PMC10968837 DOI: 10.5826/mrm.2024.960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 04/06/2024] Open
Abstract
Inhalation represents the most convenient route for delivering respiratory drugs. Delivery systems showed a huge technological progress and several pocket inhalers had been engineered over the last decades for clinical use. Despite the growing technological efforts aimed to simplify the inhalation procedures and optimize the therapeutic outcomes, the effectiveness of drug inhalation through inhalers still represents a major challenge in respiratory medicine. Patients may actually incur in different types of critical errors when using all inhalers and are not capable to inhale throughout all devices equally well. Therefore, the choice of the most suitable and convenient device to prescribe still is a critical issue in real life. Usability is the only comprehensive parameter consenting the effective and objective assessment of pocket inhalers' performance, and allowing their objective comparison and ranking. Unpredictable discrepancies are in fact easily detectable between inhalers (even belonging to the same class) in terms of Usability, independently of the patient's awareness. The reasons were described and discussed for each class of inhalers presently available. Usability is a multidimensional parameter that is much more multifaceted and complex than usually presumed. Usability takes origin from the integrated, balanced and objective assessment of the role played by several factors from different domains, such as: factors related to patient's beliefs, to patients' behavioural components, to device engineering and to the overall cost. Usability is the key parameter for assessing and optimizing the appropriateness of any inhalation treatment through whatever device. Usability would also represent a key investigational instrument for supporting the future development of -innovative and more performing inhaler devices objectively.
Collapse
Affiliation(s)
- Roberto W Dal Negro
- National Centre for Respiratory Pharmacoeconomics & Pharmacoepidemiology - CESFAR, Verona
| |
Collapse
|
5
|
Wachtel H, Emerson-Stadler R, Langguth P, Hohlfeld JM, Ohar J. Aerosol Plumes of Inhalers Used in COPD. Pulm Ther 2024; 10:109-122. [PMID: 38194194 PMCID: PMC10881950 DOI: 10.1007/s41030-023-00249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/21/2023] [Indexed: 01/10/2024] Open
Abstract
INTRODUCTION The selection of inhaler device is of critical importance in chronic obstructive pulmonary disease (COPD) as the interaction between a patient's inhalation profile and the aerosol characteristics of an inhaler can affect drug delivery and lung deposition. This study assessed the in vitro aerosol characteristics of inhaler devices approved for the treatment of COPD, including a soft mist inhaler (SMI), pressurized metered-dose inhalers (pMDIs), and dry powder inhalers (DPIs). METHODS High-speed video recording was used to visualize and measure aerosol velocity and spray duration for nine different inhalers (one SMI, three pMDIs, and five DPIs), each containing dual or triple fixed-dose combinations of long-acting muscarinic receptor antagonists and long-acting β2-agonists, with or without an inhaled corticosteroid. Measurements were taken in triplicate at experimental flow rates of 30, 60, and 90 l/min. Optimal flow rates were defined based on pharmacopoeial testing requirements: 30 l/min for pMDIs and SMIs, and the rate achieving a 4-kPa pressure drop against internal inhaler resistance for DPIs. Comparison of aerosol plumes was based on the experimental flow rates closest to the optimal flow rates. RESULTS The Respimat SMI had the slowest plume velocity (0.99 m/s) and longest spray duration (1447 ms) compared with pMDIs (velocity: 3.65-5.09 m/s; duration: 227-270 ms) and DPIs (velocity: 1.43-4.60 m/s; duration: 60-757 ms). With increasing flow rates, SMI aerosol duration was unaffected, but velocity increased (maximum 2.63 m/s), pMDI aerosol velocity and duration were unaffected, and DPI aerosol velocity tended to increase, with a more variable impact on duration. CONCLUSIONS Aerosol characteristics (velocity and duration of aerosol plume) vary by inhaler type. Plume velocity was lower and spray duration longer for the SMI compared with pMDIs and DPIs. Increasing experimental flow rate was associated with faster plume velocity for DPIs and the SMI, with no or variable impact on plume duration, whereas pMDI aerosol velocity and duration were unaffected by increasing flow rate.
Collapse
Affiliation(s)
- Herbert Wachtel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Binger Strasse 173, 55216, Ingelheim am Rhein, Germany.
| | - Rachel Emerson-Stadler
- Boehringer Ingelheim Pharma GmbH & Co. KG, Binger Strasse 173, 55216, Ingelheim am Rhein, Germany
| | - Peter Langguth
- Institute for Pharmaceutical and Biomedical Sciences (IPBW), University of Mainz, Mainz, Germany
| | - Jens M Hohlfeld
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Jill Ohar
- Department of Internal Medicine, Section on Pulmonary Medicine, Critical Care, Allergy and Immunologic Diseases, Atrium Health Wake Forest Baptist, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| |
Collapse
|
6
|
Capstick TGD, Gudimetla S, Harris DS, Malone R, Usmani OS. Demystifying Dry Powder Inhaler Resistance with Relevance to Optimal Patient Care. Clin Drug Investig 2024; 44:109-114. [PMID: 38198116 PMCID: PMC10834657 DOI: 10.1007/s40261-023-01330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
The selection of an inhaler device is a key component of respiratory disease management. However, there is a lack of clarity surrounding inhaler resistance and how it impacts inhaler selection. The most common inhaler types are dry powder inhalers (DPIs) that have internal resistance and pressurised metered dose inhalers (pMDIs) that use propellants to deliver the drug dose to the airways. Inhaler resistance varies across the DPIs available on the market, depending largely on the design geometry of the device but also partially on formulation parameters. Factors influencing inhaler choice include measures such as flow rate or pressure drop as well as inhaler technique and patient preference, both of which can lead to improved adherence and outcomes. For optimal disease outcomes, device selection should be individualised, inhaler technique optimised and patient preference considered. By addressing the common clinically relevant questions, this paper aims to demystify how DPI resistance should guide the selection of the right device for the right patient.
Collapse
Affiliation(s)
| | | | | | | | - Omar S Usmani
- National Heart and Lung Institute (NHLI), Imperial College London, London, Guy Scadding Building, Dovehouse Street, London, SW3 6LY, UK.
| |
Collapse
|
7
|
McEvoy C, Argula R, Sahay S, Shapiro S, Eagan C, Hickey AJ, Smutney C, Dillon C, Winkler T, Davis BN, Broderick M, Burger C. Tyvaso DPI: Drug-device characteristics and patient clinical considerations. Pulm Pharmacol Ther 2023; 83:102266. [PMID: 37967762 DOI: 10.1016/j.pupt.2023.102266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/13/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
Tyvaso DPI is a drug-device combination therapy comprised of a small, portable, reusable, breath-powered, dry powder inhaler (DPI) for the delivery of treprostinil. It is approved for the treatment of pulmonary arterial hypertension and pulmonary hypertension associated with interstitial lung disease. Tyvaso DPI utilizes single-use prefilled cartridges to ensure proper dosing. Unlike nebulizer devices, administration of Tyvaso DPI is passive and does not require coordination with the device. The low-flow rate design results in targeted delivery to the peripheral lungs due to minimal drug loss from impaction in the oropharynx. The inert fumaryl diketopiperazine (FDKP) excipient forms microparticles that carry treprostinil into the airways, with a high fraction of the particles in the respirable range. In a clinical study in patients with pulmonary arterial hypertension, Tyvaso DPI had similar exposure and pharmacokinetics, low incidence of adverse events, and high patient satisfaction compared with nebulized treprostinil solution. Tyvaso DPI may be considered as a first prostacyclin agent or for those that do not tolerate other prostacyclin formulations, patients with pulmonary comorbidities, patients with mixed Group 1 and Group 3 pulmonary hypertension, or those that prefer an active lifestyle and need a portable, non-invasive treatment. Tyvaso DPI is a patient-preferred, maintenance-free, safe delivery option that may improve patient compliance and adherence.
Collapse
Affiliation(s)
- Colleen McEvoy
- Division of Pulmonary and Critical Care Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Rahul Argula
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Sandeep Sahay
- Division of Pulmonary, Critical Care & Sleep Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Shelley Shapiro
- Cardiology Division, Greater Los Angeles VA Healthcare System, Department of Pulmonary Critical Care, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Christina Eagan
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | | | | | - Chris Dillon
- United Therapeutics Corporation, Research Triangle Park, NC, USA
| | - Thomas Winkler
- United Therapeutics Corporation, Research Triangle Park, NC, USA
| | - Brittany N Davis
- United Therapeutics Corporation, Research Triangle Park, NC, USA
| | | | - Charles Burger
- Division of Pulmonary, Allergy and Sleep Medicine, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
8
|
Magramane S, Vlahović K, Gordon P, Kállai-Szabó N, Zelkó R, Antal I, Farkas D. Inhalation Dosage Forms: A Focus on Dry Powder Inhalers and Their Advancements. Pharmaceuticals (Basel) 2023; 16:1658. [PMID: 38139785 PMCID: PMC10747137 DOI: 10.3390/ph16121658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
In this review, an extensive analysis of dry powder inhalers (DPIs) is offered, focusing on their characteristics, formulation, stability, and manufacturing. The advantages of pulmonary delivery were investigated, as well as the significance of the particle size in drug deposition. The preparation of DPI formulations was also comprehensively explored, including physico-chemical characterization of powders, powder processing techniques, and formulation considerations. In addition to manufacturing procedures, testing methods were also discussed, providing insights into the development and evaluation of DPI formulations. This review also explores the design basics and critical attributes specific to DPIs, highlighting the significance of their optimization to achieve an effective inhalation therapy. Additionally, the morphology and stability of 3 DPI capsules (Spiriva, Braltus, and Onbrez) were investigated, offering valuable insights into the properties of these formulations. Altogether, these findings contribute to a deeper understanding of DPIs and their development, performance, and optimization of inhalation dosage forms.
Collapse
Affiliation(s)
- Sabrina Magramane
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Kristina Vlahović
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Péter Gordon
- Department of Electronics Technology, Budapest University of Technology and Economics, Egry J. Str. 18, H-1111 Budapest, Hungary;
| | - Nikolett Kállai-Szabó
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Romána Zelkó
- Department of Pharmacy Administration, Semmelweis University, Hőgyes Str. 7–9, H-1092 Budapest, Hungary;
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Dóra Farkas
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| |
Collapse
|
9
|
Ye Y, Fan Z, Ma Y, Zhu J. Investigation on the Influence of Design Features on the Performance of Dry Powder Inhalers: Spiral Channel, Mouthpiece Dimension, and Gas Inlet. Int J Pharm 2023:123116. [PMID: 37302669 DOI: 10.1016/j.ijpharm.2023.123116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
As inhaler design is rarely studied but critically important in pulmonary drug delivery, this study investigated the influence of inhaler designs, including a novel spiral channel, mouthpiece dimensions (diameter and length) as well as gas inlet. Experimental dispersion of a carrier-based formulation in conjugation with computational fluid dynamics (CFD) analysis, was performed to determine how the designs affect inhaler performance. Results reveal that inhalers with a narrow spiral channel could effectively increase drug-carrier detachment by introducing high velocity and strong turbulent flow in the mouthpiece, although the drug retention in the device is significantly high. It is also found that reducing mouthpiece diameter and gas inlet size could greatly improve the fine particle dose delivered to the lungs, whereas the mouthpiece length plays a trivial influence on the aerosolization performance. This study contributes toward a better understanding of inhaler designs as relevant to overall inhaler performance, and sheds light on how the designs affect device performance.
Collapse
Affiliation(s)
- Yuqing Ye
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada; Suzhou Inhal Pharma Co., Ltd., 108 Yuxi Road, Suzhou, 215125, China
| | - Ziyi Fan
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada
| | - Ying Ma
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada; Suzhou Inhal Pharma Co., Ltd., 108 Yuxi Road, Suzhou, 215125, China
| | - Jesse Zhu
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada.
| |
Collapse
|
10
|
Han CS, Kang JH, Park EH, Lee HJ, Jeong SJ, Kim DW, Park CW. Corrugated surface microparticles with chitosan and levofloxacin for improved aerodynamic performance. Asian J Pharm Sci 2023; 18:100815. [PMID: 37304227 PMCID: PMC10248792 DOI: 10.1016/j.ajps.2023.100815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/04/2023] [Accepted: 04/30/2023] [Indexed: 06/13/2023] Open
Abstract
Corrugated surface microparticles comprising levofloxacin (LEV), chitosan and organic acid were prepared using the 3-combo spray drying method. The amount and the boiling point of the organic acid affected the degree of roughness. In this study, we tried to improve the aerodynamic performance and increase aerosolization by corrugated surface microparticle for lung drug delivery efficiency as dry powder inhaler. HMP175 L20 prepared with 175 mmol propionic acid solution was corrugated more than HMF175 L20 prepared with 175 mmol formic acid solution. The ACI and PIV results showed a significant increase in aerodynamic performance of corrugated microparticles. The FPF value of HMP175 L20 was 41.3% ± 3.9% compared with 25.6% ± 7.7% of HMF175 L20. Corrugated microparticles also showed better aerosolization, decreased x-axial velocity, and variable angle. Rapid dissolution of drug formulations was observed in vivo. Low doses administered to the lungs achieved higher LEV concentrations in the lung fluid than high doses administered orally. Surface modification in the polymer-based formulation was achieved by controlling the evaporation rate and improving the inhalation efficiency of DPIs.
Collapse
Affiliation(s)
- Chang-Soo Han
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Ji-Hyun Kang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Eun hye Park
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Hyo-Jung Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - So-Jeong Jeong
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Dong-Wook Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| |
Collapse
|
11
|
Pacheco-Quito EM, Jaramillo J, Sarmiento-Ordoñez J, Cuenca-León K. Drugs Prescribed for Asthma and Their Adverse Effects on Dental Health. Dent J (Basel) 2023; 11:dj11050113. [PMID: 37232764 DOI: 10.3390/dj11050113] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Asthma is a chronic, heterogeneous respiratory pathology characterized by reversible airway inflammation. Therapeutics focus on symptom reduction and control, aimed at preserving normal pulmonary function and inducing bronchodilatation. The objective of this review is to describe the adverse effects produced by anti-asthmatic drugs on dental health, according to the reported scientific evidence. A bibliographic review was carried out on databases, such as Web of science, Scopus, and ScienceDirect. Most anti-asthmatic medications are administered using inhalers or nebulizers, making it impossible to avoid contact of the drug with hard dental tissues and oral mucosa, and thus promoting a greater risk of oral alterations, mainly due to decreases in the salivary flow and pH. Such changes can cause diseases, such as dental caries, dental erosion, tooth loss, periodontal disease, bone resorption, as well as fungal infections, such as oral candidiasis.
Collapse
Affiliation(s)
- Edisson-Mauricio Pacheco-Quito
- Academic Unit of Health and Wellness, Faculty of Dentistry, Catholic University of Cuenca, Cuenca 010105, Ecuador
- Innovation and Pharmaceutical Development in Dentistry Research Group, Faculty of Dentistry, Head of Research and Innovation, Catholic University of Cuenca, Cuenca 010105, Ecuador
| | | | - Jéssica Sarmiento-Ordoñez
- Academic Unit of Health and Wellness, Faculty of Dentistry, Catholic University of Cuenca, Cuenca 010105, Ecuador
- Innovation and Pharmaceutical Development in Dentistry Research Group, Faculty of Dentistry, Head of Research and Innovation, Catholic University of Cuenca, Cuenca 010105, Ecuador
| | - Katherine Cuenca-León
- Academic Unit of Health and Wellness, Faculty of Dentistry, Catholic University of Cuenca, Cuenca 010105, Ecuador
- Innovation and Pharmaceutical Development in Dentistry Research Group, Faculty of Dentistry, Head of Research and Innovation, Catholic University of Cuenca, Cuenca 010105, Ecuador
| |
Collapse
|
12
|
Alotaibi MM, Hughes L, Ford WR. Assessing Inhaler Techniques of Asthma Patients Using Aerosol Inhalation Monitors (AIM): A Cross-Sectional Study. Healthcare (Basel) 2023; 11:healthcare11081125. [PMID: 37107959 PMCID: PMC10137766 DOI: 10.3390/healthcare11081125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
A high percentage of asthma patients have symptoms that are not well controlled, despite effective drugs being available. One potential reason for this may be that poor inhaler technique limits the dose delivered to the lungs, thereby reducing the therapeutic efficacy. The aim of this study was to assess the prevalence of poor inhaler technique in an asthma patient population and to probe the impact of various demographic parameters on technique quality. This study was conducted at community pharmacies across Wales, UK. Patients diagnosed with asthma and 12 years or older were invited to participate. An aerosol inhalation monitor (AIM, Vitalograph®) was used to measure the quality of patient inhaler technique. A total of 295 AIM assessments were carried out. There were significant differences in the quality of inhaler technique across the different inhaler types (p < 0.001, Chi squared). The best technique was associated with dry-powder inhalers (DPI devices, 58% of 72 having good technique), compared with pressurized metered-dose inhalers (pMDI) or pMDIs with a spacer device (18% of 174 and 47% of 49 AIM assessments, respectively). There were some significant associations between gender, age, and quality of inhaler technique, as determined with adjusted odds ratios. It seems that the majority of asthmatic patients were not using their inhalers appropriately. We recommend that healthcare professionals place more emphasis on assessing and correcting inhaler technique, as poor inhaler technique might be responsible for the observed lack of symptom control in the asthma patient population.
Collapse
Affiliation(s)
- Mansour M Alotaibi
- Pharmacy Practice Department, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Louise Hughes
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - William R Ford
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| |
Collapse
|
13
|
Chan HW, Chow S, Zhang X, Zhao Y, Tong HHY, Chow SF. Inhalable Nanoparticle-based Dry Powder Formulations for Respiratory Diseases: Challenges and Strategies for Translational Research. AAPS PharmSciTech 2023; 24:98. [PMID: 37016029 PMCID: PMC10072922 DOI: 10.1208/s12249-023-02559-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/23/2023] [Indexed: 04/06/2023] Open
Abstract
The emergence of novel respiratory infections (e.g., COVID-19) and expeditious development of nanoparticle-based COVID-19 vaccines have recently reignited considerable interest in designing inhalable nanoparticle-based drug delivery systems as next-generation respiratory therapeutics. Among various available devices in aerosol delivery, dry powder inhalers (DPIs) are preferable for delivery of nanoparticles due to their simplicity of use, high portability, and superior long-term stability. Despite research efforts devoted to developing inhaled nanoparticle-based DPI formulations, no such formulations have been approved to date, implying a research gap between bench and bedside. This review aims to address this gap by highlighting important yet often overlooked issues during pre-clinical development. We start with an overview and update on formulation and particle engineering strategies for fabricating inhalable nanoparticle-based dry powder formulations. An important but neglected aspect in in vitro characterization methodologies for linking the powder performance with their bio-fate is then discussed. Finally, the major challenges and strategies in their clinical translation are highlighted. We anticipate that focused research onto the existing knowledge gaps presented in this review would accelerate clinical applications of inhalable nanoparticle-based dry powders from a far-fetched fantasy to a reality.
Collapse
Affiliation(s)
- Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Stephanie Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Xinyue Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Yayi Zhao
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong S.A.R, Shatin, China
| | - Henry Hoi Yee Tong
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao S.A.R., China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong S.A.R, Shatin, China.
| |
Collapse
|
14
|
Kondo T, Tanigaki T, Hibino M, Tajiri S, Horiuchi S, Maeda K, Tobe S. In Vitro Comparison of Two Blister-Type Inhalers. Respir Care 2023; 68:338-345. [PMID: 36100278 PMCID: PMC10027159 DOI: 10.4187/respcare.09883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Ellipta is a respiratory device that is a successor of the Diskus. A major difference between the devices is that Ellipta, especially the 2-strip type, includes a pair of blisters rather than a single blister as contained in Diskus. This study aimed to compare the particle-release properties and mechanical features of both devices. METHODS A pump was used to evacuate air from each dry powder inhaler (DPI) with either a ramp-up or triangular pattern. The particle release volume and peak inspiratory flow of the DPIs were compared. Then the resistance of each component was measured. RESULTS Both DPIs required specific threshold flows for particle release. Inspiratory flows exceeding the threshold values (Ellipta 11.3 ± 4.0 L/min and Diskus 29.7 ± 4.7 L/min using ramp-up inhalations; Ellipta 10.6 ± 2.1 L/min and Diskus 28.4 ± 5.2 L/min using triangular ones) did not further increase particle release volumes. The inspiratory flows required for Ellipta were significantly less than those for Diskus. The particle release volume exceeding threshold flow for Ellipta was approximately 2.62 (ramp-up) and 2.01 (triangular) times those of Diskus. The resistance of one blister was similar (0.44 cm H2O/L/min vs 0.42 cm H2O/L/min for Ellipta and Diskus, respectively). As Ellipta includes 2 parallel blisters, similar resistances suggest that Ellipta requires twice the flow of Diskus. The flow distributions for particle release in Ellipta and Diskus were 35.3 and 5.2% of the total inspiratory flow, respectively. CONCLUSIONS The Ellipta required lower inspiratory flow than Diskus, which arises from a higher distribution to blister flow. Ellipta may be preferable to Diskus for patients with impaired pulmonary function.
Collapse
Affiliation(s)
- Tetsuri Kondo
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Fujisawa, Kanagawa, Japan.
| | - Toshimori Tanigaki
- Department of Respiratory Medicine, Yamachika Memorial General Hospital, Odawara, Kanagawa, Japan
| | - Makoto Hibino
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Fujisawa, Kanagawa, Japan
| | - Sakurako Tajiri
- Department of Respiratory Medicine, Tokai University Oiso Hospital, Oiso, Kanagawa, Japan
| | - Shigeto Horiuchi
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Fujisawa, Kanagawa, Japan
| | - Kazunari Maeda
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Fujisawa, Kanagawa, Japan
| | - Shunichi Tobe
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Fujisawa, Kanagawa, Japan
| |
Collapse
|
15
|
A review of upper airway physiology relevant to the delivery and deposition of inhalation aerosols. Adv Drug Deliv Rev 2022; 191:114530. [PMID: 36152685 DOI: 10.1016/j.addr.2022.114530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/07/2022] [Accepted: 09/01/2022] [Indexed: 01/24/2023]
Abstract
Developing effective oral inhaled drug delivery treatment strategies for respiratory diseases necessitates a thorough knowledge of the respiratory system physiology, such as the differences in the airway channel's structure and geometry in health and diseases, their surface properties, and mechanisms that maintain their patency. While respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma and their implications on the lower airways have been the core focus of most of the current research, the role of the upper airway in these diseases is less known, especially in the context of inhaled drug delivery. This is despite the fact that the upper airway is the passageway for inhaled drugs to be delivered to the lower airways, and their replicas are indispensable in current standards, such as the cascade impactor experiments for testing inhaled drug delivery technology. This review provides an overview of upper airway collapsibility and their mechanical properties, the effects of age and gender on upper airway geometry, and surface properties. The review also discusses how COPD and asthma affect the upper airway and the typical inhalation flow characteristics exhibited by the patients with these diseases.
Collapse
|
16
|
Mohan AR, Wang Q, Dhapare S, Bielski E, Kaviratna A, Han L, Boc S, Newman B. Advancements in the Design and Development of Dry Powder Inhalers and Potential Implications for Generic Development. Pharmaceutics 2022; 14:pharmaceutics14112495. [PMID: 36432683 PMCID: PMC9695470 DOI: 10.3390/pharmaceutics14112495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Dry powder inhalers (DPIs) are drug-device combination products where the complexity of the formulation, its interaction with the device, and input from users play important roles in the drug delivery. As the landscape of DPI products advances with new powder formulations and novel device designs, understanding how these advancements impact performance can aid in developing generics that are therapeutically equivalent to the reference listed drug (RLD) products. This review details the current understanding of the formulation and device related principles driving DPI performance, past and present research efforts to characterize these performance factors, and the implications that advances in formulation and device design may present for evaluating bioequivalence (BE) for generic development.
Collapse
|
17
|
Chaoui M, Perinel-Ragey S, Prévôt N, Leclerc L, Pourchez J. Technical features of vaping drug delivery system for bronchodilator delivery. Int J Pharm 2022; 628:122350. [DOI: 10.1016/j.ijpharm.2022.122350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022]
|
18
|
Ye Y, Ma Y, Fan Z, Zhu J. The effects of grid design on the performance of 3D-printed dry powder inhalers. Int J Pharm 2022; 627:122230. [PMID: 36162608 DOI: 10.1016/j.ijpharm.2022.122230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022]
Abstract
The grid structure is an indispensable part of most dry powder inhalers, but the effects of grid geometry on inhaler performance are rarely reported. This study aims to systemically investigate the influence of grid design on the aerosolization performance of capsule-based inhalers through experiments and computational analysis. In-vitro aerosolization and deposition performance of commercial and 3D-printed customized inhalers with different grid mesh designs were experimentally studied using a Next Generation Impactor (NGI). Flow fields in the inhalers were generated, and average turbulence kinetic energy (TKE) and airstream trajectories were obtained through Computational Fluid Dynamics (CFD) analysis, delineating the effects of the different grid designs. Comparative studies using the commercial inhalers and the 3D-printed inhalers show a slightly better performance for the latter, probably due to the different materials used for the inhalers, confirming the suitability of 3D printing. Experimental results show that intensive grid meshes with a relatively small aperture size are beneficial to enhancing inhaler performance. Computational results illustrate that the intensive grid meshes can reduce vortexed airstreams and increase turbulent kinetic energy at the grids in general, which also supports the experimental results. In summary, inhalers with intensive grid meshes are preferred for capsule-based inhalers to enhance aerosolization performance. These findings have significant implications for the comprehensive understanding of how grid designs influence inhaler performance.
Collapse
Affiliation(s)
- Yuqing Ye
- University of Western Ontario, 1151 Richmond Street, London N6A 3K7, Canada; Suzhou Inhal Pharma Co., Ltd., 502-Bldf A SIP, 108 Yuxi Road, Suzhou 215125, China
| | - Ying Ma
- University of Western Ontario, 1151 Richmond Street, London N6A 3K7, Canada; Suzhou Inhal Pharma Co., Ltd., 502-Bldf A SIP, 108 Yuxi Road, Suzhou 215125, China
| | - Ziyi Fan
- University of Western Ontario, 1151 Richmond Street, London N6A 3K7, Canada
| | - Jesse Zhu
- University of Western Ontario, 1151 Richmond Street, London N6A 3K7, Canada.
| |
Collapse
|
19
|
Clark B, Wells BJ, Saha AK, Franchino-Elder J, Shaikh A, Donato BMK, Ohar JA. Low Peak Inspiratory Flow Rates are Common Among COPD Inpatients and are Associated with Increased Healthcare Resource Utilization: A Retrospective Cohort Study. Int J Chron Obstruct Pulmon Dis 2022; 17:1483-1494. [PMID: 35791340 PMCID: PMC9250781 DOI: 10.2147/copd.s355772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Background Patients with chronic obstructive pulmonary disease (COPD) can have low peak inspiratory flow (PIF), especially after hospitalization for acute exacerbation of COPD (AECOPD). Purpose To characterize patients hospitalized for AECOPD, and to assess the prevalence of low PIF, changes in PIF after hospitalization, and the association of low PIF with healthcare resource utilization (HRU) outcomes. Patients and Methods A retrospective cohort study was conducted using electronic health record data of hospitalized COPD patients in the Wake Forest Baptist Health system (01/01/2017 through 06/30/2020). Patients with a first eligible AECOPD hospitalization (index hospitalization) who were discharged before 05/31/2020 were included. PIF was measured using the In-Check DIAL™ at both medium-low resistance (R-2) and high resistance (R-5) during the index hospitalization. For R-2 and R-5, PIF was divided into low PIF (< 60 L/min; < 30 L/min) and high PIF (≥ 60 L/min; ≥ 30 L/min) groups. The primary outcome was the prevalence of low PIF. The stability of PIF after hospitalization was described. Adjusted regression models evaluated associations between low PIF and subsequent 30-day readmissions, 90-day readmissions, and HRU outcomes, including hospitalizations, emergency department visits, inpatient days, and intensive care unit (ICU) days. Results In total, 743 patients with PIF measured at R-2 and R-5 during a AECOPD hospitalization were included. The prevalence of low PIF was 56.9% at R-2 and 14.7% at R-5. PIF values were relatively stable after hospitalization. Adjusted analyses showed significant increases in HRU (all-cause hospitalizations [31%], COPD hospitalizations [33%], COPD inpatient days [46%], and COPD ICU days [24%]) during the follow-up period among patients with low PIF (< 60 L/min) at R-2. The 30- and 90-day readmission risks were similar between patients with low PIF and high PIF. Conclusion Low PIF is common among patients hospitalized for AECOPD, relatively stable after hospital discharge, and associated with increased HRU.
Collapse
Affiliation(s)
- Brendan Clark
- Health Economics and Outcomes Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | - Brian J Wells
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amit K Saha
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jessica Franchino-Elder
- Health Economics and Outcomes Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | - Asif Shaikh
- Clinical Development and Medical Affairs, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | - Bonnie M K Donato
- Health Economics and Outcomes Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | - Jill A Ohar
- Department of Medicine, Section of Pulmonary, Critical Care, Allergy and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
20
|
Manipulation of Spray-Drying Conditions to Develop an Inhalable Ivermectin Dry Powder. Pharmaceutics 2022; 14:pharmaceutics14071432. [PMID: 35890327 PMCID: PMC9325229 DOI: 10.3390/pharmaceutics14071432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19, predominantly affects the respiratory tract. As a consequence, it seems intuitive to develop antiviral agents capable of targeting the virus right on its main anatomical site of replication. Ivermectin, a U.S. FDA-approved anti-parasitic drug, was originally shown to inhibit SARS-CoV-2 replication in vitro, albeit at relatively high concentrations, which is difficult to achieve in the lung. In this study, we tested the spray-drying conditions to develop an inhalable dry powder formulation that could ensure sufficient antiviral drug concentrations, which are difficult to achieve in the lungs based on the oral dosage used in clinical trials. Here, by using ivermectin as a proof-of-concept, we evaluated spray-drying conditions that could lead to the development of antivirals in an inhalable dry powder formulation, which could then be used to ensure sufficient drug concentrations in the lung. Thus, we used ivermectin in proof-of-principle experiments to evaluate our system, including physical characterization and in vitro aerosolization of prepared dry powder. The ivermectin dry powder was prepared with a mini spray-dryer (Buchi B-290), using a 23 factorial design and manipulating spray-drying conditions such as feed concentration (0.2% w/v and 0.8% w/v), inlet temperature (80 °C and 100 °C) and presence/absence of L-leucine (0% and 10%). The prepared dry powder was in the size range of 1−5 μm and amorphous in nature with wrinkle morphology. We observed a higher fine particle fraction (82.5 ± 1.4%) in high feed concentration (0.8% w/v), high inlet temperature (100 °C) and the presence of L-leucine (10% w/w). The stability study conducted for 28 days confirmed that the spray-dried powder was stable at 25 ± 2 °C/<15% RH and 25 ± 2 °C/ 53% RH. Interestingly, the ivermectin dry powder formulation inhibited SARS-CoV-2 replication in vitro with a potency similar to ivermectin solution (EC50 values of 15.8 µM and 14.1 µM, respectively), with a comparable cell toxicity profile in Calu-3 cells. In summary, we were able to manipulate the spray-drying conditions to develop an effective ivermectin inhalable dry powder. Ongoing studies based on this system will allow the development of novel formulations based on single or combinations of drugs that could be used to inhibit SARS-CoV-2 replication in the respiratory tract.
Collapse
|
21
|
Mohammed Y, Holmes A, Kwok PCL, Kumeria T, Namjoshi S, Imran M, Matteucci L, Ali M, Tai W, Benson HA, Roberts MS. Advances and future perspectives in epithelial drug delivery. Adv Drug Deliv Rev 2022; 186:114293. [PMID: 35483435 DOI: 10.1016/j.addr.2022.114293] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022]
Abstract
Epithelial surfaces protect exposed tissues in the body against intrusion of foreign materials, including xenobiotics, pollen and microbiota. The relative permeability of the various epithelia reflects their extent of exposure to the external environment and is in the ranking: intestinal≈ nasal ≥ bronchial ≥ tracheal > vaginal ≥ rectal > blood-perilymph barrier (otic), corneal > buccal > skin. Each epithelium also varies in their morphology, biochemistry, physiology, immunology and external fluid in line with their function. Each epithelium is also used as drug delivery sites to treat local conditions and, in some cases, for systemic delivery. The associated delivery systems have had to evolve to enable the delivery of larger drugs and biologicals, such as peptides, proteins, antibodies and biologicals and now include a range of physical, chemical, electrical, light, sound and other enhancement technologies. In addition, the quality-by-design approach to product regulation and the growth of generic products have also fostered advancement in epithelial drug delivery systems.
Collapse
|
22
|
Brittain D, D’Andrea P, Gruen E, Hosoe M, Jain D, Jauernig J, Pethe A, Scosyrev E, Tanase AM, Tillmann HC. A Review of the Unique Drug Development Strategy of Indacaterol Acetate/Glycopyrronium Bromide/Mometasone Furoate: A First-in-Class, Once-Daily, Single-Inhaler, Fixed-Dose Combination Treatment for Asthma. Adv Ther 2022; 39:2365-2378. [PMID: 35072888 PMCID: PMC9122880 DOI: 10.1007/s12325-021-02025-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/14/2021] [Indexed: 11/12/2022]
Abstract
A novel, once-daily (o.d.), fixed-dose combination (FDC) of indacaterol acetate (IND), glycopyrronium bromide (GLY), and mometasone furoate (MF), delivered by the inhaler Breezhaler® device, is the first long-acting beta2-adrenergic agonist/long-acting muscarinic antagonist/inhaled corticosteroid (LABA/LAMA/ICS) therapy to be approved for maintenance treatment of asthma in adults inadequately controlled on LABA/ICS. The approval of IND/GLY/MF in the European Union (EU) also included an optional electronic sensor and smartphone (or other suitable device) application, making it the first “digital companion” that can be prescribed with an asthma medication. As a result, the European Medicines Agency included this approval as one of the “outstanding contributions to public health” (for Pneumology/Allergology) in their 2020 highlights report. Alongside IND/GLY/MF, an o.d. LABA/ICS FDC, IND/MF, was also developed and approved. This review outlines the unique strategy used in the accelerated development of IND/GLY/MF that combined various approaches: (1) selecting individual components with established efficacy/safety, (2) bridging doses to optimize efficacy/safety of IND/GLY/MF and IND/MF delivered via the Breezhaler® device, (3) developing IND/GLY/MF and IND/MF in parallel, and (4) submission for regulatory approval before formal completion of the pivotal phase III studies. IND/GLY/MF and IND/MF were combined in a single-development plan (PLATINUM program), which comprised four phase III studies: QUARTZ and PALLADIUM evaluated IND/MF while IRIDIUM and ARGON evaluated IND/GLY/MF. A unique feature was the inclusion of two LABA/ICS comparators in the pivotal IRIDIUM study—IND/MF as an internal comparator, and high-dose salmeterol xinafoate/fluticasone propionate (SAL/FLU) as a marketed comparator. In the ARGON study, IND/GLY/MF was compared against o.d. tiotropium (via Respimat®) plus twice-daily (b.i.d.) high-dose SAL/FLU (via Diskus®). As a result of this development strategy, the development and approval of IND/GLY/MF was accelerated by ca. 4 years as against what would be expected from a traditional approach, novel data were generated, and a unique optional digital companion was approved in the EU. A Video Abstract by Dr Dominic Brittain, Global Drug Development, Novartis. (MP4 228293 kb)
Collapse
|
23
|
State of the Art in Capsule-Based Dry Powder Inhalers: Deagglomeration Techniques and the Consequences for Formulation Aerosolization. Pharmaceutics 2022; 14:pharmaceutics14061185. [PMID: 35745758 PMCID: PMC9230934 DOI: 10.3390/pharmaceutics14061185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023] Open
Abstract
Commercially available dry powder inhalers (DPIs) are usually devices in a fixed combination with the intended formulation, and a change in medication by the physician often forces the patient to use a different device, requiring the patient to relearn how to use it, resulting in lower adherence and inadequate therapy. To investigate whether DPIs can achieve successful outcomes regardless of the formulation and flow rate used, a novel DPI and two commercially available devices were compared in vitro for their deagglomeration behavior for different binary blends and a spray-dried particle formulation. The results demonstrate that the novel device achieved the highest fine particle fraction (FPF) regardless of the formulations tested. In the binary mixtures tested, the highest emitted fraction was obtained by shaking out the powder due to the oscillating motion of the capsule in the novel device during actuation. For DPIs with high intrinsic resistance to airflow, similar FPFs were obtained with the respective DPI and formulation, regardless of the applied flow rate. Additionally, the development and use of binary blends of spray-dried APIs and carrier particles may result in high FPF and overcome disadvantages of spray-dried particles, such as high powder retention in the capsule.
Collapse
|
24
|
Lung Function Can Predict the Expected Inspiratory Airflow Rate through Dry Powder Inhalers in Asthmatic Adolescents. CHILDREN 2022; 9:children9030377. [PMID: 35327749 PMCID: PMC8947273 DOI: 10.3390/children9030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022]
Abstract
Several factors affect drug delivery from dry powder inhalers (DPIs). Some are related to patient’s physiological characteristics, while others depend on DPIs’ technical aspects. The patient’s inspiratory airflow rate (IAR) affects the pressure drop and the turbulence needed to disaggregate the powder inside a DPI. The present study investigated whether lung function limitations occurring in asthmatic adolescents affect their IAR when inhaling through a DPI simulator. Eighteen consecutive adolescents with asthma were recruited, and IAR was randomly assessed at low-, mid-, and high-resistance regimens. A multiple logistic model was developed to evaluate the association of patients’ lung function characteristics and devices’ resistance with the probability to achieve the expected IAR (E-IAR). The mean value of E-IAR achieved seemed to be sex- and age-independent. Low- and high-resistance regimens were less likely to consent the E-IAR level (odds ratio [OR] = 0.035 and OR = 0.004, respectively). Only the basal residual volume and the inspiratory resistance, but not the Forced Expiratory Volume in 1 s (FEV1), seemed to affect the extent of IAR in asthmatic adolescents (OR = 1.131 and OR = 0.290, respectively). The results suggest that the assessment of current lung function is crucial for choosing the proper DPI for asthmatic adolescents.
Collapse
|
25
|
Zhang W, Song X, Zhai L, Guo J, Zheng X, Zhang L, Lv M, Hu L, Zhou D, Xiong X, Yang W. Complete Protection Against Yersinia pestis in BALB/c Mouse Model Elicited by Immunization With Inhalable Formulations of rF1-V10 Fusion Protein via Aerosolized Intratracheal Inoculation. Front Immunol 2022; 13:793382. [PMID: 35154110 PMCID: PMC8825376 DOI: 10.3389/fimmu.2022.793382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Abstract
Pneumonic plague, caused by Yersinia pestis, is an infectious disease with high mortality rates unless treated early with antibiotics. Currently, no FDA-approved vaccine against plague is available for human use. The capsular antigen F1, the low-calcium-response V antigen (LcrV), and the recombinant fusion protein (rF1-LcrV) of Y. pestis are leading subunit vaccine candidates under intense investigation; however, the inability of recombinant antigens to provide complete protection against pneumonic plague in animal models remains a significant concern. In this study, we compared immunoprotection against pneumonic plague provided by rF1, rV10 (a truncation of LcrV), and rF1-V10, and vaccinations delivered via aerosolized intratracheal (i.t.) inoculation or subcutaneous (s.c.) injection. We further considered three vaccine formulations: conventional liquid, dry powder produced by spray freeze drying, or dry powder reconstituted in PBS. The main findings are: (i) rF1-V10 immunization with any formulation via i.t. or s.c. routes conferred 100% protection against Y. pestis i.t. infection; (ii) rF1 or rV10 immunization using i.t. delivery provided significantly stronger protection than rF1 or rV10 immunization via s.c. delivery; and (iii) powder formulations of subunit vaccines induced immune responses and provided protection equivalent to those elicited by unprocessed liquid formulations of vaccines. Our data indicate that immunization with a powder formulation of rF1-V10 vaccines via an i.t. route may be a promising vaccination strategy for providing protective immunity against pneumonic plague.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolin Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lina Zhai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianshu Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xinying Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lili Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Meng Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
26
|
How to Choose the Right Inhaler Using a Patient-Centric Approach? Adv Ther 2022; 39:1149-1163. [PMID: 35080761 PMCID: PMC8790222 DOI: 10.1007/s12325-021-02034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022]
Abstract
There are many different inhaler devices and medications on the market for the treatment of asthma and chronic obstructive pulmonary disease, with over 230 drug-delivery system combinations available. However, despite the abundance of effective treatment options, the achieved disease control in clinical practice often remains unsatisfactory. In this context, a key determining factor is the match or mismatch of an inhalation device with the characteristics or needs of an individual patient. Indeed, to date, no ideal device exists that fits all patients, and a personalized approach needs to be considered. Several useful choice-guiding algorithms have been developed in the recent years to improve inhaler–patient matching, but a comprehensive tool that translates the multifactorial complexity of inhalation therapy into a user-friendly algorithm is still lacking. To address this, a multidisciplinary expert panel has developed an evidence-based practical treatment tool that allows a straightforward way of choosing the right inhaler for each patient.
Collapse
|
27
|
Ohar JA, Ferguson GT, Mahler DA, Drummond MB, Dhand R, Pleasants RA, Anzueto A, Halpin DMG, Price DB, Drescher GS, Hoy HM, Haughney J, Hess MW, Usmani OS. Measuring Peak Inspiratory Flow in Patients with Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2022; 17:79-92. [PMID: 35023914 PMCID: PMC8747625 DOI: 10.2147/copd.s319511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Dry powder inhalers (DPIs) are breath actuated, and patients using DPIs need to generate an optimal inspiratory flow during the inhalation maneuver for effective drug delivery to the lungs. However, practical and standardized recommendations for measuring peak inspiratory flow (PIF)—a potential indicator for effective DPI use in chronic obstructive pulmonary disease (COPD)—are lacking. To evaluate recommended PIF assessment approaches, we reviewed the Instructions for Use of the In-Check™ DIAL and the prescribing information for eight DPIs approved for use in the treatment of COPD in the United States. To evaluate applied PIF assessment approaches, we conducted a PubMed search from inception to August 31, 2021, for reports of clinical and real-life studies where PIF was measured using the In-Check™ DIAL or through a DPI in patients with COPD. Evaluation of collective sources, including 47 applicable studies, showed that instructions related to the positioning of the patient with their DPI, instructions for exhalation before the inhalation maneuver, the inhalation maneuver itself, and post-inhalation breath-hold times varied, and in many instances, appeared vague and/or incomplete. We observed considerable variation in how PIF was measured in clinical and real-life studies, underscoring the need for a standardized method of PIF measurement. Standardization of technique will facilitate comparisons among studies. Based on these findings and our clinical and research experience, we propose specific recommendations for PIF measurement to standardize the process and better ensure accurate and reliable PIF values in clinical trials and in daily clinical practice.
Collapse
Affiliation(s)
- Jill A Ohar
- Section of Pulmonary, Critical Care, Allergy, and Immunology, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Gary T Ferguson
- Pulmonary Research Institute of Southeast Michigan, Farmington Hills, MI, USA
| | | | - M Bradley Drummond
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rajiv Dhand
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Roy A Pleasants
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Quality, University of Michigan, Ann Arbor, MI, USA
| | - Antonio Anzueto
- Pulmonology Section, University of Texas Health, and South Texas Veterans Health Care System, San Antonio, TX, USA
| | - David M G Halpin
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - David B Price
- Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, UK.,Observational and Pragmatic Research Institute, Singapore
| | - Gail S Drescher
- Pulmonary Services Department, MedStar Washington Hospital Center, Washington, DC, USA
| | - Haley M Hoy
- Transplant Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John Haughney
- Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Omar S Usmani
- National Heart and Lung Institute, Imperial College London and Royal Brompton Hospital, London, UK
| |
Collapse
|
28
|
A Bayesian Framework to Assess the Usability of Dry Powder Inhalers in a Cohort of Asthma Adolescents in Italy. CHILDREN 2021; 9:children9010028. [PMID: 35053653 PMCID: PMC8774217 DOI: 10.3390/children9010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
Abstract
The useability of DPIs (dry powder inhalers) depends on several factors that are influenced by the patients’ subjectivity and objectivity. The short-form global usability score (S-GUS), a specific tool for the quick ranking and comparison in real life of an inhaler’s usability, was used to investigate six of the most prescribed DPIs (Breezhaler, Diskus, Ellipta, Nexthaler, Spiromax, and Turbohaler) in consecutive asthma patients aged <18 years. A Bayesian indirect comparison (IC) was carried out to merge all pairwise comparisons between the six DPIs. Thirty-three subjects participated: eighteen tested Breezhaler, Spiromax, Nexthaler, and Ellipta simultaneously, while fifteen tested Breezhaler, Spiromax, Diskus, and Turbohaler. The estimates of the S-GUS, by the IC model, allowed us to rank the DPIs by their degree of usability: Ellipta, Diskus, and Spiromax were classified as “good to pretty good” (S-GUS > 15), while Spiromax, Turbohaler, and Breezhaler were classified as “insufficient” (S-GUS < 15). The multidomain assessment is recommended in asthma adolescents in order to approximate the effective usability of different DPIs as best as possible. The S-GUS proves particularly suitable in current clinical practice because of the short time required for its use in adolescents.
Collapse
|
29
|
Roflumilast Powders for Chronic Obstructive Pulmonary Disease: Formulation Design and the Influence of Device, Inhalation Flow Rate, and Storage Relative Humidity on Aerosolization. Pharmaceutics 2021; 13:pharmaceutics13081254. [PMID: 34452215 PMCID: PMC8400286 DOI: 10.3390/pharmaceutics13081254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 11/21/2022] Open
Abstract
Roflumilast is currently administered orally to control acute exacerbations in chronic obstructive pulmonary disease (COPD). However, side effects such as gastrointestinal disturbance and weight loss have limited its application. This work aimed to develop an inhalable roflumilast formulation to reduce the dose and potentially circumvent the associated toxicity. Roflumilast was cospray-dried with trehalose and L-leucine with varied feed concentrations and spray-gas flow rates to produce the desired dry powder. A Next-Generation Impactor (NGI) was used to assess the aerosolization efficiency. In addition, different devices (Aerolizer, Rotahaler, and Handihaler) and flow rates were used to investigate their effects on the aerosolization efficiency. A cytotoxicity assay was also performed. The powders produced under optimized conditions were partially amorphous and had low moisture content. The powders showed good dispersibility, as evident by the high emitted dose (>88%) and fine particle fraction (>52%). At all flow rates (≥30 L/min), the Aerolizer offered the best aerosolization. The formulation exhibited stable aerosolization after storage at 25 °C/15% Relative Humidity (RH) for one month. Moreover, the formulation was non-toxic to alveolar basal epithelial cells. A potential inhalable roflumilast formulation including L-leucine and trehalose has been developed for the treatment of COPD. This study also suggests that the choice of device is crucial to achieve the desired aerosol performance.
Collapse
|
30
|
Monou PK, Andriotis EG, Bouropoulos N, Panteris E, Akrivou M, Vizirianakis IS, Ahmad Z, Fatouros DG. Engineered mucoadhesive microparticles of formoterol/budesonide for pulmonary administration. Eur J Pharm Sci 2021; 165:105955. [PMID: 34298141 DOI: 10.1016/j.ejps.2021.105955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
In the present study, a multi-component system comprised of dipalmitylphospatidylcholine (DPPC), Chitosan, Lactose, and L-Leucine was developed for pulmonary delivery. Microparticles were engineered by the spray drying process and the selection of the critical parameters was performed by applying experimental design. The microcarriers with the appropriate size and yield were co-formulated with two active pharmaceutical ingredients (APIs), namely, Formoterol fumarate and Budesonide, and they were further investigated. All formulations exhibited spherical shape, appropriate aerodynamic performance, satisfying entrapment efficiency, and drug load. Their physicochemical properties were evaluated using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Differential Scanning Calorimetry (DSC). The aerodynamic particle size characterization was determined using an eight-stage Andersen cascade impactor, whereas the release of the actives was monitored in vitro in simulated lung fluid. Additional evaluation of the microparticles' mucoadhesive properties was performed by ζ-potential measurements and ex vivo mucoadhesion study applying a falling liquid film method using porcine lung tissue. Cytotoxicity and cellular uptake studies in Calu-3 lung epithelial cell line were conducted to further investigate the safety and efficacy of the developed formulations.
Collapse
Affiliation(s)
- Paraskevi Kyriaki Monou
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftherios G Andriotis
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, 26504 Rio, Patras, Greece; Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, 26504 Patras, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Melpomeni Akrivou
- Department of Pharmacy, Division of Pharmacology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis S Vizirianakis
- Department of Pharmacy, Division of Pharmacology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Department of Life and Health Sciences, University of Nicosia, CY-1700 Nicosia, Cyprus
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Dimitrios G Fatouros
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
31
|
Eedara BB, Alabsi W, Encinas-Basurto D, Polt R, Mansour HM. Spray-Dried Inhalable Powder Formulations of Therapeutic Proteins and Peptides. AAPS PharmSciTech 2021; 22:185. [PMID: 34143327 DOI: 10.1208/s12249-021-02043-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/10/2021] [Indexed: 01/21/2023] Open
Abstract
Respiratory diseases are among the leading causes of morbidity and mortality worldwide. Innovations in biochemical engineering and understanding of the pathophysiology of respiratory diseases resulted in the development of many therapeutic proteins and peptide drugs with high specificity and potency. Currently, protein and peptide drugs are mostly administered by injections due to their large molecular size, poor oral absorption, and labile physicochemical properties. However, parenteral administration has several limitations such as frequent dosing due to the short half-life of protein and peptide in blood, pain on administration, sterility requirement, and poor patient compliance. Among various noninvasive routes of administrations, the pulmonary route has received a great deal of attention and is a better alternative to deliver protein and peptide drugs for treating respiratory diseases and systemic diseases. Among the various aerosol dosage forms, dry powder inhaler (DPI) systems appear to be promising for inhalation delivery of proteins and peptides due to their improved stability in solid state. This review focuses on the development of DPI formulations of protein and peptide drugs using advanced spray drying. An overview of the challenges in maintaining protein stability during the drying process and stabilizing excipients used in spray drying of proteins and peptide drugs is discussed. Finally, a summary of spray-dried DPI formulations of protein and peptide drugs, their characterization, various DPI devices used to deliver protein and peptide drugs, and current clinical status are discussed.
Collapse
Affiliation(s)
- Basanth Babu Eedara
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA
| | - Wafaa Alabsi
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA.,Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, USA
| | - David Encinas-Basurto
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA
| | - Robin Polt
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, USA.,The BIO5 Institute, The University of Arizona, Tucson, Arizona, USA
| | - Heidi M Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA. .,The BIO5 Institute, The University of Arizona, Tucson, Arizona, USA. .,Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona, USA.
| |
Collapse
|
32
|
Faria-Urbina M, Ung KT, Lawler L, Zisman LS, Waxman AB. Inspiratory flow patterns with dry powder inhalers of low and medium flow resistance in patients with pulmonary arterial hypertension. Pulm Circ 2021; 11:20458940211012591. [PMID: 34035895 PMCID: PMC8127798 DOI: 10.1177/20458940211012591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
Inhalation profiles to support use of dry powder inhalers for drug delivery in patients with pulmonary arterial hypertension have not been reported. We aimed to evaluate the inspiratory flow pattern associated with low and medium flow resistance dry powder inhaler devices (RS01-L and RS01-M, respectively) in patients with pulmonary arterial hypertension. This single-center study enrolled patients with pulmonary arterial hypertension associated with connective tissue disease (n = 10) and idiopathic pulmonary arterial hypertension (n = 10) to measure the following inhalation parameters: inspiratory effort (kPa), peak inspiratory flow rate (L/min), inhaled volume (L), and flow increase rate (L/s2) using the two devices. We identified a trend toward higher mean pulmonary artery pressure in the idiopathic pulmonary arterial hypertension group (50 ± 13 mmHg vs. 40 ± 11 mmHg in pulmonary arterial hypertension associated with connective tissue disease; p = 0.077). On average, peak inspiratory flow rate was higher with RS01-L vs. RS01-M (84 ± 19.7 L/min vs. 70.4 ± 13.2 L/min; p = 0.015). In the overall group, no differences between RS01-L and RS01-M were observed for inhaled volume, inspiratory effort, or flow increase rate. Inhaled volume with RS01-L was higher in pulmonary arterial hypertension associated with connective tissue disease vs. idiopathic pulmonary arterial hypertension patients: 1.6 ± 0.4 L vs. 1.3 ± 0.2 L; p = 0.042. For the RS01-L, inhaled volume correlated with forced expiratory volume in one second (r = 0.460, p = 0.030) and forced vital capacity (r = 0.507, p = 0.015). In patients with pulmonary arterial hypertension associated with connective tissue disease using RS01-L, both inspiratory effort and flow increase rate were highly correlated with pulmonary vascular compliance (r = 0.903, p = 0.0001 and r = 0.906, p = 0.0001; respectively); while with RS01-M, inspiratory effort was highly correlated with pulmonary vascular compliance (r = 0.8, p = 0.001). Our data suggest that the use of RS01-L and RS01-M dry powder inhaler devices allowed adequate inspiratory flow in pulmonary arterial hypertension patients. The correlation between flow increase rate and pulmonary vascular compliance in pulmonary arterial hypertension associated with connective tissue disease deserves further investigation.
Collapse
Affiliation(s)
- Mariana Faria-Urbina
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Laurie Lawler
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Aaron B Waxman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Baloira A, Abad A, Fuster A, García Rivero JL, García-Sidro P, Márquez-Martín E, Palop M, Soler N, Velasco JL, González-Torralba F. Lung Deposition and Inspiratory Flow Rate in Patients with Chronic Obstructive Pulmonary Disease Using Different Inhalation Devices: A Systematic Literature Review and Expert Opinion. Int J Chron Obstruct Pulmon Dis 2021; 16:1021-1033. [PMID: 33907390 PMCID: PMC8064620 DOI: 10.2147/copd.s297980] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/21/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Our aim was to describe: 1) lung deposition and inspiratory flow rate; 2) main characteristics of inhaler devices in chronic obstructive pulmonary disease (COPD). METHODS A systematic literature review (SLR) was conducted to analyze the features and results of inhaler devices in COPD patients. These devices included pressurized metered-dose inhalers (pMDIs), dry powder inhalers (DPIs), and a soft mist inhaler (SMI). Inclusion and exclusion criteria were established, as well as search strategies (Medline, Embase, and the Cochrane Library up to April 2019). In vitro and in vivo studies were included. Two reviewers selected articles, collected and analyzed data independently. Narrative searches complemented the SLR. We discussed the results of the reviews in a nominal group meeting and agreed on various general principles and recommendations. RESULTS The SLR included 71 articles, some were of low-moderate quality, and there was great variability regarding populations and outcomes. Lung deposition rates varied across devices: 8%-53% for pMDIs, 7%-69% for DPIs, and 39%-67% for the SMI. The aerosol exit velocity was high with pMDIs (more than 3 m/s), while it is much slower (0.84-0.72 m/s) with the SMI. In general, pMDIs produce large-sized particles (1.22-8 μm), DPIs produce medium-sized particles (1.8-4.8 µm), and 60% of the particles reach an aerodynamic diameter <5 μm with the SMI. All inhalation devices reach central and peripheral lung regions, but the SMI distribution pattern might be better compared with pMDIs. DPIs' intrinsic resistance is higher than that of pMDIs and SMI, which are relatively similar and low. Depending on the DPI, the minimum flow inspiratory rate required was 30 L/min. pMDIs and SMI did not require a high inspiratory flow rate. CONCLUSION Lung deposition and inspiratory flow rate are key factors when selecting an inhalation device in COPD patients.
Collapse
Affiliation(s)
- Adolfo Baloira
- Complejo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | | | - Antonia Fuster
- Hospital Unvidersitario Son Llàtzer, Palma de Mallorca, Spain
| | | | | | - Eduardo Márquez-Martín
- Hospital Virgen del Rocío, Sevilla, Spain
- CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - J L Velasco
- Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | | |
Collapse
|
34
|
Dal Negro RW, Turco P, Povero M. The contribution of patients' lung function to the inspiratory airflow rate achievable through a DPIs' simulator reproducing different intrinsic resistance rates. Multidiscip Respir Med 2021; 16:752. [PMID: 33953914 PMCID: PMC8077610 DOI: 10.4081/mrm.2021.752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/24/2021] [Indexed: 11/28/2022] Open
Abstract
Background The performance of DPIs depends on several physiological (patient-dependent) and technological (device-dependent) factors. The inspiratory airflow rate is the only active force generated and operating in the system for inducing the required pressure drop and eliciting the resistance-induced turbulence needed to disaggregate the powder through the device. The present study aimed to investigate in the most prevalent respiratory disorders whether and at what extent the inspiratory airflow rate achievable when inhaling through a DPIs’ simulator reproducing different intrinsic resistance regimens (low, mid, and high resistance) is affected by peculiar changes in lung function and/or can be predicted by any specific lung function parameter. Methods The inspiratory airflow rate was assessed in randomized order by the In-Check DIAL G16 at low, mid, and high resistance regimens in a sample of consecutive subjects at recruitment. Independent predictors of the probability to achieve the expected inhalation airflow rate were investigated by means of a multivariate logistic regression model, specific to the disease. Results A total of 114 subjects were recruited (asthmatics n=30; COPD n=50, restrictive patients n=16, and normal subjects n=18). The mean values of the expected inspiratory airflow rate achieved proved significantly different within the groups (p<0.0001), independently of sex and age. In asthmatics and in COPD patients, the mid-resistance regimen proved highly associated with the highest mean values of airflow rates obtained. Low- and high-resistance regimens were significantly less likely to consent to achieve the expected level of inspiratory airflow rate (OR<1 in all comparisons). Restrictive patients performed the lowest airflow rates at the low-resistance regimen (p<0.01). Unlike FEV1, RV in asthmatics (OR=1.008); RV and IRaw in COPD (OR=0.587 and OR=0.901, respectively), and FIF and TLC in restrictive patients (OR=1.041, and OR=0.962, respectively) proved the only sensitive predictors of the inspiratory airflow rate achievable at the different resistive regimens. Conclusions The intrinsic resistive regimen of DPIs can play a critical role. The patients’ lung function profile also affects the extent of their inhalation airflow rate. Some specific lung function parameters (such as: FIF; RV; IRaw; TLC, but not FEV1) may be regarded as specific predictors in real-life. In order to optimize the DPI choice, further to the device’s technology, also the current patients’ lung function should be properly investigated and carefully assessed.
Collapse
Affiliation(s)
- Roberto W Dal Negro
- National Centre for Respiratory Pharmacoeconomics and Pharmacoepidemiology, Verona
| | - Paola Turco
- Research & Clinical Governance, Verona, Italy
| | | |
Collapse
|
35
|
Ke WR, Chang RYK, Kwok PCL, Tang P, Chen L, Chen D, Chan HK. Administration of dry powders during respiratory supports. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:596. [PMID: 33987294 DOI: 10.21037/atm-20-3946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Inhaled drugs are routinely used for the treatment of respiratory-supported patients. To date, pressurized metered dose inhalers and nebulizers are the two platforms routinely employed in the clinical setting. The scarce utilization of the dry powder inhaler (DPI) platform is partly due to the lack of in vivo data that proves optimal delivery and drug efficacy are achievable. Additionally, fitting a DPI in-line to the respiratory circuit is not as straightforward as with the other aerosol delivery platforms. Importantly, there is a common misconception that the warm and humidified inspiratory air in respiratory supports, even for a short exposure, will deteriorate powder formulation compromising its delivery and efficacy. However, some recent studies have dispelled this myth, showing successful delivery of dry powders through the humidified circuit of respiratory supports. Compared with other aerosol delivery devices, the use of DPIs during respiratory supports possesses unique advantages such as rapid delivery and high dose. In this review, we presented in vitro studies showing various setups employing commercial DPIs and effects of ventilator parameters on the aerosol delivery. Inclusion of novel DPIs was also made to illustrate characteristics of an ideal inhaler that would give high lung dose with low powder deposition loss in tracheal tubes and respiratory circuits. Clinical trials are urgently needed to confirm the benefits of administration of dry powders in ventilated patients, thus enabling translation of powder delivery into practice.
Collapse
Affiliation(s)
- Wei-Ren Ke
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Patricia Tang
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Lan Chen
- Hangzhou Chance Pharmaceuticals, Hangzhou, China
| | - Donghao Chen
- Hangzhou Chance Pharmaceuticals, Hangzhou, China
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Ali AMA, Zawbaa HM, Sayed OM, Harb HS, Saeed H, Boshra MS, Almeldien AG, Salah Eldin R, Elberry AA, Abdelwahab NS, Salem MN, Rabea H, Wael W, Hussein RRS, Sarhan RM, Ramadan W, Madney YM, Abdelrahim MEA. In vitro and in vivo performance modelling and optimisation of different dry powder inhalers: A complementary study of neural networks, genetic algorithms and decision trees. Int J Clin Pract 2021; 75:e13764. [PMID: 33067907 DOI: 10.1111/ijcp.13764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/04/2020] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Aerosol delivery from DPIs could be affected by different factors. This study aimed to evaluate and predict the effects of different factors on drug delivery from DPIs. METHODS Modelling and optimisation for both in vitro and in vivo data of different DPIs (Diskus, Turbohaler and Aerolizer) were carried out using neural networks associated with genetic algorithms and the results are confirmed using a decision tree (DT) and random forest regressor (RFR). All variables (the type of DPI, inhalation flow, inhalation volume, number of inhalations and type of subject) were coded as numbers before using them in the modelling study. RESULTS The analysis of the in vitro model showed that Turbohaler had the highest emitted dose compared with the Diskus and the Aerolizer. Increasing flow resulted in a gradual increase in the emitted dose. Little differences between the inhalation volumes 2 and 4 litres were shown at fast inhalation flow, and interestingly two inhalations showed somewhat higher emitted doses than one-inhalation mode with Turbohaler and Diskus at slow inhalation flow. Regarding the in vivo model, the percent of drug delivered to the lung was highly increased with Turbohaler and Diskus in healthy subjects where continuous contour lines were observed. The Turbohaler showed increased lung bioavailability with the two-inhalation modes, the Diskus showed a nearly constant level at both one and two inhalations at slow inhalation. The Turbohaler and Aerolizer showed little increasing effect moving from one to two inhalations at slow inhalation. CONCLUSIONS Modelling of the input data showed a good differentiating and prediction power for both in vitro and in vivo models. The results of the modelling refer to the high efficacy of Diskus followed by Turbohaler for delivering aerosol. With two inhalations, the three DPIs showed an increase in the percent of drug excreted at slow inhalations.
Collapse
Affiliation(s)
- Ahmed M A Ali
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hossam M Zawbaa
- Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef, Egypt
| | - Ossama M Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Ismailia, Egypt
| | - Hadeer S Harb
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Haitham Saeed
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marian S Boshra
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed G Almeldien
- Department of Clinical Research, Children Cancer Hospital 57357, Cairo, Egypt
| | - Randa Salah Eldin
- Department of Chest Diseases, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed A Elberry
- Department of Clinical Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nada Sayed Abdelwahab
- Department of Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed Nabil Salem
- Department of Internal medicine, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hoda Rabea
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Waleed Wael
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Raghda R S Hussein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rania M Sarhan
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Waleed Ramadan
- Department of Chest Diseases, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Yasmin M Madney
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed E A Abdelrahim
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
37
|
In silico optimization of targeted aerosol delivery in upper airways via Inhaled Volume Tracking. Clin Biomech (Bristol, Avon) 2020; 80:105138. [PMID: 32798812 PMCID: PMC7611794 DOI: 10.1016/j.clinbiomech.2020.105138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite the widespread use of aerosol inhalation as a drug delivery method, targeted delivery to the upper airways remains an ongoing challenge in the quest for improved clinical response in respiratory disease. METHODS Here, we examine in silico flow and particle dynamics when using an oral Inhaled Volume Tracking manoeuvre. A short pulsed aerosol bolus is injected during slow inhalation flow rates followed by clean air, and a breath-hold is initiated once it reaches the desired depth. We explore the fate of a broad particle size range (1-40 μm) for both upright and supine positions. FINDINGS Our findings illustrate that despite attempts to mitigate dispersion using slower flow rates, the laryngeal jet disperses the aerosol bolus and thus remains a hurdle for efficient targeted delivery. Nevertheless, we show a decrease in extra-thoracic deposition; large aerosols in the range of 10-30 μm potentially outperform existing inhalation methods, showing deposition fractions of up to 80% in an upright orientation. INTERPRETATION The improved deposition during Inhaled Volume Tracking shows promise for clinical applications and could be leveraged to deliver larger payloads to the upper airways.
Collapse
|
38
|
Shah S, Ghetiya R, Soniwala M, Chavda J. Development and Optimization of Inhalable Levofloxacin Nanoparticles for The Treatment of Tuberculosis. Curr Drug Deliv 2020; 18:779-793. [PMID: 33155907 DOI: 10.2174/1567201817999201103194626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/08/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Levofloxacin has been recommended by the WHO for the treatment of pulmonary tuberculosis and inhalable delivery of levofloxacin can be advantageous over conventional delivery. OBJECTIVE This study aimed to develop and optimize inhalable levofloxacin Loaded Chitosan Nanoparticles (LCN). The objective was to achieve the mean particle size of LCN less than 300nm, sustain the drug release up to 24 h, and achieve MMAD of LCN of less than 5μm. METHODS LCN were prepared by ionic gelation of chitosan with sodium tripolyphosphate (STPP) and subsequent lyophilization. A Plackett Burman screening design, 32 full factorial design, and overlay plots were sequentially employed to optimize the formulation. The mean particle size, % entrapment efficiency, in vitro drug release, and minimum inhibitory concentration were all evaluated. RESULTS The Pareto chart from the Placket Burman screening design revealed that the concentrations of chitosan and STPP was found to be significant (p < 0.05). Further analysis by 32 full factorial design revealed that F-ratio for each model generated was found to be greater than the theoretical value (p < 0.05), confirming the significance of each model. CONCLUSION The optimized formulation showed a mean particle size of 171.5 nm, sustained the drug release up to 24 h in simulated lung fluid, and revealed MMAD of 3.18 μm, which can confirm delivery of the drug to the deep lung region. However, further in vivo studies are required to design a suitable dosage regimen and establish the fate of nanoparticles for safe and efficacious delivery of the drug.
Collapse
Affiliation(s)
- Sunny Shah
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| | - Rohit Ghetiya
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| | | | - Jayant Chavda
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| |
Collapse
|
39
|
Chang RYK, Kwok PCL, Ghassabian S, Brannan JD, Koskela HO, Chan H. Cough as an adverse effect on inhalation pharmaceutical products. Br J Pharmacol 2020; 177:4096-4112. [PMID: 32668011 PMCID: PMC7443471 DOI: 10.1111/bph.15197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/06/2023] Open
Abstract
Cough is an adverse effect that may hinder the delivery of drugs into the lungs. Chemical or mechanical stimulants activate the transient receptor potential in some airway afferent nerves (C-fibres or A-fibres) to trigger cough. Types of inhaler device and drug, dose, excipients and formulation characteristics, including pH, tonicity, aerosol output and particle size may trigger cough by stimulating the cough receptors. Release of inflammatory mediators may increase the sensitivity of the cough receptors to stimulants. The cough-provoking effect of aerosols is enhanced by bronchoconstriction in diseased airways and reduces drug deposition in the target pulmonary regions. In this article, we review the factors by which inhalation products may cause cough.
Collapse
Affiliation(s)
- Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
| | - Sussan Ghassabian
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
| | - John D. Brannan
- Department of Respiratory and Sleep MedicineJohn Hunter HospitalNewcastleNSWAustralia
| | - Heikki O. Koskela
- Unit for Medicine and Clinical Research, Pulmonary DivisionKuopio University HospitalKuopioFinland
- School of Medicine, Faculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | - Hak‐Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
40
|
Sahakijpijarn S, Moon C, Ma X, Su Y, Koleng JJ, Dolocan A, Williams RO. Using thin film freezing to minimize excipients in inhalable tacrolimus dry powder formulations. Int J Pharm 2020; 586:119490. [PMID: 32603840 DOI: 10.1016/j.ijpharm.2020.119490] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/09/2023]
Abstract
We investigated the feasibility of preparing high-potency tacrolimus dry powder for inhalation using thin film freezing (TFF). We found that using ultra-rapid freezing can increase drug loading up to 95% while maintaining good aerosol performance. Drug loading affected the specific surface area and moisture sorption of TFF formulations, but it did not affect the chemical stability, physical stability, and dissolution of tacrolimus. Tacrolimus remained amorphous after storage at 40 °C/75% RH, and 25 °C/60% RH for up to 6 months. Lactose functioned as a bulking agent, and it had little to no effect as a stabilizer for amorphous tacrolimus due to a lack of interaction between the drug and excipient. Additionally, the aerosol performance of TFF tacrolimus/lactose (95/5) did not significantly change after six months of storage at 25 °C/60% RH. For processing parameters, the solids content and the processing temperature did not affect the aerosol performance of tacrolimus. Furthermore, both low- and high-resistance RS01 showed optimal and consistent aerosol performance over the 1-4 kPa pressure drop range. In conclusion, TFF is a suitable technology for producing inhalable powder that contain high drug loading and have less flow rate dependence.
Collapse
Affiliation(s)
- Sawittree Sahakijpijarn
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Chaeho Moon
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA; TFF Pharmaceuticals, Inc., Austin, TX, USA
| | - Xiangyu Ma
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Yongchao Su
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - Andrei Dolocan
- The University of Texas at Austin, Texas Materials Institute, Austin, TX, USA
| | - Robert O Williams
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA.
| |
Collapse
|
41
|
Abstract
Asthma, a chronic respiratory disease characterized by chronic airway inflammation, bronchial hyperresponsiveness, and reversible airflow obstruction, poses a substantial economic burden on patients and caregivers alike. Moreover, the heterogeneous nature of the disease and the presence of various phenotypes make the treatment of asthma challenging and nuanced. Despite the availability of several approved pharmacological treatments, approximately half of patients with asthma in the United States experienced exacerbations in 2016, highlighting the need for effective add-on treatments. Furthermore, asthma control remains suboptimal due to low adherence to medications, poor inhaler technique, and several patient-related factors. Importantly, the primary care setting, in which pharmacists play an integral role, represents a critical environment for providing long-term follow-up care for the effective management of chronic diseases, such as asthma. Pharmacists are uniquely positioned to ensure optimal clinical outcomes in patients with asthma since they have the clinical expertise to educate patients on their disease state and the role of asthma medications, provide training on inhalation technique, address patients’ concerns about potential side effects of medications, and improve adherence to therapy. Therefore, in this review article, we discuss the overall role of pharmacists in effective asthma care and management.
Collapse
Affiliation(s)
- Mary B Bridgeman
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, 5751Rutgers, The State University of New Jersey, NJ, USA
| | - Lori A Wilken
- Pharmacy Practice, 14681University of Illinois at Chicago College of Pharmacy, IL, USA
| |
Collapse
|
42
|
Exploring the impact of extrinsic lactose fines, a USP modified sampling device and modified centrifuge tube on the delivered dose uniformity and drug detachment performance of a fluticasone propionate dry powder inhaler. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Erdelyi T, Lazar Z, Odler B, Tamasi L, Müller V. The Repeatability of Inspiration Performance Through Different Inhalers in Patients with Chronic Obstructive Pulmonary Disease and Control Volunteers. J Aerosol Med Pulm Drug Deliv 2020; 33:271-281. [PMID: 32460588 DOI: 10.1089/jamp.2020.1594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Inhalation therapy is a cornerstone of treating patients with chronic obstructive pulmonary disease (COPD). Inhaler types and through-device inhalation parameters influence airway drug delivery. We aimed to measure the repeatability of inhalation performance through four different commercially available inhalers. Methods: We recruited control subjects (n = 22) and patients with stable COPD (S-COPD, n = 16) and during an acute exacerbation (AE-COPD, n = 15). Standard spirometry was followed by through-device inhalation maneuvers using Ellipta®, Evohaler®, Respimat®, and Genuair®. Through-device inspiratory vital capacity (IVCd) and peak inspiratory flow (PIFd), as well as inhalation time (tin) and breath hold time (tbh), were recorded and all measurements were repeated in a random manner. Results: There was no difference in forced expiratory volume in 1 second (FEV1) between patients (S-COPD: 39 ± 5 vs. AE-COPD: 32% ± 5% predicted, p > 0.05). In controls, the IVCd was significantly reduced by all four devices in comparison with the slight reduction seen in COPD patients. In all subjects, PIF was lowered when inhaling through the devices in order of decreasing magnitude in PIFd: Evohaler, Respimat, Ellipta, and Genuair. The Bland-Altman analysis showed a highly variable coefficient of repeatability for IVCd and PIFd through the different inhalers for all COPD patients. Based on the intermeasurement differences in patients, Respimat and Genuair showed the highest repeatability for IVCd, while Genuair and Ellipta performed superior with regard to PIFd. Conclusions: Our study is the first to compare repeatability of inhalation performances through different inhalers in COPD patients, showing great individual differences for parameters influencing lung deposition of inhaled medication from a given device. Our data provide new insight into the characterization of inhaler use by patients with COPD, and might aid the selection of the most appropriate devices to ensure the adequate and consistent delivery of inhaled drugs.
Collapse
Affiliation(s)
- Tamas Erdelyi
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Zsofia Lazar
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Balazs Odler
- Department of Pulmonology, Semmelweis University, Budapest, Hungary.,Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Lilla Tamasi
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
44
|
Liao Q, Lam ICH, Lin HHS, Wan LTL, Lo JCK, Tai W, Kwok PCL, Lam JKW. Effect of formulation and inhaler parameters on the dispersion of spray freeze dried voriconazole particles. Int J Pharm 2020; 584:119444. [PMID: 32445908 DOI: 10.1016/j.ijpharm.2020.119444] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 11/17/2022]
Abstract
Spray freeze drying is a particle engineering technique that allows the production of porous particles of low density with excellent aerosol performance for inhalation. There are a number of operating parameters that can be manipulated in order to optimise the powder properties. In this study, a two-fluid nozzle was used to prepare spray freeze dried formulation of voriconazole, a triazole antifungal agent for the treatment of pulmonary aspergillosis. A full factorial design approach was adopted to explore the effects of drug concentration, atomisation gas flow rate and primary drying temperature. The aerosol performance of the spray freeze dried powder was evaluated using the next generation impactor (NGI) operated with different inhaler devices and flow rates. The results showed that the primary drying temperature played an important role in determining the aerosol properties of the powder. In general, the higher the primary drying temperature, the lower the emitted fraction (EF) and the higher the fine particle fraction (FPF). Formulations that contained the highest voriconazole concentration (80% w/w) and prepared at a high primary drying temperature (-10 °C) exhibited the best aerosol performance under different experimental conditions. The high concentration of the hydrophobic voriconazole reduced surface energy and cohesion, hence better powder dispersibility. The powders produced with higher primary drying temperature had a smaller particle size after dispersion and improved aerosol property, possibly due to the faster sublimation rate in the freeze-drying step that led to the formation of less aggregating or more fragile particles. Moreover, Breezhaler®, which has a low intrinsic resistance, was able to generate the best aerosol performance of the spray freeze dried voriconazole powders in terms of FPF.
Collapse
Affiliation(s)
- Qiuying Liao
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region
| | - Ivan C H Lam
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region; Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom
| | - Hinson H S Lin
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region
| | - Leon T L Wan
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region
| | - Jason C K Lo
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region
| | - Waiting Tai
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, Pharmacy and Bank Building A15, The University of Sydney, NSW 2006, Australia
| | - Philip C L Kwok
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, Pharmacy and Bank Building A15, The University of Sydney, NSW 2006, Australia
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
45
|
Cooper A, Parker J, Berry M, Wallace R, Ward J, Allan R. Wixela Inhub: Dosing Performance In Vitro and Inhaled Flow Rates in Healthy Subjects and Patients Compared with Advair Diskus. J Aerosol Med Pulm Drug Deliv 2020; 33:323-341. [PMID: 32429788 PMCID: PMC7757596 DOI: 10.1089/jamp.2019.1584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Wixela™ Inhub™ is a fluticasone propionate/salmeterol dry powder inhaler developed as a generic equivalent of Advair Diskus® for the treatment of asthma and chronic obstructive pulmonary disease (COPD). Wixela Inhub and Advair Diskus are comparable in terms of functionality, user interface, and device resistance. The primary objectives of the studies were to evaluate in vitro dose delivery with Wixela Inhub compared with Advair Diskus at relevant flow rates and to explore inhalation profiles generated by patients with asthma or COPD. Methods: In vitro studies: Emitted dose (ED) and individual dose aerodynamic particle size distribution (APSD) were measured at flow rates ranging from 30 to 90 L min-1. Patient inhalation study: Inhalation profile recording was conducted three times in each patient (40 children with asthma, 14 adults with asthma, and 14 adults with severe-to-very-severe COPD) with an empty Inhub in an open-label study. The primary endpoint was peak inhaled flow rate (PIFR). An additional endpoint was peak pressure drop. Results: In vitro studies: ED and APSD delivered from Wixela Inhub showed low flow dependency across the patient-relevant flow-rate range. Wixela Inhub gave in vitro performance comparable with Advair Diskus for all strengths and flow rates. Patient inhalation study: For Inhub, mean PIFR was lowest for children with asthma ages 4 to 7 years (50.6 L min-1) and highest for adults with asthma (74.8 L min-1). For adults with severe-to-very-severe COPD, mean PIFR was 69.5 L min-1 with Inhub. The PIFRs observed with Diskus were higher than those with Inhub, consistent with slightly higher resistance measured in vitro. The difference in resistance did not impact demonstration of bioequivalence and does not impact substitutability of the product. Peak pressure drop values were comparable between Diskus and Inhub. Conclusions: Comparable in vitro performance of Wixela Inhub to Advair Diskus confirmed that Wixela Inhub is a generic equivalent to Advair Diskus across all patient groups.
Collapse
Affiliation(s)
| | | | - Mark Berry
- Mylan Pharma UK Ltd., Sandwich, United Kingdom
| | | | - Jon Ward
- Mylan Pharma UK Ltd., Sandwich, United Kingdom
| | | |
Collapse
|
46
|
Pinto JT, Wutscher T, Stankovic-Brandl M, Zellnitz S, Biserni S, Mercandelli A, Kobler M, Buttini F, Andrade L, Daza V, Ecenarro S, Canalejas L, Paudel A. Evaluation of the Physico-mechanical Properties and Electrostatic Charging Behavior of Different Capsule Types for Inhalation Under Distinct Environmental Conditions. AAPS PharmSciTech 2020; 21:128. [PMID: 32399597 PMCID: PMC7217808 DOI: 10.1208/s12249-020-01676-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Capsule-based dry powder inhaler (DPI) products can be influenced by a multitude of interacting factors, including electrostatic charging. Tribo-charging is a process of charge transfer impacted by various factors, i.e., material surface characteristics, mechanical properties, processing parameters and environmental conditions. Consequently, this work aimed to assess how the charging behavior of capsules intended for inhalation might be influenced by environmental conditions. Capsules having different chemical compositions (gelatin and hydroxypropyl methylcellulose (HPMC)) and distinct inherent characteristics from manufacturing (thermally and cold-gelled) were exposed to various environmental conditions (11%, 22% and 51% RH). Their resulting properties were characterized and tribo-charging behavior was measured against stainless steel and PVC. It was observed that all capsule materials tended to charge to a higher extent when in contact with PVC. The tribo-charging of the thermally gelled HPMC capsules (Vcaps® Plus) was more similar to the gelatin capsules (Quali-G™-I) than to their HPMC cold-gelled counterparts (Quali-V®-I). The sorption of water by the capsules at different relative humidities notably impacted their properties and tribo-charging behavior. Different interactions between the tested materials and water molecules were identified and are proposed to be the driver of distinct charging behaviors. Finally, we showed that depending on the capsule types, distinct environmental conditions are necessary to mitigate charging and assure optimal behavior of the capsules.
Collapse
|
47
|
Sorino C, Negri S, Spanevello A, Visca D, Scichilone N. Inhalation therapy devices for the treatment of obstructive lung diseases: the history of inhalers towards the ideal inhaler. Eur J Intern Med 2020; 75:15-18. [PMID: 32113944 DOI: 10.1016/j.ejim.2020.02.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 01/04/2023]
Abstract
Inhalation therapy allows conveying drugs directly into the airways. The devices used to administer inhaled drugs play a crucial role in the management of obstructive lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). To ensure high bronchial deposition of the drug, a device should deliver a high proportion of fine particles, be easy to use, and provide constant and accurate doses of the active substance. Nowadays, four different types of inhalers are widely used: nebulizers, dry powder inhalers (DPIs), pressurized metered-dose inhalers (pMDIs), and soft mist inhalers (SMIs). Nebulizers can be used by patients unable to use other inhalers. However, they require long times of administration and do not ensure precise dosages. The first pMDIs became popular since they were small, inexpensive, fast, and silent. Their performance was improved by spacers and then by new technologies which reduced the delivery speed. In DPIs, micronized drug particles are attached to larger lactose carrier particles. No coordination between actuation and inhalation is required. However, the patient is supposed to produce an adequate inspiratory flow to extract the drug and disaggregate it from the carrier. In SMIs, the medication is dissolved in an aqueous solution, without propellant, and it is dispensed as a slow aerosol cloud thanks to the energy of a spring. Smart inhalers, connected to smartphones, are promising tools that can provide information about patient's adherence and their inhaler technique. Inhalation has also been proposed as a route of administration for several systemic drugs.
Collapse
Affiliation(s)
- Claudio Sorino
- Division of Pulmonology, Sant'Anna Hospital, Como, Italy; University of Insubria, Faculty of Medicine and Surgery, Varese, Italy.
| | - Stefano Negri
- University of Insubria, Faculty of Medicine and Surgery, Varese, Italy
| | - Antonio Spanevello
- University of Insubria, Faculty of Medicine and Surgery, Varese, Italy; Division of Pulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS, Tradate, Italy
| | - Dina Visca
- University of Insubria, Faculty of Medicine and Surgery, Varese, Italy; Division of Pulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS, Tradate, Italy
| | - Nicola Scichilone
- Division of Respiratory Medicine, Department PROMISE, "Giaccone" University Hospital, University of Palermo, Italy
| |
Collapse
|
48
|
Hertel N, Birk G, Scherließ R. Particle engineered mannitol for carrier-based inhalation – A serious alternative? Int J Pharm 2020; 577:118901. [DOI: 10.1016/j.ijpharm.2019.118901] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/29/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
|
49
|
Samarghandi A, Ioachimescu OC, Qayyum R. Association between peak inspiratory flow rate and hand grip muscle strength in hospitalized patients with acute exacerbation of chronic obstructive pulmonary disease. PLoS One 2020; 15:e0227737. [PMID: 32004333 PMCID: PMC6994102 DOI: 10.1371/journal.pone.0227737] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Ineffective peak inspiratory flow rate (PIFR) generation in patients using inhalers results in insufficient drug delivery to the lungs and poor clinical outcomes. Low inspiratory muscle strength is associated with suboptimal PIFR. OBJECTIVE To examine in a prospective study the relationship between PIFR and skeletal muscle strength using hand grip strength (HGS) as a surrogate. METHODS Adult patients admitted with acute exacerbation of chronic obstructive pulmonary disease (COPD) were enrolled. PIFR was measured within 48 hours before discharge. PIFR below 60L/min was considered suboptimal. HGS was measured using a handheld dynamometer. Any readmissions and emergency department visit data were collected. The associations between PIFR, HGS, 30 and 90-day COPD and all-cause readmissions were examined, without and with adjustment for age, race and gender. RESULTS Of the 75 enrolled patients, 56% had suboptimal PIFR; they were older (63.9±9.7 vs. 58.2±7.7 years) and had significantly lower HGS (24.2±11.1 vs. 30.9±10.9 Kg) compared to those with optimal PIFR. There were no significant differences between the two PIFR groups by gender, race, history of coronary artery disease, congestive heart failure, hypertension or functional scores. Each kilogram increase in HGS was associated with 0.50 (95%CI 0.18-0.89, p = 0.003) L/min increase in PIFR. We did not observe an association between PIFR and 30 or 90-day readmission rates. CONCLUSION We found a significant association between HGS and PIFR in hospitalized patients with acute exacerbations of COPD. Whether interventions aimed at increasing skeletal muscle strength also result in improvement in PIFR remains unclear and need further study.
Collapse
Affiliation(s)
- Arash Samarghandi
- Division of Pulmonary, Allergy, Emory University School of Medicine, Critical Care and Sleep Medicine, Atlanta, Georgia
| | - Octavian C. Ioachimescu
- Division of Pulmonary, Allergy, Emory University School of Medicine, Critical Care and Sleep Medicine, Atlanta, Georgia
| | - Rehan Qayyum
- Division of Hospital Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| |
Collapse
|
50
|
Di Marco F. Today's improvement in asthma treatment: role of MART and Easyhaler. Multidiscip Respir Med 2020; 15:649. [PMID: 32983452 PMCID: PMC7460660 DOI: 10.4081/mrm.2020.649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/01/2020] [Indexed: 11/23/2022] Open
Abstract
Asthma affects more than 330 million people worldwide, but many analyses have shown that there are still a lot of unmet needs for both patients and physicians in the treatment of asthma: poor adherence to treatment is one of the main causes of sub-optimal clinical results. Maintenance and Reliever Therapy (MART) with the combination of formoterol and inhaled corticosteroids (ICS) has an established scientific rationale and demonstrated to reduce asthma exacerbations. The aim of this review is to highlight how in asthmatic patients MART can be able to express its maximum therapeutic potential when administered through an 'ideal inhaler'. Since the treatment may be necessary several times a day, the use of a single combination inhaler simplifies the management, potentially improving adherence; moreover, easiness of use and comfort in administration of asthma treatment devices are not secondary aspects. Asthmatic patients are often young, with a normal relational and working life and they could request for a comfortable and not too noticeable device. Finally to the "ideal inhaler" is requested to guarantee accuracy, dose consistency, and resistance to stress conditions. Easyhaler® more closely demonstrates many expected characteristics: effective, consistent performance regardless of inspiration rate, stability, versatility, with several patient acceptability advantages. Asthma control is enhanced by a strong adherence obtained through the combination in a single inhaler of both maintenance and reliever therapy and the availability of a device as close as possible to the characteristics of the ideal inhaler.
Collapse
Affiliation(s)
- Fabiano Di Marco
- Department of Health Sciences, University of Milan; Head Respiratory Unit, Papa Giovanni XXIII Hospital, Bergamo, Italy
| |
Collapse
|