1
|
Liu Q, Zhang H, Hou J, Wang J, Li T, Wu Y, Li C, Liu Q, Xing D, Gong Z, Zhao T. Resistance of Aedes albopictus (Diptera: Culicidae) larvae and adults to insecticides based on bioassays and knockdown resistance (kdr) mutations in Zhejiang Province, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117007. [PMID: 39260213 DOI: 10.1016/j.ecoenv.2024.117007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Aedes albopictus, a common mosquito in Zhejiang Province, is a carrier of more than twenty arboviruses. There are dozens or even hundreds of imported cases of dengue fever every year in Zhejiang Province, and there have also been many local outbreaks caused by imported cases of dengue fever. The objectives were to assess the resistance of larvae and adults of several Ae. albopictus strains in Zhejiang Province to commonly used pyrethroid insecticides (beta-cypermethrin, deltamethrin and permethrin), and detect mutations in the sodium channel gene, to further analyse the relationship between phenotypic resistance and the frequency of mutations. The resistance of eight field strains of Ae. albopictus larvae to beta-cypermethrin, deltamethrin and permethrin ranged from 8.17 to 36.06, 12.12-107.3 and 1.55-81.9, respectively, and there was a significant positive correlation of interaction resistance among the three insecticides. The mutation frequencies of I1532T and F1534S in the larvae of Ae. albopictus were 0-6.25 % and 42.19-100.00 %. Moreover, the diagnostic doses of the three pyrethroids for adult Ae. albopictus mosquitoes were 0.2510 g/L, 0.1562 g/L, and 0.9072 g/L. Except for the Zhoushan strain, which was suspected to be resistant to beta-cypermethrin, the other field strains were resistant to the three pyrethroids, and there was a significant positive correlation of cross-resistance among the three insecticides. The mutation frequencies of I1532T and F1534S of adult Ae. albopictus were 0-1.56 % and 62.50-100.00 %. In addition, the LC50 of the larvae and the mortality rate of adult Ae. albopictus after treatment with the three pyrethroids were significantly and positively correlated with the frequency of the F1534S mutation. F1534S mutation occurred earlier than I1532T mutation in both larvae and adult Ae. albopictus. F1534S mutation in the sodium channel gene may be a particular biomolecular detection marker for resistance to pyrethroid insecticides in Ae. albopictus in Zhejiang Province.
Collapse
Affiliation(s)
- Qinmei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China; Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Hengduan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Juan Hou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Jinna Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Tianqi Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Yuyan Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Chunxiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Qing Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Zhenyu Gong
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China.
| | - Tongyan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China.
| |
Collapse
|
2
|
Ma Z, Liu Q, Wang M, Du YT, Xie JW, Yi ZG, Cai JH, Zhao TY, Zhang HD. Detection and population genetic analysis of Aedes albopictus (Diptera: Culicidae) based on knockdown resistance (kdr) mutations in the Yangtze River basin of China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105634. [PMID: 38950667 DOI: 10.1016/j.meegid.2024.105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Aedes albopictus is an important vector of chikungunya, dengue, yellow fever and Zika viruses. Insecticides are often the most effective tools for rapidly decreasing the density of vector populations, especially during arbovirus disease outbreaks. However, the intense use of insecticides, particularly pyrethroids, has led to the selection of resistant mosquito populations worldwide. Mutations in the voltage-gated sodium channel (VGSC) gene are one of the main drivers of insecticide resistance in Ae. albopictus and are also known as "knockdown resistance" (kdr) mutations. Knowledge about genetic mutations associated with insecticide resistance is a prerequisite for developing techniques for rapid resistance diagnosis. Here, we report studies on the origin and dispersion of kdr haplotypes in samples of Ae. albopictus from the Yangtze River Basin, China; METHODS: Here, we report the results of PCR genotyping of kdr mutations in 541 Ae. albopictus specimens from 22 sampling sites in 7 provinces and municipalities in the Yangtze River Basin. Partial DNA sequences of domain II and domain III of the VGSC gene were amplified. These DNA fragments were subsequently sequenced to discover the possible genetic mutations mediating knockdown resistance (kdr) to pyrethroids. The frequency and distribution of kdr mutations were assessed in 22 Ae. albopictus populations. Phylogenetic relationships among the haplotypes were used to infer whether the kdr mutations had a single or multiple origins; RESULTS: The kdr mutation at the 1016 locus had 2 alleles with 3 genotypes: V/V (73.38%), V/G (26.43%) and G/G (0.18%). The 1016G homozygous mutation was found in only one case in the CQSL strain in Chongqing, and no 1016G mutations were detected in the SHJD (Shanghai), NJDX (Jiangsu) or HBQN (Hubei) strains. A total of 1532 locus had two alleles and three genotypes, I/I (88.35%), I/T (8.50%) and T/T (3.14%). A total of 1534 locus had four alleles and six genotypes: F/F (49.35%), F/S (19.96%), F/C (1.48%) and F/L (0.18%); S/S (23.66%); and C/C (5.36%). Haplotypes with the F1534C mutation were found only in Ae. albopictus populations in Chongqing and Hubei, and C1534C was found only in three geographic strains in Chongqing. Haplotypes with the 1534S mutation were found only in Ae. albopictus populations in Sichuan and Shanghai. F1534L was found only in HBYC. The Ae. albopictus populations in Shanghai were more genetically differentiated from those in the other regions (except Sichuan), and the genetic differentiation between the populations in Chongqing and those in the middle-lower reaches of the Yangtze River (Huber, Jiangsu, Jiangxi, and Anhui) was lower. Shanghai and Sichuan displayed low haplotype diversity and low nucleotide diversity. Phylogenetic analysis and sequence comparison revealed that the 1016 locus was divided into three branches, with the Clade A and Clade B branches bearing the 1016 mutation occurring mostly in Jiangsu and the Clade C branch bearing the 1016 mutation occurring mostly in Chongqing, suggesting at least two origins for 1016G. IIIS6 phylogenetic analysis and sequence comparison revealed that F1534S, F1534C and I1532T can be divided into two branches, indicating that IIIS6 has two origins; CONCLUSIONS: Combined with the distribution of kdr mutations and the analysis of population genetics, we infer that besides the local selection of pyrethroid resistance mutations, dispersal and colonization of Ae. albopictus from other regions may explain why kdr mutations are present in some Ae. albopictus populations in the Yangtze River Basin.
Collapse
Affiliation(s)
- Zu Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Qing Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Ming Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Yu-Tong Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Jing-Wen Xie
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Zi-Ge Yi
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Jing-Hong Cai
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Tong-Yan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China.
| | - Heng-Duan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China.
| |
Collapse
|
3
|
Pan D, Luo QJ, O Reilly AO, Yuan GR, Wang JJ, Dou W. Mutations of voltage-gated sodium channel contribute to pyrethroid resistance in Panonychus citri. INSECT SCIENCE 2024; 31:803-816. [PMID: 37650774 DOI: 10.1111/1744-7917.13266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/08/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
Insecticide resistance in Panonychus citri is a major obstacle to mite control in citrus orchards. Pyrethroid insecticides are continually used to control mites in China, although resistance to pyrethroids has evolved in some populations. Here, the resistance to the pyrethroid fenpropathrin was investigated and 7 out of 8 field-collected populations of P. citri exhibited a high level of resistance, ranging from 171-fold to 15 391-fold higher than the susceptible (SS) comparison strain. Three voltage-gated sodium channel (VGSC) mutations were identified in the tested populations: L1031V, F1747L, and F1751I. Amplicon sequencing was used to evaluate the frequency of these mutations in the 19 field populations. L1031V and F1751I were present in all populations at frequencies of 11.6%-82.1% and 0.5%-31.8%, respectively, whereas the F1747L mutation was only present in 12 populations from Chongqing, Sichuan, Guangxi, and Yunnan provinces. Introduction of these mutations singly or in combination into transgenic flies significantly increased their resistance to fenpropathrin and these flies also exhibited reduced mortality after exposure to the pyrethroids permethrin and β-cypermethrin. Panonychus citri VGSC homology modeling and ligand docking indicate that F1747 and F1751 form direct binding contacts with pyrethroids, which are lost with mutation, whereas L1031 mutation may diminish pyrethroid effects through an allosteric mechanism. Overall, the results provide molecular markers for monitoring pest resistance to pyrethroids and offer new insights into the basis of pyrethroid actions on sodium channels.
Collapse
Affiliation(s)
- Deng Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qiu-Juan Luo
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Andrias O O Reilly
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Zhang Y, Wang D, Shi W, Zhou J, Xiang Y, Guan Y, Kong X, Liang W, Hu Y. Resistance to pyrethroids and the relationship between adult resistance and knockdown resistance (kdr) mutations in Aedes albopictus in dengue surveillance areas of Guizhou Province, China. Sci Rep 2024; 14:12216. [PMID: 38806622 PMCID: PMC11133427 DOI: 10.1038/s41598-024-63138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
The Ae. albopictus mosquito has gained global attention due to its ability to transmit viruses, including the dengue and zika. Mosquito control is the only effective way to manage dengue fever, as no effective treatments or vaccines are available. Insecticides are highly effective in controlling mosquito densities, which reduces the chances of virus transmission. However, Ae. albopictus has developed resistance to pyrethroids in several provinces in China. Pyrethroids target the voltage-gated sodium channel gene (VGSC), and mutations in this gene may result in knockdown resistance (kdr). Correlation studies between resistance and mutations can assist viruses in managing Ae. albopictus, which has not been studied in Guizhou province. Nine field populations of Ae. albopictus at the larval stage were collected from Guizhou Province in 2022 and reared to F1 to F2 generations. Resistance bioassays were conducted against permethrin, beta-cypermethrin, and deltamethrin for both larvae and adults of Ae. albopictus. Kdr mutations were characterized by PCR and sequencing. Additionally, the correlation between the kdr allele and pyrethroid resistance was analyzed. All nine populations of Ae. albopictus larvae and adults were found to be resistant to three pyrethroid insecticides. One kdr mutant allele at codon 1016, one at 1532 and three at 1534 were identified with frequencies of 13.86% (V1016G), 0.53% (I1532T), 58.02% (F1534S), 11.69% (F1534C), 0.06% (F1534L) and 0.99% (F1534P), respectively. Both V1016G and F1534S mutation mosquitoes were found in all populations. The kdr mutation F1534S was positively correlated with three pyrethroid resistance phenotypes (OR > 1, P < 0.05), V1016G with deltamethrin and beta-cypermethrin resistance (OR > 1, P < 0.05) and F1534C only with beta-cypermethrin resistance (OR > 1, P < 0.05). Current susceptibility status of wild populations of Ae. albopictus to insecticides and a higher frequency of kdr mutations from dengue-monitored areas in Guizhou Province are reported in this paper. Outcomes of this study can serve as data support for further research and development of effective insecticidal interventions against Ae. albopictus populations in Guizhou Province.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Vector Surveillance, Experimental Center, Guizhou Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, China
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Dan Wang
- Department of Vector Surveillance, Experimental Center, Guizhou Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, China
| | - Weifang Shi
- Department of Vector Surveillance, Experimental Center, Guizhou Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, China
| | - Jingzhu Zhou
- Department of Vector Surveillance, Experimental Center, Guizhou Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, China
| | - Yulong Xiang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yuwei Guan
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Xuexue Kong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Wenqin Liang
- Department of Vector Surveillance, Experimental Center, Guizhou Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, China.
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| | - Yong Hu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
5
|
Zhao M, Ran X, Xing D, Liao Y, Liu W, Bai Y, Zhang Q, Chen K, Liu L, Wu M, Ma Z, Gao J, Zhang H, Zhao T. Evolution of knockdown resistance ( kdr) mutations of Aedes aegypti and Aedes albopictus in Hainan Island and Leizhou Peninsula, China. Front Cell Infect Microbiol 2023; 13:1265873. [PMID: 37808913 PMCID: PMC10552158 DOI: 10.3389/fcimb.2023.1265873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Background Aedes aegypti and Aedes albopictus are important vectors of human arboviruses, transmitting arboviral diseases such as yellow fever, dengue, chikungunya and Zika. These two mosquitoes coexist on Hainan Island and the Leizhou Peninsula in China. Over the past 40 years, the distribution of Ae. albopictus has gradually expanded in these areas, while the distribution of Ae. aegypti has declined dramatically mainly due to the ecological changes and some other factors such as heavy use of insecticide indoor based on endophagic bloodfeeding of the species. Methods This study focused on the knockdown resistance (kdr) genes of both mosquitoes, investigated their mutations, and analyzed their haplotype and evolutionary diversity combined with population genetic features based on the ND4/ND5 genes to further elucidate the molecular mechanisms underlying the development of insecticide resistance in both mosquitoes. Results Three mutations, S989P, V1016G and F1534C, were found to be present in Ae. aegypti populations, and the three mutations occurred synergistically. Multiple mutation types (F1534C/S/L/W) of the F1534 locus are found in Ae. albopictus populations, with the three common mutations F1534C, F1534S and F1534L all having multiple independent origins. The F1534W (TTC/TGG) mutation is thought to have evolved from the F1534L (TTC/TTG) mutation. The F1534S (TTC/TCG) mutation has evolved from the F1534S (TTC/TCC) mutation. The most common form of mutation at the F1534 locus found in this study was S1534C, accounting for 20.97%, which may have evolved from the F1534C mutation. In addition, a new non-synonymous mutation M1524I and 28 synonymous mutations were identified in Ae. albopictus populations. Correlation analysis showed that the genetic diversity of Ae. aegypti and Ae. albopictus populations did not correlate with their kdr haplotype diversity (P>0.05), but strong gene flow between populations may have contributed to the evolution of the kdr gene. Conclusion The study of kdr gene evolution in the two mosquito species may help to identify the evolutionary trend of insecticide resistance at an early stage and provide a theoretical basis for improving the efficiency of biological vector control and subsequent research into new insecticides.
Collapse
Affiliation(s)
- Minghui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Xin Ran
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yun Liao
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Wei Liu
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Yu Bai
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Qiang Zhang
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Kan Chen
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Lan Liu
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Mingyu Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zu Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jian Gao
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Hengduan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tongyan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
6
|
Guo Y, Hu K, Zhou J, Xie Z, Zhao Y, Zhao S, Gu J, Zhou X, Yan G, James AA, Chen XG. The dynamics of deltamethrin resistance evolution in Aedes albopictus has an impact on fitness and dengue virus type-2 vectorial capacity. BMC Biol 2023; 21:194. [PMID: 37704988 PMCID: PMC10500878 DOI: 10.1186/s12915-023-01693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Worldwide invasion and expansion of Aedes albopictus, an important vector of dengue, chikungunya, and Zika viruses, has become a serious concern in global public health. Chemical insecticides are the primary means currently available to control the mosquito populations. However, long-term and large-scale use of insecticides has selected for resistance in the mosquito that is accompanied by a genetic load that impacts fitness. RESULTS A number of laboratory strains representing different resistance mechanisms were isolated and identified from laboratory-derived, deltamethrin-resistant Ae. albopictus recovered in previous work. Resistance levels and fitness costs of the strains were evaluated and compared to characterize the evolution of the resistance genotypes and phenotypes. The heterozygous F1534S mutation (1534F/S) in the voltage gated sodium channel (vgsc) gene product (VGSC), first detected in early stages of resistance evolution, not only confers high-level resistance, but also produces no significant fitness costs, leading to the rapid spread of resistance in the population. This is followed by the increase in frequency of homozygous F1534S (1534S/S) mosquitoes that have significant fitness disadvantages, prompting the emergence of an unlinked I1532T mutation with fewer side effects and a mating advantage better adapted to the selection and reproductive pressures imposed in the experiments. Metabolic resistance with no significant fitness cost and mediating a high-tolerance resistance phenotype may play a dominant role in the subsequent evolution of resistance. The different resistant strains had similar vector competence for dengue virus type-2 (DENV-2). Furthermore, a comparative analysis of vectorial capacity revealed that increased survival due to deltamethrin resistance balanced the negative fitness cost effects and contributed to the risk of dengue virus (DENV) transmission by resistant populations. The progressive evolution of resistance results in mosquitoes with both target-site insensitivity and metabolic resistance with lower fitness costs, which further leads to resistant populations with both high resistance levels and vectorial capacity. CONCLUSIONS This study reveals a possible mechanism for the evolution of deltamethrin resistance in Aedes albopictus. These findings will help guide practical strategies for insecticide use, resistance management and the prevention and control of mosquito-borne disease.
Collapse
Affiliation(s)
- Yijia Guo
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ke Hu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jingni Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | | | - Yijie Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Siyu Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jinbao Gu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaohong Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, Irvine, CA, USA
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA.
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA.
- , Irvine, USA.
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Mu Q, Zhao X, Li F, Li W, Zhou X, Lun X, Wang Y, Hua D, Liu Q, Xiao D, Meng F. A novel strategy for screening mutations in the voltage-gated sodium channel gene of Aedes albopictus based on multiplex PCR-mass spectrometry minisequencing technology. Infect Dis Poverty 2023; 12:74. [PMID: 37580776 PMCID: PMC10426094 DOI: 10.1186/s40249-023-01122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/20/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND The current prevention and control strategy for Aedes albopictus heavily relies on comprehensive management, such as environmental management and chemical control. However, the wide application of pyrethroids has facilitated the development of insecticide resistance, primarily via mutations in the voltage-gated sodium channel (VGSC) gene. This study aims to develop a novel strategy for detecting mutations in the VGSC gene in Ae. albopictus using multiplex PCR-mass spectrometry (MPCR-MS) minisequencing technology. METHODS We established a new strategy for detecting mutations in the VGSC gene in Ae. albopictus using MPCR-MS minisequencing technology. MPCR amplification and mass probe extension (MPE) were first used, followed by single nucleotide polymorphism (SNP) typing mass spectrometry, which allows the simultaneous detection of multiple mutation sites of the VGSC gene in 96 samples of Ae. albopictus. A total of 70 wild-collected Ae. albopictus were used to evaluate the performance of the method by comparing it with other methods. RESULTS Three target sites (1016, 1532, 1534) in the VGSC gene can be detected simultaneously by double PCR amplification combined with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry, achieving a detection limit of 20 fg/μl. We applied this method to 70 wild-collected Ae. albopictus, and the obtained genotypes were consistent with the routine sequencing results, suggesting the accuracy of our method. CONCLUSIONS MPCR-MS minisequencing technology provides a sensitive and high-throughput approach to Ae. albopictus VGSC gene mutation screening. Compared with conventional sequencing, this method is economical and time-saving. It is of great value for insecticide resistance surveillance in areas with a high risk of vector-borne disease.
Collapse
Affiliation(s)
- Qunzheng Mu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
- Weifang No. 2 People's Hospital, Weifang, 261000, Shandong, People's Republic of China
| | - Xin Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Fengfeng Li
- Weifang Medical College, Weifang, 261000, Shandong, People's Republic of China
| | - Wenyu Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Xinxin Zhou
- Beijing Daxing District Center for Disease Control and Prevention, Beijing, 102600, Beijing, People's Republic of China
| | - Xinchang Lun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Yiguan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Dongdong Hua
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Di Xiao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Fengxia Meng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| |
Collapse
|
8
|
Hutton SM, Miarinjara A, Stone NE, Raharimalala FN, Raveloson AO, Rakotobe Harimanana R, Harimalala M, Rahelinirina S, McDonough RF, Ames AD, Hepp C, Rajerison M, Busch JD, Wagner DM, Girod R. Knockdown resistance mutations are common and widely distributed in Xenopsylla cheopis fleas that transmit plague in Madagascar. PLoS Negl Trop Dis 2023; 17:e0011401. [PMID: 37607174 PMCID: PMC10443838 DOI: 10.1371/journal.pntd.0011401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/22/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Plague, caused by the bacterium Yersinia pestis, remains an important disease in Madagascar, where the oriental rat flea, Xenopsylla cheopis, is a primary vector. To control fleas, synthetic pyrethroids (SPs) have been used for >20 years, resulting in resistance in many X. cheopis populations. The most common mechanisms of SP resistance are target site mutations in the voltage-gated sodium channel (VGSC) gene. METHODOLOGY/PRINCIPAL FINDINGS We obtained 25 collections of X. cheopis from 22 locations across Madagascar and performed phenotypic tests to determine resistance to deltamethrin, permethrin, and/or dichlorodiphenyltrichloroethane (DDT). Most populations were resistant to all these insecticides. We sequenced a 535 bp segment of the VGSC gene and identified two different mutations encoding distinct substitutions at amino acid position 1014, which is associated with knockdown resistance (kdr) to SPs in insects. Kdr mutation L1014F occurred in all 25 collections; a rarer mutation, L1014H, was found in 12 collections. There was a significant positive relationship between the frequency of kdr alleles and the proportion of individuals surviving exposure to deltamethrin. Phylogenetic comparisons of 12 VGSC alleles in Madagascar suggested resistant alleles arose from susceptible lineages at least three times. Because genotype can reasonably predict resistance phenotype, we developed a TaqMan PCR assay for the rapid detection of kdr resistance alleles. CONCLUSIONS/SIGNIFICANCE Our study provides new insights into VGSC mutations in Malagasy populations of X. cheopis and is the first to report a positive correlation between VGSC genotypes and SP resistance phenotypes in fleas. Widespread occurrence of these two SP resistance mutations in X. cheopis populations in Madagascar reduces the viability of these insecticides for flea control. However, the TaqMan assay described here facilitates rapid detection of kdr mutations to inform when use of these insecticides is still warranted to reduce transmission of plague.
Collapse
Affiliation(s)
- Shelby M. Hutton
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Adelaide Miarinjara
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Nathan E. Stone
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Fara N. Raharimalala
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Annick O. Raveloson
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | - Mireille Harimalala
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | - Ryelan F. McDonough
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Abbe D. Ames
- Office of Field Operations, Food Safety Inspection Service, Department of Agriculture, Souderton, Pennsylvania, United States of America
| | - Crystal Hepp
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | | | - Joseph D. Busch
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Romain Girod
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| |
Collapse
|
9
|
Niklas B, Rydzewski J, Lapied B, Nowak W. Toward Overcoming Pyrethroid Resistance in Mosquito Control: The Role of Sodium Channel Blocker Insecticides. Int J Mol Sci 2023; 24:10334. [PMID: 37373481 DOI: 10.3390/ijms241210334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Diseases spread by mosquitoes lead to the death of 700,000 people each year. The main way to reduce transmission is vector control by biting prevention with chemicals. However, the most commonly used insecticides lose efficacy due to the growing resistance. Voltage-gated sodium channels (VGSCs), membrane proteins responsible for the depolarizing phase of an action potential, are targeted by a broad range of neurotoxins, including pyrethroids and sodium channel blocker insecticides (SCBIs). Reduced sensitivity of the target protein due to the point mutations threatened malaria control with pyrethroids. Although SCBIs-indoxacarb (a pre-insecticide bioactivated to DCJW in insects) and metaflumizone-are used in agriculture only, they emerge as promising candidates in mosquito control. Therefore, a thorough understanding of molecular mechanisms of SCBIs action is urgently needed to break the resistance and stop disease transmission. In this study, by performing an extensive combination of equilibrium and enhanced sampling molecular dynamics simulations (3.2 μs in total), we found the DIII-DIV fenestration to be the most probable entry route of DCJW to the central cavity of mosquito VGSC. Our study revealed that F1852 is crucial in limiting SCBI access to their binding site. Our results explain the role of the F1852T mutation found in resistant insects and the increased toxicity of DCJW compared to its bulkier parent compound, indoxacarb. We also delineated residues that contribute to both SCBIs and non-ester pyrethroid etofenprox binding and thus could be involved in the target site cross-resistance.
Collapse
Affiliation(s)
- Beata Niklas
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Jakub Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Bruno Lapied
- University Angers, INRAE, SIFCIR, SFR QUASAV, F-49045 Angers, France
| | - Wieslaw Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| |
Collapse
|
10
|
Shan W, Yuan H, Chen H, Dong H, Zhou Q, Tao F, Bai J, Chen H, Ma Y, Peng H. Genetic structure of Aedes albopictus (Diptera: Culicidae) populations in China and relationship with the knockdown resistance mutations. Infect Dis Poverty 2023; 12:46. [PMID: 37147696 PMCID: PMC10161448 DOI: 10.1186/s40249-023-01096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Mosquito control is needed to prevent dengue fever, which is mainly spread by Aedes albopictus in China. Application of insecticides is one of the main mosquito control methods; however, this approach can fail due to the knockdown resistance (kdr) gene mutation that causes decreased sensitivity to insecticides in Ae. albopictus. The kdr mutation patterns among different regions in China differ significantly. However, the underlying mechanism and factors that influence kdr mutation remain unclear. To explore the potential influence of genetic background on the development of insecticide resistance in Ae. albopictus, we analyzed the genetic structure of Ae. albopictus populations in China and its correlation with major kdr mutations. METHODS We collected Ae. albopictus from 17 sites in 11 provinces (municipalities) across China from 2016 to 2021 and extracted the genomic DNA from individual adult mosquitoes. We selected eight microsatellite loci for genotyping, and based on microsatellite scores, we estimated intraspecific genetic diversity, population structure, and effective population size. The association between the intrapopulation genetic variation and F1534 mutation rate was evaluated by the Pearson correlation coefficient. RESULTS Based on variation analysis of the microsatellite loci of 453 mosquitoes representing 17 populations throughout China, more than 90% of the variation occurred within individuals, whereas only about 9% of the variation occurred among populations, indicating that field populations of Ae. albopictus are highly polymorphic. The northern populations tended to belong to gene pool I (BJFT 60.4%, SXXA 58.4%, SDJN 56.1%, SXYC 46.8%), the eastern populations tended to belong to pool III (SH 49.5%, JZHZ 48.1%), and the southern populations tended to belong to three different gene pools. Moreover, we observed that the greater the fixation index (FST), the lower the wild-type frequency of F1534 of VSGC. CONCLUSIONS The degree of genetic differentiation among Ae. albopictus populations in China was low. These populations were divided into three gene pools, in which the northern and eastern pools are relatively homogeneous, while the southern gene pool is heterogeneous. The possible correlation between its genetic variations and kdr mutations is also noteworthy.
Collapse
Affiliation(s)
- Wenqi Shan
- Department of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Hao Yuan
- Department of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Hanming Chen
- Department of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Haowei Dong
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Qiuming Zhou
- Department of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Feng Tao
- Department of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jie Bai
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Huiying Chen
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yajun Ma
- Department of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Heng Peng
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
11
|
Zang C, Wang X, Cheng P, Liu L, Guo X, Wang H, Lou Z, Lei J, Wang W, Wang Y, Gong M, Liu H. Evaluation of the evolutionary genetics and population structure of Culex pipiens pallens in Shandong province, China based on knockdown resistance (kdr) mutations and the mtDNA-COI gene. BMC Genomics 2023; 24:145. [PMID: 36964519 PMCID: PMC10039558 DOI: 10.1186/s12864-023-09243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/11/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Mosquitoes are important vectors for a range of diseases, contributing to high rates of morbidity and mortality in the human population. Culex pipiens pallens is dominant species of Culex mosquito in northern China and a major vector for both West Nile virus and Bancroftian filariasis. Insecticide application were largely applied to control the mosquito-mediated spread of these diseases, contributing to increasing rates of resistance in the mosquito population. The voltage-gated sodium channel (Vgsc) gene is the target site of pyrethroids, and mutations in this gene cause knockdown resistance (kdr). While these kdr mutations are known to be critical to pyrethroid resistance, their evolutionary origins remain poorly understood. Clarifying the origins of these mutations is potential to guide further vector control and disease prevention efforts. Accordingly, the present study was designed to study the evolutionary genetics of kdr mutations and their association with the population structure of Cx. p. pallens in Shandong province, China. METHODS Adult Culex females were collected from Shandong province and subjected to morphological identification under a dissection microscope. Genomic DNA were extracted from the collected mosquitoes, the Vgsc gene were amplified via PCR and sequenced to assess kdr allele frequencies, intron polymorphisms, and kdr codon evolution. In addition, population genetic diversity and related population characteristics were assessed by amplifying and sequencing the mitochondrial cytochrome C oxidase I (COI) gene. RESULTS Totally, 263 Cx. p. pallens specimens were used for DNA barcoding and sequencing analyses to assess kdr allele frequencies in nine Culex populations. The kdr codon L1014 in the Vgsc gene identified two non-synonymous mutations (L1014F and L1014S) in the analyzed population. These mutations were present in the eastern hilly area and west plain region of Shandong Province. However, only L1014F mutation was detected in the southern mountainous area and Dongying city of Shandong Province, where the mutation frequency was low. Compared to other cities, population in Qingdao revealed significant genetic differentiation. Spatial kdr mutation patterns are likely attributable to some combination of prolonged insecticide-mediated selection coupled with the genetic isolation of these mosquito populations. CONCLUSIONS These data suggest that multiple kdr alleles associated with insecticide resistance are present within the Cx. p. pallens populations of Shandong Province, China. The geographical distributions of kdr mutations in this province are likely that the result of prolonged and extensive insecticide application in agricultural contexts together with frequent mosquito population migrations. In contrast, the low-frequency kdr mutation detected in central Shandong Province populations may originate from the limited selection pressure in this area and the relative genetic isolation. Overall, the study compares the genetic patterns revealed by a functional gene with a neutral marker and demonstrates the combined impact of demographic and selection factors on population structure.
Collapse
Affiliation(s)
- Chuanhui Zang
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Xuejun Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China
| | - Peng Cheng
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Lijuan Liu
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Xiuxia Guo
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Haifang Wang
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Ziwei Lou
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Jingjing Lei
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Wenqian Wang
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Yiting Wang
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Maoqing Gong
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China.
| | - Hongmei Liu
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China.
| |
Collapse
|
12
|
Zhao C, Zhou X, Xue C, Lun X, Li W, Liu X, Wu H, Song X, Wang J, Liu Q, Meng F. Knockdown resistance mutations distribution and characteristics of Aedes albopictus field populations within eleven dengue local epidemic provinces in China. Front Cell Infect Microbiol 2023; 12:981702. [PMID: 36846550 PMCID: PMC9948608 DOI: 10.3389/fcimb.2022.981702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/05/2022] [Indexed: 02/11/2023] Open
Abstract
Background Aedes albopictus, commonly known as the tiger mosquito, has attracted global attention because its bite can transmit several viruses, such as dengue virus. With the absence of an effective therapy and vaccine, mosquito control is the sole method for dengue fever control. However, Ae. albopictus has developed resistance to most insecticides, especially pyrethroids. Many scholars have conducted thorough research for the target-site of pyrethroids. The main target-site is the voltage-gated sodium channel gene (VGSC) whose mutation causes knockdown resistance (kdr). The spatial distribution of three locus kdr mutations in Ae. albopictus has not been comprehensively analyzed nationwide in China. In addition, the relationship between the frequency of kdr mutations and dengue fever has not yet been explored. Methods A total of 2,241 Ae. albopictus samples from 49 populations from 11 provinces of mainland China were collected in 2020 and analyzed for mutations in the VGSC gene. DNAstar 7.1. Seqman and Mega-X were used to compare the sequences and read the peak map to confirm the genotypes and alleles of each mutation. ArcGIS 10.6 software was used to make interpolation and extract meteorological data of collection sites and to conduct spatial autocorrelation analysis. R 4.1.2 software was used to conduct a chi-square test for kdr mutations and dengue area and to analyze the correlation between meteorological factors and kdr mutations. Results The overall frequencies of mutant alleles at 1016G, 1532T, and 1534S/C/L were 13.19%, 4.89%, and 46.90%, respectively. Mutations at the three loci were found at 89.80% (44/49), 44.90% (22/49), and 97.96% (48/49) of the field populations. At each of the loci V1016 and I1532, only one allele was detected, which was GGA(G) and ACC(T), respectively. Five mutant alleles were found at codon 1534: TCC/S (33.49%), TGC/C (11.96%), TTG/L (0.60%), CTC/L (0.49%), and TTA/L (0.58%). In total, 31 triple-locus genotype combinations were found, and the single locus mutation was the most common. We also found firstly triple-locus mutant individuals, whose genotypes were V/G+I/T+F/S and V/G+I/T+S/S. The 1016 and 1532 mutation rates were significantly negatively related to the annual average temperature (AAT), but the 1534 mutation rate was significantly positively related to AAT. The 1532 mutation rate was significantly positively related to the 1016 mutation rate but negatively related to the 1534 mutation rate. A relationship was observed between the 1534 codon mutation rate and dengue epidemic areas in this study. Furthermore, spatial autocorrelation analysis results showed that the mutation rates of different codons in different geographical areas had spatial aggregation and positive spatial correlation. Conclusion This study showed that the multiple kdr mutations at codon 1016, 1532 and 1534 of Ae. albopictus were found in most areas of China. Two novel triple-locus genotype combinations, V/G+I/T+F/S and V/G+I/T+S/S, were detected in this study. In addition, the relationship between mosquito resistance and dengue fever outbreak should be further explored, especially considering the insecticide-usage history in different areas. The characteristic of spatial aggregation of VGSC gene mutation rates reminds us to notice the gene exchange and similarity of insecticide usage in the adjacent areas. The use of pyrethroids should be restricted to delay resistance development. New-type insecticides should be developed to adjust the changes in the resistance spectrum. Our study provides abundant data on the Ae. albopictus kdr gene mutation in China; these findings will be useful for the correlation analysis of molecular mechanism of insecticide resistance.
Collapse
Affiliation(s)
- Chunchun Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, World Health Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xinxin Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, World Health Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
- Beijing Daxing District Center for Disease Control and Prevention, Genaral Office, Beijing, China
| | - Chuizhao Xue
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Committee (NHC) Key Laboratory of Parasite and Vector Biology, World Health Organization (WHO) Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Xinchang Lun
- State Key Laboratory of Infectious Disease Prevention and Control, World Health Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Wenyu Li
- State Key Laboratory of Infectious Disease Prevention and Control, World Health Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xiaobo Liu
- State Key Laboratory of Infectious Disease Prevention and Control, World Health Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Haixia Wu
- State Key Laboratory of Infectious Disease Prevention and Control, World Health Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xiuping Song
- State Key Laboratory of Infectious Disease Prevention and Control, World Health Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Jun Wang
- State Key Laboratory of Infectious Disease Prevention and Control, World Health Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, World Health Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Fengxia Meng
- State Key Laboratory of Infectious Disease Prevention and Control, World Health Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| |
Collapse
|
13
|
Kwame Amlalo G, Akorli J, Etornam Akyea-Bobi N, Sowa Akporh S, Aqua-Baidoo D, Opoku M, Frempong K, Pi-Bansa S, Boakye HA, Joannides J, Nyarko Osei JH, Pwalia R, Abla Akorli E, Manu A, Dadzie SK. Evidence of High Frequencies of Insecticide Resistance Mutations in Aedes aegypti (Culicidae) Mosquitoes in Urban Accra, Ghana: Implications for Insecticide-based Vector Control of Aedes-borne Arboviral Diseases. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:2090-2101. [PMID: 36066455 DOI: 10.1093/jme/tjac120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 06/15/2023]
Abstract
The most widespread arboviral diseases such as Dengue, Chikungunya, and Zika are transmitted mainly by Aedes mosquitoes. Due to the lack of effective therapeutics for most of these diseases, vector control remains the most effective preventative and control measure. This study investigated and compared the species composition, insecticide susceptibility, and resistance mechanisms in Aedes mosquito populations from a forest reserve converted to an eco-park and a peri-domestic sites in urban Accra, Ghana. Immature Aedes were sampled from the study sites, raised to adults, and exposed to deltamethrin, permethrin, DDT, fenitrothion, bendiocarb, permethrin + PBO, and deltamethrin + PBO using WHO tube assays. Melting curve analyses were performed for F1536C, V1016I, and V410L genetic mutations in surviving and dead mosquitoes following exposure to deltamethrin and permethrin. Microplate assay was used to access enzyme activity levels in adult mosquitoes from both populations. Aedes aegypti was found to be the dominant species from both study populations. The susceptibility test results revealed a high frequency of resistance to all the insecticides except fenitrothion. F1534C mutations were observed in 100% and 97% of mosquitoes from the peri-domestic and forest population, respectively but were associated with pyrethroid resistance only in the forest population (P < 0.0001). For the first time in Aedes mosquitoes in Ghana, we report the existence V410L mutations, mostly under selection only in the forest population (HWE P < 0.0001) and conclude that Aedes vectors in urban Accra have developed resistance to many commonly used insecticides. This information is important for the formulation of vector control strategies for Aedes control in Ghana.
Collapse
Affiliation(s)
- Godwin Kwame Amlalo
- Vestergaard NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, P.O. Box LG 13, Legon, Accra, Ghana
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Nukunu Etornam Akyea-Bobi
- Vestergaard NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Samuel Sowa Akporh
- Vestergaard NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Dominic Aqua-Baidoo
- Vestergaard NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Millicent Opoku
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Kwadwo Frempong
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Sellase Pi-Bansa
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Helena A Boakye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Joannitta Joannides
- Vestergaard NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Rebecca Pwalia
- Vestergaard NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Esinam Abla Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Alexander Manu
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, P.O. Box LG 13, Legon, Accra, Ghana
| | - Samuel K Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| |
Collapse
|
14
|
Sun H, Nomura Y, Du Y, Liu Z, Zhorov BS, Dong K. Characterization of two kdr mutations at predicted pyrethroid receptor site 2 in the sodium channels of Aedes aegypti and Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 148:103814. [PMID: 35932971 PMCID: PMC10076083 DOI: 10.1016/j.ibmb.2022.103814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 05/12/2023]
Abstract
Pyrethroid insecticides prolong the opening of insect sodium channels by binding to two predicted pyrethroid receptor sites (PyR), PyR1 and PyR2. Many naturally-occurring sodium channel mutations that confer pyrethroid resistance (known as knockdown resistance, kdr) are located at PyR1. Recent studies identified two new mutations, V253F and T267A, at PyR2, which co-exist with two well-known mutations F1534C or M918T, at PyR1, in pyrethroid-resistant populations of Aedes aegypti and Nilaparvata lugens, respectively. However, the role of the V253F and T267A mutations in pyrethroid resistance has not been functionally examined. Here we report functional characterization of the V253F and T267A mutations in the Ae. aegypti sodium channel AaNav2-1 and the N. lugens sodium channel NlNav1 expressed in Xenopus oocytes. Both mutations alone reduced channel sensitivity to pyrethroids, including etofenprox. We docked etofenprox in a homology model of the pore module of the NlNav1 channel based on the crystal structure of an open prokaryotic sodium channel NavMs. In the low-energy binding pose etofenprox formed contacts with V253, T267 and a previously identified L1014 within PyR2. Combining of V253F or T267A with F1534C or M918T results in a higher level of pyrethroid insensitivity. Furthermore, both V253F and T267A mutations altered channel gating properties. However, V253F- and T267A-induced gating modifications was not observed in the double mutant channels. Our findings highlight the first example in which naturally-found combinational mutations in PyR1 and PyR2 not only confer higher level pyrethroid insensitivity, but also reduce potential fitness tradeoff in pyrethroid-resistant mosquitoes caused by kdr mutation-induced sodium channel gating modifications.
Collapse
Affiliation(s)
- Huahua Sun
- Department of Biology, Duke University, Durham, NC, USA; College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yoshiko Nomura
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Yuzhe Du
- Southern Insect Management Research Unit, Agriculture Research Service, United States Department of Agriculture, 141 Experiment Station Road, Stoneville, MS, 38776, USA
| | - Zewen Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Canada; Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Ke Dong
- Department of Biology, Duke University, Durham, NC, USA; Department of Entomology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
15
|
Pichler V, Caputo B, Valadas V, Micocci M, Horvath C, Virgillito C, Akiner M, Balatsos G, Bender C, Besnard G, Bravo-Barriga D, Bueno-Mari R, Collantes F, Delacour-Estrella S, Dikolli E, Falcuta E, Flacio E, García-Pérez AL, Kalan K, Kavran M, L'Ambert G, Lia RP, Marabuto E, Medialdea R, Melero-Alcibar R, Michaelakis A, Mihalca A, Mikov O, Miranda MA, Müller P, Otranto D, Pajovic I, Petric D, Rebelo MT, Robert V, Rogozi E, Tello A, Zitko T, Schaffner F, Pinto J, Della Torre A. Geographic distribution of the V1016G knockdown resistance mutation in Aedes albopictus: a warning bell for Europe. Parasit Vectors 2022; 15:280. [PMID: 35932088 PMCID: PMC9356396 DOI: 10.1186/s13071-022-05407-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colonization of large part of Europe by the Asian tiger mosquito Aedes albopictus is causing autochthonous transmission of chikungunya and dengue exotic arboviruses. While pyrethroids are recommended only to reduce/limit transmission, they are widely implemented to reduce biting nuisance and to control agricultural pests, increasing the risk of insurgence of resistance mechanisms. Worryingly, pyrethroid resistance (with mortality < 70%) was recently reported in Ae. albopictus populations from Italy and Spain and associated with the V1016G point mutation in the voltage-sensitive sodium channel gene conferring knockdown resistance (kdr). Genotyping pyrethroid resistance-associated kdr mutations in field mosquito samples represents a powerful approach to detect early signs of resistance without the need for carrying out phenotypic bioassays which require availability of live mosquitoes, dedicated facilities and appropriate expertise. METHODS Here we report results on the PCR-genotyping of the V1016G mutation in 2530 Ae. albopictus specimens from 69 sampling sites in 19 European countries. RESULTS The mutation was identified in 12 sites from nine countries (with allele frequencies ranging from 1 to 8%), mostly distributed in two geographical clusters. The western cluster includes Mediterranean coastal sites from Italy, France and Malta as well as single sites from both Spain and Switzerland. The eastern cluster includes sites on both sides of the Black Sea in Bulgaria, Turkey and Georgia as well as one site from Romania. These results are consistent with genomic data showing high connectivity and close genetic relationship among West European populations and a major barrier to gene flow between West European and Balkan populations. CONCLUSIONS The results of this first effort to map kdr mutations in Ae. albopictus on a continental scale show a widespread presence of the V1016G allele in Europe, although at lower frequencies than those previously reported from Italy. This represents a wake-up call for mosquito surveillance programs in Europe to include PCR-genotyping of pyrethroid resistance alleles, as well as phenotypic resistance assessments, in their routine activities.
Collapse
Affiliation(s)
- Verena Pichler
- Dipartimento di Sanità Pubblica & Malattie Infettive, Università di Roma Sapienza, Rome, Italy
| | - Beniamino Caputo
- Dipartimento di Sanità Pubblica & Malattie Infettive, Università di Roma Sapienza, Rome, Italy
| | - Vera Valadas
- Global Health and Tropical Medicine, Instituto De Higiene E Medicina Tropical, Universidade Nova De Lisboa, Lisbon, Portugal
| | - Martina Micocci
- Dipartimento di Sanità Pubblica & Malattie Infettive, Università di Roma Sapienza, Rome, Italy
| | - Cintia Horvath
- University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Chiara Virgillito
- Dipartimento di Sanità Pubblica & Malattie Infettive, Università di Roma Sapienza, Rome, Italy
| | | | - Georgios Balatsos
- Laboratory of Insects & Parasites of Medical Importance, Benaki Phytopathological Institute, Kifisia, Greece
| | - Christelle Bender
- Syndicat de Lutte Contre Les Moustiques du Bas-Rhin, Strasbourg, France
| | - Gilles Besnard
- Entente Interdépartementale Rhône-Alpes pour la Démoustication, Chindrieux, France
| | - Daniel Bravo-Barriga
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| | | | | | | | | | - Elena Falcuta
- Cantacuzino, National Military-Medical Institute of Research and Development, Bucharest, Romania
| | - Eleonora Flacio
- University of Applied Sciences of Southern Switzerland, Manno, Switzerland
| | - Ana L García-Pérez
- Neiker-Basque Institute for Agricultural Research and Development, Derio, Spain
| | | | | | - Gregory L'Ambert
- Entente Interdépartementale Rhône-Alpes pour la Démoustication, Chindrieux, France
| | | | - Eduardo Marabuto
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Dresden, Germany
| | | | | | - Antonios Michaelakis
- Laboratory of Insects & Parasites of Medical Importance, Benaki Phytopathological Institute, Kifisia, Greece
| | - Andrei Mihalca
- University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Ognyan Mikov
- National Centre of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Miguel A Miranda
- Applied Zoology and Animal Conservation, University of the Balearic Islands, Palma, Spain
| | - Pie Müller
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | | | - Maria Teresa Rebelo
- CESAM-Ciências, Faculdade de Ciências da Universidade de Lisboa, , Lisbon, Portugal
| | - Vincent Robert
- Mivegec Laboratory, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | | | - Ana Tello
- Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Toni Zitko
- Institute of Public Health of Split-Dalmatia County, Split, Croatia
| | | | - Joao Pinto
- Global Health and Tropical Medicine, Instituto De Higiene E Medicina Tropical, Universidade Nova De Lisboa, Lisbon, Portugal
| | - Alessandra Della Torre
- Dipartimento di Sanità Pubblica & Malattie Infettive, Università di Roma Sapienza, Rome, Italy.
| |
Collapse
|
16
|
Spatial heterogeneity of knockdown resistance mutations in the dengue vector Aedes albopictus in Guangzhou, China. Parasit Vectors 2022; 15:156. [PMID: 35505385 PMCID: PMC9066732 DOI: 10.1186/s13071-022-05241-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background The city of Guangzhou has been the epicenter of dengue fever in China since the 1990s, with Aedesalbopictus being the primary vector. The main method used to control vectors and prevent dengue fever has been the application of chemical insecticides; however, this control strategy has resulted in the development of resistance to these insecticides in mosquitoes. Here we report our investigation of the patterns of knockdown resistance (kdr) mutations in 15 field populations of Ae.albopictus collected from 11 districts in Guangzhou. Results Four mutant alleles (V1016G, F1534S, F1534C, F1534L) were detected in domain II and III of the voltage-gated sodium channel (VGSC) gene. Various allele frequencies of kdr mutations were observed (3.1–25.9% for V1016G, 22.6–85.5% for F1534S, 0–29.0% for F1534L, 0.6–54.2% for F1534C). Seven kdr haplotypes (VF, VS, VL, VC, GF, GC, GS) were identified; the highest frequency of haplotypes was found for the single mutant haplotype VS (50.8%), followed by the wild-type VF haplotype (21.7%) and the single mutant haplotype VC (11.9%). Of the three double mutant haplotypes, GF was the most frequent (8.8%), followed by GC (1.2%) and GS (0.8%). Aedesalbopictus showed spatial heterogeneity in deltamethrin resistance in populations collected in Guangzhou. We also observed significant differences in haplotype frequency. The frequency of the VC haplotype was significantly higher in high-risk dengue areas than in low-risk ones. Conclusions The kdr allele V1016G was discovered for the first time in Guangzhou. Genetic isolation in mosquito populations and long-term insecticide selection seem to be responsible for the persistent, patchy distribution of kdr mutant alleles. The small-scale spatial heterogeneity in the distribution and frequency of kdr mutations may have important implications for vector control operations and insecticide resistance management strategies. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05241-7.
Collapse
|
17
|
Wei Y, Zheng X, He S, Xin X, Zhang J, Hu K, Zhou G, Zhong D. Insecticide susceptibility status and knockdown resistance (kdr) mutation in Aedes albopictus in China. Parasit Vectors 2021; 14:609. [PMID: 34922622 PMCID: PMC8684111 DOI: 10.1186/s13071-021-05095-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background Aedes (Stegomyia) albopictus (Skuse, 1894) is the main vector of dengue virus in China. The resistance to insecticides is a huge obstacle for the control of this species, and determining its resistance status and mechanisms in China is essential for the implementation of vector management strategies. Methods We have investigated the larval and adult resistance status of Ae. albopictus to deltamethrin in eight field populations in China. Mutations at the voltage-gated sodium channel gene, related to the knockdown resistance (kdr) effect, were detected by sequencing of PCR products. The eight field populations were examined for pyrethroid resistance using the World Health Organization standard bioassays, and the association between the mutations and phenotypic resistance was tested. Results The eight field populations of larvae of Ae. albopictus in China exhibited high resistance to deltamethrin; the RR50 values ranged from 12 (ZJ) to 44 (GZ). Adult bioassay revealed that Ae. albopictus populations were resistant to deltamethrin (mortality rate < 90%), except ZJ population (probably resistant, mortality rate = 93.5%). Long knockdown time in the field populations was consistent with low mortality rates in adult bioassay. F1534S mutation showed increased protection against deltamethrin in all populations except BJ and SJZ populations, whereas I1532T mutation showed increased protection against deltamethrin in only BJ population. Conclusion There were different degrees of resistance to deltamethrin in field Ae. albopictus populations in China. The longest knockdown time and lowest mortality rate observed in Ae. albopictus population in Guangzhou indicate the severity of high resistance to deltamethrin. The patchy distribution of deltamethrin resistance and kdr mutations in Ae. albopictus mosquitoes suggests the necessity for resistance management and developing counter measures to mitigate the spread of resistance. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Yong Wei
- Clinical Laboratory, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China. .,Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China.
| | - Xueli Zheng
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China.
| | - Song He
- Clinical Laboratory, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China.
| | - Xuli Xin
- Clinical Laboratory, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Jiachun Zhang
- Clinical Laboratory, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Ke Hu
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, USA
| |
Collapse
|
18
|
Virome in adult Aedes albopictus captured during different seasons in Guangzhou City, China. Parasit Vectors 2021; 14:415. [PMID: 34407871 PMCID: PMC8371599 DOI: 10.1186/s13071-021-04922-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/03/2021] [Indexed: 01/09/2023] Open
Abstract
Background The mosquito Aedes albopictus is an important vector for many pathogens. Understanding the virome in Ae. albopictus is critical for assessing the risk of disease transmission, implementation of vector control measures, and health system strengthening. Methods In this study, viral metagenomic and PCR methods were used to reveal the virome in adult Ae. albopictus captured in different areas and during different seasons in Guangzhou, China. Results The viral composition of adult Ae. albopictus varied mainly between seasons. Over 50 viral families were found, which were specific to vertebrates, invertebrates, plants, fungi, bacteria, and protozoa. In rural areas, Siphoviridae (6.5%) was the most common viral family harbored by mosquitoes captured during winter and spring, while Luteoviridae (1.1%) was the most common viral family harbored by mosquitoes captured during summer and autumn. Myoviridae (7.0% and 1.3%) was the most common viral family in mosquitoes captured in urban areas during all seasons. Hepatitis B virus (HBV) was detected by PCR in a female mosquito pool. The first near full-length HBV genome from Ae. albopictus was amplified, which showed a high level of similarity with human HBV genotype B sequences. Human parechovirus (HPeV) was detected in male and female mosquito pools, and the sequences were clustered with HPeV 1 and 3 sequences. Conclusions Large numbers of viral species were found in adult Ae. albopictus, including viruses from vertebrates, insects, and plants. The viral composition in Ae. albopictus mainly varied between seasons. Herein, we are the first to report the detection of HPeV and HBV in mosquitoes. This study not only provides valuable information for the control and prevention of mosquito-borne diseases, but it also demonstrates the feasibility of xenosurveillance. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04922-z.
Collapse
|
19
|
Chen H, Zhou Q, Dong H, Yuan H, Bai J, Gao J, Tao F, Ma H, Li X, Peng H, Ma Y. The pattern of kdr mutations correlated with the temperature in field populations of Aedes albopictus in China. Parasit Vectors 2021; 14:406. [PMID: 34399821 PMCID: PMC8365938 DOI: 10.1186/s13071-021-04906-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background Aedes albopictus is the primary vector of dengue fever in China. This mosquito species has a wide distribution range in China and can be found in the tropical climate zones of southern provinces through to temperate climate zones of northern provinces. Insecticides are an important control method, especially during outbreaks of dengue fever, but increasing insecticide resistance raises the risk of failure to control vector-borne diseases. Knockdown resistance (kdr) caused by point mutations in the voltage-gated sodium channel (VGSC) gene is a key mechanism that confers resistance to pyrethroids. In this study we explored the characteristics and possible evolutionary trend of kdr mutation in Ae. albopictus based on analysis of the kdr mutations in field populations of mosquitoes in China. Methods A total of 1549 adult Ae. albopictus were collected from 18 sites in China from 2017 to 2019 and 50 individuals from three sites in the 1990s. A fragment of approximately 350 bp from part of the S6 segment in the VGSC gene domain III was amplified and sequenced. Using TCS software version 1.21A, we constructed haplotypes of the VGSC gene network and calculated outgroup probability of the haplotypes. Data of annual average temperatures (AAT) of the collection sites were acquired from the national database. The correlation between AAT of the collection site and the kdr mutation rate was analyzed by Pearson correlation using SPSS software version 21.0. Results The overall frequency of mutant allele F1534 was 45.6%. Nine mutant alleles were detected at codon 1534 in 15 field populations, namely TCC/TCG (S) (38.9%), TTG/CTG/CTC/TTA (L) (3.7%), TGC (C) (2.9%), CGC (R) (0.3%) and TGG (W) (0.1%). Only one mutant allele, ACC (T), was found at codon 1532, with a frequency of 6.4% in ten field populations. Moreover, multiple mutations at alleles I1532 and F1534 in a sample appeared in five populations. The 1534 mutation rate was significantly positively related to AAT (Pearson correlation: r(18) = 0.624, P = 0.0056), while the 1532 mutation rate was significantly negatively related to AAT (Pearson correlation: r(18) = − 0.645, P = 0.0038). Thirteen haplotypes were inferred, in which six mutant haplotypes were formed by one step, and one additional mutation formed the other six haplotypes. In the samples from the 1990s, no mutant allele was detected at codon 1532 of the VGSC gene. However, F1534S/TCC was found in HNHK94 with an unexpected frequency of 100%. Conclusions Kdr mutations are widespread in the field populations of Ae. albopictus in China. Two novel mutant alleles, F1534W/TGG and F1534R/CGC, were detected in this study. The 1534 kdr mutation appeared in the population of Ae. albopictus no later than the 1990s. The F1534 mutation rate was positively correlated with AAT, while the I1532 mutation rate was negatively correlated with AAT. These results indicate that iInsecticide usage should be carefully managed to slow down the spread of highly resistant Ae. albopictus populations, especially in the areas with higher AAT. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04906-z.
Collapse
Affiliation(s)
- Hanming Chen
- College of Naval Medicine, Naval Medical University, Shanghai, China
| | - Qiuming Zhou
- College of Naval Medicine, Naval Medical University, Shanghai, China
| | - Haowei Dong
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Hao Yuan
- College of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jie Bai
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Jingpeng Gao
- College of Naval Medicine, Naval Medical University, Shanghai, China
| | - Feng Tao
- College of Naval Medicine, Naval Medical University, Shanghai, China
| | - Hui Ma
- Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiangyu Li
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Heng Peng
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China.
| | - Yajun Ma
- College of Naval Medicine, Naval Medical University, Shanghai, China.
| |
Collapse
|
20
|
Wu Y, Liu Q, Qi Y, Wu Y, Ni Q, Chen W, Wang J, Li T, Luo M, Hou J, Gong Z, Sun J. Knockdown Resistance ( kdr) Mutations I1532T and F1534S Were Identified in Aedes albopictus Field Populations in Zhejiang Province, Central China. Front Cell Infect Microbiol 2021; 11:702081. [PMID: 34268140 PMCID: PMC8276070 DOI: 10.3389/fcimb.2021.702081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/11/2021] [Indexed: 11/14/2022] Open
Abstract
Aedes albopictus is the only vector that can transmit the dengue virus in Zhejiang Province, central China, and it can develop insecticide resistance due to long-term exposure to pyrethroids. The presence of knockdown resistance (kdr) mutations is one of the mechanisms responsible for pyrethroid resistance, and has been reported in some Ae. albopictus populations in southern China. However, little is known about the DNA diversity of the voltage-gated sodium channel (VGSC) gene in Ae. albopictus populations in central China. Four Ae. albopictus field populations were collected, in Yiwu (YW), Quzhou (QZ), Wenzhou (WZ), and Jiaxing (JX) from Zhejiang Province, central China. The susceptibility of Ae. albopictus adults to three pyrethroids (beta-cypermethrin, deltamethrin, and permethrin) was tested using the WHO tube assay, and Kdr mutations were identified via PCR and sequencing. The relationship between kdr mutations and pyrethroid phenotypes was also analyzed. Of the four populations, none was sensitive to any pyrethroid tested, and the YW population showed the strongest pyrethroid resistance. Non-synonymous kdr mutations were detected in codons 1532 and 1534, domain III. At codon 1534, one mutant allele, TCC(S), was detected in the four populations with a frequency of 42.08%, while at codon 1532, one mutant allele, ACC(T), was detected in the JX and QZ populations, with frequencies of 4.22 and 3.03%, respectively. The F1534S mutant allele was positively correlated with both beta-cypermethrin and deltamethrin resistance phenotypes (OR > 1, P < 0.05), whereas the I1532T mutant allele was possibly negatively correlated with beta-cypermethrin, deltamethrin, and permethrin resistance phenotypes (OR < 1, P > 0.05). In conclusion, resistance and resistance mutations regarding to three pyrethroids are already present in the Ae. Albopictus populations from Zhejiang, central China, which prompts the need to use non-insecticide-based methods of insect control.
Collapse
Affiliation(s)
- Yuyan Wu
- Department of Infectious Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou City, China
| | - Qinmei Liu
- Department of Infectious Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou City, China
| | - Yunpeng Qi
- Department of Infectious Diseases Control and Prevention, Jiaxing Center for Disease Control and Prevention, Jiaxing City, China
| | - Yinping Wu
- Department of Vector Control and Prevention, Yiwu Center for Disease Control and Prevention, Yiwu City, China
| | - Qinxiang Ni
- Department of Infectious Diseases Control and Prevention, Wenzhou Center for Disease Control and Prevention, Wenzhou City, China
| | - Weihua Chen
- Department of Infectious Diseases Control and Prevention, Quzhou Center for Disease Control and Prevention, Quzhou City, China
| | - Jinna Wang
- Department of Infectious Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou City, China
| | - Tianqi Li
- Department of Infectious Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou City, China
| | - Mingyu Luo
- Department of Infectious Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou City, China
| | - Juan Hou
- Department of Infectious Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou City, China
| | - Zhenyu Gong
- Department of Infectious Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou City, China
| | - Jimin Sun
- Department of Infectious Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou City, China
| |
Collapse
|
21
|
Fiaz M, Martínez LC, Plata-Rueda A, Cossolin JFS, Serra RS, Martins GF, Serrão JE. Behavioral and ultrastructural effects of novaluron on Aedes aegypti larvae. INFECTION GENETICS AND EVOLUTION 2021; 93:104974. [PMID: 34166815 DOI: 10.1016/j.meegid.2021.104974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 11/28/2022]
Abstract
Chitin synthesis inhibitors (CSI) are supposed to inhibit formation of chitin microfibrils in newly synthesized cuticle during molting process. Conversely, there has been comparatively few data on morphological effects of CSI on non-target insect organs. In this work, the effects of the CSI novaluron on behavior and midgut of A. aegypti were evaluated. Toxicity bioassays revealed that novaluron is toxic to A. aegypti larva with LC50 = 18.57 mg L-1 when exposed in aqueous solution for 24 h. Novaluron treated larvae were less active and spent more time resting compared to the control group. Histopathology showed that midguts of novaluron-treated larvae had cytoplasm vacuolization and damaged brush border. Cytotoxic effects in midguts of treated larvae induced necrosis, autophagy and damage to mitochondria. Despite being chitin synthesis inhibitor, novaluron did not induce alterations in the integument of A. aegypti larvae. Fluorescence microscopy revealed that the number of digestive cells were higher in novaluron-treated larvae than in control, in response to digestive cell apoptosis. The present study highlights the importance of novaluron against A. aegypti larvae by causing injuries to non-target organs, altering behaviors, inducing cell death and inhibiting cell proliferation.
Collapse
Affiliation(s)
- Muhammad Fiaz
- Department of Entomology, Federal University of Viçosa, 36570-000 Viçosa, MG, Brazil; Institute of Plant Protection, MNS-University of Agriculture, Multan 60000, Punjab, Pakistan.
| | - Luis Carlos Martínez
- Department of General Biology, Federal University of Viçosa, 36570-000 Viçosa, MG, Brazil
| | - Angelica Plata-Rueda
- Department of Entomology, Federal University of Viçosa, 36570-000 Viçosa, MG, Brazil
| | | | - Raissa Santana Serra
- Department of Entomology, Federal University of Viçosa, 36570-000 Viçosa, MG, Brazil
| | | | - José Eduardo Serrão
- Department of General Biology, Federal University of Viçosa, 36570-000 Viçosa, MG, Brazil.
| |
Collapse
|
22
|
Yang X, Zhou Y, Sun Y, Liu J, Jiang D. Multiple insecticide resistance and associated mechanisms to volatile pyrethroid in an Aedes albopictus population collected in southern China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104823. [PMID: 33838716 DOI: 10.1016/j.pestbp.2021.104823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Conventional and volatile pyrethroids are widely used to control the vectors of dengue arboviral diseases, Aedes albopictus in China. The development of resistance to conventional pyrethroids has become an increasing problem, potentially affecting the use of volatile pyrethroid. The Ae. albopictus dimefluthrin-resistant (R) strain by selecting the field population with dimefluthrin were investigated the multiple and cross-resistance levels between conventional and volatile pyrethroids and analyzed both target-site and metabolic resistant mechanisms to dimefluthrin compared with three volatile pyrethroids metofluthrin, meperfluthrin and esbiothrin and type II pyrethroid deltamethrin. The R strain displayed moderate to low resistance to selected pyrethroids (dimefluthrin, metofluthrin, meperfluthrin, esbiothrin and deltamethrin) associated with metabolic enzymes, but less distinctly to selected pyrethroids (dimefluthrin and metofluthrin) associated with a high frequency of sodium channel gene mutation (F1534S). Profiles of the multiple and cross-resistance of the R strain to other three volatile pyrethroids and type II pyrethroid deltamethrin were detected. Both synergistic and enzyme activity studies indicated that multifunctional oxidase (MFO) played an important role in this resistance.
Collapse
Affiliation(s)
- Xiaodong Yang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou 510642, PR China
| | - Yulei Zhou
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou 510642, PR China
| | - Yanan Sun
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou 510642, PR China
| | - Jiali Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou 510642, PR China
| | - Dingxin Jiang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
23
|
Li Y, Zhou G, Zhong D, Wang X, Hemming‐Schroeder E, David RE, Lee M, Zhong S, Yi G, Liu Z, Cui G, Yan G. Widespread multiple insecticide resistance in the major dengue vector Aedes albopictus in Hainan Province, China. PEST MANAGEMENT SCIENCE 2021; 77:1945-1953. [PMID: 33301644 PMCID: PMC7986907 DOI: 10.1002/ps.6222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/05/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Aedes albopictus is a highly invasive mosquito and has become a potential vector of dengue, chikungunya and Zika viruses. Insecticide-based mosquito interventions are the main tools for vector-borne disease control. However, mosquito resistance to insecticides is a major threat to effective prevention and control. Five Ae. albopictus populations across Hainan Province, China were investigated for susceptibility to multiple insecticide and resistance mechanisms. RESULTS Larval bioassays indicated that resistance to pyrethroids was common in all larval populations. Adult bioassays revealed all populations were either resistant or highly resistant to at least four of the six synthetic insecticides (deltamethrin, permethrin, cyfluthrin, propoxur, malathion, and DDT) tested. Pre-exposure of mosquitoes to the synergistic agent piperonyl butoxide (PBO) increased mosquito mortality by 2.4-43.3% in bioassays to DDT, malathion, and permethrin and rendered mosquito sensitive to deltamethrin, cyfluthrin, and propoxur. The frequency of knockdown resistance (kdr) mutations (F1534S and F1534C) ranged from 69.8% to 89.3% and from 38.1% to 87.0% in field-resistant and sensitive populations, respectively. F1534S mutation was significantly associated with pyrethroid resistance. No mutation was detected in the acetylcholinesterase (ace-1) gene in the two examined populations. CONCLUSION This study provides evidence of widespread resistance to multiple insecticides in Ae. albopictus in Hainan Province, China. Both kdr mutations and metabolic detoxification were potential causes of insecticide resistance for Ae. albopictus. Our findings highlight the need for insecticide resistance management and mosquito control measures that do not entirely depend on synthetic insecticides. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yiji Li
- Department of Pathogen BiologyHainan Medical UniversityHaikouChina
- Program in Public HealthSchool of Medicine, University of CaliforniaIrvineCAUSA
| | - Guofa Zhou
- Program in Public HealthSchool of Medicine, University of CaliforniaIrvineCAUSA
| | - Daibin Zhong
- Program in Public HealthSchool of Medicine, University of CaliforniaIrvineCAUSA
| | - Xiaoming Wang
- Program in Public HealthSchool of Medicine, University of CaliforniaIrvineCAUSA
| | | | - Randy E David
- Program in Public HealthSchool of Medicine, University of CaliforniaIrvineCAUSA
| | - Ming‐Chieh Lee
- Program in Public HealthSchool of Medicine, University of CaliforniaIrvineCAUSA
| | - Saifeng Zhong
- Department of Pathogen BiologyHainan Medical UniversityHaikouChina
| | - Guohui Yi
- Public Research LaboratoryHainan Medical UniversityHaikouChina
| | - Zhuanzhuan Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Guzhen Cui
- Key Laboratory for Endemic and Ethnic Diseases, Ministry of EducationSchool of Basic Medical Science, Guizhou Medical UniversityGuiyangChina
| | - Guiyun Yan
- Program in Public HealthSchool of Medicine, University of CaliforniaIrvineCAUSA
| |
Collapse
|
24
|
Janich AJ, Saavedra-Rodriguez K, Vera-Maloof FZ, Kading RC, Rodríguez AD, Penilla-Navarro P, López-Solis AD, Solis-Santoyo F, Perera R, Black WC. Permethrin Resistance Status and Associated Mechanisms in Aedes albopictus (Diptera: Culicidae) From Chiapas, Mexico. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:739-748. [PMID: 33034352 PMCID: PMC7954096 DOI: 10.1093/jme/tjaa197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 06/11/2023]
Abstract
There are major public health concerns regarding the spread of mosquito-borne diseases such as dengue, Zika, and chikungunya, which are mainly controlled by using insecticides against the vectors, Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse). Pyrethroids are the primary class of insecticides used for vector control, due to their rapid knockdown effect and low toxicity to vertebrates. Unfortunately, continued use of pyrethroids has led to widespread insecticide resistance in Ae. aegypti; however, we lack information for Ae. albopictus-a sympatric species in Chiapas since 2002. In this study, we evaluated the permethrin resistance status of Ae. albopictus collected from Mexico and Texas. We also selected for permethrin resistance in the laboratory and investigated the potential mechanisms conferring resistance in this species. Knockdown resistance mutations, specifically F1534C, in the voltage-gated sodium channel gene, and increased activity of detoxifying enzymes were evaluated. Low levels of permethrin resistance (<2.4-fold) were observed in our field populations of Ae. albopictus and the F1534C mutation was not detected in any of the sites. Low levels of resistance were also observed in the artificially selected strain. There was significantly higher cytochrome P450 activity in our permethrin-selected and nonselected strains from Mexico compared to the control strain. Our results suggest the Ae. albopictus sampled from 2016 are mostly susceptible to pyrethroids. These results contrast with the high levels of permethrin resistance (>58-fold) found in Ae. aegypti from the same sites in Mexico. This research indicates the importance of continued monitoring of Ae. albopictus populations to prevent resistance from developing in the future.
Collapse
Affiliation(s)
- Ashley J Janich
- Arthropod Borne Infectious Disease Laboratory, Colorado State University, Fort Collins, CO
| | | | - Farah Z Vera-Maloof
- Arthropod Borne Infectious Disease Laboratory, Colorado State University, Fort Collins, CO
| | - Rebekah C Kading
- Arthropod Borne Infectious Disease Laboratory, Colorado State University, Fort Collins, CO
| | - Américo D Rodríguez
- Centro Regional de Investigación en Salud Pública, Tapachula, Chiapas, Mexico
| | | | - Alma D López-Solis
- Centro Regional de Investigación en Salud Pública, Tapachula, Chiapas, Mexico
| | | | - Rushika Perera
- Arthropod Borne Infectious Disease Laboratory, Colorado State University, Fort Collins, CO
| | - William C Black
- Arthropod Borne Infectious Disease Laboratory, Colorado State University, Fort Collins, CO
| |
Collapse
|
25
|
Pichler V, Mancini E, Micocci M, Calzetta M, Arnoldi D, Rizzoli A, Lencioni V, Paoli F, Bellini R, Veronesi R, Martini S, Drago A, De Liberato C, Ermenegildi A, Pinto J, della Torre A, Caputo B. A Novel Allele Specific Polymerase Chain Reaction (AS-PCR) Assay to Detect the V1016G Knockdown Resistance Mutation Confirms Its Widespread Presence in Aedes albopictus Populations from Italy. INSECTS 2021; 12:insects12010079. [PMID: 33477382 PMCID: PMC7830166 DOI: 10.3390/insects12010079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022]
Abstract
Polymerase chain reaction (PCR)-based genotyping of mutations in the voltage-sensitive sodium channel (vssc) associated with resistance to pyrethroid insecticides is widely used and represents a potential early warning and monitoring system for insecticide resistance arising in mosquito populations, which are vectors of different human pathogens. In the secondary vector Aedes albopictus-an Asian species that has invaded and colonized the whole world, including temperate regions-sequencing of domain II of the vssc gene is still needed to detect the V1016G mutation associated with pyrethroid resistance. In this study we developed and tested a novel allele-specific PCR (AS-PCR) assay to genotype the V1016G mutation in this species and applied it to the analysis of wild populations from Italy. The results confirm the high accuracy of the novel AS-PCR and highlight frequencies of the V1016G allele as >5% in most sampling sites, with peaks of 20-45% in coastal touristic sites where pyrethroid treatments are extensively implemented, mostly for mosquito nuisance reduction. The high frequency of this mutation observed in Italian Ae. albopictus populations should serve as a warning bell, advocating for increased monitoring and management of a phenomenon which risks neutralizing the only weapon today available to counteract (risks of) arbovirus outbreaks.
Collapse
Affiliation(s)
- Verena Pichler
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, 00185 Rome, Italy; (V.P.); (M.M.); (M.C.)
| | - Emiliano Mancini
- Dipartimento di Biologia e Biotecnologie ‘C. Darwin’, Università Sapienza, 00185 Rome, Italy;
| | - Martina Micocci
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, 00185 Rome, Italy; (V.P.); (M.M.); (M.C.)
| | - Maria Calzetta
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, 00185 Rome, Italy; (V.P.); (M.M.); (M.C.)
| | - Daniele Arnoldi
- Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy; (D.A.); (A.R.)
| | - Annapaola Rizzoli
- Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy; (D.A.); (A.R.)
| | - Valeria Lencioni
- Section of Invertebrate Zoology and Hydrobiology, MUSE-Science Museum, 38098 Trento, Italy; (V.L.); (F.P.)
| | - Francesca Paoli
- Section of Invertebrate Zoology and Hydrobiology, MUSE-Science Museum, 38098 Trento, Italy; (V.L.); (F.P.)
| | - Romeo Bellini
- Centro Agricoltura Ambiente “G. Nicoli”, 40014 Crevalcore, Italy; (R.B.); (R.V.)
| | - Rodolfo Veronesi
- Centro Agricoltura Ambiente “G. Nicoli”, 40014 Crevalcore, Italy; (R.B.); (R.V.)
| | | | - Andrea Drago
- Entostudio snc, 35020 Padua, Italy; (S.M.); (A.D.)
| | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (C.D.L.); (A.E.)
| | - Arianna Ermenegildi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (C.D.L.); (A.E.)
| | - Joao Pinto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal;
| | - Alessandra della Torre
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, 00185 Rome, Italy; (V.P.); (M.M.); (M.C.)
- Correspondence: (A.d.T.); (B.C.)
| | - Beniamino Caputo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, 00185 Rome, Italy; (V.P.); (M.M.); (M.C.)
- Correspondence: (A.d.T.); (B.C.)
| |
Collapse
|
26
|
Yan R, Zhou Q, Xu Z, Zhu G, Dong K, Zhorov BS, Chen M. Three sodium channel mutations from Aedes albopictus confer resistance to Type I, but not Type II pyrethroids. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103411. [PMID: 32450204 DOI: 10.1016/j.ibmb.2020.103411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Voltage-gated sodium channels are the major targets of several classes of insecticides, including pyrethroids. However, sensitivities of many insect pest species to pyrethroids have gradually decreased due to overuse in pest management programs. One major mechanism of pyrethroid resistance known as knockdown resistance (kdr) involves mutations in the sodium channel gene. Three new mutations in helix IIIS6 of sodium channel (I1532T and F1534S/L) are recently detected in several pyrethroid-resistant populations of Aedes albopictus. The roles of these mutations in pyrethroid resistance have not been functionally examined. We introduced mutations I1532T and F1534S/L alone or in combination into the pyrethroid-sensitive sodium channel AaNav1-1 from Aedes aegypti by site-directed mutagenesis and explored effects of these mutations on the channel gating and sensitivity to pyrethroids. No significant modifications in channel properties were detected, except for a slightly changed activation by F1534S and I1532T + F1534S. However, I1532T and F1534S/L substantially reduced the channel sensitivity to Type I pyrethroids, permethrin and bifenthrin, but not to two Type II pyrethroids, deltamethrin and cypermethrin. The double mutations did not increase the channel resistance to permethrin or bifenthrin. We have built a Nav1.4-based homology model of the AaNav1-1 channel and docked pyrethroids in the model to explain different sensitivities of the mutants to Type I and Type II pyrethroids. The results will assist in developing molecular markers for monitoring pest resistance to pyrethroids. They also provide new insight in the molecular basis of different action of Type I and Type II pyrethroids on sodium channels.
Collapse
Affiliation(s)
- Ru Yan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China; Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310029, China
| | - Qiaoling Zhou
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310029, China
| | - Zhanyi Xu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310029, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310029, China
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI48824, USA
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada; Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Mengli Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China; Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
27
|
Balaska S, Fotakis EA, Kioulos I, Grigoraki L, Mpellou S, Chaskopoulou A, Vontas J. Bioassay and molecular monitoring of insecticide resistance status in Aedes albopictus populations from Greece, to support evidence-based vector control. Parasit Vectors 2020; 13:328. [PMID: 32600453 PMCID: PMC7325023 DOI: 10.1186/s13071-020-04204-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/20/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Aedes albopictus has a well-established presence in southern European countries, associated with recent disease outbreaks (e.g. chikungunya). Development of insecticide resistance in the vector is a major concern as its control mainly relies on the use of biocides. Data on the species' resistance status are essential for efficient and sustainable control. To date the insecticide resistance status of Ae. albopictus populations from Greece against major insecticides used in vector control remains largely unknown. METHODS We investigated the insecticide resistance status of 19 Ae. albopictus populations from 11 regions of Greece. Bioassays were performed against diflubenzuron (DFB), Bacillus thuringiensis var. israelensis (Bti), deltamethrin and malathion. Known insecticide resistance loci were molecularly analysed, i.e. voltage-gated sodium channel (VGSC) mutations associated with pyrethroid resistance; presence and frequency of carboxylesterases 3 (CCEae3a) and 6 (CCEae6a) gene amplification associated with organophosphate (OP) resistance and; chitin synthase-1 (CHS-1) for the possible presence of DFB resistance mutations. RESULTS Bioassays showed full susceptibility to DFB, Bti and deltamethrin, but resistance against the OP malathion (range of mortality: 55.30-91.40%). VGSC analysis revealed a widespread distribution of the mutations F1534C (in all populations, with allelic frequencies between 6.6-68.3%), and I1532T (in 6 populations; allelic frequencies below 22.70%), but absence of V1016G. CCE gene amplifications were recorded in 8 out of 11 populations (overall frequency: 33%). Co-presence of the F1534C mutation and CCEae3a amplification was reported in 39 of the 156 samples analysed by both assays. No mutations at the CHS-1 I1043 locus were detected. CONCLUSIONS The results indicate: (i) the suitability of larvicides DFB and Bti for Ae. albopictus control in Greece; (ii) possible incipient pyrethroid resistance due to the presence of kdr mutations; and (iii) possible reduced efficacy of OPs, in a scenario of re-introducing them for vector control. The study highlights the need for systematic resistance monitoring for developing and implementing appropriate evidence-based control programmes.
Collapse
Affiliation(s)
- Sofia Balaska
- Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Emmanouil A. Fotakis
- Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
| | - Ilias Kioulos
- Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
| | - Linda Grigoraki
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Spyridoula Mpellou
- Bioefarmoges Eleftheriou LP -Integrated Mosquito Control, Marathon, 19007 Greece
| | | | - John Vontas
- Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| |
Collapse
|
28
|
Yougang AP, Kamgang B, Tedjou AN, Wilson-Bahun TA, Njiokou F, Wondji CS. Nationwide profiling of insecticide resistance in Aedes albopictus (Diptera: Culicidae) in Cameroon. PLoS One 2020; 15:e0234572. [PMID: 32555588 PMCID: PMC7302487 DOI: 10.1371/journal.pone.0234572] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
The Asian mosquito, Aedes albopictus (Skuse), is an invasive mosquito which has become one of the most important vectors of dengue, Zika, and chikungunya viruses worldwide. This species was reported for the first time in Cameroon in early 2000s and became the dominant Aedes species in the urban areas in the southern part of Cameroon but remain poorly characterized. Here, we assessed the susceptibility profile of A. albopictus collected throughout Cameroon and investigated the potential resistance mechanisms involved. Immature stages of A. albopictus were collected between March and July 2017 in 15 locations across Cameroon and reared until G1/G2 generation. Larval, adult bioassays, and synergists [piperonyl butoxide (PBO) and diethyl maleate (DEM)] assays were carried out according to WHO recommendations. F1534C mutation was genotyped in field collected adults (Go) using allele specific PCR. All tested populations were susceptible to both larvicides, temephos and Bacillus thuringiensis israelensis (Bti), after larval bioassays. Adult bioassays revealed a high level of resistance of A. albopictus to 4% DDT with mortality rates ranging from 12.42% in Bafang to 75.04% in Kumba. The resistance was reported also in 0.05% deltamethrin, 0.25% permethrin, and 0.1% propoxur in some locations. A loss of susceptibility to 0.1% bendiocarb was found in one of three populations analysed. A full susceptibility to 1% fenitrothion were observed across the country. A full recovery or partial of susceptibility was observed in A. albopictus when pre-exposed to PBO or DEM and then to DDT and permethrin, respectively. The F1534C kdr mutation was not detected in A. albopictus. This study showed that the susceptibility profile of A. albopictus to insecticide vary according to the sampling location and insecticides used. These findings are useful to planning vector control program against arbovirus vectors in Cameroon and can be used as baseline data for further researches.
Collapse
Affiliation(s)
- Aurelie P. Yougang
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Parasitology and Ecology Laboratory, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Basile Kamgang
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
| | - Armel N. Tedjou
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Parasitology and Ecology Laboratory, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Theodel A. Wilson-Bahun
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Laboratory of vertebrate and invertebrate bioecology, Faculty of Science and Technology, Marien-Ngouabi University, Brazzaville, Congo
| | - Flobert Njiokou
- Department of Animal Biology and Physiology, Parasitology and Ecology Laboratory, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Charles S. Wondji
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
29
|
Chen M, Du Y, Nomura Y, Zhorov BS, Dong K. Chronology of sodium channel mutations associated with pyrethroid resistance in Aedes aegypti. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21686. [PMID: 32378259 PMCID: PMC8060125 DOI: 10.1002/arch.21686] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 05/11/2023]
Abstract
Aedes aegypti is the primary mosquito vector of dengue, yellow fever, Zika and chikungunya. Current strategies to control Ae. aegypti rely heavily on insecticide interventions. Pyrethroids are a major class of insecticides used for mosquito control because of their fast acting, highly insecticidal activities and low mammalian toxicity. However, Ae. aegypti populations around the world have begun to develop resistance to pyrethroids. So far, more than a dozen mutations in the sodium channel gene have been reported to be associated with pyrethroid resistance in Ae. aegypti. Co-occurrence of resistance-associated mutations is common in pyrethroid-resistant Ae. aegypti populations. As global use of pyrethroids in mosquito control continues, new pyrethroid-resistant mutations keep emerging. In this microreview, we compile pyrethroid resistance-associated mutations in Ae. aegypti in a chronological order, as they were reported, and summarize findings from functional evaluation of these mutations in an in vitro sodium channel expression system. We hope that the information will be useful for tracing possible evolution of pyrethroid resistance in this important human disease vector, in addition to the development of methods for global monitoring and management of pyrethroid resistance in Ae. aegypti.
Collapse
Affiliation(s)
- Mengli Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of life sciences, China Jiliang University, Hangzhou, China
| | - Yuzhe Du
- USDA-ARS, Biological Control of Pest Research Unit, 59 Lee Road, Stoneville, MS 38776, USA
| | - Yoshiko Nomura
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| | - Boris S. Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
30
|
Zheng X, Cai W, Xu X, Jia Z, Wei Y. Preliminary Selection and Analysis of Deltamethrin-Resistant Strains of Aedes albopictus in the Laboratory. Vector Borne Zoonotic Dis 2020; 20:715-722. [PMID: 32380934 DOI: 10.1089/vbz.2019.2584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Aedes albopictus is a major vector for transmission of many viral pathogens. Deltamethrin resistance was analyzed by catching A. albopictus in the field; the analysis effect is affected by many insecticides that often interact with A. albopictus in the field environment. Materials and Methods: This study examined the development of deltamethrin resistance in A. albopictus mosquitoes under controlled laboratory conditions, focusing on morphological changes, reproductive fitness, and mutation of the knockdown resistance (kdr) gene. Deltamethrin-resistant strains were selected up to the 20th generation. To determine the level of resistance, the lethal concentration 50 (LC50) of deltamethrin in the larvae was obtained, followed by the resistance ratio (RR), and in adult mosquitoes, mortality rates were calculated using the contact tube method. Results: An increase in the LC50 from 0.0070 to 0.0563 mg/L was observed in resistant versus sensitive strains, with an increase of 11.26 in the RR. Overall, the results of the larval resistance bioassay showed that resistant larvae had medium resistance; however, by the 20th generation, adult mosquitoes showed strong resistance. PCR amplification, cloning, and sequencing of sodium channel domain III gene fragments were subsequently carried out using selected resistant and sensitive female mosquitoes. As a result, a number of base mutations were observed in the kdr gene in the resistant strain; however, no amino acid sequence mutations were observed, suggesting that base sequence changes did not affect protein expression. Results of morphological changes between resistant and sensitive strains showed that significant differences in the body, foreleg, mid leg, and hind leg length, as well as wing length and width, antenna length, and proboscis length were observed between 18th-generation resistant and sensitive strains of A. albopictus. On analysis of reproductive fitness associated with deltamethrin resistance in selection of mosquitoes, observation results showed differences between resistant and sensitive strains; the female/male ratio of mosquitoes decreased after pupa hatching, with more females and fewer males. Conclusions: The model of deltamethrin-resistant selection of A. albopictus was successfully established in the laboratory. The morphological phenotypes of the deltamethrin-resistant population of A. albopictus mosquitoes had changed. The kdr gene of the 19th and 20th generations of deltamethrin-resistant A. albopictus mosquitoes had silent mutations at several sites. After deltamethrin resistance selection, the female/male ratio of mosquitoes increased after pupa hatching, with more females and fewer males, hinting at increased chances of more female mosquitoes transmitting diseases.
Collapse
Affiliation(s)
- Xueli Zheng
- Department of Pathogenic Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Cai
- Department of Pathogenic Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xin Xu
- Department of Pathogenic Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhirong Jia
- Department of Pathogenic Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yong Wei
- Department of Pathogenic Biology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Liu H, Liu L, Cheng P, Yang L, Chen J, Lu Y, Wang H, Chen XG, Gong M. Bionomics and insecticide resistance of Aedes albopictus in Shandong, a high latitude and high-risk dengue transmission area in China. Parasit Vectors 2020; 13:11. [PMID: 31918753 PMCID: PMC6953264 DOI: 10.1186/s13071-020-3880-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/01/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Dengue fever outbreaks tend to spread northward in China, and Jining is the northernmost region where local dengue fever cases have been detected. Therefore, it is important to investigate the density of Aedes albopictus and its resistance to deltamethrin. METHODS The Breteau index (BI) and container index (CI) were calculated to assess the larval density of Ae. albopictus and human-baited double net trap (HDN) surveillance was performed in six subordinate counties (Rencheng, Yanzhou, Sishui, Liangshan, Zoucheng and Jiaxiang) of Jining City in 2017 and 2018. The resistance of Ae. albopictus adults to deltamethrin was evaluated using the World Health Organization (WHO) standard resistance bioassay. The mutations at Vgsc codons 1532 and 1534 were also analysed to determine the association between kdr mutations and phenotypic resistance in adult mosquitoes. RESULTS The average BI, CI and biting rate at Jining were 45.30, 16.02 and 1.97 (female /man/hour) in 2017 and 15.95, 7.86 and 0.59 f/m/h in 2018, respectively. In August 26, 2017, when the first dengue fever case was diagnosed, the BI at Qianli village in Jiaxiang County was 107.27. The application of prevention and control measures by the government sharply decreased the BI to a value of 4.95 in September 3, 2017. The mortality of field-collected Ae. albopictus females from Jiaxiang was 41.98%. I1532T, F1534L and F1534S mutations were found in domain III of the Vgsc gene. This study provides the first demonstration that both I1532T and F1534S mutations are positively correlated with the deltamethrin-resistant phenotype. CONCLUSIONS Mosquito density surveillance, resistance monitoring and risk assessment should be strengthened in areas at risk for dengue to ensure the sustainable control of Ae. albopictus and thus the prevention and control of dengue transmission.
Collapse
Affiliation(s)
- Hongmei Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China. .,Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China.
| | - Luhong Liu
- Jining Center for Disease Control and Prevention, Jining, 272033, Shandong, People's Republic of China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Linlin Yang
- Jining Center for Disease Control and Prevention, Jining, 272033, Shandong, People's Republic of China
| | - Junhu Chen
- Guangdong Provincial Institute of Biological Products and Materia Medica, Guangzhou, 510440, People's Republic of China
| | - Yao Lu
- Jining Center for Disease Control and Prevention, Jining, 272033, Shandong, People's Republic of China
| | - Haifang Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China.
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China.
| |
Collapse
|
32
|
Zhou X, Yang C, Liu N, Li M, Tong Y, Zeng X, Qiu X. Knockdown resistance (kdr) mutations within seventeen field populations of Aedes albopictus from Beijing China: first report of a novel V1016G mutation and evolutionary origins of kdr haplotypes. Parasit Vectors 2019; 12:180. [PMID: 31014392 PMCID: PMC6480817 DOI: 10.1186/s13071-019-3423-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/29/2019] [Indexed: 12/19/2022] Open
Abstract
Background Aedes albopictus (Skuse) is an important vector of chikungunya, dengue, yellow fever and Zika viruses. In the absence of anti-viral medication and with limited availability of a commercial vaccine for public health use, vector control remains an effective means for reducing Aedes-borne disease morbidity. Knowledge about genetic mutations associated with insecticide resistance (IR) is a prerequisite for developing rapid resistance diagnosis, and the distribution and frequency of IR conferring mutations is important information for making smart vector control decisions. Methods Partial DNA sequences of domain II and domain III of Ae. albopictus voltage gated sodium channel (VGSC) gene were amplified from a total of 426 individuals, collected from 17 sites in the Beijing municipality. These DNA fragments were sequenced to discover the possible genetic mutations mediating knockdown resistance (kdr) to pyrethroids. The frequency and distribution of kdr mutations were assessed in the 17 Ae. albopictus populations. The origin of kdr mutations was investigated by haplotype clarification and phylogenetic analysis. Results Sequence alignments revealed the existence of multiple mutations (V1016G, I1532T, F1534S and F1534L) in VGSC. The highest frequency of the mutant 1016G allele (0.647) was found in Haidian, while 1016G was not detected in Huai Rou, Yan Qing, Ping Gu and Shun Yi. The frequency of 1532T was highest (0.537) in the population from the Olympic Forest Park (OFP, Chao Yang District), but not detectable in Huai Rou and Mi Yun. Two mutations were observed at codon 1534 with different distribution patterns: 1534L was only found in Tong Zhou (TZ) with a frequency of 0.017, while 1534S was distributed in TZ, OFP, Fang Shan, Da Xing and Shi Jing Shan with frequencies ranging from 0.019 (OFP) to 0.276 (TZ). One 1016G, one 1532T, one 1534L and two 1534S haplotypes were identified. Conclusions Multiple mutations (V1016G, I1532T, F1534L/S) in VGSC were found in Ae. albopictus in Beijing. This represents the first report of V1016G in Ae. albopictus. Sequence alignment and phylogenetic analysis revealed multiple origins of 1534S. The spatial heterogeneity in distribution and frequency of kdr mutations calls for a site-specific strategy for the monitoring of insecticide resistance. The relatively high frequencies of V1016G warn of a risk of pyrethroid resistance in mosquitoes in the urban zones.
Collapse
Affiliation(s)
- Xiaojie Zhou
- Beijing Research Center for Preventive Medicine, Beijing Center for Disease Control and Prevention, Beijing, 100013, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chan Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nian Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Physical Science and Information Technology, Anhui University, Anhui, 230039, China
| | - Mei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Tong
- Beijing Research Center for Preventive Medicine, Beijing Center for Disease Control and Prevention, Beijing, 100013, China
| | - Xiaopeng Zeng
- Beijing Research Center for Preventive Medicine, Beijing Center for Disease Control and Prevention, Beijing, 100013, China.
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|