1
|
Paillé V, Park J, Toutain B, Bourreau J, Fontanaud P, De Nardi F, Gabillard-Lefort C, Bréard D, Guilet D, Henrion D, Legros C, Guérineau NC. Adaptive remodeling of rat adrenomedullary stimulus-secretion coupling in a chronic hypertensive environment. Cell Mol Life Sci 2024; 82:31. [PMID: 39725761 DOI: 10.1007/s00018-024-05524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Chronic elevated blood pressure impinges on the functioning of multiple organs and therefore harms body homeostasis. Elucidating the protective mechanisms whereby the organism copes with sustained or repetitive blood pressure rises is therefore a topical challenge. Here we address this issue in the adrenal medulla, the master neuroendocrine tissue involved in the secretion of catecholamines, influential hormones in blood pressure regulation. Combining electrophysiological techniques with catecholamine secretion assays on acute adrenal slices from spontaneously hypertensive rats, we show that chromaffin cell stimulus-secretion coupling is remodeled, resulting in a less efficient secretory function primarily upon sustained cholinergic challenges. The remodeling is supported by revamped both cellular and tissular mechanisms. This first includes a decrease in chromaffin cell excitability in response to sustained electrical stimulation. This hallmark was observed both experimentally and in a computational chromaffin cell model, and occurs with concomitant changes in voltage-gated ion channel expression. The cholinergic transmission at the splanchnic nerve-chromaffin cell synapses and the gap junctional communication between chromaffin cells are also weakened. As such, by disabling its competence to release catecholamines in response sustained stimulations, the hypertensive medulla has elaborated an adaptive shielding mechanism against damaging effects of redundant elevated catecholamine secretion and associated blood pressure.
Collapse
Affiliation(s)
- Vincent Paillé
- Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France
- Nantes Université, INRAE, UMR 1280, PhAN, Nantes, France
| | - Joohee Park
- Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France
| | - Bertrand Toutain
- Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France
| | - Jennifer Bourreau
- Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France
| | - Pierre Fontanaud
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Frédéric De Nardi
- Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France
| | | | | | - David Guilet
- Univ Angers, SONAS, SFR QUASAV, F-49000 Angers, France
| | - Daniel Henrion
- Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France
| | - Christian Legros
- Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France
| | - Nathalie C Guérineau
- Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France.
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
2
|
Yates JR. Aberrant glutamatergic systems underlying impulsive behaviors: Insights from clinical and preclinical research. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111107. [PMID: 39098647 PMCID: PMC11409449 DOI: 10.1016/j.pnpbp.2024.111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Impulsivity is a broad construct that often refers to one of several distinct behaviors and can be measured with self-report questionnaires and behavioral paradigms. Several psychiatric conditions are characterized by one or more forms of impulsive behavior, most notably the impulsive/hyperactive subtype of attention-deficit/hyperactivity disorder (ADHD), mood disorders, and substance use disorders. Monoaminergic neurotransmitters are known to mediate impulsive behaviors and are implicated in various psychiatric conditions. However, growing evidence suggests that glutamate, the major excitatory neurotransmitter of the mammalian brain, regulates important functions that become dysregulated in conditions like ADHD. The purpose of the current review is to discuss clinical and preclinical evidence linking glutamate to separate aspects of impulsivity, specifically motor impulsivity, impulsive choice, and affective impulsivity. Hyperactive glutamatergic activity in the corticostriatal and the cerebro-cerebellar pathways are major determinants of motor impulsivity. Conversely, hypoactive glutamatergic activity in frontal cortical areas and hippocampus and hyperactive glutamatergic activity in anterior cingulate cortex and nucleus accumbens mediate impulsive choice. Affective impulsivity is controlled by similar glutamatergic dysfunction observed for motor impulsivity, except a hyperactive limbic system is also involved. Loss of glutamate homeostasis in prefrontal and nucleus accumbens may contribute to motor impulsivity/affective impulsivity and impulsive choice, respectively. These results are important as they can lead to novel treatments for those with a condition characterized by increased impulsivity that are resistant to conventional treatments.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA.
| |
Collapse
|
3
|
Stepanichev MY, Mamedova DI, Gulyaeva NV. Hippocampus under Pressure: Molecular Mechanisms of Development of Cognitive Impairments in SHR Rats. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:711-725. [PMID: 38831507 DOI: 10.1134/s0006297924040102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/20/2023] [Accepted: 03/14/2024] [Indexed: 06/05/2024]
Abstract
Data from clinical trials and animal experiments demonstrate relationship between chronic hypertension and development of cognitive impairments. Here, we review structural and biochemical alterations in the hippocampus of SHR rats with genetic hypertension, which are used as a model of essential hypertension and vascular dementia. In addition to hypertension, dysfunction of the hypothalamic-pituitary-adrenal system observed in SHR rats already at an early age may be a key factor of changes in the hippocampus at the structural and molecular levels. Global changes at the body level, such as hypertension and neurohumoral dysfunction, are associated with the development of vascular pathology and impairment of the blood-brain barrier. Changes in multiple biochemical glucocorticoid-dependent processes in the hippocampus, including dysfunction of steroid hormones receptors, impairments of neurotransmitter systems, BDNF deficiency, oxidative stress, and neuroinflammation are accompanied by the structural alterations, such as cellular signs of neuroinflammation micro- and astrogliosis, impairments of neurogenesis in the subgranular neurogenic zone, and neurodegenerative processes at the level of synapses, axons, and dendrites up to the death of neurons. The consequence of this is dysfunction of hippocampus, a key structure of the limbic system necessary for cognitive functions. Taking into account the available results at various levels starting from the body and brain structure (hippocampus) levels to molecular one, we can confirm translational validity of SHR rats for modeling mechanisms of vascular dementia.
Collapse
Affiliation(s)
- Mikhail Yu Stepanichev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
| | - Diana I Mamedova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| |
Collapse
|
4
|
Grünblatt E, Homolak J, Babic Perhoc A, Davor V, Knezovic A, Osmanovic Barilar J, Riederer P, Walitza S, Tackenberg C, Salkovic-Petrisic M. From attention-deficit hyperactivity disorder to sporadic Alzheimer's disease-Wnt/mTOR pathways hypothesis. Front Neurosci 2023; 17:1104985. [PMID: 36875654 PMCID: PMC9978448 DOI: 10.3389/fnins.2023.1104985] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder with the majority of patients classified as sporadic AD (sAD), in which etiopathogenesis remains unresolved. Though sAD is argued to be a polygenic disorder, apolipoprotein E (APOE) ε4, was found three decades ago to pose the strongest genetic risk for sAD. Currently, the only clinically approved disease-modifying drugs for AD are aducanumab (Aduhelm) and lecanemab (Leqembi). All other AD treatment options are purely symptomatic with modest benefits. Similarly, attention-deficit hyperactivity disorder (ADHD), is one of the most common neurodevelopmental mental disorders in children and adolescents, acknowledged to persist in adulthood in over 60% of the patients. Moreover, for ADHD whose etiopathogenesis is not completely understood, a large proportion of patients respond well to treatment (first-line psychostimulants, e.g., methylphenidate/MPH), however, no disease-modifying therapy exists. Interestingly, cognitive impairments, executive, and memory deficits seem to be common in ADHD, but also in early stages of mild cognitive impairment (MCI), and dementia, including sAD. Therefore, one of many hypotheses is that ADHD and sAD might have similar origins or that they intercalate with one another, as shown recently that ADHD may be considered a risk factor for sAD. Intriguingly, several overlaps have been shown between the two disorders, e.g., inflammatory activation, oxidative stress, glucose and insulin pathways, wingless-INT/mammalian target of rapamycin (Wnt/mTOR) signaling, and altered lipid metabolism. Indeed, Wnt/mTOR activities were found to be modified by MPH in several ADHD studies. Wnt/mTOR was also found to play a role in sAD and in animal models of the disorder. Moreover, MPH treatment in the MCI phase was shown to be successful for apathy including some improvement in cognition, according to a recent meta-analysis. In several AD animal models, ADHD-like behavioral phenotypes have been observed indicating a possible interconnection between ADHD and AD. In this concept paper, we will discuss the various evidence in human and animal models supporting the hypothesis in which ADHD might increase the risk for sAD, with common involvement of the Wnt/mTOR-pathway leading to lifespan alteration at the neuronal levels.
Collapse
Affiliation(s)
- Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Jan Homolak
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Virag Davor
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Peter Riederer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.,Department and Research Unit of Psychiatry, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Melita Salkovic-Petrisic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
5
|
Yen PSY, Liu YC, Chu CH, Chen SL. Upregulation of Glutamatergic Receptors in Hippocampus and Locomotor Hyperactivity in Aged Spontaneous Hypertensive Rat. Cell Mol Neurobiol 2022; 42:2205-2217. [PMID: 33954807 DOI: 10.1007/s10571-021-01094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Epidemiologic studies have indicated that chronic hypertension may facilitate the progression of abnormal behavior, such as emotional irritability, hyperactivity, and attention impairment. However, the mechanism of how chronic hypertension affects the brain and neuronal function remains unclear. In this study, 58-week-old male spontaneously hypertensive rats (SHR) and age-matched Wistar-Kyoto (WKY) control rats were used. Their locomotor activity and neuronal function were assessed by the open field test, novel object, and Y maze recognition test. Moreover brain tissues were analyzed. We found that the aged SHR exhibited significant locomotor hyperactivity when compared to the WKY rats. However, there was no significant difference in novel object and novel arm recognition between aged SHR and the WKY rats. In the analysis of synaptic membrane protein, the expression of glutamatergic receptors, such as the N-methyl-D-aspartate (NMDA) receptor receptors subunits 2B (GluN2B) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor 1 (GluA1) in the hippocampus of SHR were significantly higher than those of WKY rats. In addition, in the synaptic membrane of SHR's hippocampus and medial prefrontal cortex (mPFC), a down-regulation of astrocytes was found, though the excitatory amino acid transporter 2 (EAAT2) remained constant. Moreover, a down-regulation of microglia in the hippocampus and mPFC was seen in the SHR brain. Long-term exposure to high blood pressure causes upregulation of glutamate receptors. The upregulation of glutamatergic receptors in hippocampus may contribute to the hyper-locomotor activity of aged rodents and may as a therapeutic target in hypertension-induced irritability and hyperactivity.
Collapse
Affiliation(s)
- Patrick Szu-Ying Yen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan
| | - Yen-Chin Liu
- Department of Anesthesiology, College of Medicine, National Cheng Kung University Hospital (NCKU), NCKU, 100 Shiquan 1st Rd, Sanmin Dist., Kaohsiung City, 807, Taiwan
| | - Chun-Hsien Chu
- Institute of Molecular Medicine, College of Medicine, NCKU, Tainan, Taiwan
| | - Shiou-Lan Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan.
- Department of Medical Research, College of Medicine, KMU Hospital & MSc Program in Tropical Medicine, KMU, Kaohsiung, Taiwan.
| |
Collapse
|
6
|
Mathieson E, Irving C, Koberna S, Nicholson M, Otto MW, Kantak KM. Role of preexisting inhibitory control deficits vs. drug use history in mediating insensitivity to aversive consequences in a rat model of polysubstance use. Psychopharmacology (Berl) 2022; 239:2377-2394. [PMID: 35391547 PMCID: PMC8989405 DOI: 10.1007/s00213-022-06134-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/30/2022] [Indexed: 10/26/2022]
Abstract
RATIONALE The nature and predictors of insensitivity to aversive consequences of heroin + cocaine polysubstance use are not well characterized. OBJECTIVES Translational methods incorporating a tightly controlled animal model of drug self-administration and measures of inhibitory control and avoidance behavior might be helpful for clarifying this issue. METHODS The key approach for distinguishing potential contributions of pre-existing inhibitory control deficits vs. drug use history in meditating insensitivity to aversive consequences was comparison of two rat strains: Wistar (WIS/Crl), an outbred strain, and the spontaneously hypertensive rat (SHR/NCrl), an inbred strain shown previously to exhibit heightened cocaine and heroin self-administration and poor inhibitory control relative to WIS/Crl. RESULTS In separate tasks, SHR/NCrl displayed greater impulsive action and compulsive-like behavior than WIS/Crl prior to drug exposure. Under two different schedules of drug delivery, SHR/NCrl self-administered more cocaine than WIS/Crl, but self-administered a similar amount of heroin + cocaine as WIS/Crl. When half the session cycles were punished by random foot shock, SHR/NCrl initially were less sensitive to punishment than WIS/Crl when self-administering cocaine, but were similarly insensitive to punishment when self-administering heroin + cocaine. Based on correlation analyses, only trait impulsivity predicted avoidance capacity in rats self-administering cocaine and receiving yoked-saline. In contrast, only amount of drug use predicted avoidance capacity in rats self-administering heroin + cocaine. Additionally, baseline drug seeking and taking predicted punishment insensitivity in rats self-administering cocaine or heroin + cocaine. CONCLUSIONS Based on the findings revealed in this animal model, human laboratory research concerning the nature and predictors of insensitivity to aversive consequences in heroin and cocaine polysubstance vs. monosubstance users is warranted.
Collapse
Affiliation(s)
- Elon Mathieson
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Carolyn Irving
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Sarah Koberna
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Megan Nicholson
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Michael W Otto
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Kathleen M Kantak
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
| |
Collapse
|
7
|
Raony Í, Domith I, Lourenco MV, Paes-de-Carvalho R, Pandolfo P. Trace amine-associated receptor 1 modulates motor hyperactivity, cognition, and anxiety-like behavior in an animal model of ADHD. Prog Neuropsychopharmacol Biol Psychiatry 2022; 117:110555. [PMID: 35346791 DOI: 10.1016/j.pnpbp.2022.110555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 02/03/2023]
Abstract
Trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that has recently been implicated in several psychiatric conditions related to monoaminergic dysfunction, such as schizophrenia, substance use disorders, and mood disorders. Although attention-deficit/hyperactivity disorder (ADHD) is also related to changes in monoaminergic neurotransmission, studies that assess whether TAAR1 participates in the neurobiology of ADHD are lacking. We hypothesized that TAAR1 plays an important role in ADHD and might represent a potential therapeutic target. Here, we investigate if TAAR1 modulates behavioral phenotypes in Spontaneously Hypertensive Rats (SHR), the most validated animal model of ADHD, and Wistar Kyoto rats (WKY, used as a control strain). Our results showed that TAAR1 is downregulated in ADHD-related brain regions in SHR compared with WKY. While intracerebroventricular (i.c.v.) administration of the selective TAAR1 antagonist EPPTB impaired cognitive performance in SHR, i.c.v. administration of highly selective TAAR1 full agonist RO5256390 decreased motor hyperactivity, novelty-induced locomotion, and induced an anxiolytic-like behavior. Overall, our findings show that changes in TAAR1 levels/activity underlie behavior in SHR, suggesting that TAAR1 plays a role in the neurobiology of ADHD. Although additional confirmatory studies are required, TAAR1 might be a potential pharmacological target for individuals with this disorder.
Collapse
Affiliation(s)
- Ícaro Raony
- Laboratory of Neurobiology of Animal Behavior, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ivan Domith
- Laboratory of Cellular Neurobiology, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Roberto Paes-de-Carvalho
- Laboratory of Cellular Neurobiology, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil
| | - Pablo Pandolfo
- Laboratory of Neurobiology of Animal Behavior, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil.
| |
Collapse
|
8
|
García-Aviles JE, Méndez-Hernández R, Guzmán-Ruiz MA, Cruz M, Guerrero-Vargas NN, Velázquez-Moctezuma J, Hurtado-Alvarado G. Metabolic Disturbances Induced by Sleep Restriction as Potential Triggers for Alzheimer's Disease. Front Integr Neurosci 2021; 15:722523. [PMID: 34539357 PMCID: PMC8447653 DOI: 10.3389/fnint.2021.722523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/26/2021] [Indexed: 01/15/2023] Open
Abstract
Sleep has a major role in learning, memory consolidation, and metabolic function. Although it is known that sleep restriction increases the accumulation of amyloid β peptide (Aβ) and the risk to develop Alzheimer's disease (AD), the mechanism behind these effects remains unknown. In this review, we discuss how chronic sleep restriction induces metabolic and cognitive impairments that could result in the development of AD in late life. Here, we integrate evidence regarding mechanisms whereby metabolic signaling becomes disturbed after short or chronic sleep restriction in the context of cognitive impairment, particularly in the accumulation of Aβ in the brain. We also discuss the role of the blood-brain barrier in sleep restriction with an emphasis on the transport of metabolic signals into the brain and Aβ clearance. This review presents the unexplored possibility that the alteration of peripheral metabolic signals induced by sleep restriction, especially insulin resistance, is responsible for cognitive deficit and, subsequently, implicated in AD development.
Collapse
Affiliation(s)
- Jesús Enrique García-Aviles
- Area of Neurosciences, Biology of Reproduction Department, Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico.,Posgrado en Biología Experimental, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Rebeca Méndez-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Mara A Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel Cruz
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades, Unidad de Investigación Médica en Bioquímica, Mexico City, Mexico
| | - Natalí N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Javier Velázquez-Moctezuma
- Area of Neurosciences, Biology of Reproduction Department, Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Gabriela Hurtado-Alvarado
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
9
|
Stoyell-Conti FF, Chabbra A, Puthentharayil J, Rigatto K, Speth RC. Chronic administration of pharmacological doses of angiotensin 1-7 and iodoangiotensin 1-7 has minimal effects on blood pressure, heart rate, and cognitive function of spontaneously hypertensive rats. Physiol Rep 2021; 9:e14812. [PMID: 33904655 PMCID: PMC8077095 DOI: 10.14814/phy2.14812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular diseases are the principal cause of death worldwide, with hypertension being the most common cardiovascular disease risk factor. High blood pressure (BP) is also associated with an increased risk of poor cognitive performance and dementia including Alzheimer's disease. Angiotensin 1–7 (Ang 1‐7), a product of the renin‐angiotensin system (RAS), exhibits central and peripheral actions to reduce BP. Recent data from our lab reveals that the addition of a non‐radioactive iodine molecule to the tyrosine in position 4 of Ang 1‐7 (iodoAng 1‐7) makes it ~1000‐fold more potent than Ang 1‐7 in competing for the 125I‐Ang 1‐7 binding site (Stoyell‐Conti et al., 2020). Moreover, the addition of the non‐radioactive iodine molecule increases (~4‐fold) iodoAng 1‐7’s ability to bind to the AT1 receptor (AT1R), the primary receptor for Ang II. Preliminary data indicates that iodoAng 1‐7 can also compete for the 125I‐Ang IV binding site with a low micromolar IC50. Thus, our aims were to compare the effects of chronic treatment of the Spontaneously Hypertensive Rat (SHR) with iodoAng 1‐7 (non‐radioactive iodine isotope) and Ang 1‐7 on arterial pressure, heart rate, and cognitive function. For this study, male SHRs were divided into three groups and treated with Saline, Ang 1‐7, or iodoAng 1‐7 administrated subcutaneously using a 28‐day osmotic mini pump. Systolic BP was measured non‐invasively by the tail‐cuff technique. Cognitive function was assessed by Y‐Maze test and novel object recognition (NOR) test. We have demonstrated in SHRs that subcutaneous administration of high doses of iodoAng 1‐7 prevented the increase in heart rate with age, while Ang 1‐7 showed a trend toward preventing the increase in heart rate, possibly by improving baroreflex control of the heart. Conversely, neither Ang 1‐7 nor iodoAng 1‐7 administered subcutaneously affected BP nor cognitive function.
Collapse
Affiliation(s)
- Filipe F Stoyell-Conti
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.,Surgery Department, University of Miami, Miami, FL, USA
| | - Alesa Chabbra
- Halmos College of Natural Science & Oceanography, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Joseph Puthentharayil
- Halmos College of Natural Science & Oceanography, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Katya Rigatto
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Laboratório de Fisiologia Translacional, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Robert C Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.,Department of Pharmacology and Physiology, College of Medicine, Georgetown University, Washington, DC, USA
| |
Collapse
|
10
|
Jeon SC, Kim HJ, Ko EA, Jung SC. Prenatal Exposure to High Cortisol Induces ADHD-like Behaviors with Delay in Spatial Cognitive Functions during the Post-weaning Period in Rats. Exp Neurobiol 2021; 30:87-100. [PMID: 33632985 PMCID: PMC7926048 DOI: 10.5607/en20057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/28/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
High levels of cortisol in blood are frequently observed in patients with major depressive disorders and increased cortisol level induces depressivelike symptoms in animal models. However, it is still unclear whether maternal cortisol level during pregnancy is a critical factor resulting in neuropsychiatric disorders in offspring. In this study, we increased cortisol level in rats by repetitively injecting corticosterone subcutaneously (Corti. Mom, 20 mg/kg/day) during pregnancy and evaluated the behavioral patterns of their pups (Corti.Pups) via forced swimming (FS), open field (OF), elevated plus maze (EPM) and Morris water maze (MWM) tests during the immediate post-weaning period (postnatal day 21 to 25). In results, corticosterone significantly increased plasma cortisol levels in both Corti.Moms and Corti.Pups. Unlike depressive animal models, Corti.Pups showed higher hyperactive behaviors in the FS and OF tests than normal pups (Nor.Pups) born from rats (Nor.Moms) treated with saline. Furthermore, Corti.Pups spent more time and traveled longer distance in the open arms of EPM test, exhibiting higher extremity. These patterns were consistent with behavioral symptoms observed in animal models of attention deficit hyperactivity disorder (ADHD), which is characterized by hyperactivity, impulsivity, and inattention. Additionally, Corti.Pups swam longer and farther to escape in MWM test, showing cognitive declines associated with attention deficit. Our findings provide evidence that maternal cortisol level during pregnancy may affect the neuroendocrine regulation and the brain development of offspring, resulting in heterogeneous developmental brain disorders such as ADHD.
Collapse
Affiliation(s)
- Sang-Chan Jeon
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Hye-Ji Kim
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Eun-A Ko
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Sung-Cherl Jung
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea.,Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea.,Institute of Medical Science, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
11
|
Yde Ohki CM, Grossmann L, Alber E, Dwivedi T, Berger G, Werling AM, Walitza S, Grünblatt E. The stress-Wnt-signaling axis: a hypothesis for attention-deficit hyperactivity disorder and therapy approaches. Transl Psychiatry 2020; 10:315. [PMID: 32948744 PMCID: PMC7501308 DOI: 10.1038/s41398-020-00999-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/27/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is one of the most common psychiatric neurodevelopmental disorders in children and adolescents. Although ADHD has been studied for nearly a century, the cause and pathophysiology of ADHD is yet largely unknown. However, findings from previous studies have resulted in the formation of a new hypothesis: Apart from the well-known multifactorial etiology of ADHD, recent evidence suggests that the interaction between genetic and environmental factors and especially Wnt- and mTOR-signaling pathways might have an important role in the pathophysiology of ADHD. The Wnt-signaling pathway is known to orchestrate cellular proliferation, polarity, and differentiation, and the mTOR pathway is involved in several significant processes of neurodevelopment and synaptic plasticity. As a result, dysregulations of these pathways in a time-dependent manner could lead to neurodevelopmental delays, resulting in ADHD phenotype. This review presents further evidence supporting our hypothesis by combining results from studies on ADHD and Wnt- or mTOR-signaling and the influence of genetics, methylphenidate treatment, Omega-3 supplementation, and stress.
Collapse
Affiliation(s)
- Cristine Marie Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Leoni Grossmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Emma Alber
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Tanushree Dwivedi
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Gregor Berger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Anna Maria Werling
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zürich, Switzerland.
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland.
| |
Collapse
|
12
|
Velázquez AM, Roversi K, Dillenburg-Pilla P, Rodrigues RF, Zárate-Bladés CR, Prediger RDS, Izídio GS. The influence of chromosome 4 on metabolism and spatial memory in SHR and SLA16 rat strains. Behav Brain Res 2019; 370:111966. [PMID: 31125622 DOI: 10.1016/j.bbr.2019.111966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 11/16/2022]
Abstract
The Spontaneously Hypertensive Rat (SHR) has been proposed as a good model to study the pathways related to neurodegenerative diseases and glucose intolerance. Our research group developed the SLA16 (SHR.LEW-Anxrr16) congenic strain, which is genetically identical to the SHR strain, except for a locus on chromosome 4 (DGR). We applied in silico analysis on DGR to evaluate the association of their genes with neurobiological and metabolic pathways. After, we characterized cholesterol, triglycerides, metabolism of glucose and the behavioral performance of young (2 months old) and adult (8 months old) SHR and SLA16 rats in the open field, object location and water maze tasks. Finally, naïve young rats were repeatedly treated with metformin (200 mg/kg; v.o.) and evaluated in the same tests. Bioinformatics analysis showed that DGR presents genes related to glucose metabolism, oxidative damage and neurodegenerative diseases. Young SLA16 presented higher cholesterol, triglycerides, glucose and locomotion in the open field than SHR rats. In adulthood, SLA16 rats presented high triglycerides and locomotion in the open field and impairment on spatial learning and memory. Finally, the treatment with metformin decreased the glucose tolerance curve and also improved long-term memory in SLA16 rats. These results indicate that DGR presents genes associated with metabolic pathways and neurobiological processes that may produce alterations in glucose metabolism and spatial learning/memory. Therefore, we suggest that SHR and SLA16 strains could be important for the study of genes and subsequent mechanisms that produce metabolic glucose alterations and age-related cognitive deficits.
Collapse
Affiliation(s)
- Ana Magdalena Velázquez
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Katiane Roversi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Patricia Dillenburg-Pilla
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Carlos R Zárate-Bladés
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Rui Daniel S Prediger
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Geison Souza Izídio
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil; Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
13
|
Physical exercise prevents memory impairment in an animal model of hypertension through modulation of CD39 and CD73 activities and A2A receptor expression. J Hypertens 2019; 37:135-143. [DOI: 10.1097/hjh.0000000000001845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Gannon OJ, Robison LS, Custozzo AJ, Zuloaga KL. Sex differences in risk factors for vascular contributions to cognitive impairment & dementia. Neurochem Int 2018; 127:38-55. [PMID: 30471324 DOI: 10.1016/j.neuint.2018.11.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) is the second most common cause of dementia. While males overall appear to be at a slightly higher risk for VCID throughout most of the lifespan (up to age 85), some risk factors for VCID more adversely affect women. These include female-specific risk factors associated with pregnancy related disorders (e.g. preeclampsia), menopause, and poorly timed hormone replacement. Further, presence of certain co-morbid risk factors, such as diabetes, obesity and hypertension, also may more adversely affect women than men. In contrast, some risk factors more greatly affect men, such as hyperlipidemia, myocardial infarction, and heart disease. Further, stroke, one of the leading risk factors for VCID, has a higher incidence in men than in women throughout much of the lifespan, though this trend is reversed at advanced ages. This review will highlight the need to take biological sex and common co-morbidities for VCID into account in both preclinical and clinical research. Given that there are currently no treatments available for VCID, it is critical that we understand how to mitigate risk factors for this devastating disease in both sexes.
Collapse
Affiliation(s)
- O J Gannon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| | - L S Robison
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| | - A J Custozzo
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| | - K L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| |
Collapse
|
15
|
Inhibition of endothelial nitric oxide synthase reverses the effect of exercise on improving cognitive function in hypertensive rats. Hypertens Res 2018; 41:414-425. [PMID: 29568075 DOI: 10.1038/s41440-018-0033-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/26/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023]
Abstract
Hypertension-induced endothelial dysfunction is associated with β-amyloid (Aβ) deposition, a typical pathology of Alzheimer's disease (AD). Endothelial nitric oxide synthase (eNOS) phosphorylation, impaired by phosphatidylinositol 3-kinase (PI3K)/protein kinase-B(Akt) pathway abnormalities in hypertensive rats, has a critical role in endothelial function. However, it is unknown whether eNOS participates in the hypertension-induced pathology of AD. In this study, we investigated the role of eNOS in Aβ deposition and cognitive function in stroke-prone spontaneously hypertensive (SHRSP) rats. Physical exercise was used as a promoter, and Nω-nitro L-arginine methyl ester (L-NAME) was used as an inhibitor of eNOS to determine the effects of eNOS on SHRSP rats. Compared with Wistar Kyoto (WKY) rats, the hypertensive challenge caused cognitive impairment, decreased eNOS levels and increased amyloid precursor protein (APP), β-secretase, and Aβ levels in the cortex and hippocampus. Sixteen weeks of exercise lowered blood pressure (BP), promoted eNOS expression, ameliorated Alzheimer's pathology, and improved cognitive function in 29-week-old SHRSP rats. Furthermore, daily treatment with L-NAME reversed the beneficial effects of exercise on SHRSP rats. Exercise also decreased the protein levels of insulin-like growth factor-1 (IGF-1), PI3K, and phospho-Akt (p-Akt, ser473). In addition, long-term exercise increased the expression levels of IGF-1, PI3K, and p-Akt (ser473) in the brains of SHRSP rats. In conclusion, eNOS downregulation contributed to hypertension-induced Alzheimer pathology and cognitive impairment. Long-term exercise initiated in rats at a young age promoted eNOS expression and attenuated vascular-related Alzheimer's pathology via the IGF-1/PI3K/p-Akt pathway in SHRSP rats.
Collapse
|
16
|
Pařízková M, Andel R, Lerch O, Marková H, Gažová I, Vyhnálek M, Hort J, Laczó J. Homocysteine and Real-Space Navigation Performance among Non-Demented Older Adults. J Alzheimers Dis 2018; 55:951-964. [PMID: 27802238 DOI: 10.3233/jad-160667] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND High plasma homocysteine (Hcy) level is related to higher risk of Alzheimer's disease (AD) and lower cognitive performance in older adults. OBJECTIVE To assess the association between plasma Hcy level and real-space navigation performance and the role of vascular risk and protective factors, APOE status, and white matter lesions (WML) on this association. METHODS Ninety-two non-demented older adults (29 with amnestic mild cognitive impairment, 46 with subjective cognitive decline, and 17 cognitively normal older adults) underwent spatial navigation testing of egocentric, allocentric, and mixed navigation in a real-space analogue of the Morris water maze, neuropsychological examination, blood collection, and MRI brain scan with evaluation of WML. RESULTS In the regression analyses controlling for age, gender, education, and depressive symptoms, higher plasma Hcy level was related to worse mixed and egocentric (β= 0.31; p = 0.003 and β= 0.23; p = 0.017) but not allocentric (p > 0.05) navigation performance. Additional controlling for vascular risk and protective factors, WML, and APOE status did not modify the results. High total cholesterol and low vitamin B12 and folate levels increased the adverse effect of Hcy on egocentric and mixed navigation. WML did not explain the association between plasma Hcy level and navigation performance. CONCLUSION Elevated plasma Hcy level may affect real-space navigation performance above and beyond vascular brain changes. This association may be magnified in the presence of high total cholesterol and low folate or vitamin B12 levels. Attention to the level of plasma Hcy may be a viable intervention strategy to prevent decline in spatial navigation in non-demented older adults.
Collapse
Affiliation(s)
- Martina Pařízková
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Ross Andel
- School of Aging Studies, University of South Florida, Tampa, FL, USA.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Ondřej Lerch
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Hana Marková
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Ivana Gažová
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Martin Vyhnálek
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jan Laczó
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
17
|
Pan QX, Li XJ, Liu YY, Wang FF, Hou YJ, Bian QL, Qiu WQ, Yan ZY, Jiang YM, Chen JX. Relationship between Insulin Levels and Nonpsychotic Dementia: A Systematic Review and Meta-Analysis. Neural Plast 2017; 2017:1230713. [PMID: 29445549 PMCID: PMC5763205 DOI: 10.1155/2017/1230713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023] Open
Abstract
Objectives To explore the relationship between insulin levels and nonpsychotic dementia. Methods Six electronic databases (PubMed, Cochrane, SCI, CNKI, VIP, and Wanfang) were searched from January 1, 2007, to March 1, 2017. Experimental or observational studies that enrolled people with nonpsychotic dementia or abnormal insulin levels in which insulin levels or MMSE scores (events in nonpsychotic dementia) were the outcome measures. Random-effects models were chosen for this meta-analysis. Sample size, mean, s.d., and events were primarily used to generate effect sizes (with the PRIMA registration number CRD42017069860). Results 50 articles met the final inclusion criteria. Insulin levels in cerebrospinal fluid were lower (Hedges' g = 1.196, 95% CI = 0.238 to 2.514, and P = 0.014), while the levels in peripheral blood were higher in nonpsychotic dementia patients (Hedges' g = 0.853 and 95% CI = 0.579 to 1.127), and MMSE scores were significantly lower in the high insulin group than in the healthy control group (Hedges' g = 0.334, 95% CI = 0.249 to 0.419, and P = 0.000). Conclusions Our comprehensive results indicate that blood insulin levels may increase in patients with nonpsychotic dementia.
Collapse
Affiliation(s)
- Qiu-xia Pan
- School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang, Beijing 100029, China
| | - Xiao-juan Li
- School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang, Beijing 100029, China
| | - Yue-yun Liu
- School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang, Beijing 100029, China
| | - Fang-fang Wang
- School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang, Beijing 100029, China
| | - Ya-jing Hou
- School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang, Beijing 100029, China
| | - Qing-lai Bian
- School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang, Beijing 100029, China
| | - Wen-qi Qiu
- School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang, Beijing 100029, China
| | - Zhi-yi Yan
- School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang, Beijing 100029, China
| | - You-ming Jiang
- School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang, Beijing 100029, China
| | - Jia-xu Chen
- School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang, Beijing 100029, China
| |
Collapse
|
18
|
Solis-Gaspar C, Vazquez-Roque RA, De Jesús Gómez-Villalobos M, Flores G. Cerebrolysin improves memory and ameliorates neuronal atrophy in spontaneously hypertensive, aged rats. Synapse 2016; 70:378-89. [DOI: 10.1002/syn.21912] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Carlos Solis-Gaspar
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla; 14 Sur 6301, CP 72570, Puebla México
| | - Ruben A. Vazquez-Roque
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla; 14 Sur 6301, CP 72570, Puebla México
| | | | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla; 14 Sur 6301, CP 72570, Puebla México
| |
Collapse
|
19
|
Attention-Deficit/Hyperactivity Disorder: Focus upon Aberrant N-Methyl-D-Aspartate Receptors Systems. Curr Top Behav Neurosci 2015; 29:295-311. [PMID: 26718589 DOI: 10.1007/7854_2015_415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) pathophysiology persists in an obscure manner with complex interactions between symptoms, staging, interventions, genes, and environments. Only on the basis of increasing incidence of the disorder, the need for understanding is greater than ever. The notion of an imbalance between central inhibitory/excitatory neurotransmitters is considered to exert an essential role. In this chapter, we first review how the default mode network functions and dysfunction in individuals diagnosed with ADHD. We also present and briefly review some of the animal models used to examine the neurobiological aspects of ADHD. There is much evidence indicating that compounds/interventions that antagonize/block glutamic acid receptors and/or block the glutamate signal during the "brain growth spurt" or in the adult animal may induce functional and biomarker deficits. Additionally, we present evidence suggesting that animals treated with glutamate blockers at the period of the "brain growth spurt" fail to perform the exploratory activity, observed invariably with control mice, that is associated with introduction to a novel environment (the test cages). Later, when the control animals show less locomotor and rearing activity, i.e., interest in the test cages, the MK-801, ketamine and ethanol treated mice showed successively greater levels of locomotion and rearing (interest), i.e., they fail to "habituate" effectively, implying a cognitive dysfunction. These disturbances of glutamate signaling during a critical period of brain development may contribute to the ADHD pathophysiology. As a final addition, we have briefly identified new research venues in the interaction between ADHD, molecular studies, and personality research.
Collapse
|