1
|
Koyama H, Kamogashira T, Yamasoba T. Heavy Metal Exposure: Molecular Pathways, Clinical Implications, and Protective Strategies. Antioxidants (Basel) 2024; 13:76. [PMID: 38247500 PMCID: PMC10812460 DOI: 10.3390/antiox13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Heavy metals are often found in soil and can contaminate drinking water, posing a serious threat to human health. Molecular pathways and curation therapies for mitigating heavy metal toxicity have been studied for a long time. Recent studies on oxidative stress and aging have shown that the molecular foundation of cellular damage caused by heavy metals, namely, apoptosis, endoplasmic reticulum stress, and mitochondrial stress, share the same pathways as those involved in cellular senescence and aging. In recent aging studies, many types of heavy metal exposures have been used in both cellular and animal aging models. Chelation therapy is a traditional treatment for heavy metal toxicity. However, recently, various antioxidants have been found to be effective in treating heavy metal-induced damage, shifting the research focus to investigating the interplay between antioxidants and heavy metals. In this review, we introduce the molecular basis of heavy metal-induced cellular damage and its relationship with aging, summarize its clinical implications, and discuss antioxidants and other agents with protective effects against heavy metal damage.
Collapse
Affiliation(s)
- Hajime Koyama
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Tokyo Teishin Hospital, Tokyo 102-0071, Japan
| |
Collapse
|
2
|
Danzeisen R, Jänig GR, Burzlaff A, Verberckmoes S, Adam J, Viegas V. The underlying mode of action for lung tumors in a tiered approach to the assessment of inhaled cobalt compounds. Regul Toxicol Pharmacol 2022; 130:105140. [PMID: 35158000 DOI: 10.1016/j.yrtph.2022.105140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
A mode of action (MOA) for cobalt substances based on the "International Programme on Chemical Safety Conceptual Framework for Evaluating a MOA for Chemical Carcinogenesis" is presented. The data recorded therein were generated in a tiered testing program described in the preceding papers of this special issue, as well as data from the public domain. The following parameters were included in the evaluation: solubility of cobalt substances in artificial lung fluids (bioelution), in vitro biomarkers for cytotoxicity, reactive oxygen species and hypoxia mimicry, inhalation toxicity following acute exposure and repeated dose inhalation effects. Two distinct groups of cobalt substances emerged: substances inducing all effects across the MOA form one group, associated with the adverse outcome of lung cancer in rodents upon chronic exposure. Another group of cobalt substances induces no or very limited effects in the in vitro and acute testing. Higher tier testing with a representative of this group, tricobalt tetraoxide, showed a response resembling rat lung overload following exposure to high concentrations of poorly soluble particles. Based on the fundamental differences in the lower tier toxicological profile, cobalt substances with an unknown hazard profile can be assigned to either group based on lower tier testing alone.
Collapse
Affiliation(s)
- Ruth Danzeisen
- Cobalt Institute, 18 Jeffries Passage, Guildford, GU1 4AP, UK.
| | - Gerd-Rüdiger Jänig
- Dr. Gerd-Rüdiger Jänig, Toxicological Consulting, 12524, Berlin, Germany
| | - Arne Burzlaff
- EBRC Consulting GmbH, Raffaelstr. 4, 30177, Hannover, Germany
| | | | - Janine Adam
- EBRC Consulting GmbH, Raffaelstr. 4, 30177, Hannover, Germany
| | - Vanessa Viegas
- Cobalt Institute, 18 Jeffries Passage, Guildford, GU1 4AP, UK
| |
Collapse
|
3
|
Nishida Y, Nawaz A, Hecht K, Tobe K. Astaxanthin as a Novel Mitochondrial Regulator: A New Aspect of Carotenoids, beyond Antioxidants. Nutrients 2021; 14:nu14010107. [PMID: 35010981 PMCID: PMC8746862 DOI: 10.3390/nu14010107] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a member of the carotenoid family that is found abundantly in marine organisms, and has been gaining attention in recent years due to its varied biological/physiological activities. It has been reported that astaxanthin functions both as a pigment, and as an antioxidant with superior free radical quenching capacity. We recently reported that astaxanthin modulated mitochondrial functions by a novel mechanism independent of its antioxidant function. In this paper, we review astaxanthin’s well-known antioxidant activity, and expand on astaxanthin’s lesser-known molecular targets, and its role in mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| | - Allah Nawaz
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| |
Collapse
|
4
|
Dai S, Wang B, Song Y, Xie Z, Li C, Li S, Huang Y, Jiang M. Astaxanthin and its gold nanoparticles mitigate cadmium toxicity in rice by inhibiting cadmium translocation and uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147496. [PMID: 33984703 DOI: 10.1016/j.scitotenv.2021.147496] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/11/2021] [Accepted: 04/28/2021] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd) is one of the main heavy metal in rice, Cd uptake by cereal crops from soil leads to toxicity in plants and pose serious health risks due to human body's accumulation through the food chain. Astaxanthin, a natural and anti-oxidative oxycarotenoid, is widely distributed in various microorganisms and seafood. In this study, we demonstrated that astaxanthin in the form of gold nanoparticles (Ast-AuNPs) can efficiently alleviate Cd toxicity to a greater extent in hydroponically grown rice plants than single astaxanthin. When supplemented with 100 μg/mL Ast-AuNPs in medium, the Cd level of rice was significantly reduced by 26.2% (in roots) and 85.9% (in leaves), respectively. We also found Ast-AuNPs supplement restores chlorophyll biosynthesis and mitigate Cd-induced oxidative stresses: the contents of superoxide anion (O2-), hydrogen peroxide (H2O2), and malondialdehyde (MDA) were significantly reduced while the activity of the antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) was significantly elevated. Further study showed that the supplement of Ast-AuNPs inhibited Cd-induced gene expression of the metal transporter genes (OsHMA2, OsHMA3, OsIRT1, OsIRT2, OsNramp1, and OsNramp5) in rice roots. Moreover, Ast-AuNPs regulated the metabolism of free amino acids and increased the level of non-enzymatic antioxidants such as glutathione and ascorbic acid. Therefore, this study demonstrates that Ast-AuNPs could mitigate the Cd toxicity in rice seedlings by suppressing Cd uptake, scavenging of ROS, and enhancing the activity of antioxidants, and also expands the application of functional gold nanoparticles in the alleviation of heavy metal pollution in plants.
Collapse
Affiliation(s)
- Shang Dai
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China; MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Binqiang Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yue Song
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Zhenming Xie
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chao Li
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shan Li
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Yan Huang
- Patent Examination Cooperation Hubei Center of the Patent Office, Hubei, China
| | - Meng Jiang
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Montazeri-Najafabady N, Dabbaghmanesh MH, Chatrabnous N, Arabnezhad MR. The Effects of Astaxanthin on Proliferation and Differentiation of MG-63 Osteosarcoma Cells via Aryl Hydrocarbon Receptor (AhR) Pathway: A Comparison with AhR Endogenous Ligand. Nutr Cancer 2019; 72:1400-1410. [PMID: 31847600 DOI: 10.1080/01635581.2019.1679199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Osteosarcoma (OS) is the most prevalent bone-related malignancy with a high mortality rate among children and adolescents. In the present study, first we explored the effects of astaxanthin (AST) on proliferation and differentiation of the MG-63 osteosarcoma cell line, and then compared its effects with AhR endogenous ligand (FICZ).Methods: Cell proliferation and cytotoxicity assay were performed using MTT. To identify possible mechanisms underlying AST-induced changes in osteogenic metabolism via the AHR pathway, we defined changes in CYP1A1, osteocalcin, osteopontin, type I collagen, and Runx2 gene expression using RT-PCR.Results: AST upregulated CYP1A1, osteocalcin, osteopontin, type I collagen, and Runx2 expression in trends of increasing its concentration. FICZ showed a biphasic effect on MG-63 cell proliferation. At high concentrations, it significantly decreased the cell viability, while at lower concentrations it was increased as compared to the control. Increasing FICZ concentrations from 1 nm to 1 μM, down-regulated the expression of Runx2, osteopontin, osteocalcin and collagen type 1 at the transcriptional levels. It seems that AST can augment the proliferation and differentiation of MG-63 via the AhR-dependent pathway, while FICZ suppresses the proliferation and differentiation of MG-63.Conclusion: We concluded that various AhR ligands show different behaviors in the modulation of MG-63 cells.
Collapse
Affiliation(s)
- Nima Montazeri-Najafabady
- Shiraz Endocrine and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nazanin Chatrabnous
- Shiraz Endocrine and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Arabnezhad
- Shiraz Endocrine and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Kim SH, Kim H. Astaxanthin Modulation of Signaling Pathways That Regulate Autophagy. Mar Drugs 2019; 17:md17100546. [PMID: 31547619 PMCID: PMC6836186 DOI: 10.3390/md17100546] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 01/07/2023] Open
Abstract
Autophagy is a lysosomal pathway that degrades and recycles unused or dysfunctional cell components as well as toxic cytosolic materials. Basal autophagy favors cell survival. However, the aberrant regulation of autophagy can promote pathological conditions. The autophagy pathway is regulated by several cell-stress and cell-survival signaling pathways that can be targeted for the purpose of disease control. In experimental models of disease, the carotenoid astaxanthin has been shown to modulate autophagy by regulating signaling pathways, including the AMP-activated protein kinase (AMPK), cellular homolog of murine thymoma virus akt8 oncogene (Akt), and mitogen-activated protein kinase (MAPK), such as c-Jun N-terminal kinase (JNK) and p38. Astaxanthin is a promising therapeutic agent for the treatment of a wide variety of diseases by regulating autophagy.
Collapse
Affiliation(s)
- Suhn Hyung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|