1
|
Li H, Wang H, Cui Y, Jiang W, Zhan H, Feng L, Gao M, Zhao K, Zhang L, Xie X, Zhao N, Li Y, Liu P. EZH2 regulates pancreatic cancer cells through E2F1, GLI1, CDK3, and Mcm4. Hereditas 2023; 160:23. [PMID: 37198697 DOI: 10.1186/s41065-023-00280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/06/2023] [Indexed: 05/19/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignant tumors in digestive tract. To explore the role of epigenetic factor EZH2 in the malignant proliferation of PC, so as to provide effective medical help in PC. Sixty paraffin sections of PC were collected and the expression of EZH2 in PC tissues was detected by immunohistochemical assay. Three normal pancreas tissue samples were used as controls. The regulation of EZH2 gene on proliferation and migration of normal pancreatic cell and PC cell were determined by MTS, colony forming, Ki-67 antibody, scratch and Transwell assays. Through differential gene annotation and differential gene signaling pathway analysis, differentially expressed genes related to cell proliferation were selected and verified by RT-qPCR. EZH2 is mainly expressed in the nuclei of pancreatic tumor cells, but not in normal pancreatic cells. The results of cell function experiments showed that EZH2 overexpression could enhance the proliferation and migration ability of PC cell BXPC-3. Cell proliferation ability increased by 38% compared to the control group. EZH2 knockdown resulted in reduced proliferation and migration ability of cells. Compared with control, proliferation ability of cells reduced by 16%-40%. The results of bioinformatics analysis of transcriptome data and RT-qPCR demonstrated that EZH2 could regulate the expression of E2F1, GLI1, CDK3 and Mcm4 in normal and PC cells. The results revealed that EZH2 might regulate the proliferation of normal pancreatic cell and PC cell through E2F1, GLI1, CDK3 and Mcm4.
Collapse
Affiliation(s)
- Hongfeng Li
- Department of Clinical Laboratory, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - Hailong Wang
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No. 354 Beima Road, Hongqiao District, Tianjin, 300120, China
| | - Yunlong Cui
- Department of Hepatobiliary Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Wenhua Jiang
- Department of Radiotherapy, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Hongjie Zhan
- Department of Gastric Cancer, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Lixia Feng
- Department of Nursing, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Konggang Hospital, Tianjin, 300300, China
| | - Mingyou Gao
- Department of Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Kuo Zhao
- Department of Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Limeng Zhang
- Department of Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Xiaojing Xie
- Department of Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ning Zhao
- Department of Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ying Li
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, No. 12 Health Road, Shijiazhuang, 050000, Hebei, China.
| | - Pengfei Liu
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No. 354 Beima Road, Hongqiao District, Tianjin, 300120, China.
| |
Collapse
|
2
|
Chang J, Li H, Zhu Z, Mei P, Hu W, Xiong X, Tao J. microRNA-21-5p from M2 macrophage-derived extracellular vesicles promotes the differentiation and activity of pancreatic cancer stem cells by mediating KLF3. Cell Biol Toxicol 2021; 38:577-590. [PMID: 33728488 PMCID: PMC9343318 DOI: 10.1007/s10565-021-09597-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Aim Given the fact that tumor-associated macrophage-derived extracellular vesicles (EVs) are attributable to tumor aggressiveness, this research intends to decode the mechanism of M2 macrophage-derived EVs in the differentiation and activities of pancreatic cancer (PaCa) stem cells via delivering microRNA (miR)-21-5p. Methods Polarized M2 macrophages were induced, from which EVs were collected and identified. miR-21-5p expression in M2 macrophage-derived EVs was tested. After cell sorting, CD24+CD44+EpCAM+ stem cells were co-cultured with M2 macrophages, in which miR-21-5p was upregulated or downregulated. The effects of M2 macrophage-derived EVs and miR-21-5p on Nanog/octamer-binding transcription factor 4 (Oct4) expression, sphere formation, colony formation, invasion and migration capacities, apoptosis, and in vivo tumorigenic ability were examined. Krüppel-like factor 3 (KLF3) expression and its interaction with miR-21-5p were determined. Results M2 macrophage-derived EVs promoted PaCa stem cell differentiation and activities. miR-21a-5p was upregulated in M2 macrophage-derived EVs. miR-21a-5p downregulation in M2 macrophage-derived EVs inhibited Nanog/Oct4 expression and impaired sphere-forming, colony-forming, invasion, migration, and anti-apoptosis abilities of PaCa stem cells in vitro and tumorigenic ability in vivo. miR-21-5p targeted KLF3 to mediate the differentiation and activities of PaCa stem cells, and KLF3 was downregulated in PaCa stem cells. Conclusion This work explains that M2 macrophage-derived exosomal miR-21a-5p stimulates differentiation and activity of PaCa stem cells via targeting KLF3, paving a novel way for attenuating PaCa stemness. Graphical abstract ![]()
Collapse
Affiliation(s)
- Jian Chang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Hanjun Li
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Zhongchao Zhu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Pei Mei
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Weimin Hu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Xingcheng Xiong
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
| | - Jing Tao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
| |
Collapse
|
3
|
Sordo-Bahamonde C, Lorenzo-Herrero S, Payer ÁR, Gonzalez S, López-Soto A. Mechanisms of Apoptosis Resistance to NK Cell-Mediated Cytotoxicity in Cancer. Int J Mol Sci 2020; 21:ijms21103726. [PMID: 32466293 PMCID: PMC7279491 DOI: 10.3390/ijms21103726] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are major contributors to immunosurveillance and control of tumor development by inducing apoptosis of malignant cells. Among the main mechanisms involved in NK cell-mediated cytotoxicity, the death receptor pathway and the release of granules containing perforin/granzymes stand out due to their efficacy in eliminating tumor cells. However, accumulated evidence suggest a profound immune suppression in the context of tumor progression affecting effector cells, such as NK cells, leading to decreased cytotoxicity. This diminished capability, together with the development of resistance to apoptosis by cancer cells, favor the loss of immunogenicity and promote immunosuppression, thus partially inducing NK cell-mediated killing resistance. Altered expression patterns of pro- and anti-apoptotic proteins along with genetic background comprise the main mechanisms of resistance to NK cell-related apoptosis. Herein, we summarize the main effector cytotoxic mechanisms against tumor cells, as well as the major resistance strategies acquired by tumor cells that hamper the extrinsic and intrinsic apoptotic pathways related to NK cell-mediated killing.
Collapse
Affiliation(s)
- Christian Sordo-Bahamonde
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence: (C.S.-B.); (A.L.-S.)
| | - Seila Lorenzo-Herrero
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ángel R. Payer
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Segundo Gonzalez
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alejandro López-Soto
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain
- Correspondence: (C.S.-B.); (A.L.-S.)
| |
Collapse
|
4
|
An ABCG2 non-substrate anticancer agent FL118 targets drug-resistant cancer stem-like cells and overcomes treatment resistance of human pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:240. [PMID: 30285798 PMCID: PMC6169080 DOI: 10.1186/s13046-018-0899-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/31/2018] [Indexed: 01/05/2023]
Abstract
Background Pancreatic cancer is a deadly disease with a very low 5-year patient survival rate of 6–8%. The major challenges of eliminating pancreatic cancer are treatment resistance and stromal barriers to optimal drug access within the tumor. Therefore, effective molecular targeting drugs with high intra-tumor access and retention are urgently needed for managing this devastating disease in the clinic. Methods This study has used the following in vitro and in vivo techniques for the investigation of exceptional anticancer drug FL118’s efficacy in treatment of resistant pancreatic cancer: cell culture; immunoblotting analysis to test protein expression; DNA sub-G1 flow cytometry analyses to test cell death; MTT assay to test cell viability; pancreatic cancer stem cell assays (fluorescence microscopy tracing; matrigel assay; CD44-positive cell colony formation assay); human luciferase-labeled pancreatic tumor orthotopic animal model in vivo imaging; pancreatic cancer patient-derived xenograft (PDX) animal models; and toxicology studies with immune-competent BALB/cj mice and beagle dogs. Results Our studies found that FL118 alone preferentially killed cisplatin-resistant cancer cells, while a combination of FL118 with cisplatin synergistically killed resistant pancreatic cancer cells and reduced spheroid formation of treatment-resistant pancreatic cancer stem-like cells. Furthermore, using in vivo-imaging, we found that FL118 in combination with cisplatin strongly inhibited both drug-resistant pancreatic xenograft tumor growth and metastasis. In PDX model, we demonstrated that FL118 alone effectively eliminated PDX tumors, while FL118 in combination with gemcitabine eliminated PDX tumors that showed relative resistance (less sensitivity) to treatment with FL118. These FL118 efficacy results are consistent with our molecular-targeting data showing that FL118 inhibited the expression of multiple antiapoptotic proteins (survivin, Mcl-1, XIAP, cIAP2) and ERCC6, a critical regulator of DNA repair, in treatment-resistant pancreatic stem-like cancer cells. Furthermore, FL118 toxicity studies in BALB/cj mice and beagle dogs indicated that FL118 exhibits favorable hematopoietic and biochemical toxicities. Conclusion Together, our studies suggest that FL118 is a promising anticancer drug for further clinical development to effectively treat drug-resistant pancreatic cancer alone or in combination with other pancreatic cancer chemotherapeutic drugs.
Collapse
|
5
|
Ishiwata T, Matsuda Y, Yoshimura H, Sasaki N, Ishiwata S, Ishikawa N, Takubo K, Arai T, Aida J. Pancreatic cancer stem cells: features and detection methods. Pathol Oncol Res 2018; 24:797-805. [PMID: 29948612 DOI: 10.1007/s12253-018-0420-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 05/17/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a high incidence of distant metastasis and recurrence. Cancer stem cells (CSCs), which are pluripotent, self-renewable, and capable of forming tumors, contribute to PDAC initiation and metastasis and are responsible for resistance to chemotherapy and radiation. Three types of experimental methods are commonly used to identify CSCs: CSC-specific marker detection, a sphere-formation assay that reveals cell proliferation under non-adherent conditions, and detection of side-population (SP) cells that possess high intracellular-to-extracellular pump functions. Several CSC-specific markers have been reported in PDACs, including CD133, CD24, CD44, CXCR4, EpCAM, ABCG2, c-Met, ALDH-1, and nestin. There remains controversy regarding which markers are specific to PDAC CSCs and which are expressed alone or in combination in CSCs. Examining characteristics of isolated CSCs and discovering CSC-specific treatment options are important to improve the prognosis of PDAC cases. This review summarizes CSC-detection methods for PDAC, including CSC-marker detection, the sphere-formation assay, and detection of SP cells.
Collapse
Affiliation(s)
- Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.
| | - Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Hisashi Yoshimura
- Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, 180-0022, Japan
| | - Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Shunji Ishiwata
- Division of Medical Pharmaceutics & Therapeutics, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Naoshi Ishikawa
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kaiyo Takubo
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Junko Aida
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| |
Collapse
|
6
|
Sereti E, Karagianellou T, Kotsoni I, Magouliotis D, Kamposioras K, Ulukaya E, Sakellaridis N, Zacharoulis D, Dimas K. Patient Derived Xenografts (PDX) for personalized treatment of pancreatic cancer: emerging allies in the war on a devastating cancer? J Proteomics 2018; 188:107-118. [PMID: 29398619 DOI: 10.1016/j.jprot.2018.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022]
Abstract
The prognosis of pancreatic ductal adenocarcinoma (PDAC), the eighth most lethal cancer for men and ninth for women worldwide, remains dismal. The increasing rates of deaths by PDAC indicate that the overall management of the disease in 21st century is still insufficient. Thus it is obvious that there is an unmet need to improve management of PDAC by finding new biomarkers to screen high risk patients, confirm diagnosis, and predict response to treatment as well more efficacious and safer treatments. Patient Derived Xenografts (PDX) have been developed as a new promising tool in an effort to mirror genetics, tumor heterogeneity and cancer microenvironment of the primary tumor. Herein we aim to give an updated overview of the current status and the perspectives of PDX in the search for the identification of novel biomarkers and improved therapeutic outcomes for PDAC but also their use as a valuable tool towards individualized treatments to improve the outcome of the disease. Furthermore, we critically review the applications, advantages, limitations, and perspectives of PDX in the research towards an improved management of PDAC. SIGNIFICANCE This review provides a comprehensive overview of the current status and the potential role as well as the challenges of PDX in the road to fight one of the most lethal cancers in the developed countries, pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Evangelia Sereti
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | | - Ioanna Kotsoni
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Dimitrios Magouliotis
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Surgery, University Hospital of Larissa, Larissa, Greece
| | - Konstantinos Kamposioras
- Department of Medical Oncology, The Mid Yorkshire Hospitals NHS Trust, Wakefield, United Kingdom
| | - Engin Ulukaya
- Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey
| | - Nikos Sakellaridis
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece.
| |
Collapse
|
7
|
Eltoukhy HS, Sinha G, Moore CA, Sandiford OA, Rameshwar P. Immune modulation by a cellular network of mesenchymal stem cells and breast cancer cell subsets: Implication for cancer therapy. Cell Immunol 2017; 326:33-41. [PMID: 28779846 DOI: 10.1016/j.cellimm.2017.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 02/07/2023]
Abstract
The immune modulatory properties of mesenchymal stem cells (MSCs) are mostly controlled by the particular microenvironment. Cancer stem cells (CSCs), which can initiate a clinical tumor, have been the subject of intense research. This review article discusses investigative studies of the roles of MSCs on cancer biology including on CSCs, and the potential as drug delivery to tumors. An understanding of how MSCs behave in the tumor microenvironment to facilitate the survival of tumor cells would be crucial to identify drug targets. More importantly, since CSCs survive for decades in dormancy for later resurgence, studies are presented to show how MSCs could be involved in maintaining dormancy. Although the mechanism by which CSCs survive is complex, this article focus on the cellular involvement of MSCs with regard to immune responses. We discuss the immunomodulatory mechanisms of MSC-CSC interaction in the context of therapeutic outcomes in oncology. We also discuss immunotherapy as a potential to circumventing this immune modulation.
Collapse
Affiliation(s)
- Hussam S Eltoukhy
- Rutgers, New Jersey Medical School, Department of Medicine-Hematology-Oncology, Newark, NJ 07103, USA
| | - Garima Sinha
- Rutgers, New Jersey Medical School, Department of Medicine-Hematology-Oncology, Newark, NJ 07103, USA
| | - Caitlyn A Moore
- Rutgers, New Jersey Medical School, Department of Medicine-Hematology-Oncology, Newark, NJ 07103, USA
| | - Oleta A Sandiford
- Rutgers, New Jersey Medical School, Department of Medicine-Hematology-Oncology, Newark, NJ 07103, USA
| | - Pranela Rameshwar
- Rutgers, New Jersey Medical School, Department of Medicine-Hematology-Oncology, Newark, NJ 07103, USA.
| |
Collapse
|
8
|
Affiliation(s)
- Diana Behrens
- EPO - Experimental Pharmacology and Oncology GmbH - GmbH, Robert-Roessle-Str. 10, 13125 Berlin, Germany.
| | - Wolfgang Walther
- Experimental and Clinical Research Center (ECRC), Charité, University Medicine, Berlin; Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Iduna Fichtner
- EPO - Experimental Pharmacology and Oncology GmbH - GmbH, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| |
Collapse
|