1
|
Mathiesen H, Juul-Madsen K, Tramm T, Vorup-Jensen T, Møller HJ, Etzerodt A, Andersen MN. Prognostic value of CD163 + macrophages in solid tumor malignancies: A scoping review. Immunol Lett 2025; 272:106970. [PMID: 39778658 DOI: 10.1016/j.imlet.2025.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Tumor-associated macrophages (TAMs) play crucial roles in development and progression of malignant diseases. Notably, CD163+ TAMs likely perform specific pro-tumorigenic functions, suggesting that this subset may serve as both prognostic biomarkers and targets for future anti-cancer therapy. We conducted a scoping review to map the current knowledge on the prognostic role of CD163+ TAMs in the five most lethal cancers worldwide: Lung, colorectal, gastric, liver, and breast cancer. For all cancer types, most studies showed that high tumoral presence of CD163+ cells was associated with poor patient outcome, and this association was more frequently observed when CD163+ cells were measured at the tumor periphery compared to more central parts of the tumor. These results support that CD163+ TAMs represent a biomarker of poor patient outcome across a variety of solid tumors, and highlight the relevance of further investigations of CD163+ TAMs as targets of future immunotherapies.
Collapse
Affiliation(s)
- Henriette Mathiesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Kristian Juul-Madsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Trine Tramm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Holger Jon Møller
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Morten Nørgaard Andersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Hematology, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
2
|
Dai Y, Dong C, Wang Z, Zhou Y, Wang Y, Hao Y, Chen P, Liang C, Li G. Infiltrating T lymphocytes and tumor microenvironment within cholangiocarcinoma: immune heterogeneity, intercellular communication, immune checkpoints. Front Immunol 2025; 15:1482291. [PMID: 39845973 PMCID: PMC11750830 DOI: 10.3389/fimmu.2024.1482291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Cholangiocarcinoma is the second most common primary liver cancer, and its global incidence has increased in recent years. Radical surgical resection and systemic chemotherapy have traditionally been the standard treatment options. However, the complexity of cholangiocarcinoma subtypes often presents a challenge for early diagnosis. Additionally, high recurrence rates following radical treatment and resistance to late-stage chemotherapy limit the benefits for patients. Immunotherapy has emerged as an effective strategy for treating various types of cancer, and has shown efficacy when combined with chemotherapy for cholangiocarcinoma. Current immunotherapies targeting cholangiocarcinoma have predominantly focused on T lymphocytes within the tumor microenvironment, and new immunotherapies have yielded unsatisfactory results in clinical trials. Therefore, it is essential to achieve a comprehensive understanding of the unique tumor microenvironment of cholangiocarcinoma and the pivotal role of T lymphocytes within it. In this review, we describe the heterogeneous immune landscape and intercellular communication in cholangiocarcinoma and summarize the specific distribution of T lymphocytes. Finally, we review potential immune checkpoints in cholangiocarcinoma.
Collapse
Affiliation(s)
- Yunyan Dai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Chenyang Dong
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhiming Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunpeng Zhou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yi Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yi Hao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Pinggui Chen
- Department of Nuclear Medicine, Nanyang First People’s Hospital, Nanyang, Henan, China
| | - Chaojie Liang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of biliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Gaopeng Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
3
|
Zheng SS, Wu JF, Wu WX, Hu JW, Zhang D, Huang C, Zhang BH. CBX1 is involved in hepatocellular carcinoma progression and resistance to sorafenib and lenvatinib via IGF-1R/AKT/SNAIL signaling pathway. Hepatol Int 2024; 18:1499-1515. [PMID: 38769286 PMCID: PMC11461582 DOI: 10.1007/s12072-024-10696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Chromobox Homolog 1 (CBX1) plays a crucial role in the pathogenesis of numerous diseases, including the evolution and advancement of diverse cancers. The role of CBX1 in pan-cancer and its mechanism in hepatocellular carcinoma (HCC), however, remains to be further investigated. METHODS Bioinformatics approaches were harnessed to scrutinize CBX1's expression profile, its association with tumor staging, and its potential impact on patient outcomes across various cancers. Single-cell RNA sequencing data facilitated the investigation of CBX1 expression patterns at the individual cell level. The CBX1 expression levels in HCC and adjacent non-tumor tissues were quantified through Real-Time Polymerase Chain Reaction (RT-PCR), Western Blotting (WB), and Immunohistochemical analyses. A tissue microarray was employed to explore the relationship between CBX1 levels, patient prognosis, and clinicopathological characteristics in HCC. Various in vitro assays-including CCK-8, colony formation, Transwell invasion, and scratch tests-were conducted to assess the proliferative and motility properties of HCC cells upon modulation of CBX1 expression. Moreover, the functional impact of CBX1 on HCC was further discerned through xenograft studies in nude mice. RESULTS CBX1 was found to be upregulated in most cancer forms, with heightened expression correlating with adverse patient prognoses. Within the context of HCC, elevated levels of CBX1 were consistently indicative of poorer clinical outcomes. Suppression of CBX1 through knockdown methodologies markedly diminished HCC cell proliferation, invasive capabilities, migratory activity, Epithelial-mesenchymal transition (EMT) processes, and resistance to Tyrosine kinase inhibitors (TKIs). Contrastingly, CBX1 augmentation facilitated the opposite effects. Subsequent investigative efforts revealed CBX1 to be a promoter of EMT and a contributor to increased TKI resistance within HCC cells, mediated via the IGF-1R/AKT/SNAIL signaling axis. The oncogenic activities of CBX1 proved to be attenuable either by AKT pathway inhibition or by targeted silencing of IGF-1R. CONCLUSIONS The broad overexpression of CBX1 in pan-cancer and specifically in HCC positions it as a putative oncogenic entity. It is implicated in forwarding HCC progression and exacerbating TKI resistance through its interaction with the IGF-1R/AKT/SNAIL signaling cascade.
Collapse
Affiliation(s)
- Su-Su Zheng
- Department of Hepatic Oncology, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, China
| | - Jing-Fang Wu
- Department of Hepatic Oncology, Liver Cancer Institute, Key Laboratory for Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wei-Xun Wu
- Department of Liver Surgery, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, China
| | - Jin-Wu Hu
- Department of Liver Cancer, Shanghai Geriatrics Medical Center, 2560 Chunshen Road, Shanghai, 201104, China
| | - Dai Zhang
- Department of Hepatic Oncology, Liver Cancer Institute, Key Laboratory for Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Cheng Huang
- Department of Liver Surgery, Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Bo-Heng Zhang
- Department of Hepatic Oncology, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, China.
- Department of Hepatic Oncology, Liver Cancer Institute, Key Laboratory for Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Center for Evidence-Based Medicine, Shanghai Medical School, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Ortiz V, Loeuillard E. Rethinking Immune Check Point Inhibitors Use in Liver Transplantation: Implications and Resistance. Cell Mol Gastroenterol Hepatol 2024; 19:101407. [PMID: 39326581 PMCID: PMC11609388 DOI: 10.1016/j.jcmgh.2024.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy, including the two most common liver tumors, hepatocellular carcinoma and cholangiocarcinoma, but their use in the peri-transplantation period is controversial. ICI therapy aims to heighten cytotoxic T lymphocytes response against tumors. However, tumor recurrence is common owing to tumor immune response escape involving ablation of CTL response by interfering with antigen presentation, triggering CLT apoptosis and inducing epigenetic changes that promote ICI therapy resistance. ICI can also affect tissue resident memory T cell population, impact tolerance in the post-transplant period, and induce acute inflammation risking graft survival post-transplant. Their interaction with immunosuppression may be key in reducing tumor burden and may thus, require multimodal therapy to treat these tumors. This review summarizes ICI use in the liver transplantation period, their impact on tolerance and resistance, and new potential therapies for combination or sequential treatments for liver tumors.
Collapse
Affiliation(s)
- Vivian Ortiz
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, Missouri.
| | | |
Collapse
|
5
|
Dadgar N, Arunachalam AK, Hong H, Phoon YP, Arpi-Palacios JE, Uysal M, Wehrle CJ, Aucejo F, Ma WW, Melenhorst JJ. Advancing Cholangiocarcinoma Care: Insights and Innovations in T Cell Therapy. Cancers (Basel) 2024; 16:3232. [PMID: 39335203 PMCID: PMC11429565 DOI: 10.3390/cancers16183232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a rare and aggressive malignancy originating from the bile ducts, with poor prognosis and limited treatment options. Traditional therapies, such as surgery, chemotherapy, and radiation, have shown limited efficacy, especially in advanced cases. Recent advancements in immunotherapy, particularly T cell-based therapies like chimeric antigen receptor T (CAR T) cells, tumor-infiltrating lymphocytes (TILs), and T cell receptor (TCR)-based therapies, have opened new avenues for improving outcomes in CCA. This review provides a comprehensive overview of the current state of T cell therapies for CCA, focusing on CAR T cell therapy. It highlights key challenges, including the complex tumor microenvironment and immune evasion mechanisms, and the progress made in preclinical and clinical trials. The review also discusses ongoing clinical trials targeting specific CCA antigens, such as MUC1, EGFR, and CD133, and the evolving role of precision immunotherapy in enhancing treatment outcomes. Despite significant progress, further research is needed to optimize these therapies for solid tumors like CCA. By summarizing the most recent clinical results and future directions, this review underscores the promising potential of T cell therapies in revolutionizing CCA treatment.
Collapse
Affiliation(s)
- Neda Dadgar
- Cleveland Clinic Foundation, Enterprise Cancer Institute, Translational Hematology & Oncology Research, Cleveland, OH 44114, USA;
| | - Arun K. Arunachalam
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Hanna Hong
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Yee Peng Phoon
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Jorge E. Arpi-Palacios
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Melis Uysal
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Chase J. Wehrle
- Cleveland Clinic Foundation, Digestive Diseases & Surgery Institute, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Federico Aucejo
- Cleveland Clinic Foundation, Digestive Diseases & Surgery Institute, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Wen Wee Ma
- Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH 44106, USA;
| | - Jan Joseph Melenhorst
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| |
Collapse
|
6
|
Yu J, Zhao B, Yu Y. Identification and Validation of Cytotoxicity-Related Features to Predict Prognostic and Immunotherapy Response in Patients with Clear Cell Renal Cell Carcinoma. Genet Res (Camb) 2024; 2024:3468209. [PMID: 39247556 PMCID: PMC11379509 DOI: 10.1155/2024/3468209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/29/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is a renal cortical malignancy with a complex pathogenesis. Identifying ideal biomarkers to establish more accurate promising prognostic models is crucial for the survival of kidney cancer patients. Methods Seurat R package was used for single-cell RNA-sequencing (scRNA-seq) data filtering, dimensionality reduction, clustering, and differentially expressed genes analysis. Gene coexpression network analysis (WGCNA) was performed to identify the cytotoxicity-related module. The independent cytotoxicity-related risk model was established by the survival R package, and Kaplan-Meier (KM) survival analysis and timeROC with area under the curve (AUC) were employed to confirm the prognosis and effectiveness of the risk model. The risk and prognosis in patients suffering from ccRCC were predicted by establishing a nomogram. A comparison of the level of immune infiltration in different risk groups and subtypes using the CIBERSORT, MCP-counter, and TIMER methods, as well as assessment of drug sensitivity to conventional chemotherapeutic agents in risk groups using the pRRophetic package, was made. Results Eleven ccRCC subpopulations were identified by single-cell sequencing data from the GSE224630 dataset. The identified cytotoxicity-related T-cell cluster and module genes defined three cytotoxicity-related molecular subtypes. Six key genes (SOWAHB, SLC16A12, IL20RB, SLC12A8, PLG, and HHLA2) affecting prognosis risk genes were selected for developing a risk model. A nomogram containing the RiskScore and stage revealed that the RiskScore contributed the most and exhibited excellent predicted performance for prognosis in the calibration plots and decision curve analysis (DCA). Notably, high-risk patients with ccRCC demonstrate a poorer prognosis with higher immune infiltration characteristics and TIDE scores, whereas low-risk patients are more likely to benefit from immunotherapy. Conclusions A ccRCC survival prognostic model was produced based on the cytotoxicity-related signature, which had important clinical significance and may provide guidance for ccRCC treatment.
Collapse
Affiliation(s)
- Junxiao Yu
- Department of Urology The First Affiliated Hospital of Harbin Medical University, Harbin 150010, China
| | - Bowen Zhao
- Department of Oral and Maxillofacial Surgery The First Affliated Hospital of Harbin Medical University, Harbin 150010, China
| | - You Yu
- Department of Newborn Surgery The Sixth Affiliated Hospital of Harbin Medical University, Harbin 150023, China
| |
Collapse
|
7
|
Li W, You J, Xue H, Liu Y, Chen J, Zheng X, Chen L, Wu C. Unlocking the potential of HHLA2: identifying functional immune infiltrating cells in the tumor microenvironment and predicting clinical outcomes in laryngeal squamous cell carcinoma. Cancer Immunol Immunother 2024; 73:207. [PMID: 39105870 PMCID: PMC11303638 DOI: 10.1007/s00262-024-03791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND HHLA2 (human endogenous retrovirus-H long terminal repeat-associating protein 2) represents a recently identified member of the B7 immune checkpoint family, characterized by limited expression in normal tissues but notable overexpression in various cancer types. Nevertheless, the precise function and interaction with immune cells remain poorly understood, particularly in laryngeal squamous cell carcinoma (LSCC). This investigation endeavored to elucidate the biological significance of HHLA2 within the tumor microenvironment of human LSCC tissues and delineate the clinical relevance and functional roles of HHLA2 in LSCC pathogenesis. METHODS Through multiplexed immunohistochemistry analyses conducted on tissue microarrays sourced from LSCC patients (n = 72), the analysis was executed to assess the expression levels of HHLA2, density and spatial patterns of CD68+HLA-DR+CD163- (M1 macrophages), CTLA-4+CD4+FoxP3+ (CTLA-4+Treg cells), CTLA-4+CD4+FoxP3- (CTLA-4+Tcon cells), exhausted CD8+T cells, and terminally exhausted CD8+T cells in LSCC tissues. Survival analysis was conducted to evaluate the prognostic significance of HHLA2 and these immune checkpoints or immune cell populations, employing COX regression analysis to identify independent prognostic factors. RESULTS Kaplan-Meier (K-M) survival curves revealed a significant association between HHLA2 expression and overall survival (OS) in LSCC. Elevated levels of HHLA2 were linked to reduced patient survival, indicating its potential as a prognostic marker (HR: 3.230, 95%CI 0.9205-11.34, P = 0.0067). Notably, increased infiltration of CD68+ cells (total macrophages), STING+CD68+HLA-DR+CD163- (STING+M1 macrophages), CTLA-4+CD4+FoxP3+, CTLA-4+CD4+FoxP3-, PD-1+LAG-3+CD8+T cells, and PD-1+LAG-3+TIM-3+CD8+T cells strongly linked to poorer survival outcomes (P < 0.05). A discernible trend was observed between the levels of these immune cell populations, STING+CD68+ (STING+ total macrophages), CD68+HLA-DR+CD163-, STING+CD68+CD163+HLA-DR- (STING+M2 macrophages), PD-1+LAG-3-CD8+T cells, PD-1+TIM-3+CD8+T cells, and PD-1+LAG-3+TIM-3-CD8+T cells and prognosis. Importantly, multivariate COX analysis identified HHLA2 as an independent predictive factor for OS in LSCC patients (HR = 3.86, 95% CI 1.08-13.80, P = 0.038). This underscored the potential of HHLA2 as a critical marker for predicting patient outcomes in LSCC. CONCLUSIONS HHLA2 emerged as a detrimental prognostic biomarker for assessing OS in LSCC patients. Relative to other immune checkpoints, HHLA2 exhibited heightened predictive efficacy for the prognosis of LSCC patients.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Jianqing You
- Department of Otorhinolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Haixiang Xue
- Department of Otorhinolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yi Liu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Junjun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
8
|
Hua S, Gu X, Jin H, Zhang X, Liu Q, Yang J. Tumor-infiltrating T lymphocytes: A promising immunotherapeutic target for preventing immune escape in cholangiocarcinoma. Biomed Pharmacother 2024; 177:117080. [PMID: 38972151 DOI: 10.1016/j.biopha.2024.117080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/09/2024] Open
Abstract
Cholangiocarcinoma (CCA) is becoming more common and deadly worldwide. Tumor-infiltrating T cell subtypes make distinct contributions to the immune system; collectively, they constitute a significant portion of the tumor microenvironment (TME) in CCA. By secreting cytokines and other chemicals, regulatory T cells (Tregs) decrease activated T cell responses, acting as immunosuppressors. Reduced CD8+ T cell activation results in stimulating programmed death-1 (PD-1), which undermines the immunological homeostasis of T lymphocytes. On the other hand, cancer cells are eliminated by activated cytotoxic T lymphocyte (CTL) through the perforin-granzyme or Fas-FasL pathways. Th1 and CTL immune cell infiltration into the malignant tumor is also facilitated by γδ T cells. A higher prognosis is typically implied by CD8+ T cell infiltration, and survival is inversely associated with Treg cell density. Immune checkpoint inhibitors, either singly or in combination, provide novel therapeutic strategies for CCA immunotherapy. Furthermore, it is anticipated that immunotherapeutic strategies-such as the identification of new immune targets, combination treatments involving several immune checkpoint inhibitors, and chimeric antigen receptor-T therapies (CAR-T)-will optimize the effectiveness of anti-CCA treatments while reducing adverse effects.
Collapse
Affiliation(s)
- Sijia Hua
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, China.
| | - Xinyi Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, China.
| | - Hangbin Jin
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital. School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaofeng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital. School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research, Hangzhou, Zhejiang 310003, China.
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital. School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Jianfeng Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital. School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
9
|
Bernatz S, Schulze F, Bein J, Bankov K, Mahmoudi S, Grünewald LD, Koch V, Stehle A, Schnitzbauer AA, Walter D, Finkelmeier F, Zeuzem S, Vogl TJ, Wild PJ, Kinzler MN. Small duct and large duct type intrahepatic cholangiocarcinoma reveal distinct patterns of immune signatures. J Cancer Res Clin Oncol 2024; 150:357. [PMID: 39034327 PMCID: PMC11271402 DOI: 10.1007/s00432-024-05888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE Dedicated gene signatures in small (SD-iCCA) and large (LD-iCCA) duct type intrahepatic cholangiocarcinoma remain unknown. We performed immune profiling in SD- and LD-iCCA to identify novel biomarker candidates for personalized medicine. METHODS Retrospectively, 19 iCCA patients with either SD-iCCA (n = 10, median age, 63.1 years (45-86); men, 4) or LD-iCCA (n = 9, median age, 69.7 years (62-85); men, 5)) were included. All patients were diagnosed and histologically confirmed between 04/2009 and 01/2021. Tumor tissue samples were processed for differential expression profiling using NanoString nCounter® PanCancer Immune Profiling Panel. RESULTS With the exception of complement signatures, immune-related pathways were broadly downregulated in SD-iCCA vs. LD-iCCA. A total of 20 immune-related genes were strongly downregulated in SD-iCCA with DMBT1 (log2fc = -5.39, p = 0.01) and CEACAM6 (log2fc = -6.38, p = 0.01) showing the strongest downregulation. Among 7 strongly (log2fc > 2, p ≤ 0.02) upregulated genes, CRP (log2fc = 5.06, p = 0.02) ranked first, and four others were associated with complement (C5, C4BPA, C8A, C8B). Total tumor-infiltrating lymphocytes (TIL) signature was decreased in SD-iCCA with elevated ratios of exhausted-CD8/TILs, NK/TILs, and cytotoxic cells/TILs while having decreased ratios of B-cells/TILs, mast cells/TILs and dendritic cells/TILs. The immune profiling signatures in SD-iCCA revealed downregulation in chemokine signaling pathways inclulding JAK2/3 and ERK1/2 as well as nearly all cytokine-cytokine receptor interaction pathways with the exception of the CXCL1/CXCR1-axis. CONCLUSION Immune patterns differed in SD-iCCA versus LD-iCCA. We identified potential biomarker candidate genes, including CRP, CEACAM6, DMBT1, and various complement factors that could be explored for augmented diagnostics and treatment decision-making.
Collapse
Affiliation(s)
- Simon Bernatz
- Department of Diagnostic and Interventional Radiology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Dr. Senckenberg Institute for Pathology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Falko Schulze
- Dr. Senckenberg Institute for Pathology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Julia Bein
- Dr. Senckenberg Institute for Pathology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Katrin Bankov
- Dr. Senckenberg Institute for Pathology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Department of Pediatric Oncology and Hematology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Scherwin Mahmoudi
- Department of Diagnostic and Interventional Radiology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Leon D Grünewald
- Department of Diagnostic and Interventional Radiology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Vitali Koch
- Department of Diagnostic and Interventional Radiology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Angelika Stehle
- Medical Clinic 1, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Andreas A Schnitzbauer
- Department of General, Visceral, Transplant and Thoracic Surgery, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Dirk Walter
- Medical Clinic 1, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Fabian Finkelmeier
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Medical Clinic 1, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Stefan Zeuzem
- Medical Clinic 1, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Peter J Wild
- Dr. Senckenberg Institute for Pathology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
| | - Maximilian N Kinzler
- Medical Clinic 1, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Wang J, Yang K, Yang X, Jin T, Tian Y, Dai C, Xu F. HHLA2 promotes hepatoma cell proliferation, migration, and invasion via SPP1/PI3K/AKT signaling pathway. Mol Carcinog 2024; 63:1275-1287. [PMID: 38578157 DOI: 10.1002/mc.23723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as one of the most malignant tumors characterized by poor prognosis and high mortality rates. Emerging evidence underscores the crucial role of the B7 protein family in various cancers, including HCC. However, the involvement of the human endogenous retrovirus H long-terminal repeat-associated protein 2 (HHLA2, or B7-H5) in HCC remains unclear. Immunohistochemistry was employed to assess the differential expression of HHLA2 between HCC and normal liver tissues. A battery of assays, including CCK8, EdU, tablet clone-forming, Transwell, and wound healing assays, were conducted to elucidate the function and potential mechanisms of HHLA2 in the malignant biological behaviors of HCC. Additionally, a xenograft mouse model was established to evaluate the tumorigenicity of hepatoma cell lines exhibiting different HHLA2 expression levels in vivo. Western blot analysis was used to analyze HHLA2, secretory phosphoprotein 1 (SPP1), and PI3K/AKT/mTOR levels. HHLA2 exhibited elevated expression in HCC tissues, correlating with poor tumor differentiation and shortened overall survival in HCC patients. In vitro experiments demonstrated that HHLA2 overexpression (OE) promoted the proliferation, migration, and invasion of hepatoma cells, while in vivo experiments revealed that HHLA2 OE enhanced HCC tumor growth. Conversely, inhibition of HHLA2 expression yielded the opposite effect. Downregulation of SPP1 inhibited the proliferation, migration, and invasion induced by HHLA2 OE, and this effect was linked to the PI3K/AKT/mTOR signaling pathway. Our findings indicate that HHLA2 promotes the proliferation, migration, and invasion of hepatoma cells via the SPP1/PI3K/AKT signaling pathway, establishing it as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Junqi Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ke Yang
- Department of Tradition Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Yang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
11
|
Gan W, Sun BY, Yang ZF, Ye C, Wang ZT, Zhou C, Sun GQ, Yi Y, Qiu SJ. Enhancing hepatocellular carcinoma management: prognostic value of integrated CCL17, CCR4, CD73, and HHLA2 expression analysis. J Cancer Res Clin Oncol 2024; 150:325. [PMID: 38914802 PMCID: PMC11196339 DOI: 10.1007/s00432-024-05832-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a critical global health concern, with existing treatments benefiting only a minority of patients. Recent findings implicate the chemokine ligand 17 (CCL17) and its receptor CCR4 as pivotal players in the tumor microenvironment (TME) of various cancers. This investigation aims to delineate the roles of CCL17 and CCR4 in modulating the tumor's immune landscape, assessing their potential as therapeutic interventions and prognostic markers in HCC. METHODS 873 HCC patients post-radical surgery from 2008 to 2012 at Zhongshan Hospital, Fudan University were retrospectively examined. These individuals were stratified into a training cohort (n = 354) and a validation cohort (n = 519). Through immunohistochemical analysis on HCC tissue arrays, the expressions of CCL17, CCR4, CD73, CD47, HHLA2, and PD-L1 were quantified. Survival metrics were analyzed using the Cox model, and a prognostic nomogram was devised via R software. RESULTS The investigation confirmed the presence of CCL17 and CCR4 within the cancerous and stromal compartments of HCC tissues, associating their heightened expression with adverse clinical markers and survival outcomes. Notably, the interplay between CD73 and CCR4 expression in tumor stroma highlighted a novel cellular entity, CCR4 + CD73 + stromal cells, impacting overall and relapse-free survival. A prognostic nomogram amalgamating these immunological markers and clinical variables was established, offering refined prognostic insights and aiding in the management of HCC. The findings suggest that reduced CCR4 and CCR4 + CD73 + cell prevalence may forecast improved outcomes post-TACE. CONCLUSION This comprehensive evaluation of CCR4, CCL17, and associated markers introduces a nuanced understanding of the HCC immunological milieu, proposing CCR4 + CD73 + stromal cells as critical to HCC pathogenesis and patient stratification.
Collapse
Affiliation(s)
- Wei Gan
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bao-Ye Sun
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Cheng Ye
- Department of Otolaryngology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Zhu-Tao Wang
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Cheng Zhou
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Guo-Qiang Sun
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China.
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Chen F, Sheng J, Li X, Gao Z, Zhao S, Hu L, Chen M, Fei J, Song Z. Unveiling the promise of PD1/PD-L1: A new dawn in immunotherapy for cholangiocarcinoma. Biomed Pharmacother 2024; 175:116659. [PMID: 38692063 DOI: 10.1016/j.biopha.2024.116659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Cholangiocarcinoma (CCA), a rare yet notably aggressive cancer, has experienced a surge in incidence in recent years. Presently, surgical resection remains the most effective curative strategy for CCA. Nevertheless, a majority of patients with CCA are ineligible for surgical removal at the time of diagnosis. For advanced stages of CCA, the combination of gemcitabine and cisplatin is established as the standard chemotherapy regimen. Despite this, treatment efficacy is often hindered by the development of resistance. In recent times, immune checkpoint inhibitors, particularly those that block programmed death 1 and its ligand (PD1/PD-L1), have emerged as promising strategies against a variety of cancers and are being increasingly integrated into the therapeutic landscape of CCA. A growing body of research supports that the use of PD1/PD-L1 monoclonal antibodies in conjunction with chemotherapy may significantly improve patient outcomes. This article seeks to meticulously review the latest studies on PD1/PD-L1 involvement in CCA, delving into their expression profiles, prognostic significance, contribution to oncogenic processes, and their potential clinical utility.
Collapse
Affiliation(s)
- Fei Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jian Sheng
- Department of Research and Teaching, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaoping Li
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhaofeng Gao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Siqi Zhao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Lingyu Hu
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Minjie Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Jianguo Fei
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
13
|
Kula A, Koszewska D, Kot A, Dawidowicz M, Mielcarska S, Waniczek D, Świętochowska E. The Importance of HHLA2 in Solid Tumors-A Review of the Literature. Cells 2024; 13:794. [PMID: 38786018 PMCID: PMC11119147 DOI: 10.3390/cells13100794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Cancer immunotherapy is a rapidly developing field of medicine that aims to use the host's immune mechanisms to inhibit and eliminate cancer cells. Antibodies targeting CTLA-4, PD-1, and its ligand PD-L1 are used in various cancer therapies. However, the most thoroughly researched pathway targeting PD-1/PD-L1 has many limitations, and multiple malignancies resist its effects. Human endogenous retrovirus-H Long repeat-associating 2 (HHLA2, known as B7H5/B7H7/B7y) is the youngest known molecule from the B7 family. HHLA2/TMIGD2/KIRD3DL3 is one of the critical pathways in modulating the immune response. Recent studies have demonstrated that HHLA2 has a double effect in modulating the immune system. The connection of HHLA2 with TMIGD2 induces T cell growth and cytokine production via an AKT-dependent signaling cascade. On the other hand, the binding of HHLA2 and KIR3DL3 leads to the inhibition of T cells and mediates tumor resistance against NK cells. This review aimed to summarize novel information about HHLA2, focusing on immunological mechanisms and clinical features of the HHLA2/KIR3DL3/TMIGD2 pathway in the context of potential strategies for malignancy treatment.
Collapse
Affiliation(s)
- Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (M.D.); (D.W.)
| | - Dominika Koszewska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (D.K.); (A.K.); (S.M.); (E.Ś.)
| | - Anna Kot
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (D.K.); (A.K.); (S.M.); (E.Ś.)
| | - Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (M.D.); (D.W.)
| | - Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (D.K.); (A.K.); (S.M.); (E.Ś.)
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (M.D.); (D.W.)
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (D.K.); (A.K.); (S.M.); (E.Ś.)
| |
Collapse
|
14
|
Kula A, Dawidowicz M, Mielcarska S, Świętochowska E, Waniczek D. Prognostic Value of HHLA2 in Patients with Solid Tumors: A Meta-Analysis. Int J Mol Sci 2024; 25:4760. [PMID: 38731979 PMCID: PMC11083681 DOI: 10.3390/ijms25094760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
HHLA2 is a checkpoint from the B7 family that can play a co-stimulatory or co-inhibitory role in cancer, depending on the binding receptor. The aim of this meta-analysis was to assess the relationship between HHLA2 levels and its impact on the prognosis of patients with solid cancers. The study used data from PubMed, Embase, Web of Science (WOS), Cochrane and SCOPUS databases. The R studio software was used for the data analysis. The study assessed overall survival (OS), disease-specific survival (DSS), progression-free survival (PFS), recurrence-free survival (RFS), and disease-free survival (DFS) by pooling appropriate hazard ratios (HR). Eighteen studies (2880 patients' data) were included. High expression of HHLA2 was associated with worse OS (HR = 1.58, 95% CI: 1.23-2.03), shorter RFS (HR = 1.95, 95% CI: 1.38-2.77) and worse DFS (HR = 1.45, 95% CI: 1.01-2.09) in patients with solid cancers. The current study suggests that high expression of HHLA2 is associated with poorer prognosis in patients with solid cancers.
Collapse
Affiliation(s)
- Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland;
| | - Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland;
| | - Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Zabrze, Poland; (S.M.); (E.Ś.)
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Zabrze, Poland; (S.M.); (E.Ś.)
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland;
| |
Collapse
|
15
|
Burke KP, Chaudhri A, Freeman GJ, Sharpe AH. The B7:CD28 family and friends: Unraveling coinhibitory interactions. Immunity 2024; 57:223-244. [PMID: 38354702 PMCID: PMC10889489 DOI: 10.1016/j.immuni.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Immune responses must be tightly regulated to ensure both optimal protective immunity and tolerance. Costimulatory pathways within the B7:CD28 family provide essential signals for optimal T cell activation and clonal expansion. They provide crucial inhibitory signals that maintain immune homeostasis, control resolution of inflammation, regulate host defense, and promote tolerance to prevent autoimmunity. Tumors and chronic pathogens can exploit these pathways to evade eradication by the immune system. Advances in understanding B7:CD28 pathways have ushered in a new era of immunotherapy with effective drugs to treat cancer, autoimmune diseases, infectious diseases, and transplant rejection. Here, we discuss current understanding of the mechanisms underlying the coinhibitory functions of CTLA-4, PD-1, PD-L1:B7-1 and PD-L2:RGMb interactions and less studied B7 family members, including HHLA2, VISTA, BTNL2, and BTN3A1, as well as their overlapping and unique roles in regulating immune responses, and the therapeutic potential of these insights.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Li Y, Yang Q, Yang X, Ge J, Xu T, Liu H. HHLA2 is more significantly associated with poor prognosis in TSCC than PD-L1. J Oral Pathol Med 2024; 53:159-168. [PMID: 38321252 DOI: 10.1111/jop.13514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND The incidence and mortality of tongue squamous cell carcinoma have shown an alarming increase in recent years. This study aimed to investigate the potential of HHLA2 as an immune checkpoint in comparison to PD-L1. METHODS We obtained RNA-seq data from TCGA to study HHLA2 and PD-L1 expression across various tissues. Using the CIBERSORT package, we estimated cell type abundances within mixed populations based on gene expression profiles. Immunohistochemistry was performed to analyze HHLA2 and PD-L1 expression in Tongue squamous cell carcinoma. Prognostic evaluation was carried out with Kaplan-Meier curves and the log-rank test. To explore factors affecting HHLA2, univariate and multivariate Cox regression analyses were conducted with the COX regression model. Additionally, we used single-cell RNA sequencing data from the GEO database for gene set enrichment analysis with genes strongly correlated with HHLA2. RESULTS Our analysis of RNA-seq data unveiled a significant upregulation of HHLA2 and PD-L1 expression in primary tumors when compared with normal tissue. HHLA2 exhibited a positive expression rate of 36.9%, while PD-L1 had a positive expression rate of 24.6%. HHLA2 emerged as a noteworthy independent risk factor impacting the overall survival of Tongue squamous cell carcinoma patients. The analysis of scRNA-seq data shed light on the involvement of HHLA2 in key pathways related to cell cycle regulation and interferon alpha/beta signaling. CONCLUSIONS This study suggests that in the context of Tongue squamous cell carcinoma, HHLA2 may represent a more promising target for immunotherapy when compared with PD-L1.
Collapse
Affiliation(s)
- Yi Li
- Department of Oral and Maxillofacial Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qiong Yang
- Department of Oral and Maxillofacial Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xu Yang
- Department of Oral and Maxillofacial Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jie Ge
- Department of Oral and Maxillofacial Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Tianshu Xu
- Department of Oral and Maxillofacial Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - HuaLian Liu
- Department of Oral and Maxillofacial Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
17
|
Li C, Bie L, Chen M, Ying J. Therapeutic significance of tumor microenvironment in cholangiocarcinoma: focus on tumor-infiltrating T lymphocytes. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1310-1327. [PMID: 38213535 PMCID: PMC10776604 DOI: 10.37349/etat.2023.00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 01/13/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive type of adenocarcinoma distinguished by its invasiveness. Depending on specific anatomical positioning within the biliary tree, CCA can be categorized into intrahepatic CCA (ICCA), perihilar CCA (pCCA) and distal CCA (dCCA). In recent years, there has been a significant increase in the global prevalence of CCA. Unfortunately, many CCA patients are diagnosed at an advanced stage, which makes surgical resection impossible. Although systemic chemotherapy is frequently used as the primary treatment for advanced or recurrent CCA, its effectiveness is relatively low. Therefore, immunotherapy has emerged as a promising avenue for advancing cancer treatment research. CCA exhibits a complex immune environment within the stromal tumor microenvironment (TME), comprising a multifaceted immune landscape and a tumor-reactive stroma. A deeper understanding of this complex TME is indispensable for identifying potential therapeutic targets. Thus, targeting tumor immune microenvironment holds promise as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Chaoqun Li
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, Zhejiang, China
| | - Lei Bie
- Department of Thoracic Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Muhua Chen
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Jieer Ying
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| |
Collapse
|
18
|
Cai P, Wu Z, Yang X, Wang N, Yang Y. The prognostic value of Forkhead box P3 regulatory T cells in biliary tract cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e36608. [PMID: 38115302 PMCID: PMC10727656 DOI: 10.1097/md.0000000000036608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND This study aimed to explore the value of tumor-infiltrating Forkhead box P3(FoxP3+) regulatory T cells (Tregs) in evaluating the prognosis of biliary tract cancer. METHODS Four electronic databases were searched using 2 computers: PubMed, Embase, Web of Science, and Cochrane Library. The vocabulary and syntax were adapted according to the database. Two researchers independently selected the studies, collected information, and assessed the risk of bias. The Meta-analysis was performed using STATA 17.0, and HR and its corresponding 95% CI were used to evaluate the correlation between FoxP3+ Tregs and the overall survival of patients with biliary tract cancer. In addition, the quality of the included studies was evaluated. RESULTS Ten articles were included in this study. The results of the meta-analysis showed that patients with high FoxP3+ Tregs infiltration had worse overall survival (OS) (HR = 1.34,95% CI 1.16 to 1.71; P < .001). Subgroup analysis of gallbladder carcinoma and cholangiocarcinoma showed that the high infiltration of FoxP3+ Tregs was significantly correlated with the OS of the former (HR = 1.55,95% CI 1.11 to 2.00; P < .001), but not with the OS of the latter (HR = 1.00,95% CI 0.62 to 1.38; P > .05). CONCLUSIONS Our meta-analysis reveals that high infiltration of FoxP3 + Tregs is significantly associated with reduced overall survival in gallbladder carcinoma, endorsing their use as a prognostic biomarker for this subtype. In contrast, no significant prognostic correlation was identified for FoxP3+ Tregs in cholangiocarcinoma, indicating the need for subtype-specific evaluation of their prognostic relevance in biliary tract cancers.
Collapse
Affiliation(s)
- Pengcheng Cai
- Department of General Surgery, the First People’s Hospital of Shuangliu District, Chengdu, Sichuan Province, China
| | - Zhongli Wu
- Department of General Surgery, the First People’s Hospital of Shuangliu District, Chengdu, Sichuan Province, China
| | - Xingjian Yang
- Department of General Surgery, the First People’s Hospital of Shuangliu District, Chengdu, Sichuan Province, China
| | - Na Wang
- Department of General Surgery, the First People’s Hospital of Shuangliu District, Chengdu, Sichuan Province, China
| | - Yong Yang
- Department of General Surgery, the First People’s Hospital of Shuangliu District, Chengdu, Sichuan Province, China
| |
Collapse
|
19
|
Gawesh ZM, Ibrahim EM, ElKalla HMHR, Awad AAH, Mohamed MA. Evaluation of HHLA2 and CD8 Immunohistochemical Expression in Colorectal Carcinoma and Their Prognostic Significance. Asian Pac J Cancer Prev 2023; 24:4309-4319. [PMID: 38156868 PMCID: PMC10909113 DOI: 10.31557/apjcp.2023.24.12.4309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Colorectal carcinoma (CRC) is the third most common malignancy worldwide. Human endogenous retrovirus H long terminal repeat-associating protein 2 (HHLA2) is a novel immune checkpoint molecule. The association between HHLA2 expression and clinicopathological features and its prognostic significance in CRC patients are still controversial. The aim of this study is to evaluate the prognostic value of immunohistochemical (IHC) expression of HHLA2 and CD8 in CRC. MATERIAL AND METHODS This retrospective study included 134 cases diagnosed with primary CRC at the Gastrointestinal Surgery Center (GISC) department, Mansoura Faculty of Medicine, during the period from December 2014 to December 2018. Clinicopathological and survival data were collected. IHC for HHLA2 and CD8 was performed, and they were correlated with clinicopathological parameters and patient prognosis. RESULTS Among 134 CRC cases, high HHLA2 expression was detected in 73 (54.5%). High HHLA2 expression was significantly related to the depth of invasion (P = 0.005*), lymph node metastasis (P = 0.01*), tumor stage )P = 0.002*), and distant recurrence )P = 0.012*). Multivariate analysis spotted HHLA2 high expression as an independent prognostic predictor for OS in CRC (P = 0.03*) and DFS (P = 0.008*). CD8 shows a significant correlation with tumor infiltrating lymphocytes (TILs) (P ≤ 0.001*), absence of metastasis ((P = 0.029*), absence of tumor deposits (P=0.014*). However, CD8 shows no significant association with survival or HHLA2. CONCLUSION HHLA2 is an independent prognostic factor for the overall survival and disease free survival of CRC patients and can predict poor prognosis in CRC patients.
Collapse
Affiliation(s)
| | | | | | | | - Mie Ali Mohamed
- Department of Pathology, Mansoura Faculty of Medicine, Mansoura, Egypt.
| |
Collapse
|
20
|
Gehl V, O'Rourke CJ, Andersen JB. Immunogenomics of cholangiocarcinoma. Hepatology 2023:01515467-990000000-00649. [PMID: 37972940 DOI: 10.1097/hep.0000000000000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
The development of cholangiocarcinoma spans years, if not decades, during which the immune system becomes corrupted and permissive to primary tumor development and metastasis. This involves subversion of local immunity at tumor sites, as well as systemic immunity and the wider host response. While immune dysfunction is a hallmark of all cholangiocarcinoma, the specific steps of the cancer-immunity cycle that are perturbed differ between patients. Heterogeneous immune functionality impacts the evolutionary development, pathobiological behavior, and therapeutic response of these tumors. Integrative genomic analyses of thousands of primary tumors have supported a biological rationale for immune-based stratification of patients, encompassing immune cell composition and functionality. However, discerning immune alterations responsible for promoting tumor initiation, maintenance, and progression from those present as bystander events remains challenging. Functionally uncoupling the tumor-promoting or tumor-suppressing roles of immune profiles will be critical for identifying new immunomodulatory treatment strategies and associated biomarkers for patient stratification. This review will discuss the immunogenomics of cholangiocarcinoma, including the impact of genomic alterations on immune functionality, subversion of the cancer-immunity cycle, as well as clinical implications for existing and novel treatment strategies.
Collapse
Affiliation(s)
- Virag Gehl
- Department of Health and Medical Sciences, Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
21
|
Kamali AN, Bautista JM, Eisenhut M, Hamedifar H. Immune checkpoints and cancer immunotherapies: insights into newly potential receptors and ligands. Ther Adv Vaccines Immunother 2023; 11:25151355231192043. [PMID: 37662491 PMCID: PMC10469281 DOI: 10.1177/25151355231192043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/14/2023] [Indexed: 09/05/2023] Open
Abstract
Checkpoint markers and immune checkpoint inhibitors have been increasingly identified and developed as potential immunotherapeutic targets in various human cancers. Despite valuable efforts to discover novel immune checkpoints and their ligands, the precise roles of their therapeutic functions, as well as the broad identification of their counterpart receptors, remain to be addressed. In this context, it has been suggested that various putative checkpoint receptors can be induced upon activation. In the tumor microenvironment, T cells, as crucial immune response against malignant diseases as well as other immune central effector cells, such as natural killer cells, are regulated via co-stimulatory or co-inhibitory signals from immune or tumor cells. Studies have shown that exposure of T cells to tumor antigens upregulates the expression of inhibitory checkpoint receptors, leading to T-cell dysfunction or exhaustion. Although targeting immune checkpoint regulators has shown relative clinical efficacy in some tumor types, most trials in the field of cancer immunotherapies have revealed unsatisfactory results due to de novo or adaptive resistance in cancer patients. To overcome these obstacles, combinational therapies with newly discovered inhibitory molecules or combined blockage of several checkpoints provide a rationale for further research. Moreover, precise identification of their receptors counterparts at crucial checkpoints is likely to promise effective therapies. In this review, we examine the prospects for the application of newly emerging checkpoints, such as T-cell immunoglobulin and mucin domain 3, lymphocyte activation gene-3, T-cell immunoreceptor with Ig and ITIM domains (TIGIT), V-domain Ig suppressor of T-cell activation (VISTA), new B7 family proteins, and B- and T-cell lymphocyte attenuator, in association with immunotherapy of malignancies. In addition, their clinical and biological significance is discussed, including their expression in various human cancers, along with their roles in T-cell-mediated immune responses.
Collapse
Affiliation(s)
- Ali N. Kamali
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Simin Dasht Industrial Area, Karaj, Iran
- CinnaGen Research and Production Co., Alborz 3165933155, Iran
| | - José M. Bautista
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- Research Institute Hospital 12 de Octubre, Madrid, Spain
| | - Michael Eisenhut
- Department of Pediatrics, Luton and Dunstable University Hospital NHS Foundation Trust, Luton, UK
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co., Alborz, Iran
| |
Collapse
|
22
|
Frega G, Cossio FP, Banales JM, Cardinale V, Macias RIR, Braconi C, Lamarca A. Lacking Immunotherapy Biomarkers for Biliary Tract Cancer: A Comprehensive Systematic Literature Review and Meta-Analysis. Cells 2023; 12:2098. [PMID: 37626908 PMCID: PMC10453268 DOI: 10.3390/cells12162098] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Immunotherapy has recently been incorporated into the spectrum of biliary tract cancer (BTC) treatment. The identification of predictive response biomarkers is essential in order to identify those patients who may benefit most from this novel treatment option. Here, we propose a systematic literature review and a meta-analysis of PD-1, PD-L1, and other immune-related biomarker expression levels in patients with BTC. METHODS Prisma guidelines were followed for this systematic review and meta-analysis. Eligible studies were searched on PubMed. Studies published between 2017 and 2022, reporting data on PD-1/PD-L1 expression and other immune-related biomarkers in patients with BTC, were considered eligible. RESULTS A total of 61 eligible studies were identified. Despite the great heterogeneity between 39 studies reporting data on PD-L1 expression, we found a mean PD-L1 expression percentage (by choosing the lowest cut-off per study) of 25.6% (95% CI 21.0 to 30.3) in BTCs. The mean expression percentages of PD-L1 were 27.3%, 21.3%, and 27.4% in intrahepatic cholangiocarcinomas (iCCAs-15 studies), perihilar-distal CCAs (p/dCCAs-7 studies), and gallbladder cancer (GBC-5 studies), respectively. Furthermore, 4.6% (95% CI 2.38 to 6.97) and 2.5% (95% CI 1.75 to 3.34) of BTCs could be classified as TMB-H and MSI/MMRd tumors, respectively. CONCLUSION From our analysis, PD-L1 expression was found to occur approximately in 26% of BTC patients, with minimal differences based on anatomical location. TMB-H and MSI molecular phenotypes occurred less frequently. We still lack a reliable biomarker, especially in patients with mismatch-proficient tumors, and we must need to make an effort to conceive new prospective biomarker discovery studies.
Collapse
Affiliation(s)
- Giorgio Frega
- Osteoncology, Soft Tissue and Bone Sarcomas, Innovative Therapy Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Fernando P. Cossio
- Department of Organic Chemistry I, Center of Innovation in Advanced Chemistry (ORFEO-CINQA), University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), 48940 Donostia-San Sebastian, Spain;
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute—Donostia University Hospital, University of the Basque Country (UPV/EHU), Ikerbasque, 48940 San Sebastian, Spain;
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31009 Pamplona, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy;
| | - Rocio I. R. Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, 37007 Salamanca, Spain
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
- Beatson West of Scotland Cancer Centre, Glasgow G12 0YN, UK
| | - Angela Lamarca
- Department of Oncology—OncoHealth Institute, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
- Department of Medical Oncology, The Christie NHS Foundation, Manchester, Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
23
|
Pulanco MC, Madsen AT, Tanwar A, Corrigan DT, Zang X. Recent advancements in the B7/CD28 immune checkpoint families: new biology and clinical therapeutic strategies. Cell Mol Immunol 2023; 20:694-713. [PMID: 37069229 PMCID: PMC10310771 DOI: 10.1038/s41423-023-01019-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/25/2023] [Indexed: 04/19/2023] Open
Abstract
The B7/CD28 families of immune checkpoints play vital roles in negatively or positively regulating immune cells in homeostasis and various diseases. Recent basic and clinical studies have revealed novel biology of the B7/CD28 families and new therapeutics for cancer therapy. In this review, we discuss the newly discovered KIR3DL3/TMIGD2/HHLA2 pathways, PD-1/PD-L1 and B7-H3 as metabolic regulators, the glycobiology of PD-1/PD-L1, B7x (B7-H4) and B7-H3, and the recently characterized PD-L1/B7-1 cis-interaction. We also cover the tumor-intrinsic and -extrinsic resistance mechanisms to current anti-PD-1/PD-L1 and anti-CTLA-4 immunotherapies in clinical settings. Finally, we review new immunotherapies targeting B7-H3, B7x, PD-1/PD-L1, and CTLA-4 in current clinical trials.
Collapse
Affiliation(s)
- Marc C Pulanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Anne T Madsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
- Department of Urology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Ankit Tanwar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Devin T Corrigan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Urology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, 10461, USA.
| |
Collapse
|
24
|
Palmer WH, Leaton LA, Codo AC, Crute B, Roest J, Zhu S, Petersen J, Tobin RP, Hume PS, Stone M, van Bokhoven A, Gerich ME, McCarter MD, Zhu Y, Janssen WJ, Vivian JP, Trowsdale J, Getahun A, Rossjohn J, Cambier J, Loh L, Norman PJ. Polymorphic KIR3DL3 expression modulates tissue-resident and innate-like T cells. Sci Immunol 2023; 8:eade5343. [PMID: 37390222 PMCID: PMC10360443 DOI: 10.1126/sciimmunol.ade5343] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/07/2023] [Indexed: 07/02/2023]
Abstract
Most human killer cell immunoglobulin-like receptors (KIR) are expressed by natural killer (NK) cells and recognize HLA class I molecules as ligands. KIR3DL3 is a conserved but polymorphic inhibitory KIR recognizing a B7 family ligand, HHLA2, and is implicated for immune checkpoint targeting. The expression profile and biological function of KIR3DL3 have been somewhat elusive, so we searched extensively for KIR3DL3 transcripts, revealing highly enriched expression in γδ and CD8+ T cells rather than NK cells. These KIR3DL3-expressing cells are rare in the blood and thymus but more common in the lungs and digestive tract. High-resolution flow cytometry and single-cell transcriptomics showed that peripheral blood KIR3DL3+ T cells have an activated transitional memory phenotype and are hypofunctional. The T cell receptor (TCR) usage is biased toward genes from early rearranged TCR-α variable segments or Vδ1 chains. In addition, we show that TCR-mediated stimulation can be inhibited through KIR3DL3 ligation. Whereas we detected no impact of KIR3DL3 polymorphism on ligand binding, variants in the proximal promoter and at residue 86 can reduce expression. Together, we demonstrate that KIR3DL3 is up-regulated alongside unconventional T cell stimulation and that individuals may vary in their ability to express KIR3DL3. These results have implications for the personalized targeting of KIR3DL3/HHLA2 checkpoint inhibition.
Collapse
Affiliation(s)
- William H. Palmer
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Laura Ann Leaton
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Ana Campos Codo
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Bergren Crute
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - James Roest
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | - Shiying Zhu
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | - Richard P. Tobin
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | - Patrick S. Hume
- Department of Medicine, National Jewish Health, Denver, CO,
USA
| | - Matthew Stone
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | - Adrie van Bokhoven
- Department of Pathology, University of Colorado School of
Medicine, Aurora, CO, USA
| | - Mark E. Gerich
- Division of Gastroenterology and Hepatology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Martin D. McCarter
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | - Yuwen Zhu
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Julian P. Vivian
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | | | - Andrew Getahun
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University,
School of Medicine, Heath Park, Cardiff, UK
| | - John Cambier
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Liyen Loh
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Microbiology and Immunology, University of
Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville,
Australia
| | - Paul J. Norman
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
25
|
Stricker E, Peckham-Gregory EC, Scheurer ME. CancerHERVdb: Human Endogenous Retrovirus (HERV) Expression Database for Human Cancer Accelerates Studies of the Retrovirome and Predictions for HERV-Based Therapies. J Virol 2023; 97:e0005923. [PMID: 37255431 PMCID: PMC10308937 DOI: 10.1128/jvi.00059-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
In this study, we sought to create a database summarizing the expression of human endogenous retroviruses (HERVs) in various human cancers. HERVs are suitable therapeutic targets due to their abundance in the human genome, overexpression in various malignancies, and involvement in various cancer pathways. We identified articles on HERVs from PubMed and then prescreened and automatically categorized them using the portable document format (PDF) data extractor (PDE) R package. We discovered 196 primary research articles with HERV expression data from cancer tissues or cancer cell lines. HERV RNA and protein expression was reported in brain, breast, cervical, colorectal, endocrine, gastrointestinal, kidney/renal/pelvis, liver, lung, genital, oral cavity, pharynx, ovary, pancreas, prostate, skin, testicular, urinary/bladder, and uterus cancers, leukemias, lymphomas, and myelomas. Additionally, we discovered reports of HERV RNA-only overexpression in soft tissue cancers including heart, thyroid, bone, and joint cancers. The CancerHERVdb database is hosted in the form of interactive visualizations of the expression data and a summary data table at https://erikstricker.shinyapps.io/cancerHERVdb/. The user can filter the findings according to cancer type, HERV family, HERV gene, or a combination thereof and easily export the results with the corresponding reference list. In our report, we provide examples of potential uses of the CancerHERVdb, such as identification of cancers suitable for off-target treatment with the multiple sclerosis-associated retrovirus (MSRV)-Env-targeting antibody GNbAC1 (now named temelimab) currently in phase 2b clinical trials for multiple sclerosis or the discovery of cancers overexpressing HERV-H long terminal repeat-associating 2 (HHLA2), a newly emerging immune checkpoint. In summary, the CancerHERVdb allows cross-study comparisons, encourages data exploration, and informs about potential off-target effects of HERV-targeting treatments. IMPORTANCE Human endogenous retroviruses (HERVs), which in the past have inserted themselves in various regions of the human genome, are to various degrees activated in virtually every cancer type. While a centralized naming system and resources summarizing HERV levels in cancers are lacking, the CancerHERVdb database provides a consolidated resource for cross-study comparisons, data exploration, and targeted searches of HERV activation. The user can access data extracted from hundreds of articles spanning 25 human cancer categories. Therefore, the CancerHERVdb database can aid in the identification of prognostic and risk markers, drivers of cancer, tumor-specific targets, multicancer spanning signals, and targets for immune therapies. Consequently, the CancerHERVdb database is of direct relevance for clinical as well as basic research.
Collapse
Affiliation(s)
- Erik Stricker
- Baylor College of Medicine, Department of Molecular Virology and Microbiology, Houston, Texas, USA
- Baylor College of Medicine, Department of Pediatrics, Houston, Texas, USA
| | | | | |
Collapse
|
26
|
Su Q, Du J, Xiong X, Xie X, Wang L. B7-H7: A potential target for cancer immunotherapy. Int Immunopharmacol 2023; 121:110403. [PMID: 37290327 DOI: 10.1016/j.intimp.2023.110403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Cancer immunotherapy enhances the body's immunity against tumors by mitigating immune escape. Compared with traditional chemotherapy, immunotherapy has the advantages of fewer drugs, a wider range of action and fewer side effects. B7-H7 (also known as HHLA2, B7y) is a member of the B7 family of costimulatory molecules that was discovered more than 20 years ago. B7-H7 is mostly expressed in organs such as the breast, intestine, gallbladder and placenta and is detected predominantly in monocytes/macrophages in the immune system. Its expression is upregulated after stimulation by inflammatory factors such as lipopolysaccharide and interferon-γ. B7-H7/transmembrane and immunoglobulin domain containing 2 (TMIGD2) and killer cell immunoglobulin-like receptor, three Ig domains and long cytoplasmic tail 3 (KIR3DL3)-B7-H7 are the two currently confirmed signaling pathways for B7-H7. An increasing number of studies have demonstrated that B7-H7 is widely present in a variety of human tumor tissues, especially in programmed cell death-1 (PD-L1)-negative human tumors. B7-H7 promotes tumor progression, disrupts T-cell-mediated antitumor immunity, and inhibits immune surveillance. B7-H7 also triggers tumor immune escape and is associated with clinical stage, depth of tumor infiltration, metastasis, prognosis, and survival related to different tumor types. Multiple studies have shown that B7-H7 is a promising immunotherapeutic target. Herein, review the current literature on the expression, regulation, receptors and function of B7-H7 and its regulation/function in tumors.
Collapse
Affiliation(s)
- Quanping Su
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, China; Key Laboratory of Neurophysiology, Health Commission of Shandong Province, Linyi, Shandong Province, China; Linyi Key Laboratory of Tumor Biology, Linyi, Shandong Province, China; Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jingyi Du
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, China; School of Cinical Medicine, Shandong First Medical Universiy & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Xingfang Xiong
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, China; Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xiaoli Xie
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, China; Key Laboratory of Neurophysiology, Health Commission of Shandong Province, Linyi, Shandong Province, China; Linyi Key Laboratory of Tumor Biology, Linyi, Shandong Province, China; Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| | - Lijuan Wang
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, China; Key Laboratory of Neurophysiology, Health Commission of Shandong Province, Linyi, Shandong Province, China; Linyi Key Laboratory of Tumor Biology, Linyi, Shandong Province, China; Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Hematology, Linyi People's Hospital, Linyi, Shandong Province, China.
| |
Collapse
|
27
|
Mortezaee K. HHLA2 immune-regulatory roles in cancer. Biomed Pharmacother 2023; 162:114639. [PMID: 37011487 DOI: 10.1016/j.biopha.2023.114639] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Human endogenous retrovirus H long terminal repeat-associating protein 2 (HHLA2 or B7-H7) is a newly discovered B7 family member. HHLA2 is aberrantly expressed in solid tumors and exerts co-stimulatory or co-inhibitory activities dependent on interaction with counter receptors. HHLA2 represents co-stimulatory effects upon interaction with transmembrane and immunoglobulin domain containing 2 (TMIGD2, also called CD28H), but its interaction with killer cell Ig-like receptor, three Ig domains and long cytoplasmic tail 3 (KIR3DL3) renders co-inhibitory effects. TMIGD2 is mainly expressed on resting or naïve T cells, whereas expression of KIR3DL3 occurs on activated T cells. HHLA2/KIR3DL3 attenuates responses from both innate and adaptive anti-tumor immunity, and the activity within this axis is regarded as a biomarker of weak prognosis in cancer patients. HHLA2/KIR3DL3 promotes CD8+ T cell exhaustion and induces macrophage polarity toward pro-tumor M2 phenotype. HHLA2 represents diverse expression profile and activity in tumor and stroma. Tumoral expression of HHLA2 is presumably higher compared with programmed death-ligand 1 (PD-L1), and HHLA2 co-expression with PD-L1 is indicative of more severe outcomes. A suggested strategy in patients with HHLA2high cancer is to use monoclonal antibodies for specifically suppressing the HHLA2 inhibitory receptor KIR3DL3, not the HHLA2 ligand. TMIGD2 can be a target for development of agonistic bispecific antibodies for hampering tumor resistance to the programmed death-1 (PD-1)/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
28
|
Fu Y, Zheng P, Zheng X, Chen L, Kong C, Liu W, Li S, Jiang J. Downregulation of HHLA2 inhibits ovarian cancer progression via the NF-κB signaling pathway and suppresses the expression of CA9. Cell Immunol 2023; 388-389:104730. [PMID: 37210768 DOI: 10.1016/j.cellimm.2023.104730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
HHLA2 has been recently demonstrated to play multifaceted roles in several types of cancers. However, its underlying mechanism in the progression of human ovarian cancer (OC) remains largely unexplored. In the present study, we aimed to determine whether downregulation of HHLA2 inhibited malignant phenotypes of human OC cells and explore its specific mechanism. Our results revealed that downregulation of HHLA2 by transfection with a lentiviral vector significantly suppressed the viability, invasion, and migration of OC cells. Interaction study showed that downregulation of HHLA2 in OC cells reduced the expression of CA9 and increased the expressions of p-IKKβ and p-RelA. Conversely, the viability, invasion, and migration of HHLA2-depleted OC cells were increased when CA9 was upregulated. In vivo, we found that downregulation of HHLA2 significantly inhibited tumor growth, which was reversed by CA9 overexpression. In addition, downregulation of HHLA2 inhibited the OC progression via activating the NF-κB signaling pathway and decreasing the expression of CA9. Collectively, our data suggested a link between HHLA2 and NF-κB axis in the pathogenesis of OC, and these findings might provide valuable insights into the development of novel potential therapeutic targets for OC.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China; Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Panpan Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China; Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China; Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China; Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Caixia Kong
- Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Wenzhi Liu
- Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Shuping Li
- Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China; Institute of Cell Therapy, Soochow University, Changzhou, China.
| |
Collapse
|
29
|
Stricker E, Peckham-Gregory EC, Scheurer ME. HERVs and Cancer-A Comprehensive Review of the Relationship of Human Endogenous Retroviruses and Human Cancers. Biomedicines 2023; 11:936. [PMID: 36979914 PMCID: PMC10046157 DOI: 10.3390/biomedicines11030936] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Genomic instability and genetic mutations can lead to exhibition of several cancer hallmarks in affected cells such as sustained proliferative signaling, evasion of growth suppression, activated invasion, deregulation of cellular energetics, and avoidance of immune destruction. Similar biological changes have been observed to be a result of pathogenic viruses and, in some cases, have been linked to virus-induced cancers. Human endogenous retroviruses (HERVs), once external pathogens, now occupy more than 8% of the human genome, representing the merge of genomic and external factors. In this review, we outline all reported effects of HERVs on cancer development and discuss the HERV targets most suitable for cancer treatments as well as ongoing clinical trials for HERV-targeting drugs. We reviewed all currently available reports of the effects of HERVs on human cancers including solid tumors, lymphomas, and leukemias. Our review highlights the central roles of HERV genes, such as gag, env, pol, np9, and rec in immune regulation, checkpoint blockade, cell differentiation, cell fusion, proliferation, metastasis, and cell transformation. In addition, we summarize the involvement of HERV long terminal repeat (LTR) regions in transcriptional regulation, creation of fusion proteins, expression of long non-coding RNAs (lncRNAs), and promotion of genome instability through recombination.
Collapse
Affiliation(s)
- Erik Stricker
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| | | | - Michael E. Scheurer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| |
Collapse
|
30
|
Sun BY, Yang ZF, Wang ZT, Liu G, Zhou C, Zhou J, Fan J, Gan W, Yi Y, Qiu SJ. Integrative analyses identify CD73 as a prognostic biomarker and immunotherapeutic target in intrahepatic cholangiocarcinoma. World J Surg Oncol 2023; 21:90. [PMID: 36899373 PMCID: PMC9999525 DOI: 10.1186/s12957-023-02970-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND CD73 promotes progression in several malignancies and is considered as a novel immune checkpoint. However, the function of CD73 in intrahepatic cholangiocarcinoma (ICC) remains uncertain. In this study, we aim to investigate the role of CD73 in ICC. METHODS Multi-omics data of 262 ICC patients from the FU-iCCA cohort were analyzed. Two single-cell datasets were downloaded to examine the expression of CD73 at baseline and in response to immunotherapy. Functional experiments were performed to explore the biological functions of CD73 in ICC. The expression of CD73 and HHLA2 and infiltrations of CD8 + , Foxp3 + , CD68 + , and CD163 + immune cells were evaluated by immunohistochemistry in 259 resected ICC samples from Zhongshan Hospital. The prognostic value of CD73 was assessed by Cox regression analysis. RESULTS CD73 correlated with poor prognosis in two ICC cohorts. Single-cell atlas of ICC indicated high expression of CD73 on malignant cells. TP53 and KRAS gene mutations were more frequent in patients with high CD73 expression. CD73 promoted ICC proliferation, migration, invasion, and epithelial-mesenchymal transition. High CD73 expression was associated with a higher ratio of Foxp3 + /CD8 + tumor-infiltrating lymphocytes (TILs) and CD163 + /CD68 + tumor-associated macrophages (TAMs). A positive correlation between CD73 and CD44 was observed, and patients with high CD73 expression showed elevated expression of HHLA2. CD73 expression in malignant cells was significantly upregulated in response to immunotherapy. CONCLUSIONS High expression of CD73 is associated with poor prognosis and a suppressive tumor immune microenvironment in ICC. CD73 could potentially be a novel biomarker for prognosis and immunotherapy in ICC.
Collapse
Affiliation(s)
- Bao-Ye Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zhu-Tao Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Gao Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Cheng Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Wei Gan
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
31
|
Yu X, Zhu L, Wang T, Chen J. Immune microenvironment of cholangiocarcinoma: Biological concepts and treatment strategies. Front Immunol 2023; 14:1037945. [PMID: 37138880 PMCID: PMC10150070 DOI: 10.3389/fimmu.2023.1037945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Cholangiocarcinoma is characterized by a poor prognosis with limited treatment and management options. Chemotherapy using gemcitabine with cisplatin is the only available first-line therapy for patients with advanced cholangiocarcinoma, although it offers only palliation and yields a median survival of < 1 year. Recently there has been a resurgence of immunotherapy studies focusing on the ability of immunotherapy to inhibit cancer growth by impacting the tumor microenvironment. Based on the TOPAZ-1 trial, the US Food and Drug Administration has approved the combination of durvalumab and gemcitabine with cisplatin as the first-line treatment of cholangiocarcinoma. However, immunotherapy, like immune checkpoint blockade, is less effective in cholangiocarcinoma than in other types of cancer. Although several factors such as the exuberant desmoplastic reaction are responsible for cholangiocarcinoma treatment resistance, existing literature on cholangiocarcinoma cites the inflammatory and immunosuppressive environment as the most common factor. However, mechanisms activating the immunosuppressive tumor microenvironment contributing to cholangiocarcinoma drug resistance are complicated. Therefore, gaining insight into the interplay between immune cells and cholangiocarcinoma cells, as well as the natural development and evolution of the immune tumor microenvironment, would provide targets for therapeutic intervention and improve therapeutic efficacy by developing multimodal and multiagent immunotherapeutic approaches of cholangiocarcinoma to overcome the immunosuppressive tumor microenvironment. In this review, we discuss the role of the inflammatory microenvironment-cholangiocarcinoma crosstalk and reinforce the importance of inflammatory cells in the tumor microenvironment, thereby highlighting the explanatory and therapeutic shortcomings of immunotherapy monotherapy and proposing potentially promising combinational immunotherapeutic strategies.
Collapse
Affiliation(s)
- Xianzhe Yu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Gastrointestinal Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ting Wang
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiang Chen
- Department of General Surgery, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- *Correspondence: Jiang Chen,
| |
Collapse
|
32
|
Construction and Validation of a Novel Immune Checkpoint-Related Model in Clear Cell Renal Cell Carcinoma. DISEASE MARKERS 2022; 2022:9010514. [PMID: 36618968 PMCID: PMC9822741 DOI: 10.1155/2022/9010514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 01/01/2023]
Abstract
Background With the highest mortality and metastasis rate, kidney renal clear cell carcinoma (KIRC) is one of the most common urological malignant tumors and not sensitive to chemotherapy and radiotherapy. Immunotherapy, which proves to be effective and a big progression, such as PD-1/PD-L1 inhibitors, is not sensitive to all KIRC patients. To predict prognosis and immunotherapy response, a novel immune checkpoint gene- (ICG-) related model is essential in clinics. Methods From the public database-downloaded dataset, a novel ICG-related model for predicting prognosis and immunotherapy response in KIRC patients was built up and verified with R packages and Cox regression analysis. The Kaplan-Meier curve was plotted. Results 39 ICGs were identified to have different expression in KIRC patients and enriched in immune-related biological pathways and activities. Three ICGs (CTLA4, TNFSF14, and HHLA2) were screened to generate KIRC-ICG model. The KIRC-ICG model was verified to be effective. With conducting KIRC-SYS model, KIRC-ICGscore was verified to be an independent factor regardless of age, gender, stage, grade, and TNM stage. Compared to the ICG-low subgroup, the ICG-high subgroup had more immune activities. KIRC-ICGscore was significantly positively correlated with the expression of Treg markers. KIRC-ICG model could also be reliable to predict immunotherapy response. Conclusion The KIRC-ICG model was reliable to predict prognosis and immunotherapy response for KIRC patients and could be an independent factor regardless of clinical characteristics.
Collapse
|
33
|
Zhang FP, Zhu K, Zhu TF, Liu CQ, Zhang HH, Xu LB, Xiao G, Liu C. Intra-Tumoral Secondary Follicle-like Tertiary Lymphoid Structures Are Associated with a Superior Prognosis of Overall Survival of Perihilar Cholangiocarcinoma. Cancers (Basel) 2022; 14:6107. [PMID: 36551593 PMCID: PMC9776022 DOI: 10.3390/cancers14246107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Ectopic lymphoid structures termed tertiary lymphoid structures (TLSs) have an immunomodulatory function and positively affect prognosis in certain cancers. However, their clinical relevance and prognostic utility in perihilar cholangiocarcinoma (pCCA) are unknown. Therefore, determining the involvement and prognostic utility of TLSs in pCCA is the aim of this study. Ninety-three patients with surgically resected pCCA were included retrospectively. Hematoxylin and eosin and immunohistochemical staining identified and classified the TLSs, and multiplex immunofluorescence determined the TLS composition in the pCCA sample. The correlations between clinical features and TLSs were analyzed using either Fisher's exact test or the Chi-squared test. Recurrence-free survival (RFS) and overall survival (OS) correlations with TLSs were analyzed using Cox regression and Kaplan-Meier analyses. We identified TLSs in 86% of patients with pCCA, including lymphoid aggregates (6.45%), primary (13.98%) and secondary follicles (65.59%). Patients with intra-tumoral secondary follicle-like TLSs (S-TLSs) had better OS (p = 0.003) and RFS (p = 0.0313). The multivariate analysis identified the presence of S-TLSs as a good independent prognostic indicator for OS but not for RFS. Interestingly, the presence of S-TLS only indicated better 5-year OS in 54 patients without lymph node metastasis (LNM-, p = 0.0232) but not in the 39 patients with lymph node metastasis (LNM+, p = 0.1244). Intra-tumoral S-TLSs predicted longer OS in patients with surgically resected pCCA, suggesting intra-tumoral S-TLSs' contribution to effective antitumor immunity and that S-TLSs hold promise for diagnostic and therapeutic development in pCCA.
Collapse
Affiliation(s)
- Fa-Peng Zhang
- Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ke Zhu
- Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Tai-Feng Zhu
- Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Chao-Qun Liu
- Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Pathology, Guangdong Provincial People’s Hospital, Academy of Medical Sciences, Guangzhou 510080, China
| | - Hong-Hua Zhang
- Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Lei-Bo Xu
- Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Gang Xiao
- Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Thoracic Surgery, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou 510180, China
| | - Chao Liu
- Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
34
|
Pollini T, Adsay V, Capurso G, Molin MD, Esposito I, Hruban R, Luchini C, Maggino L, Matthaei H, Marchegiani G, Scarpa A, Wood LD, Bassi C, Salvia R, Mino-Kenudson M, Maker AV. The tumour immune microenvironment and microbiome of pancreatic intraductal papillary mucinous neoplasms. Lancet Gastroenterol Hepatol 2022; 7:1141-1150. [PMID: 36057265 PMCID: PMC9844533 DOI: 10.1016/s2468-1253(22)00235-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/19/2023]
Abstract
Pancreatic intraductal papillary mucinous neoplasms (IPMNs) have gained substantial attention because they represent one of the only radiographically identifiable precursors of invasive pancreatic ductal adenocarcinoma. Although most of these neoplasms have low-grade dysplasia and will remain indolent, a subset of IPMNs will progress to invasive cancer. The role of the immune system in the progression of IPMNs is unclear, but understanding its role could reveal the mechanism of neoplastic progression and targets for immunotherapy to inhibit progression or treat invasive disease. The available evidence supports a shift in the immune composition of IPMNs during neoplastic progression. Although low-grade lesions contain a high proportion of effector T cells, high-grade IPMNs, and IPMNs with an associated invasive carcinoma lose the T-cell infiltrate and are characterised by a predominance of immunosuppressive elements. Several possible therapeutic strategies emerge from this analysis that are unique to IPMNs and its microbiome.
Collapse
Affiliation(s)
- Tommaso Pollini
- Division of Surgical Oncology, Department of Surgery, University of California San Francisco, San Francisco, CA, USA,Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Volcan Adsay
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Gabriele Capurso
- Department of Pancreatobiliary Endoscopy and Endosonography, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele, Milan, Italy
| | - Marco Dal Molin
- Department of Surgery, University of Maryland Medical Center, Baltimore, MD, USA
| | - Irene Esposito
- Department of Pathology, Heinrich Heine University and University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Ralph Hruban
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology University of Verona, Verona, Italy
| | - Laura Maggino
- Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Hanno Matthaei
- Department of Surgery, University Hospital of Bonn, Bonn, Germany
| | - Giovanni Marchegiani
- Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology University of Verona, Verona, Italy
| | - Laura D Wood
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Claudio Bassi
- Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Roberto Salvia
- Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ajay V Maker
- Division of Surgical Oncology, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
35
|
Zhang S, Huo L, Feng Y, Zhang J, Wu Y, Liu Y, Lu L, Jia N, Liu W. Preoperative differentiation of hepatocellular carcinoma with peripheral rim-like enhancement from intrahepatic mass-forming cholangiocarcinoma on contrast-enhanced MRI. Front Oncol 2022; 12:986713. [PMID: 36505850 PMCID: PMC9726747 DOI: 10.3389/fonc.2022.986713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose The present study aimed to determine the reliable imaging features to distinguish atypical hepatocellular carcinoma (HCC) with peripheral rim-like enhancement from intrahepatic mass-forming cholangiocarcinoma (IMCC) on contrast-enhanced magnetic resonance imaging (MRI). Methods A total of 168 patients (130 male, 57.10 ± 10.53 years) pathological confirmed HCC or IMCC who underwent contrast-enhanced MRI between July 2019 and February 2022 were retrospectively included. Univariate and multivariate logistic regression analyses were used to determine independent differential factors for distinguishing HCC from IMCC, and the model was established. Bootstrap resampling 1000 times was used to verify the model, which was visualized by nomograms. The predictive performance of the model was evaluated based on discrimination, calibration, and clinical utility. Results Radiological capsule (OR 0.024, 95% CI: 0.006, 0.095, P<0.001), heterogeneous signal intensity (SI) on T1WI (OR 0.009, 95%CI: 0.001,0.056, P<0.001) were independent differential factors for predicting HCC over IMCC. A lobulated contour (OR 11.732, 95%CI: 2.928,47.007, P = 0.001), target sign on DP (OR 14.269, 95%CI: 2.849,82.106, P = 0.007), bile duct dilatation (OR 12.856, 95%CI: 2.013, P = 0.001) were independent differential factors for predicting IMCCs over HCCs. The independent differential factors constituted a model to distinguish atypical HCCs and IMCCs. The area under receiver operating characteristic (ROC) curve, sensitivity, and specificity values of the model were 0.964(0.940,0.987), 0.88, and 0.906, indicating that the model had an excellent differential diagnostic performance. The decision curve analysis (DCA) curve showed that the model obtained a better net clinical benefit. Conclusion The present study identified reliable imaging features for distinguishing atypical HCCs with peripheral rim-like enhancement from IMCCs on contrast-enhanced MRI. Our findings may help radiologists provide clinicians with more accurate preoperative imaging diagnoses to select appropriate treatment options.
Collapse
Affiliation(s)
- Sisi Zhang
- Department of Radiology, Shanghai Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Lei Huo
- Department of Radiology, Shanghai Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yayuan Feng
- Department of Radiology, Shanghai Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Juan Zhang
- Department of Radiology, Shanghai Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yuxian Wu
- Department of Radiology, Shanghai Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yiping Liu
- Department of Radiology, Shanghai Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Lun Lu
- Department of Radiology, Shanghai Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ningyang Jia
- Department of Radiology, Shanghai Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China,*Correspondence: Ningyang Jia, ; Wanmin Liu,
| | - Wanmin Liu
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,*Correspondence: Ningyang Jia, ; Wanmin Liu,
| |
Collapse
|
36
|
Zhu SG, Li HB, Dai TX, Li H, Wang GY. Successful treatment of stage IIIB intrahepatic cholangiocarcinoma using neoadjuvant therapy with the PD-1 inhibitor camrelizumab: A case report. World J Clin Cases 2022; 10:9743-9749. [PMID: 36186195 PMCID: PMC9516932 DOI: 10.12998/wjcc.v10.i27.9743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/24/2022] [Accepted: 08/17/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The prognosis of intrahepatic cholangiocarcinoma (ICC) with lymph node metastasis is poor. The feasibility of surgery is not certain, which is a contraindication according to the National Comprehensive Cancer Network guidelines. The role of immunotherapy as a neoadjuvant therapy for ICC is not clear. We herein describe a case of ICC with lymph node metastasis that was successfully treated with neoadjuvant therapy.
CASE SUMMARY A 60-year-old man with a liver tumor was admitted to our hospital. Enhanced computed tomography and magnetic resonance imaging revealed a space-occupying lesion in the right lobe of the liver. Multiple subfoci were found around the tumor, and the right posterior branch of the portal vein was invaded. Liver biopsy indicated poorly differentiated cholangiocytes. According to the American Joint Committee on Cancer disease stage classification, ICC with hilar lymph node metastasis (stage IIIB) and para-aortic lymph node metastasis was suspected. A report showed that two patients with stage IIIB ICC achieved a complete response (CR) 13 mo and 16 mo after chemotherapy with a PD-1 monoclonal antibody. After multidisciplinary consultation, the patient was given neoadjuvant therapy, surgical resection and lymph node dissection, and postoperative adjuvant therapy. After three rounds of PD-1 immunotherapy (camrelizumab) and two rounds of gemcitabine combined with cisplatin regimen chemotherapy, the tumor size was reduced. Therefore, a partial response was achieved. Exploratory laparotomy found that the lymph nodes of Group 16 were negative, and the tumor could be surgically removed. Therefore, the patient underwent right hemihepatectomy plus lymph node dissection. The patient received six rounds of chemotherapy and five rounds of PD-1 treatment postoperatively. After 8 mo of follow-up, no recurrence was found, and a CR was achieved.
CONCLUSION Neoadjuvant therapy combined with surgical resection is useful for advanced-stage ICC. This is the first report of successful treatment of stage IIIB ICC using neoadjuvant therapy with a PD-1 inhibitor.
Collapse
Affiliation(s)
- Shu-Guang Zhu
- Department of Hepatic Surgery and Liver Transplantation, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Hai-Bo Li
- Department of Hepatic Surgery and Liver Transplantation, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Tian-Xing Dai
- Department of Hepatic Surgery and Liver Transplantation, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Guo-Ying Wang
- Department of Hepatic Surgery and Liver Transplantation, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510220, Guangdong Province, China
| |
Collapse
|
37
|
Lv C, Han S, Wu B, Liang Z, Li Y, Zhang Y, Lang Q, Zhong C, Fu L, Yu Y, Xu F, Tian Y. Novel immune scoring dynamic nomograms based on B7-H3, B7-H4, and HHLA2: Potential prediction in survival and immunotherapeutic efficacy for gallbladder cancer. Front Immunol 2022; 13:984172. [PMID: 36159808 PMCID: PMC9493478 DOI: 10.3389/fimmu.2022.984172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGallbladder cancer (GBC) is a mortal malignancy with limited therapeutic strategies. We aimed to develop novel immune scoring systems focusing on B7-H3, B7-H4, and HHLA2. We further investigated their potential clinical effects in predicting survival and immunotherapeutic efficacy for GBC.MethodsThis was a retrospective cohort study in a single center that explored the expression characteristics of B7-H3, B7-H4, and HHLA2. The immune scoring nomograms for prognostic were developed via logistic regression analyses. Their performance was evaluated using the Harrell concordance index (C-index) and decision curves analysis (DCA), and validated with calibration curves.ResultsB7-H3, B7-H4, and HHLA2 manifested with a relatively high rate of co-expression patterns in GBC tissues. They were associated with worse clinicopathological stage, suppression of immune microenvironment, and unfavorable prognosis in postoperative survival. B7 stratification established based on B7-H3, B7-H4, and HHLA2 was an independent prognostic predictor (p<0.05 in both groups). Moreover, immune stratification was also successfully constructed based on B7 stratification and the density of CD8+ TILs (all p<0.001). The prediction models were developed based on B7-/or immune stratification combined with the TNM/or Nevin staging system. These novel models have excellent discrimination ability in predicting survival and immunotherapeutic efficacy for GBC patients by DCA and clinical impact plots. Finally, dynamic nomograms were developed for the most promising clinical prediction models (B7-TNM model and Immune-TNM model) to facilitate prediction.ConclusionsImmune scoring systems focusing on B7-H3, B7-H4, and HHLA2 may effectively stratify the prognosis of GBC. Prognostic nomograms based on novel immune scoring systems may potentially predict survival and immunotherapeutic efficacy in GBC. Further valid verification is necessary.
Collapse
Affiliation(s)
- Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
| | - Shukun Han
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
| | - Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
| | - Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
| | - Qi Lang
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
| | - Lei Fu
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
| | - Yang Yu
- Department of Surgery, Jinzhou Medical University, Liaoning, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
- *Correspondence: Yu Tian,
| |
Collapse
|
38
|
Ren X, Li Y, Nishimura C, Zang X. Crosstalk between the B7/CD28 and EGFR pathways: Mechanisms and therapeutic opportunities. Genes Dis 2022; 9:1181-1193. [PMID: 35873032 PMCID: PMC9293717 DOI: 10.1016/j.gendis.2021.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022] Open
Abstract
Somatic activating mutations in the epidermal growth factor receptor (EGFR) are one of the most common oncogenic drivers in cancers such as non-small-cell lung cancer (NSCLC), metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Molecular-targeted agents against EGFR signaling pathways have shown robust clinical efficacy, but patients inevitably experience acquired resistance. Although immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 have exhibited durable anti-tumor responses in a subset of patients across multiple cancer types, their efficacy is limited in cancers harboring activating gene alterations of EGFR. Increasing studies have demonstrated that upregulation of new B7/CD28 family members such as B7-H3, B7x and HHLA2, is associated with EGFR signaling and may contribute to resistance to EGFR-targeted therapies by creating an immunosuppressive tumor microenvironment (TME). In this review, we discuss the regulatory effect of EGFR signaling on the PD-1/PD-L1 pathway and new B7/CD28 family member pathways. Understanding these interactions may inform combination therapeutic strategies and potentially overcome the current challenge of resistance to EGFR-targeted therapies. We also summarize clinical data of anti-PD-1/PD-L1 therapies in EGFR-mutated cancers, as well as ongoing clinical trials of combination of EGFR-targeted therapies and anti-PD-1/PD-L1 immunotherapies.
Collapse
Affiliation(s)
- Xiaoxin Ren
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Yixian Li
- Division of Pediatric Hematology/Oncology/Transplant and Cellular Therapy, Children's Hospital at Montefiore, Bronx, NY 10467, USA
| | - Christopher Nishimura
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA.,Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA.,Department of Urology, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
39
|
Huang FX, Wu JW, Cheng XQ, Wang JH, Wen XZ, Li JJ, Zhang Q, Jiang H, Ding QY, Zhu XF, Zhang XS, Ding Y, Li DD. HHLA2 predicts improved prognosis of anti-PD-1/PD-L1 immunotherapy in patients with melanoma. Front Immunol 2022; 13:902167. [PMID: 36003385 PMCID: PMC9395140 DOI: 10.3389/fimmu.2022.902167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background As a recognized highly immunogenic tumor, immune checkpoint blockades (ICB) have been widely used as a systemic treatment option for melanoma. However, only about half of treated patients could benefit from it in Caucasians, and only about 15% in Chinese melanoma patients. Robust predictive biomarkers are needed. HHLA2, a new-found member of B7 family, is generally expressed in kinds of tumors, such as melanoma. This study focuses on illustrating the prognostic value of HHLA2 in melanoma immunotherapy and its association with tumor-infiltrating lymphocytes. Methods HHLA2 expression in pan-cancer and the association with prognosis and immune microenvironment were identified by analyzing gene expression profiles from TCGA database with selected bioinformatics tools and methods. Tumor tissues from 81 cases with advanced and unresectable melanoma were collected for detecting HHLA2 and CD8 levels by immunohistochemistry. Results HHLA2 was found to be ubiquitously expressed in pan-cancer with high level and correlate with the prognosis of patients. Further comprehensive analysis from TCGA database demonstrated that the highly expressed HHLA2 was remarkably correlated with better prognosis, high infiltration status of various immune-active cells and immune activated pathways in skin cutaneous melanoma (SKCM). Moreover, immunohistochemistry (IHC) analyses of FFPE tissue from melanoma patients revealed that HHLA2 high expression was strongly related to improved response to ICB and indicated a longer progression-free survival (PFS) and overall survival (OS). Besides, HHLA2 expression was found to have a positive association with the density of CD8+ TILs. Conclusion Our findings revealed that high expression of HHLA2 has important values in predicting the response to ICB and indicating improved PFS and OS in patients with advanced and unresectable melanoma, suggesting that HHLA2 may serve as a costimulatory ligand in melanoma, which renders it as an ideal biomarker for immunotherapy.
Collapse
Affiliation(s)
- Fu-xue Huang
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology & Therapy, Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Jun-wan Wu
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xia-qin Cheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Gynecological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiu-hong Wang
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiotherapy, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xi-zhi Wen
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing-jing Li
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiong Zhang
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hang Jiang
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiu-yue Ding
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-feng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-shi Zhang
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Xiao-shi Zhang, ; Ya Ding, ; Dan-dan Li,
| | - Ya Ding
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Xiao-shi Zhang, ; Ya Ding, ; Dan-dan Li,
| | - Dan-dan Li
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Xiao-shi Zhang, ; Ya Ding, ; Dan-dan Li,
| |
Collapse
|
40
|
Li Y, Lv C, Yu Y, Wu B, Zhang Y, Lang Q, Liang Z, Zhong C, Shi Y, Han S, Xu F, Tian Y. KIR3DL3-HHLA2 and TMIGD2-HHLA2 pathways: The dual role of HHLA2 in immune responses and its potential therapeutic approach for cancer immunotherapy. J Adv Res 2022; 47:137-150. [PMID: 35933091 PMCID: PMC10173190 DOI: 10.1016/j.jare.2022.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022] Open
Abstract
BACKGROUND T cells and natural killer (NK) cells are essential components of the immune system and are regulated by coinhibitory and costimulatory molecules in which the B7 family and CD28 family play significant roles. Previous immune checkpoint studies on B7/CD28 family members, such as PD-1, have led to remarkable success in cancer immunotherapy. However, there is still a need to find new immune checkpoint molecules. Recent studies have demonstrated that HHLA2 exerts inhibitory and stimulatory functions on the immune system by binding to different receptors on different sites. However, the pathways between HHLA2 and its two receptors on T cells and NK cells remain controversial. AIM OF REVIEW Here, we reviewed recent studies about HHLA2 ligand interactions with KIR3DL3 and TMIGD2. We focused on elucidating the pathways between KIR3DL3/TMIGD2 and HHLA2 as well as their function in tumour progression. We also addressed the relationship between HHLA2 expression and the clinical prognosis of cancer patients. KEY SCIENTIFIC CONCEPTS OF REVIEW KIR3DL3/TMIGD2-HHLA2 may represent novel pathways within the tumour microenvironment and serve as crucial immune checkpoints for developing novel therapeutic drugs against human cancer.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yang Yu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Qi Lang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yu Shi
- The First Clinical College of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Shukun Han
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
41
|
Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders. Nat Rev Drug Discov 2022; 21:559-577. [PMID: 35314852 PMCID: PMC10019065 DOI: 10.1038/s41573-022-00413-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells have crucial roles in the innate immunosurveillance of cancer and viral infections. They are 'first responders' that can spontaneously recognize abnormal cells in the body, rapidly eliminate them through focused cytotoxicity mechanisms and potently produce pro-inflammatory cytokines and chemokines that recruit and activate other immune cells to initiate an adaptive response. From the initial discovery of the diverse cell surface receptors on NK cells to the characterization of regulatory events that control their function, our understanding of the basic biology of NK cells has improved dramatically in the past three decades. This advanced knowledge has revealed increased mechanistic complexity, which has opened the doors to the development of a plethora of exciting new therapeutics that can effectively manipulate and target NK cell functional responses, particularly in cancer patients. Here, we summarize the basic mechanisms that regulate NK cell biology, review a wide variety of drugs, cytokines and antibodies currently being developed and used to stimulate NK cell responses, and outline evolving NK cell adoptive transfer approaches to treat cancer.
Collapse
|
42
|
Chen R, Zheng D, Li Q, Xu S, Ye C, Jiang Q, Yan F, Jia Y, Zhang X, Ruan J. Immunotherapy of cholangiocarcinoma: Therapeutic strategies and predictive biomarkers. Cancer Lett 2022; 546:215853. [DOI: 10.1016/j.canlet.2022.215853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/02/2022]
|
43
|
Liu S, Tang W, Cao J, Shang M, Sun H, Gong J, Hu B. A Comprehensive Analysis of HAVCR1 as a Prognostic and Diagnostic Marker for Pan-Cancer. Front Genet 2022; 13:904114. [PMID: 35754803 PMCID: PMC9213751 DOI: 10.3389/fgene.2022.904114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatitis A virus cellular receptor (HAVCR1) is a type-1 integral membrane glycoprotein that plays a key role in immunity and renal regeneration and is abnormally expressed in various tumor types. Nonetheless, the function of HAVCR1 in pan-cancer remains unknown. In this study, we comprehensively analyzed the expression and promoter methylation level of HAVCR1 and assessed the immune cell infiltration, correlation between stromal and immune cell admixture, CD (Cluster of Differentiation) and HAVCR1 expression and prognostic value of HAVCR1 mRNA expression in Liver hepatocellular carcinoma (LIHC) and Pancreatic adenocarcinoma (PAAD). Our results showed that HAVCR1 was overexpressed while the promoter methylation of HAVCR1 was decreased in Liver hepatocellular carcinoma and Pancreatic adenocarcinoma. HAVCR1 was associated with increased infiltration of B cells, CD8 cells, macrophages, neutrophils and Dendritic cells in Liver hepatocellular carcinoma and Pancreatic adenocarcinoma. HAVCR1 expression was positively correlated with the immune, stromal and estimate scores of Pancreatic adenocarcinoma and the stromal and estimate scores of Liver hepatocellular carcinoma. Furthermore, HAVCR1 expression was correlated with other immune molecules such as HHLA2 (Human endogenous retrovirus-H long terminal repeat-associating protein 2), CD44 and TNFRSF4 (TNF Receptor Superfamily Member 4) in Liver hepatocellular carcinoma and Pancreatic adenocarcinoma. During Kaplan-Meier analysis, high HAVCR1 expression in Liver hepatocellular carcinoma and Pancreatic adenocarcinoma correlated with poor survival. A marginally significant p-value (p = 0.051) was obtained when the relationship between HAVCR1 expression in Liver hepatocellular carcinoma and prognosis was analyzed, attributed to the small sample size. Overall, we provided compelling evidence that HAVCR1 could be a prognostic and diagnostic marker for Liver hepatocellular carcinoma and Pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenting Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen Cancer Center, Guangzhou, China
- Department of Molecular Diagnostics, Sun Yat-sen Cancer Center, Guangzhou, China
| | - Jing Cao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mei Shang
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hengchang Sun
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiao Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo Hu
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Regulatory T cells induce a suppressive immune milieu and promote lymph node metastasis in intrahepatic cholangiocarcinoma. Br J Cancer 2022; 127:757-765. [PMID: 35597869 PMCID: PMC9381563 DOI: 10.1038/s41416-022-01838-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Background Emerging evidence indicates that immunogenicity plays an important role in intrahepatic cholangiocarcinoma (ICC). Herein, we systematically evaluated the clinical relevance of immunogenicity in ICC. Methods Highly immunogenic ICCs identified in the public dataset and the Cancer Immunome Atlas (TCIA) were assessed to determine the prognostic impact of immunogenicity in ICC and key components after curative resection. We also investigated the clinical relevance of the immune milieu in ICC. Results Using the Gene Expression Omnibus dataset 89749 and TCIA, we identified CD8+/forkhead box P3 (FoxP3)+ tumour-infiltrating lymphocytes (TILs), T-cell immunoglobulin and mucin domain 3 (TIM-3) and human leukocyte antigen-A (HLA-A) in highly immunogenic ICCs. Immunohistochemical analysis of the in-house cohort showed that intratumoral FoxP3+ TILs correlated with CD8+ TILs (P = 0.045, Fisher’s exact test) and that high FoxP3+/CD8+ ratio (FCR) was an important marker for poor survival (P < 0.001, log-rank test). Furthermore, the FCR was higher in tumour-free lymph nodes in ICCs with lymph node metastases than in those without lymph node metastases (P = 0.003, Mann–Whitney U test). Conclusions FCR should be considered an important biomarker that represents the immune environment of ICC based on its potentially important role in tumour progression, especially lymph node metastasis.
Collapse
|
45
|
Sun BY, Zhou C, Guan RY, Liu G, Yang ZF, Wang ZT, Gan W, Zhou J, Fan J, Yi Y, Qiu SJ. Dissecting Intra-Tumoral Changes Following Immune Checkpoint Blockades in Intrahepatic Cholangiocarcinoma via Single-Cell Analysis. Front Immunol 2022; 13:871769. [PMID: 35558087 PMCID: PMC9088915 DOI: 10.3389/fimmu.2022.871769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose To dissect the tumor ecosystem following immune checkpoint blockades (ICBs) in intrahepatic cholangiocarcinoma (ICC) at a single-cell level. Methods Single-cell RNA sequencing (scRNA-seq) data of 10 ICC patients for the ICB clinical trial were extracted from GSE125449 and systematically reanalyzed. Bulk RNA-seq data of 255 ICC patients were analyzed. Infiltration levels of SPP1+CD68+ tumor-associated macrophages (TAMs) were examined by dual immunofluorescence (IF) staining in 264 resected ICC samples. The correlation between SPP1+ TAMs and clinicopathological features as well as their prognostic significance was evaluated. Results Among the 10 patients, five received biopsy at baseline, and others were biopsied at different timings following ICBs. Single-cell transcriptomes for 5,931 cells were obtained. A tighter cellular communication network was observed in ICB-treated ICC. We found a newly emerging VEGF signaling mediated by PGF-VEGFR1 between cancer-associated fibroblasts (CAFs) and endothelial cells in ICC following ICBs. SPP1 expression was dramatically upregulated, and SPP1+ TAM gene signatures were enriched in TAMs receiving ICB therapy. We also identified SPP1+ TAMs as an independent adverse prognostic indicator for survival in ICC. Conclusion Our analyses provide an overview of the altered tumor ecosystem in ICC treated with ICBs and highlight the potential role of targeting CAFs and SPP1+TAMs in developing a more rational checkpoint blockade-based therapy for ICC.
Collapse
Affiliation(s)
- Bao-Ye Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Cheng Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Ruo-Yu Guan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Gao Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Zhu-Tao Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Wei Gan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| |
Collapse
|
46
|
Human endogenous retrovirus-H long terminal repeat-associating 2: The next immune checkpoint for antitumour therapy. EBioMedicine 2022; 79:103987. [PMID: 35439678 PMCID: PMC9035628 DOI: 10.1016/j.ebiom.2022.103987] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Human endogenous retrovirus-H long terminal repeat-associating 2 (HHLA2) is a newly emerging immune checkpoint that belongs to B7 family. HHLA2 has a co-stimulatory receptor transmembrane and immunoglobulin domain containing 2 (TMIGD2) and a newly discovered co-inhibitory receptor killer cell Ig-like receptor, three Ig domains, and long cytoplasmic tail (KIR3DL3), which endows it with both immunostimulant and immunosuppression functions in cancer development. In this review, we summarize the HHLA2 expression profile in human cancers, its association with cancer prognosis and clinical features, and its dual roles in regulating cancer immune response through up-to-date literatures. Furthermore, we highlight that precision cancer immunotherapy through manipulating HHLA2-KIR3DL3/TMIGD2 interaction is a promising antitumour strategy.
Collapse
|
47
|
Wathikthinnakon M, Luangwattananun P, Sawasdee N, Chiawpanit C, Lee VS, Nimmanpipug P, Tragoolpua Y, Rotarayanont S, Sangsuwannukul T, Phanthaphol N, Wutti-In Y, Somboonpatarakun C, Chieochansin T, Junking M, Sujjitjoon J, Yenchitsomanus PT, Panya A. Combination gemcitabine and PD-L1xCD3 bispecific T cell engager (BiTE) enhances T lymphocyte cytotoxicity against cholangiocarcinoma cells. Sci Rep 2022; 12:6154. [PMID: 35418130 PMCID: PMC9007942 DOI: 10.1038/s41598-022-09964-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/22/2022] [Indexed: 01/15/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a lethal cancer with rapid progression and poor survival. Novel and more effective therapies than those currently available are, therefore, urgently needed. Our research group previously reported the combination of gemcitabine and cytotoxic T lymphocytes to be more effective than single-agent treatment for the elimination of CCA cells. However, gemcitabine treatment of CCA cells upregulates the expression of an immune checkpoint protein (programmed death-ligand 1 [PD-L1]) that consequently inhibits the cytotoxicity of T lymphocytes. To overcome this challenge and take advantage of PD-L1 upregulation upon gemcitabine treatment, we generated recombinant PD-L1xCD3 bispecific T cell engagers (BiTEs) to simultaneously block PD-1/PD-L1 signaling and recruit T lymphocytes to eliminate CCA cells. Two recombinant PD-L1xCD3 BiTEs (mBiTE and sBiTE contain anti-PD-L1 scFv region from atezolizumab and from a published sequence, respectively) were able to specifically bind to both CD3 on T lymphocytes, and to PD-L1 overexpressed after gemcitabine treatment on CCA (KKU213A, KKU055, and KKU100) cells. mBiTE and sBiTE significantly enhanced T lymphocyte cytotoxicity against CCA cells, especially after gemcitabine treatment, and their magnitudes of cytotoxicity were positively associated with the levels of PD-L1 expression. Our findings suggest combination gemcitabine and PD-L1xCD3 BiTE as a potential alternative therapy for CCA.
Collapse
Affiliation(s)
- Methi Wathikthinnakon
- Doctoral Program in Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Piriya Luangwattananun
- Division of Molecular Medicine, Department of Research and Development, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Nunghathai Sawasdee
- Division of Molecular Medicine, Department of Research and Development, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Chutipa Chiawpanit
- Doctoral Program in Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Piyarat Nimmanpipug
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, 293, Hauy Kaew Road, Muang District, Chiang Mai, 50200, Thailand
| | - Siriphorn Rotarayanont
- Department of Biology, Faculty of Science, Chiang Mai University, 293, Hauy Kaew Road, Muang District, Chiang Mai, 50200, Thailand
| | - Thanich Sangsuwannukul
- Division of Molecular Medicine, Department of Research and Development, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Nattaporn Phanthaphol
- Division of Molecular Medicine, Department of Research and Development, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Yupanun Wutti-In
- Division of Molecular Medicine, Department of Research and Development, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Chalermchai Somboonpatarakun
- Division of Molecular Medicine, Department of Research and Development, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Thaweesak Chieochansin
- Division of Molecular Medicine, Department of Research and Development, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Mutita Junking
- Division of Molecular Medicine, Department of Research and Development, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Jatuporn Sujjitjoon
- Division of Molecular Medicine, Department of Research and Development, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Department of Research and Development, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand.
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, 293, Hauy Kaew Road, Muang District, Chiang Mai, 50200, Thailand.
- Research Center in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
48
|
Liu D, Heij LR, Czigany Z, Dahl E, Lang SA, Ulmer TF, Luedde T, Neumann UP, Bednarsch J. The role of tumor-infiltrating lymphocytes in cholangiocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:127. [PMID: 35392957 PMCID: PMC8988317 DOI: 10.1186/s13046-022-02340-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/23/2022] [Indexed: 12/18/2022]
Abstract
Cholangiocarcinoma (CCA) is the second most common primary liver cancer and associated with a dismal prognosis due to the lack of an efficient systemic therapy. In contrast to other cancers, new immunotherapies have demonstrated unsatisfactory results in clinical trials, underlining the importance of a deeper understanding of the special tumor microenvironment of CCA and the role of immune cells interacting with the tumor. Tumor-infiltrating lymphocytes (TILs) are an important component of the adaptive immune system and the foundation of current immunotherapy. Therefore, the aim of this systemic review is to summarize the current literature focusing on the proportions and distribution, molecular pathogenesis, prognostic significance of TILs and their role in immunotherapy for CCA patients. In CCA, CD8+ and CD4+ T lymphocytes represent the majority of TILs and are mostly sequestered around the cancer cells. CD20+ B lymphocytes and Natural Killer (NK) cells are less frequent. In contrast, Foxp3+ cells (regulatory T cells, Tregs) are observed to infiltrate into the tumor. In the immune microenvironment of CCA, cancer cells and stromal cells such as TAMs, TANs, MSDCs and CAFs inhibit the immune protection function of TILs by secreting factors like IL-10 and TGF-β. With respect to molecular pathogenesis, the Wnt/-catenin, TGF-signaling routes, aPKC-i/P-Sp1/Snail Signaling, B7-H1/PD-1Pathway and Fas/FasL signaling pathways are connected to the malignant potential and contributed to tumor immune evasion by increasing TIL apoptosis. Distinct subtypes of TILs show different prognostic implications for the long-term outcome in CCA. Although there are occasionally conflicting results, CD8+ and CD4+ T cells, and CD20+ B cells are positively correlated with the oncological prognosis of CCA, while a high number of Tregs is very likely associated with worse overall survival. TILs also play a major role in immunotherapy for CCA. In summary, the presence of TILs may represent an important marker for the prognosis and a potential target for novel therapy, but more clinical and translational data is needed to fully unravel the importance of TILs in the treatment of CCA.
Collapse
Affiliation(s)
- Dong Liu
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Lara Rosaline Heij
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.,Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Zoltan Czigany
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Edgar Dahl
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Sven Arke Lang
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Tom Florian Ulmer
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Ulf Peter Neumann
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany. .,Department of Surgery, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands.
| | - Jan Bednarsch
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
49
|
Niu Y, Wang W, Jiang X, Huang Y, Yan S, Jiang Y. High expression of HHLA2 predicts poor prognosis in medullary thyroid carcinoma. Jpn J Clin Oncol 2022; 52:759-765. [PMID: 35348687 DOI: 10.1093/jjco/hyac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Human endogenous retrovirus-H long terminal repeat-associating protein 2 is a newly identified immune checkpoint molecule that was aberrantly expressed in many malignant tumors. However, its expression in medullary thyroid carcinoma is still unclear. This study aimed to investigate the human endogenous retrovirus-H long terminal repeat-associating protein 2 expression in medullary thyroid carcinoma tissues and to evaluate the relationships between its expression and clinicopathologic together with prognostic relevance.
Methods
Using 51 surgical specimens obtained from medullary thyroid carcinoma patients, the expression levels of the human endogenous retrovirus-H long terminal repeat-associating protein 2 protein in medullary thyroid carcinoma tumor tissues and adjacent noncancerous tissues were measured by immunohistochemistry, and its correlations with clinicopathologic and prognostic features were analyzed. Status of CD8+ tumor infiltrating lymphocytes was also investigated.
Results
The results showed that human endogenous retrovirus-H long terminal repeat-associating protein 2 was only detected in tumor tissues, and 31.4% of the medullary thyroid carcinoma patients had high expression of human endogenous retrovirus-H long terminal repeat-associating protein 2. High human endogenous retrovirus-H long terminal repeat-associating protein 2 expression was significantly associated with lymph node metastasis and advanced American Joint Committee on Cancer stages (P = 0.005). There existed an inverse trend between human endogenous retrovirus-H long terminal repeat-associating protein 2 expression and CD8+ tumor infiltrating lymphocytes infiltration in medullary thyroid carcinoma tumor samples (P = 0.042). The log-rank test showed a shorter disease-free survival in patients with high human endogenous retrovirus-H long terminal repeat-associating protein 2 expression (P = 0.002). The disease-free survival rates were also significantly low in cases of medullary thyroid carcinoma with lymph node metastasis, American Joint Committee on Cancer stages III–IV and multifocality. Multivariate Cox analysis confirmed that human endogenous retrovirus-H long terminal repeat-associating protein 2 acted as an independent predictive factor in the disease-free survival of medullary thyroid carcinoma patients (hazard ratio = 4.138, 95% confidence interval: 1.027–16.667, P = 0.046).
Conclusions
Taken together, human endogenous retrovirus-H long terminal repeat-associating protein 2 is highly expressed in medullary thyroid carcinoma patients and is a poor prognostic biomarker of disease-free survival of medullary thyroid carcinoma patients.
Collapse
Affiliation(s)
- Yongzhi Niu
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Wei Wang
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaodan Jiang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yichuan Huang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Shu Yan
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yan Jiang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| |
Collapse
|
50
|
Xia C, Huang W, Chen YL, Fu HB, Tang M, Zhang TL, Li J, Lv GH, Yan YG, Ouyang ZH, Yao N, Wang C, Zou MX. Coexpression of HHLA2 and PD-L1 on Tumor Cells Independently Predicts the Survival of Spinal Chordoma Patients. Front Immunol 2022; 12:797407. [PMID: 35145510 PMCID: PMC8824251 DOI: 10.3389/fimmu.2021.797407] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022] Open
Abstract
Background Immunotherapy only achieves efficacy in some cancer patients, and less is known about other immune checkpoint molecules in chordoma. Here, we aimed to determine the expression of PD-L1, HHLA2, B7H3, IDO-1 and Galectin-9 in spinal chordoma and evaluated their association with tumor infiltrating lymphocytes (TILs), clinicopathological characteristics and survival of patients. Methods Using multiplexed quantitative immunofluorescence (QIF), we simultaneously measured the levels of five different immune checkpoint molecules and major TIL subsets in 92 human spinal chordoma samples. Results Tumor HHLA2 and PD-L1 were positive in 80.0% and 86.0% of cases, respectively. However, B7H3, IDO-1 and Galectin-9 positivity on tumor cells were only seen in 21.0% of cases, despite all showing predominantly stromal expression. Coexpression of these QIF markers in the tumor compartment was scarcely detected except for PD-L1 and HHLA2, which was observed in 69.6% of cases. While tumoral HHLA2 and stromal B7H3 expressions were associated with an aggressive tumor phenotype, suppressive immune response (specifically including elevated PD-1+ TILs level and decreased CD8+ TIL density) and poor prognosis, stromal levels of PD-L1 and Galectin-9 predicted the opposite outcomes. Importantly, HHLA2 and PD-L1 coexpression on tumor cells independently predicted both worse local recurrence-free survival and overall survival. Conclusion These data provide a better understanding of the immunosuppressive mechanism in chordoma and may be useful for the development of combination or novel immunotherapy approaches aiming to improve therapeutic efficacy and survival.
Collapse
Affiliation(s)
- Chao Xia
- The First Affiliated Hospital, Health Management Center, Hengyang Medical School, University of South China, Hengyang, China.,Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wei Huang
- The First Affiliated Hospital, Health Management Center, Hengyang Medical School, University of South China, Hengyang, China
| | - Yun-Liang Chen
- Shenzhen Audaque Data Technology Co., Ltd., Shenzhen, China
| | - Hai-Bin Fu
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ming Tang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Tao-Lan Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhi-Hua Ouyang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Nvzhao Yao
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ming-Xiang Zou
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|