1
|
Liu Y, Zeng Z, Liu S. Impact of congenital spinal stenosis on the outcome of three-level anterior cervical discectomy and fusion in patients with cervical spondylotic myelopathy: a retrospective study. INTERNATIONAL ORTHOPAEDICS 2024; 48:2953-2961. [PMID: 39269485 DOI: 10.1007/s00264-024-06278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024]
Abstract
PURPOSE To investigate whether congenital cervical spinal stenosis (CCSS) affects the outcome of three-level anterior cervical discectomy and fusion (ACDF) in patients with cervical spondylotic myelopathy (CSM). METHODS One hundred seventeen patients with CSM who underwent three-level ACDF between January 2019 and January 2023 were retrospectively examined. Patients were grouped according to presence of CCSS, which was defined as Pavlov ratio ≤ 0.75. The CCSS and no CCSS groups comprised 68 (58.1%) and 49 (41.9%) patients, respectively. RESULTS The Japanese Orthopaedic Association (JOA) score did not significantly differ between the two groups at any postoperative time point (p > 0.05). The JOA improvement rate was lower in the CCSS group 1 month after surgery (41.7% vs. 45.5%, p < 0.05), but showed no difference at any follow-up time point after one month. Multivariate logistic regression identified preoperative age (OR = 10.639), JOA score (OR = 0.370), increased signal intensity (ISI) in the spinal cord on T2-weighted MRI (T2-WI) (Grade 1: OR = 6.135; Grade 2: OR = 29.892), and degree of spinal cord compression (30-60%: OR = 17.919; ≥60%: OR = 46.624) as independent predictors of a poor one year outcome (JOA recovery rate < 50%). CONCLUSION Although early JOA improvement is slower in the CCSS group, it does not affect the final neurological improvement at 1 year. Therefore, CCSS should not be considered a contraindication for three-level ACDF in patients with CSM. The main factors influencing one year outcome were preoperative age, JOA score, ISI grade, and degree of spinal cord compression.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Orthopaedic Surgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Road, Fengtai District, Beijing, 100070, China
| | - Zheng Zeng
- Department of Orthopaedic Surgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Road, Fengtai District, Beijing, 100070, China.
| | - Shuanghe Liu
- Department of Orthopaedic Surgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Road, Fengtai District, Beijing, 100070, China
| |
Collapse
|
2
|
Zhang B, Jin Z, Luo P, Yin H, Chen X, Yang B, Qin X, Zhu L, Xu B, Ma G, Zhang D. Ischemia-reperfusion injury after spinal cord decompressive surgery-An in vivo rat model. Animal Model Exp Med 2024. [PMID: 39225110 DOI: 10.1002/ame2.12485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Although decompression surgery is the optimal treatment for patients with severe degenerative cervical myelopathy (DCM), some individuals experience no improvement or even a decline in neurological function after surgery, with spinal cord ischemia-reperfusion injury (SCII) identified as the primary cause. Spinal cord compression results in local ischemia and blood perfusion following decompression is fundamental to SCII. However, owing to inadequate perioperative blood flow monitoring, direct evidence regarding the occurrence of SCII after decompression is lacking. The objective of this study was to establish a suitable animal model for investigating the underlying mechanism of spinal cord ischemia-reperfusion injury following decompression surgery for degenerative cervical myelopathy (DCM) and to elucidate alterations in neurological function and local blood flow within the spinal cord before and after decompression. METHODS Twenty-four Sprague-Dawley rats were allocated to three groups: the DCM group (cervical compression group, with implanted compression material in the spinal canal, n = 8), the DCM-D group (cervical decompression group, with removal of compression material from the spinal canal 4 weeks after implantation, n = 8), and the SHAM group (sham operation, n = 8). Von Frey test, forepaw grip strength, and gait were assessed within 4 weeks post-implantation. Spinal cord compression was evaluated using magnetic resonance imaging. Local blood flow in the spinal cord was monitored during the perioperative decompression. The rats were sacrificed 1 week after decompression to observe morphological changes in the compressed or decompressed segments of the spinal cord. Additionally, NeuN expression and the oxidative damage marker 8-oxoG DNA were analyzed. RESULTS Following spinal cord compression, abnormal mechanical pain worsened, and a decrease in forepaw grip strength was observed within 1-4 weeks. Upon decompression, the abnormal mechanical pain subsided, and forepaw grip strength was restored; however, neither reached the level of the sham operation group. Decompression leads to an increase in the local blood flow, indicating improved perfusion of the spinal cord. The number of NeuN-positive cells in the spinal cord of rats in the DCM-D group exceeded that in the DCM group but remained lower than that in the SHAM group. Notably, a higher level of 8-oxoG DNA expression was observed, suggesting oxidative stress following spinal cord decompression. CONCLUSION This model is deemed suitable for analyzing the underlying mechanism of SCII following decompressive cervical laminectomy, as we posit that the obtained results are comparable to the clinical progression of degenerative cervical myelopathy (DCM) post-decompression and exhibit analogous neurological alterations. Notably, this model revealed ischemic reperfusion in the spinal cord after decompression, concomitant with oxidative damage, which plausibly underlies the neurological deterioration observed after decompression.
Collapse
Affiliation(s)
- Boyu Zhang
- Sports medicine department 3, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhefeng Jin
- Sports medicine department 3, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengren Luo
- Sports medicine department 3, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - He Yin
- Spine Department 2, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Chen
- Spine Department 2, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Bowen Yang
- Spine Department 2, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaokuan Qin
- Spine Department 2, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - LiGuo Zhu
- Sports medicine department 3, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
- Spine Department 2, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Xu
- Spine Department 2, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Guoliang Ma
- Spine Department 2, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Dian Zhang
- Spine Department 2, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Wang S, Xu W, Wang J, Hu X, Wu Z, Li C, Xiao Z, Ma B, Cheng L. Tracing the evolving dynamics and research hotspots of spinal cord injury and surgical decompression from 1975 to 2024: a bibliometric analysis. Front Neurol 2024; 15:1442145. [PMID: 39161868 PMCID: PMC11330800 DOI: 10.3389/fneur.2024.1442145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Background Exploration of the benefits and timing of surgical decompression in spinal cord injury (SCI) has been a research hotspot. However, despite the higher volume and increasing emphasis on quality there remains no bibliometric view on SCI and surgical decompression. In this study, we aimed to perform bibliometric analysis to reveal the core countries, affiliations, journals, authors, and developmental trends in SCI and surgical decompression across the past 50 years. Methods Articles and reviews were retrieved from web of science core collection between 1975 and 2024. The bibliometrix package in R was used for data analysis and visualizing. Results A total of 8,688 documents were investigated, indicating an ascending trend in annual publications. The USA and China played as the leaders in scientific productivity. The University of Toronto led in institutional productions. Core authors, such as Michael G. Fehlings, showed high productivity, and occasional authors showed widespread interests. Core journals like Spine and Spinal Cord served as beacons in this field. The interaction of core authors and international collaboration accentuated the cross-disciplinary feature of the field. Prominent documents emphasized the clinical significance of early decompression in 24 h post SCI. Conclusion Based on comprehensive bibliometric analysis and literature review, we identified the hotspots and future directions of this field: (1) further investigation into the molecular and cellular mechanisms to provide pre-clinical evidence for biological effects of early surgical decompression in SCI animal models; (2) further evaluation and validation of the optimal time window of surgical decompression based on large cohort, considering the inherent heterogeneity of subpopulations in complicated immune responses post SCI; (3) further exploration on the benefits of early decompression on the neurological, functional, and clinical outcomes in acute SCI; (4) evaluation of the optimal surgical methods and related outcomes; (5) applications of artificial intelligence-based technologies in spinal surgical decompression.
Collapse
Affiliation(s)
- Siqiao Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjie Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao Hu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Li
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhihui Xiao
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Bei Ma
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Liang X, Wang X, Chen Y, He D, Li L, Chen G, Li J, Li J, Liu S, Xu Z. Predictive value of intraoperative contrast-enhanced ultrasound in functional recovery of non-traumatic cervical spinal cord injury. Eur Radiol 2024; 34:2297-2309. [PMID: 37707550 DOI: 10.1007/s00330-023-10221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVES To evaluate the ability of intraoperative CEUS to predict neurological recovery in patients with degenerative cervical myelopathy (DCM). METHODS Twenty-six patients with DCM who underwent laminoplasty and intraoperative ultrasound (IOUS) were included in this prospective study. The modified Japanese Orthopaedic Association (mJOA) scores and MRI were assessed before surgery and 12 months postoperatively. The anteroposterior diameter (APD), maximum spinal cord compression (MSCC), and area of signal changes in the cord at the compressed and normal levels were measured and compared using MRI and IOUS. Conventional blood flow and CEUS indices (time to peak, ascending slope, peak intensity (PI), and area under the curve (AUC)) at different levels during IOUS were calculated and analysed. Correlations between all indicators and the neurological recovery rate were evaluated. RESULTS All patients underwent IOUS and intraoperative CEUS, and the total recovery rate was 50.7 ± 33.3%. APD and MSCC improved significantly (p < 0.01). The recovery rate of the hyperechoic lesion group was significantly worse than that of the isoechoic group (p = 0.016). 22 patients were analysed by contrast analysis software. PI was higher in the compressed zone than in the normal zone (24.58 ± 3.19 versus 22.43 ± 2.39, p = 0.019). ΔPI compress-normal and ΔAUC compress-normal of the hyperechoic lesion group were significantly higher than those of the isoechoic group (median 2.19 versus 0.55, p = 0.017; 135.7 versus 21.54, p = 0.014, respectively), and both indices were moderately negatively correlated with the recovery rate (r = - 0.463, p = 0.030; r = - 0.466, p = 0.029). CONCLUSIONS Signal changes and microvascular perfusion evaluated using CEUS during surgery are valuable predictors of cervical myelopathy prognosis. CLINICAL RELEVANCE STATEMENT In the spinal cord compression area of degenerative cervical myelopathy, especially in the hyperechoic lesions, intraoperative CEUS showed more significant contrast agent perfusion than in the normal area, and the degree was negatively correlated with the neurological prognosis. KEY POINTS • Recovery rates in patients with hyperechoic findings were lower than those of patients without lesions detected during intraoperative ultrasound. • The peak intensity of CEUS was higher in compressed zones than in the normal parts of the spinal cord. • Quantitative CEUS comparisons of the peak intensity and area under the curve at the compressed and normal levels of the spinal cord revealed differences that were inversely correlated to the recovery rate.
Collapse
Affiliation(s)
- Xuankun Liang
- Department of Medical Ultrasonics, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, China
| | - Xianxiang Wang
- Department of Medical Ultrasonics, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, China
| | - Yanfang Chen
- Outpatient Office, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, China
| | - Danni He
- Department of Medical Ultrasonics, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, China
| | - Lujing Li
- Department of Medical Ultrasonics, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, China
| | - Guoliang Chen
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, China
| | - Jiachun Li
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, China
| | - Jie Li
- Department of Medical Ultrasonics, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, China
| | - Shaoyu Liu
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, China.
| | - Zuofeng Xu
- Department of Medical Ultrasonics, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, China.
| |
Collapse
|
5
|
Yuan C, Xia P, Duan W, Wang J, Guan J, Du Y, Zhang C, Liu Z, Wang K, Wang Z, Wang X, Wu H, Chen Z, Jian F. Long-Term Impairment of the Blood-Spinal Cord Barrier in Patients With Post-Traumatic Syringomyelia and its Effect on Prognosis. Spine (Phila Pa 1976) 2024; 49:E62-E71. [PMID: 38014747 DOI: 10.1097/brs.0000000000004884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
STUDY DESIGN Cohort study. OBJECTIVE The aim of this study was to explore the association between blood-spinal cord barrier (BSCB) markers and other factors associated with an unfavorable outcome among patients with post-traumatic syringomyelia (PTS) who achieved successful intradural adhesion lysis (IAL). SUMMARY OF BACKGROUND DATA Only approximately half of PTS patients receiving IAL have a favorable outcome. PATIENTS AND METHODS Forty-six consecutive patients with PTS and 19 controls (CTRL) were enrolled. All PTS patients underwent physical and neurological examinations and spinal magnetic resonance imaging before and 3 to 12 months after IAL. All patients underwent myelography before surgery. BSCB disruption was detected by increased intrathecal and serum concentrations of albumin, immunoglobulin (Ig)G, IgA, and IgM. A multivariable analysis was performed with a logistic regression model to identify factors associated with unfavorable outcomes. Receiver operating characteristic curves were calculated to investigate the diagnostic value of biomarkers. RESULTS The ages and general health of the PTS and CTRL groups did not differ significantly. QAlb, IGAQ, IGGQ, and IGMQ was significantly higher in PTS patients than in controls ( P =<0.001). The degree of intradural adhesion was significantly higher in the unfavorable outcome group than in the favorable outcome group ( P <0.0001). QAlb, immunoglobulin (Ig)AQ, IGGQ, and IGMQ was significantly correlated with clinical status ( R =-0.38, P <0.01; R =-0.47, P =0.03; R =-0.56, P =0.01; R =-0.43, P =0.05, respectively). Higher QAlb before surgery (odds ratio=2.66; 95% CI: 1.134-6.248) was significantly associated with an unfavorable outcome. The receiver operating characteristic curve analysis demonstrated a cutoff for QAlb higher than 10.62 with a specificity of 100% and sensitivity of 96.3%. CONCLUSION This study is the first to detect increased permeability and BSCB disruption in PTS patients. QAlb>10.62 was significantly associated with unfavorable clinical outcomes following intradural decompression. LEVEL OF EVIDENCE Level III-prognostic.
Collapse
Affiliation(s)
- Chenghua Yuan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Pingchuan Xia
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wanru Duan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Jiachen Wang
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jian Guan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Yueqi Du
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Can Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Zhenlei Liu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Kai Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Zuowei Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Xingwen Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Zan Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Fengzeng Jian
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| |
Collapse
|
6
|
Wu J, Sun Z, Ge Z, Zhang D, Xu J, Zhang R, Liu X, Zhao Q, Sun H. The efficacy of virtual reality technology for the postoperative rehabilitation of patients with cervical spondylotic myelopathy (CSM): a study protocol for a randomized controlled trial. Trials 2024; 25:133. [PMID: 38374040 PMCID: PMC10877862 DOI: 10.1186/s13063-024-07962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Patients with cervical spondylosis myelopathy (CSM) may experience severe neurological dysfunction due to untimely spinal cord compression after surgery. These disorders may lead to sensory and motion disorders, causing considerable psychological distress. Recent studies found that virtual reality (VR) technology can be an effective tool for treating spinal cord injuries. Owing to this discovery, we developed an exploratory research project to investigate the impact of this intervention on the postoperative recovery of patients with CSM. METHODS The purpose of this randomized controlled trial was to evaluate the efficacy of combining VR technology with conventional rehabilitation strategies for the postoperative rehabilitation of patients with CSM. A total of 78 patients will be recruited and randomized to either the conventional rehabilitation group or the group subjected to VR technology combined with conventional rehabilitation strategies. The Japanese Orthopaedic Association (JOA) scale will be the main tool used, and secondary outcomes will be measured via the visual analogue scale (VAS), neck disability index (NDI), and functional MRI (fMRI). The data analysis will identify differences between the intervention and control groups as well as any relationship between the intragroup changes in the functional area of the brain and the subjective scale scores after the intervention. DISCUSSION The aim of this trial is to investigate the effect of VR training on the postoperative rehabilitation of patients with CSM after 12 intervention treatments. Positive and negative outcomes will help us better understand the effectiveness of the intervention and its neural impact. If effective, this study could provide new options for the postoperative rehabilitation of patients with CSM. TRIAL REGISTRATION Chinese Clinical Trial Registry (ChiCTR2300071544). Registered 17 May 2023, https://www.chictr.org.cn/ .
Collapse
Affiliation(s)
- Jiajun Wu
- Department of Spinal Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Zhongchuan Sun
- Department of Spinal Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Zhichao Ge
- Department of Spinal Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Dong Zhang
- Department of Spinal Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jianghan Xu
- Department of Spinal Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Rilin Zhang
- Department of Spinal Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xuecheng Liu
- Department of Spinal Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Qing Zhao
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Hao Sun
- Department of Spinal Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
7
|
Xu F, Tian Z, Wang Z. Cilostazol protects against degenerative cervical myelopathy injury and cell pyroptosis via TXNIP-NLRP3 pathway. Cell Div 2024; 19:2. [PMID: 38233884 DOI: 10.1186/s13008-024-00108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Degenerative cervical myelopathy (DCM) is one of the most common and serious neurological diseases. Cilostazol has protective effects of anterior horn motor neurons and prevented the cell apoptosis. However, there was no literatures of Cilostazol on DCM. In this study, we established the DCM rat model to detect the effects of Cilostazol. Meanwhile, the neurobehavioral assessments, histopathology changes, inflammatory cytokines, Thioredoxin-interacting protein (TXNIP), NOD‑like receptor pyrin domain containing 3 (NLRP3) and pro-caspase-1 expressions were detected by Basso, Beattie, and Bresnahan score assessment, Hematoxylin and Eosin Staining, Enzyme-linked immunosorbent assay, immunofluorescence and Western blotting, respectively. After treated with Cilostazol, the Basso, Beattie, and Bresnahan (BBB) score, inclined plane test and forelimb grip strength in DCM rats were significantly increased meanwhile the histopathology injury and inflammatory cytokines were decreased. Additionally, TXNIP, NLRP3 and pro-caspase-1 expressions levels were decreased in Cilostazol treated DCM rats. Interestingly, the using of siTXNIP significantly changed inflammatory cytokines, TXNIP, NLRP3 and pro-caspase-1 expressions, however there was no significance between siTXNIP and Cilostazol + siTXNIP group. These observations showed that Cilostazol rescues DCM injury and ameliorates neuronal destruction mediated by TXNIP/NLRP3/caspase-1 and pro-inflammatory cytokines. As a result of our study, these findings provide further evidence that Cilostazol may represent promising therapeutic candidates for DCM.
Collapse
Affiliation(s)
- Fei Xu
- Department of Neck-Shoulder and Lumbocrural Pain, Yantai hospital of traditional Chinese medicine, 39 Xingfu Road, Zhifu District, Yantai, 264000, Shandong, P.R. China
| | - Zhuo Tian
- Department of General Surgery, Yantai hospital of traditional Chinese medicine, Yantai, Shandong, China
| | - Zhengguang Wang
- Department of Neck-Shoulder and Lumbocrural Pain, Yantai hospital of traditional Chinese medicine, 39 Xingfu Road, Zhifu District, Yantai, 264000, Shandong, P.R. China.
| |
Collapse
|
8
|
Ojeda J, Vergara M, Ávila A, Henríquez JP, Fehlings M, Vidal PM. Impaired communication at the neuromotor axis during Degenerative Cervical Myelopathy. Front Cell Neurosci 2024; 17:1316432. [PMID: 38269114 PMCID: PMC10806149 DOI: 10.3389/fncel.2023.1316432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Degenerative Cervical Myelopathy (DCM) is a progressive neurological condition characterized by structural alterations in the cervical spine, resulting in compression of the spinal cord. While clinical manifestations of DCM are well-documented, numerous unanswered questions persist at the molecular and cellular levels. In this study, we sought to investigate the neuromotor axis during DCM. We use a clinically relevant mouse model, where after 3 months of DCM induction, the sensorimotor tests revealed a significant reduction in both locomotor activity and muscle strength compared to the control group. Immunohistochemical analyses showed alterations in the gross anatomy of the cervical spinal cord segment after DCM. These changes were concomitant with the loss of motoneurons and a decrease in the number of excitatory synaptic inputs within the spinal cord. Additionally, the DCM group exhibited a reduction in the endplate surface, which correlated with diminished presynaptic axon endings in the supraspinous muscles. Furthermore, the biceps brachii (BB) muscle exhibited signs of atrophy and impaired regenerative capacity, which inversely correlated with the transversal area of remnants of muscle fibers. Additionally, metabolic assessments in BB muscle indicated an increased proportion of oxidative skeletal muscle fibers. In line with the link between neuromotor disorders and gut alterations, DCM mice displayed smaller mucin granules in the mucosa layer without damage to the epithelial barrier in the colon. Notably, a shift in the abundance of microbiota phylum profiles reveals an elevated Firmicutes-to-Bacteroidetes ratio-a consistent hallmark of dysbiosis that correlates with alterations in gut microbiota-derived metabolites. Additionally, treatment with short-chain fatty acids stimulated the differentiation of the motoneuron-like NSC34 cell line. These findings shed light on the multifaceted nature of DCM, resembling a synaptopathy that disrupts cellular communication within the neuromotor axis while concurrently exerting influence on other systems. Notably, the colon emerges as a focal point, experiencing substantial perturbations in both mucosal barrier integrity and the delicate balance of intestinal microbiota.
Collapse
Affiliation(s)
- Jorge Ojeda
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Mayra Vergara
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ariel Ávila
- Developmental Neurobiology Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Juan Pablo Henríquez
- Neuromuscular Studies Lab (NeSt Lab), Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Michael Fehlings
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Spinal Program, University Health Network, Toronto Western Hospital, Toronto, ON, Canada
| | - Pia M. Vidal
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
9
|
Schmidt TP, Jütten K, Bertram U, Brandenburg LO, Pufe T, Delev D, Gombert A, Mueller CA, Clusmann H, Blume C. Blood spinal cord barrier disruption recovers in patients with degenerative cervical myelopathy after surgical decompression: a prospective cohort study. Sci Rep 2023; 13:7389. [PMID: 37149638 PMCID: PMC10164176 DOI: 10.1038/s41598-023-34004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 04/22/2023] [Indexed: 05/08/2023] Open
Abstract
The pathophysiology of degenerative cervical myelopathy (DCM) is characterized by chronic compression-induced damage to the spinal cord leading to secondary harm such as disruption of the blood spinal cord barrier (BSCB). It is therefore the purpose of this study to analyze BSCB disruption in pre- and postoperative DCM patients and to correlate those with the clinical status and postoperative outcome. This prospectively controlled cohort included 50 DCM patients (21 female; 29 male; mean age: 62.9 ± 11.2 years). As neurological healthy controls, 52 (17 female; 35 male; mean age 61.8 ± 17.3 years) patients with thoracic abdominal aortic aneurysm (TAAA) and indication for open surgery were included. All patients underwent a neurological examination and DCM-associated scores (Neck Disability Index, modified Japanese Orthopaedic Association Score) were assessed. To evaluate the BSCB status, blood and cerebrospinal fluid (CSF) samples (lumbar puncture or CSF drainage) were taken preoperatively and in 15 DCM patients postoperatively (4 female; 11 male; mean age: 64.7 ± 11.1 years). Regarding BSCB disruption, CSF and blood serum were examined for albumin, immunoglobulin (Ig) G, IgA and IgM. Quotients for CSF/serum were standardized and calculated according to Reiber diagnostic criteria. Significantly increased preoperative CSF/serum quotients were found in DCM patients as compared to control patients: AlbuminQ (p < .001), IgAQ (p < .001) and IgGQ (p < .001). IgMQ showed no significant difference (T = - 1.15, p = .255). After surgical decompression, neurological symptoms improved in DCM patients, as shown by a significantly higher postoperative mJOA compared to the preoperative score (p = .001). This neurological improvement was accompanied by a significant change in postoperative CSF/serum quotients for Albumin (p = .005) and IgG (p = .004) with a trend of a weak correlation between CSF markers and neurological recovery. This study further substantiates the previous findings, that a BSCB disruption in DCM patients is evident. Interestingly, surgical decompression appears to be accompanied by neurological improvement and a reduction of CSF/serum quotients, implying a BSCB recovery. We found a weak association between BSCB recovery and neurological improvement. A BSCB disruption might be a key pathomechanism in DCM patients, which could be relevant to treatment and clinical recovery.
Collapse
Affiliation(s)
- Tobias Philip Schmidt
- Department of Neurosurgery, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Kerstin Jütten
- Department of Neurosurgery, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ulf Bertram
- Department of Neurosurgery, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Lars Ove Brandenburg
- Institute of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Thomas Pufe
- Institute of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Alexander Gombert
- Department of Vascular Surgery, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | | | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Christian Blume
- Department of Neurosurgery, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
10
|
Davies B, Mowforth OD, Yordanov S, Alvarez-Berdugo D, Bond S, Nodale M, Kareclas P, Whitehead L, Bishop J, Chandran S, Lamb S, Bacon M, Papadopoulos MC, Starkey M, Sadler I, Smith L, Kalsi-Ryan S, Carpenter A, Trivedi RA, Wilby M, Choi D, Wilkinson IB, Fehlings MG, Hutchinson PJ, Kotter MRN. Targeting patient recovery priorities in degenerative cervical myelopathy: design and rationale for the RECEDE-Myelopathy trial-study protocol. BMJ Open 2023; 13:e061294. [PMID: 36882259 PMCID: PMC10008337 DOI: 10.1136/bmjopen-2022-061294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
INTRODUCTION Degenerative cervical myelopathy (DCM) is a common and disabling condition of symptomatic cervical spinal cord compression secondary to degenerative changes in spinal structures leading to a mechanical stress injury of the spinal cord. RECEDE-Myelopathy aims to test the disease-modulating activity of the phosphodiesterase 3/phosphodiesterase 4 inhibitor Ibudilast as an adjuvant to surgical decompression in DCM. METHODS AND ANALYSIS RECEDE-Myelopathy is a multicentre, double-blind, randomised, placebo-controlled trial. Participants will be randomised to receive either 60-100 mg Ibudilast or placebo starting within 10 weeks prior to surgery and continuing for 24 weeks after surgery for a maximum of 34 weeks. Adults with DCM, who have a modified Japanese Orthopaedic Association (mJOA) score 8-14 inclusive and are scheduled for their first decompressive surgery are eligible for inclusion. The coprimary endpoints are pain measured on a visual analogue scale and physical function measured by the mJOA score at 6 months after surgery. Clinical assessments will be undertaken preoperatively, postoperatively and 3, 6 and 12 months after surgery. We hypothesise that adjuvant therapy with Ibudilast leads to a meaningful and additional improvement in either pain or function, as compared with standard routine care. STUDY DESIGN Clinical trial protocol V.2.2 October 2020. ETHICS AND DISSEMINATION Ethical approval has been obtained from HRA-Wales.The results will be presented at an international and national scientific conferences and in a peer-reviewed journals. TRIAL REGISTRATION NUMBER ISRCTN Number: ISRCTN16682024.
Collapse
Affiliation(s)
- Benjamin Davies
- Department of Neurosurgery, Cambridge University, Cambridge, UK
| | | | - Stefan Yordanov
- Department of Neurosurgery, Cambridge University, Cambridge, UK
| | | | - Simon Bond
- Cambridge Clinical Trials Unit, Cambridge University Hospital, Cambridge, UK
| | - Marianna Nodale
- Cambridge Clinical Trials Unit, Cambridge University Hospital, Cambridge, UK
| | - Paula Kareclas
- Cambridge Clinical Trials Unit, Cambridge University Hospital, Cambridge, UK
| | - Lynne Whitehead
- Pharmacy Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jon Bishop
- Medical Statistician, NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK
| | - Siddharthan Chandran
- Edinburgh Medical School & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Sarah Lamb
- Institute of Health Research, University of Exeter, Exeter, UK
| | - Mark Bacon
- International Spinal Research Trust, London, UK
| | | | | | | | | | | | - Adrian Carpenter
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Rikin A Trivedi
- Department of Neurosurgery, Cambridge University, Cambridge, UK
| | - Martin Wilby
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - David Choi
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Ian B Wilkinson
- Cambridge Clinical Trials Unit, Cambridge University Hospital, Cambridge, UK
| | - Michael G Fehlings
- Department of Surgery, Toronto Western Hospital and University of Toronto, Toronto, Ontario, Canada
| | | | - Mark R N Kotter
- Department of Neurosurgery, Cambridge University, Cambridge, UK
| |
Collapse
|
11
|
Li GS, Chen GH, Wang KH, Wang XX, Hu XS, Wei B, Hu Y. Neurovascular Unit Compensation from Adjacent Level May Contribute to Spontaneous Functional Recovery in Experimental Cervical Spondylotic Myelopathy. Int J Mol Sci 2023; 24:ijms24043408. [PMID: 36834841 PMCID: PMC9962900 DOI: 10.3390/ijms24043408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The progression and remission of cervical spondylotic myelopathy (CSM) are quite unpredictable due to the ambiguous pathomechanisms. Spontaneous functional recovery (SFR) has been commonly implicated in the natural course of incomplete acute spinal cord injury (SCI), while the evidence and underlying pathomechanisms of neurovascular unit (NVU) compensation involved in SFR remains poorly understood in CSM. In this study, we investigate whether compensatory change of NVU, in particular in the adjacent level of the compressive epicenter, is involved in the natural course of SFR, using an established experimental CSM model. Chronic compression was created by an expandable water-absorbing polyurethane polymer at C5 level. Neurological function was dynamically assessed by BBB scoring and somatosensory evoked potential (SEP) up to 2 months. (Ultra)pathological features of NVUs were presented by histopathological and TEM examination. Quantitative analysis of regional vascular profile area/number (RVPA/RVPN) and neuroglial cells numbers were based on the specific EBA immunoreactivity and neuroglial biomarkers, respectively. Functional integrity of blood spinal cord barrier (BSCB) was detected by Evan blue extravasation test. Although destruction of the NVU, including disruption of the BSCB, neuronal degeneration and axon demyelination, as well as dramatic neuroglia reaction, were found in the compressive epicenter and spontaneous locomotor and sensory function recovery were verified in the modeling rats. In particular, restoration of BSCB permeability and an evident increase in RVPA with wrapping proliferated astrocytic endfeet in gray matter and neuron survival and synaptic plasticity were confirmed in the adjacent level. TEM findings also proved ultrastructural restoration of the NVU. Thus, NVU compensation changes in the adjacent level may be one of the essential pathomechanisms of SFR in CSM, which could be a promising endogenous target for neurorestoration.
Collapse
Affiliation(s)
- Guang-Sheng Li
- Spinal Division of Orthopedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Guang-Hua Chen
- Spinal Division of Orthopedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, China
- Correspondence: (G.-H.C.); (Y.H.)
| | - Kang-Heng Wang
- Spinal Division of Orthopedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, China
| | - Xu-Xiang Wang
- Spinal Division of Orthopedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, China
| | - Xiao-Song Hu
- Spinal Division of Orthopedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, China
| | - Bo Wei
- Spinal Division of Orthopedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, China
| | - Yong Hu
- Spinal Division of Orthopedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
- Correspondence: (G.-H.C.); (Y.H.)
| |
Collapse
|
12
|
Liang QQ, Yao M, Cui XJ, Li ZY, Zhou AF, Li G, Zhou LY, Pu PM, Zhu K, Zheng Z, Wang YJ. Chronic spinal cord compression associated with intervertebral disc degeneration in SPARC-null mice. Neural Regen Res 2023; 18:634-642. [DOI: 10.4103/1673-5374.350210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Liu P, Li X, Liu J, Zhang H, You Z, Zhang J. TXNIP Participated in NLRP3-Mediated Inflammation in a Rat Model of Cervical Spondylotic Myelopathy. J Inflamm Res 2022; 15:4547-4559. [PMID: 35971339 PMCID: PMC9375583 DOI: 10.2147/jir.s373614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/30/2022] [Indexed: 12/02/2022] Open
Abstract
Background Cervical spondylotic myelopathy (CSM) is a spinal cord disease caused by cervical disc degeneration and related pathological changes. Cervical spondylotic myelopathy may result from inflammation responses and neuronal damage. Thioredoxin-interacting protein (TXNIP)/NOD-like receptor protein 3 (NLRP3) signaling promotes inflammation. However, the effects of TXNIP/NLRP3 on the pathogenesis of CSM have not been reported. Methods A rat model of chronic cervical cord compression was established to observe changes in the levels of of TNXIP/NeuN and NLRP3/NeuN expression in the damaged anterior horn of the spinal cord following progression of CSM. Rats were injected with TXNIP small interfering RNA (siRNA) and scrambled control to determine the effects of TXNIP inhibition on NLRP3-mediated inflammation in rats with CSM. Behaviors effects and the expression of NLRP3 and pro-caspase-1 in the damaged spinal cord were evaluated. Results The expression levels of TXNIP and NLRP3 were significantly increased in the damaged anterior horn of the spinal cord following CSM. Injection of TXNIP siRNA significantly improved behavioral measures and decreased apoptosis in the damaged anterior horn of spinal cord. Furthermore, the levels of NLRP3 and pro-caspase-1 in the lesioned area were reduced by the TXNIP siRNA injection. Conclusion Thioredoxin-interacting protein participated in NLRP3 mediated inflammation in a rat model of CSM, which indicated that TXNIP may be a potential therapeutic target in improving CSM.
Collapse
Affiliation(s)
- Peisheng Liu
- Department of Spinal Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Xiaofeng Li
- Department of Spinal Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Jing Liu
- Basic Department, Yantai Vocational College, Yantai, People's Republic of China
| | - Hengjia Zhang
- Department of Spinal Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Zhitao You
- Department of Spinal Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Jianfeng Zhang
- Department of Spinal Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| |
Collapse
|
14
|
Liu P, Li X, Liu J, Zhang H, You Z, Zhang J. Cacna2d2 inhibits axonal regeneration following surgical decompression in a rat model of cervical spondylotic myelopathy. BMC Neurosci 2022; 23:42. [PMID: 35778700 PMCID: PMC9248146 DOI: 10.1186/s12868-022-00727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/23/2022] [Indexed: 11/11/2022] Open
Abstract
Background Cervical spondylotic myelopathy (CSM) is a clinically symptomatic condition due to spinal cord compression, leading to spinal cord dysfunction. Surgical decompression is the main treatment of CSM, but the mechanisms of axonal regeneration after surgical decompression are still fragmentary. Methods In a rat model of CSM, the cacna2d2 (α2δ2) expression levels in anterior horn of spinal cord were observed following compression and decompression by western blot and immunofluorescence. The expression levels of 5 hydroxytryptamine (5HT) and GAP43 were also analyzed by immunofluorescence. Furthermore, gabapentin intervention was performed for 4 weeks after decompression to analyze the changes of behaviors and anterior horn of spinal cords. Results Following decompression, the expression levels of α2δ2 in the anterior horn of spinal cord were decreased, but the expression levels of 5HT andGAP43 were increased. Compared with the vehicle treated rats, gabapentin treatment for 4 weeks ameliorated the behaviors of rats and improved the damaged anterior horn of spinal cord. Besides, inhibition of α2δ2 through gabapentin intervention enhanced the axonal regeneration in the anterior horn of damaged spinal cord. Conclusions Inhibition of α2δ2 could enhance axonal recovery in anterior horn of damaged spinal cord induced by CSM after surgical decompression, providing a potential method for promoting axon regeneration following surgery.
Collapse
Affiliation(s)
- Peisheng Liu
- Department of Spinal Surgery, Yantaishan Hospital, No. 10087, Keji Avenue, Laishan District, 264000, Yantai, China
| | - Xiaofeng Li
- Department of Spinal Surgery, Yantaishan Hospital, No. 10087, Keji Avenue, Laishan District, 264000, Yantai, China
| | - Jing Liu
- Basic Department, Yantai Vocational College, 264000, Yantai, China
| | - Hengjia Zhang
- Department of Spinal Surgery, Yantaishan Hospital, No. 10087, Keji Avenue, Laishan District, 264000, Yantai, China
| | - Zhitao You
- Department of Spinal Surgery, Yantaishan Hospital, No. 10087, Keji Avenue, Laishan District, 264000, Yantai, China
| | - Jianfeng Zhang
- Department of Spinal Surgery, Yantaishan Hospital, No. 10087, Keji Avenue, Laishan District, 264000, Yantai, China.
| |
Collapse
|
15
|
Neuroinflammation and apoptosis after surgery for a rat model of double-level cervical cord compression. Neurochem Int 2022; 157:105340. [DOI: 10.1016/j.neuint.2022.105340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/11/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022]
|
16
|
Boerger TF, Hyngstrom AS, Furlan JC, Kalsi-Ryan S, Curt A, Kwon BK, Kurpad SN, Fehlings MG, Harrop JS, Aarabi B, Rahimi-Movaghar V, Guest JD, Wilson JR, Davies BM, Kotter MRN, Koljonen PA. Developing Peri-Operative Rehabilitation in Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 6]: An Unexplored Opportunity? Global Spine J 2022; 12:97S-108S. [PMID: 35174735 PMCID: PMC8859699 DOI: 10.1177/21925682211050925] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
STUDY DESIGN Narrative review. OBJECTIVE Degenerative cervical myelopathy is one of the most frequent impairments of the spinal cord encountered internationally in adults. Currently, surgical decompression is the recommended treatment for people with DCM (PwCM) presenting with moderate to severe symptoms or neurological deficits. However, despite surgical intervention, not all patients make a complete recovery due to the irreversible tissue damage within the spinal cord. The objective of this review is to describe the state and gaps in the current literature on rehabilitation for PwCM and possible innovative rehabilitation strategies. METHODS Literature search. RESULTS In other neurological disorders such as stroke and acute traumatic spinal cord injury (SCI), timely and strategic rehabilitation has been shown to be indispensable for maximizing functional outcomes, and it is imperative that appropriate perioperative rehabilitative interventions accompany surgical approaches in order to enable the best outcomes. In this review, the current state of knowledge regarding rehabilitation for PwCM is described. Additionally, various therapies that have shown to improve outcomes in comparable neurological conditions such as stroke and SCI which may be translated to DCM will be reviewed. CONCLUSIONS We conclude that locomotor training and arm/hand therapy may benefit PwCM. Further, we conclude that body weight support, robotic assistance, and virtual/augmented reality therapies may be beneficial therapeutic analogs to locomotor and hand therapies.
Collapse
Affiliation(s)
- Timothy F. Boerger
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Julio C. Furlan
- KITE Research Institute, University Health Network, Toronto, ON, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sukhvinder Kalsi-Ryan
- KITE Research Institute, University Health Network, Toronto, ON, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Armin Curt
- University Spine Center, Balgrist University Hospital, Zurich, Switzerland
| | - Brian K. Kwon
- Department of Orthopedics, Vancouver Spine Surgery Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Shekar N. Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael G. Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - James S. Harrop
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bizhan Aarabi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - James D. Guest
- Department of Neurosurgery and The Miami Project to Cure Paralysis, The Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jefferson R. Wilson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | | | | | - Paul A. Koljonen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
Gharooni AA, Kwon BK, Fehlings MG, Boerger TF, Rodrigues-Pinto R, Koljonen PA, Kurpad SN, Harrop JS, Aarabi B, Rahimi-Movaghar V, Wilson JR, Davies BM, Kotter MRN, Guest JD. Developing Novel Therapies for Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 7]: Opportunities From Restorative Neurobiology. Global Spine J 2022; 12:109S-121S. [PMID: 35174725 PMCID: PMC8859698 DOI: 10.1177/21925682211052920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY DESIGN Narrative review. OBJECTIVES To provide an overview of contemporary therapies for the James Lind Alliance priority setting partnership for degenerative cervical myelopathy (DCM) question: 'Can novel therapies, including stem-cell, gene, pharmacological and neuroprotective therapies, be identified to improve the health and wellbeing of people living with DCM and slow down disease progression?' METHODS A review of the literature was conducted to outline the pathophysiology of DCM and present contemporary therapies that may hold therapeutic value in 3 broad categories of neuroprotection, neuroregeneration, and neuromodulation. RESULTS Chronic spinal cord compression leads to ischaemia, neuroinflammation, demyelination, and neuronal loss. Surgical intervention may halt progression and improve symptoms, though the majority do not make a full recovery leading to lifelong disability. Neuroprotective agents disrupt deleterious secondary injury pathways, and one agent, Riluzole, has undergone Phase-III investigation in DCM. Although it did not show efficacy on the primary outcome modified Japanese Orthopaedic Association scale, it showed promising results in pain reduction. Regenerative approaches are in the early stage, with one agent, Ibudilast, currently in a phase-III investigation. Neuromodulation approaches aim to therapeutically alter the state of spinal cord excitation by electrical stimulation with a variety of approaches. Case studies using electrical neuromuscular and spinal cord stimulation have shown positive therapeutic utility. CONCLUSION There is limited research into interventions in the 3 broad areas of neuroprotection, neuroregeneration, and neuromodulation for DCM. Contemporary and novel therapies for DCM are now a top 10 priority, and whilst research in these areas is limited in DCM, it is hoped that this review will encourage research into this priority.
Collapse
Affiliation(s)
- Aref-Ali Gharooni
- Neurosurgery Unit, Department of Clinical Neuroscience, University of Cambridge, UK
| | - Brian K. Kwon
- Vancouver Spine Surgery Institute, Department of Orthopedics, The University of British Columbia, Vancouver, BC, Canada
| | - Michael G. Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Timothy F. Boerger
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Ricardo Rodrigues-Pinto
- Spinal Unit (UVM), Department of Orthopaedics, Centro Hospitalar Universitário do Porto - Hospital de Santo António, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Paul Aarne Koljonen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shekar N. Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - James S. Harrop
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bizhan Aarabi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jefferson R. Wilson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Benjamin M. Davies
- Neurosurgery Unit, Department of Clinical Neuroscience, University of Cambridge, UK
| | - Mark R. N. Kotter
- Neurosurgery Unit, Department of Clinical Neuroscience, University of Cambridge, UK
| | - James D. Guest
- Department of Neurosurgery and The Miami Project to Cure Paralysis, The Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
18
|
Davies BM, Mowforth O, Gharooni AA, Tetreault L, Nouri A, Dhillon RS, Bednarik J, Martin AR, Young A, Takahashi H, Boerger TF, Newcombe VF, Zipser CM, Freund P, Koljonen PA, Rodrigues-Pinto R, Rahimi-Movaghar V, Wilson JR, Kurpad SN, Fehlings MG, Kwon BK, Harrop JS, Guest JD, Curt A, Kotter MRN. A New Framework for Investigating the Biological Basis of Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 5]: Mechanical Stress, Vulnerability and Time. Global Spine J 2022; 12:78S-96S. [PMID: 35174728 PMCID: PMC8859710 DOI: 10.1177/21925682211057546] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY DESIGN Literature Review (Narrative). OBJECTIVE To propose a new framework, to support the investigation and understanding of the pathobiology of DCM, AO Spine RECODE-DCM research priority number 5. METHODS Degenerative cervical myelopathy is a common and disabling spinal cord disorder. In this perspective, we review key knowledge gaps between the clinical phenotype and our biological models. We then propose a reappraisal of the key driving forces behind DCM and an individual's susceptibility, including the proposal of a new framework. RESULTS Present pathobiological and mechanistic knowledge does not adequately explain the disease phenotype; why only a subset of patients with visualized cord compression show clinical myelopathy, and the amount of cord compression only weakly correlates with disability. We propose that DCM is better represented as a function of several interacting mechanical forces, such as shear, tension and compression, alongside an individual's vulnerability to spinal cord injury, influenced by factors such as age, genetics, their cardiovascular, gastrointestinal and nervous system status, and time. CONCLUSION Understanding the disease pathobiology is a fundamental research priority. We believe a framework of mechanical stress, vulnerability, and time may better represent the disease as a whole. Whilst this remains theoretical, we hope that at the very least it will inspire new avenues of research that better encapsulate the full spectrum of disease.
Collapse
Affiliation(s)
- Benjamin M Davies
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Oliver Mowforth
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Aref-Ali Gharooni
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Lindsay Tetreault
- New York University, Langone Health, Graduate Medical Education, 5894Department of Neurology, New York, NY, USA
| | - Aria Nouri
- Division of Neurosurgery, Geneva University Hospitals, 27230University of Geneva, Genève, Switzerland
| | - Rana S Dhillon
- Department of Neurosurgery, 60078St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Josef Bednarik
- Department of Neurology, University Hospital Brno and Faculty of Medicine, 37748Masaryk University, Brno, Czech Republic
| | - Allan R Martin
- Department of Neurosurgery, 8789University of California Davis, Sacramento, CA, USA
| | - Adam Young
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, 12978Niigata University, Niigata, Japan
| | - Timothy F Boerger
- Department of Neurosurgery, 5506Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Virginia Fj Newcombe
- Division of Anaesthesia, Department of Medicine, 2152University of Cambridge, Cambridge, UK
| | - Carl Moritz Zipser
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Patrick Freund
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Paul Aarne Koljonen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, 25809The University of Hong Kong, Hong Kong, China
| | - Ricardo Rodrigues-Pinto
- Spinal Unit (UVM), Department of Orthopaedics, 112085Centro Hospitalar Universitário do Porto - Hospital de Santo António, Porto, Portugal
- 89239Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Jefferson R Wilson
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Shekar N Kurpad
- Department of Neurosurgery, 5506Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Brian K Kwon
- Vancouver Spine Surgery Institute, Department of Orthopedics, The University of British Columbia, Vancouver, BC, Canada
| | - James S Harrop
- Department of Neurological Surgery, 6559Thomas Jefferson University, Philadelphia, PA, USA
| | - James D Guest
- Department of Neurosurgery and the Miami Project to Cure Paralysis, The Miller School of Medicine, 12235University of Miami, Miami, FL, USA
| | - Armin Curt
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Mark R N Kotter
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
David G, Vallotton K, Hupp M, Curt A, Freund P, Seif M. Extent of cord pathology in the lumbosacral enlargement in non-traumatic versus traumatic spinal cord injury. J Neurotrauma 2022; 39:639-650. [PMID: 35018824 DOI: 10.1089/neu.2021.0389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study compares remote neurodegenerative changes caudal to a cervical injury in degenerative cervical myelopathy (DCM) (i.e., non-traumatic) and incomplete traumatic spinal cord injury (tSCI) patients, using MRI-based tissue area measurements and diffusion tensor imaging (DTI). Eighteen mild to moderate DCM patients with sensory impairments (mJOA score: 16.2±1.9), 14 incomplete tetraplegic tSCI patients (AIS C&D), and 20 healthy controls were recruited. All participants received DTI and T2*-weighted scans in the lumbosacral enlargement (caudal to injury) and at C2/C3 (rostral to injury). MRI readouts included DTI metrics in the white matter (WM) columns and cross-sectional WM and gray matter area. One-way ANOVA with Tukey's post-hoc comparison (p<0.05) was used to assess group differences. In the lumbosacral enlargement, compared to DCM, tSCI patients exhibited decreased fractional anisotropy in the lateral (tSCI vs. DCM, -11.9%, p=0.007) and ventral WM column (-8.0%, p=0.021), and showed trend toward lower values in the dorsal column (-8.9%, p=0.068). At C2/C3, compared to controls, fractional anisotropy was lower in both groups in the dorsal (DCM vs. controls, -7.9%, p=0.024; tSCI vs. controls, -10.0%, p=0.007) and in the lateral column (DCM: -6.2%, p=0.039; tSCI: -13.3%, p<0.001), while tSCI patients had lower fractional anisotropy than DCM patients in the lateral column (-7.6%, p=0.029). WM areas were not different between patient groups but were lower compared to controls in the lumbosacral enlargement (DCM: -16.9%, p<0.001; tSCI, -10.5%, p=0.043) and at C2/C3 (DCM: -16.0%, p<0.001; tSCI: -18.1%, p<0.001). In conclusion, mild to moderate DCM and incomplete tSCI lead to similar degree of degeneration of the dorsal and lateral columns at C2/C3, but tSCI results in more widespread white matter damage in the lumbosacral enlargement. These remote changes are likely to contribute to the patients' impairment and recovery. DTI is a sensitive tool to assess remote pathological changes in DCM and tSCI patients.
Collapse
Affiliation(s)
- Gergely David
- University of Zurich, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.,University Medical Center Hamburg-Eppendorf, 37734, Department of Systems Neuroscience, Hamburg, Germany;
| | - Kevin Vallotton
- University of Zurich, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland;
| | - Markus Hupp
- University of Zurich, 27217, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland;
| | - Armin Curt
- University of Zurich, 27217, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland;
| | - Patrick Freund
- University of Zurich, 27217, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.,UCL Institute of Neurology, 61554, Department of Brain Repair and Rehabilitation, London, United Kingdom of Great Britain and Northern Ireland.,UCL Institute of Neurology, 61554, Wellcome Trust Centre for Neuroimaging, London, United Kingdom of Great Britain and Northern Ireland.,Max Planck Institute for Human Cognitive and Brain Sciences, 27184, Department of Neurophysics, Leipzig, Germany;
| | - Maryam Seif
- University of Zurich, 27217, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.,Max Planck Institute for Human Cognitive and Brain Sciences, 27184, Leipzig, Department of Neurophysics, Germany;
| |
Collapse
|
20
|
Yu Z, Cheng X, Chen J, Huang Z, He S, Hu H, Lin S, Zou Z, Huang F, Chen B, Wan Y, Peng X, Zou X. Spinal Cord Parenchyma Vascular Redistribution Underlies Hemodynamic and Neurophysiological Changes at Dynamic Neck Positions in Cervical Spondylotic Myelopathy. Front Neuroanat 2021; 15:729482. [PMID: 34887731 PMCID: PMC8650056 DOI: 10.3389/fnana.2021.729482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Cervical spondylotic myelopathy (CSM) is a degenerative condition of the spine that caused by static and dynamic compression of the spinal cord. However, the mechanisms of motor and somatosensory conduction, as well as pathophysiological changes at dynamic neck positions remain unclear. This study aims to investigate the interplay between neurophysiological and hemodynamic responses at dynamic neck positions in the CSM condition, and the pathological basis behind. We first demonstrated that CSM patients had more severe dynamic motor evoked potentials (DMEPs) deteriorations upon neck flexion than upon extension, while their dynamic somatosensory evoked potentials (DSSEPs) deteriorated to a similar degree upon extension and flexion. We therefore generated a CSM rat model which developed similar neurophysiological characteristics within a 4-week compression period. At 4 weeks-post-injury, these rats presented decreased spinal cord blood flow (SCBF) and oxygen saturation (SO2) at the compression site, especially upon cervical flexion. The dynamic change of DMEPs was significantly correlated with the change in SCBF from neutral to flexion, suggesting they were more sensitive to ischemia compared to DSSEPs. We further demonstrated significant vascular redistribution in the spinal cord parenchyma, caused by angiogenesis mainly concentrated in the anterior part of the compressed site. In addition, the comparative ratio of vascular densities at the anterior and posterior parts of the cord was significantly correlated with the perfusion decrease at neck flexion. This exploratory study revealed that the motor and somatosensory conductive functions of the cervical cord changed differently at dynamic neck positions in CSM conditions. Compared with somatosensory conduction, the motor conductive function of the cervical cord suffered more severe deteriorations upon cervical flexion, which could partly be attributed to its higher susceptibility to spinal cord ischemia. The uneven angiogenesis and vascular distribution in the spinal cord parenchyma might underlie the transient ischemia of the cord at flexion.
Collapse
Affiliation(s)
- Zhengran Yu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xing Cheng
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiacheng Chen
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Huang
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany
| | - Shaofu He
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Hu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sixiong Lin
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiyuan Zou
- Department of Orthopedic, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fangli Huang
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bolin Chen
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong Wan
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinsheng Peng
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Therapeutic repetitive Transcranial Magnetic stimulation (rTMS) for neurological dysfunction in Degenerative cervical Myelopathy: An unexplored opportunity? Findings from a systematic review. J Clin Neurosci 2021; 90:76-81. [PMID: 34275584 DOI: 10.1016/j.jocn.2021.05.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/10/2021] [Indexed: 01/18/2023]
Abstract
Degenerative Cervical Myelopathy (DCM) is one of the commonest causes of non-traumatic Spinal Cord Injury (SCI) leading to significant neurological impairments and reduced health-related quality of life. Guidelines recommend surgical intervention to halt disease progression in moderate-to-severe cases, and whilst many do experience neurological recovery, this is incomplete leading to lifelong disability. A James Lind Alliance (JLA) research priority setting partnership for DCM highlighted novel therapies and rehabilitation as top 10 research priority in DCM. Neurological recovery following decompressive surgery in DCM has been attributed neuroplasticity, and therapies influencing neuroplasticity are of interest. Electrical neuromodulation interventions such as repetitive Transcranial Magnetic Stimulation (rTMS), are being increasingly explored in related fields such as spinal cord injury to improve recovery and symptoms. The aim of this systematic review was to determine the role and efficacy of rTMS as a therapeutic tool in managing neurological dysfunction in DCM. We searched the databases of Medline, EMBASE, CINAHIL and Cochrane Central Register of Controlled Trials (CENTRAL). No studies were identified that had investigated the therapeutic use of rTMS in DCM. A significant number of studies had explored TMS based neurophysiological assessments indicating its role as a screening and prognostication tool in DCM. Post-operative rehabilitation interventions including TMS and non-operative management of DCM is a field which requires further investigation, as required in the AO Spine JLA DCM research priorities. rTMS is a safe neuromodulatory intervention and may have a role in enhancing recovery in DCM. Further research in these fields are required.
Collapse
|
22
|
Tu J, Vargas Castillo J, Das A, Diwan AD. Degenerative Cervical Myelopathy: Insights into Its Pathobiology and Molecular Mechanisms. J Clin Med 2021; 10:jcm10061214. [PMID: 33804008 PMCID: PMC8001572 DOI: 10.3390/jcm10061214] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Degenerative cervical myelopathy (DCM), earlier referred to as cervical spondylotic myelopathy (CSM), is the most common and serious neurological disorder in the elderly population caused by chronic progressive compression or irritation of the spinal cord in the neck. The clinical features of DCM include localised neck pain and functional impairment of motor function in the arms, fingers and hands. If left untreated, this can lead to significant and permanent nerve damage including paralysis and death. Despite recent advancements in understanding the DCM pathology, prognosis remains poor and little is known about the molecular mechanisms underlying its pathogenesis. Moreover, there is scant evidence for the best treatment suitable for DCM patients. Decompressive surgery remains the most effective long-term treatment for this pathology, although the decision of when to perform such a procedure remains challenging. Given the fact that the aged population in the world is continuously increasing, DCM is posing a formidable challenge that needs urgent attention. Here, in this comprehensive review, we discuss the current knowledge of DCM pathology, including epidemiology, diagnosis, natural history, pathophysiology, risk factors, molecular features and treatment options. In addition to describing different scoring and classification systems used by clinicians in diagnosing DCM, we also highlight how advanced imaging techniques are being used to study the disease process. Last but not the least, we discuss several molecular underpinnings of DCM aetiology, including the cells involved and the pathways and molecules that are hallmarks of this disease.
Collapse
Affiliation(s)
- Ji Tu
- Spine Labs, St. George and Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (J.T.); (A.D.D.)
| | | | - Abhirup Das
- Spine Labs, St. George and Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (J.T.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia;
- Correspondence:
| | - Ashish D. Diwan
- Spine Labs, St. George and Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (J.T.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia;
| |
Collapse
|
23
|
Cheng X, Yu Z, Xu J, Quan D, Long H. Pathophysiological Changes and the Role of Notch-1 Activation After Decompression in a Compressive Spinal Cord Injury Rat Model. Front Neurosci 2021; 15:579431. [PMID: 33584186 PMCID: PMC7876297 DOI: 10.3389/fnins.2021.579431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Surgical decompression is the primary treatment for cervical spondylotic myelopathy (CSM) patients with compressive spinal cord injury (CSCI). However, the prognosis of patients with CSCI varies, and the pathophysiological changes following decompression remain poor. This study aimed to investigate the pathophysiological changes and the role of Notch-1 activation after decompression in a rat CSCI model. Surgical decompression was conducted at 1 week post-injury (wpi). DAPT was intraperitoneally injected to down-regulate Notch-1 expression. Basso, Beattie, and Bresnahan scores and an inclined plane test were used to evaluate the motor function recovery. Hematoxylin and eosin staining was performed to assess pathophysiological changes, while hypoxia-inducible factor 1 alpha, vascular endothelial growth factor (VEGF), von Willebrand factor (vWF), matrix metalloproteinase (MMP)-9, MMP-2, Notch-1, and Hes-1 expression in the spinal cord were examined by immunohistochemical analysis or quantitative PCR. The results show that early decompression can partially promote motor function recovery. Improvements in structural and cellular damage and hypoxic levels were also observed in the decompressed spinal cord. Moreover, decompression resulted in increased VEGF and vWF expression, but decreased MMP-9 and MMP-2 expression at 3 wpi. Expression levels of Notch-1 and its downstream gene Hes-1 were increased after decompression, and the inhibition of Notch-1 significantly reduced the decompression-induced motor function recovery. This exploratory study revealed preliminary pathophysiological changes in the compressed and decompressed rat spinal cord. Furthermore, we confirmed that early surgical decompression partially promotes motor function recovery may via activation of the Notch-1 signaling pathway after CSCI. These results could provide new insights for the development of drug therapy to enhance recovery following surgery.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhengran Yu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinghui Xu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Daping Quan
- PCFM Lab, GD HPPC Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Houqing Long
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Safety and efficacy of riluzole in patients undergoing decompressive surgery for degenerative cervical myelopathy (CSM-Protect): a multicentre, double-blind, placebo-controlled, randomised, phase 3 trial. Lancet Neurol 2020; 20:98-106. [PMID: 33357512 DOI: 10.1016/s1474-4422(20)30407-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Degenerative cervical myelopathy represents the most common form of non-traumatic spinal cord injury. This trial investigated whether riluzole enhances outcomes in patients undergoing decompression surgery for degenerative cervical myelopathy. METHODS This multicentre, double-blind, placebo-controlled, randomised, phase 3 trial was done at 16 university-affiliated centres in Canada and the USA. Patients with moderate-to-severe degenerative cervical myelopathy aged 18-80 years, who had a modified Japanese Orthopaedic Association (mJOA) score of 8-14, were eligible. Patients were randomly assigned (1:1) to receive either oral riluzole (50 mg twice a day for 14 days before surgery and then for 28 days after surgery) or placebo. Randomisation was done using permuted blocks stratified by study site. Patients, physicians, and outcome assessors remained masked to treatment group allocation. The primary endpoint was change in mJOA score from baseline to 6 months in the intention-to-treat (ITT) population, defined as all individuals who underwent randomisation and surgical decompression. Adverse events were analysed in the modified intention-to-treat (mITT) population, defined as all patients who underwent randomisation, including those who did not ultimately undergo surgical decompression. This study is registered with ClinicalTrials.gov, NCT01257828. FINDINGS From Jan 31, 2012, to May 16, 2017, 408 patients were screened. Of those screened, 300 were eligible (mITT population); 290 patients underwent decompression surgery (ITT population) and received either riluzole (n=141) or placebo (n=149). There was no difference between the riluzole and placebo groups in the primary endpoint of change in mJOA score at 6-month follow-up: 2·45 points (95% CI 2·08 to 2·82 points) versus 2·83 points (2·47 to 3·19), difference -0·38 points (-0·90 to 0·13; p=0·14). The most common adverse events were neck or arm or shoulder pain, arm paraesthesia, dysphagia, and worsening of myelopathy. There were 43 serious adverse events in 33 (22%) of 147 patients in the riluzole group and 34 serious adverse events in 29 (19%) of 153 patients in the placebo group. The most frequent severe adverse events were osteoarthrosis of non-spinal joints, worsening of myelopathy, and wound complications. INTERPRETATION In this trial, adjuvant treatment for 6 weeks perioperatively with riluzole did not improve functional recovery beyond decompressive surgery in patients with moderate-to-severe degenerative cervical myelopathy. Whether riluzole has other benefits in this patient population merits further study. FUNDING AOSpine North America.
Collapse
|
25
|
Shea GKH, Koljonen PA, Chan YS, Cheung KMC. Prospects of cell replacement therapy for the treatment of degenerative cervical myelopathy. Rev Neurosci 2020; 32:275-287. [PMID: 33661584 DOI: 10.1515/revneuro-2020-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/03/2020] [Indexed: 11/15/2022]
Abstract
Degenerative cervical myelopathy (DCM) presents insidiously during middle-age with deterioration in neurological function. It accounts for the most common cause of non-traumatic spinal cord injury in developed countries and disease prevalence is expected to rise with the aging population. Whilst surgery can prevent further deterioration, biological therapies may be required to restore neurological function in advanced disease. Cell replacement therapy has been inordinately focused on treatment of traumatic spinal cord injury yet holds immense promise in DCM. We build upon this thesis by reviewing the pathophysiology of DCM as revealed by cadaveric and molecular studies. Loss of oligodendrocytes and neurons occurs via apoptosis. The tissue microenvironment in DCM prior to end-stage disease is distinct from that following acute trauma, and in many ways more favourable to receiving exogenous cells. We highlight clinical considerations for cell replacement in DCM such as selection of cell type, timing and method of delivery, as well as biological treatment adjuncts. Critically, disease models often fail to mimic features of human pathology. We discuss directions for translational research towards clinical application.
Collapse
Affiliation(s)
- Graham Ka Hon Shea
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Paul Aarne Koljonen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Ying Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kenneth Man Chee Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| |
Collapse
|
26
|
Krupa P, Stepankova K, Kwok JCF, Fawcett JW, Cimermanova V, Jendelova P, Machova Urdzikova L. New Model of Ventral Spinal Cord Lesion Induced by Balloon Compression in Rats. Biomedicines 2020; 8:biomedicines8110477. [PMID: 33167447 PMCID: PMC7694490 DOI: 10.3390/biomedicines8110477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/02/2023] Open
Abstract
Despite the variety of experimental models of spinal cord injury (SCI) currently used, the model of the ventral compression cord injury, which is commonly seen in humans, is very limited. Ventral balloon compression injury reflects the common anatomical mechanism of a human lesion and has the advantage of grading the injury severity by controlling the inflated volume of the balloon. In this study, ventral compression of the SCI was performed by the anterior epidural placement of the balloon of a 2F Fogarty's catheter, via laminectomy, at the level of T10. The balloon was rapidly inflated with 10 or 15 μL of saline and rested in situ for 5 min. The severity of the lesion was assessed by behavioral and immunohistochemical tests. Compression with the volume of 15 μL resulted in severe motor and sensory deficits represented by the complete inability to move across a horizontal ladder, a final Basso, Beattie and Bresnahan (BBB) score of 7.4 and a decreased withdrawal time in the plantar test (11.6 s). Histology and immunohistochemistry revealed a significant loss of white and gray matter with a loss of motoneuron, and an increased size of astrogliosis. An inflation volume of 10 μL resulted in a mild transient deficit. There are no other balloon compression models of ventral spinal cord injury. This study provided and validated a novel, easily replicable model of the ventral compression SCI, introduced by an inflated balloon of Fogarty´s catheter. For a severe incomplete deficit, an inflated volume should be maintained at 15 μL.
Collapse
Affiliation(s)
- Petr Krupa
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083 Prague, Czech Republic; (P.K.); (K.S.); (J.C.K.); (J.W.F.); (V.C.)
- Department of Neurosurgery, Charles University, Medical Faculty and University Hospital Hradec Králové, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Katerina Stepankova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083 Prague, Czech Republic; (P.K.); (K.S.); (J.C.K.); (J.W.F.); (V.C.)
- Department of Neuroscience, Charles University, Second Faculty of Medicine, 15006 Prague, Czech Republic
| | - Jessica CF. Kwok
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083 Prague, Czech Republic; (P.K.); (K.S.); (J.C.K.); (J.W.F.); (V.C.)
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - James W. Fawcett
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083 Prague, Czech Republic; (P.K.); (K.S.); (J.C.K.); (J.W.F.); (V.C.)
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Veronika Cimermanova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083 Prague, Czech Republic; (P.K.); (K.S.); (J.C.K.); (J.W.F.); (V.C.)
| | - Pavla Jendelova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083 Prague, Czech Republic; (P.K.); (K.S.); (J.C.K.); (J.W.F.); (V.C.)
- Department of Neuroscience, Charles University, Second Faculty of Medicine, 15006 Prague, Czech Republic
- Correspondence: (P.J.); (L.M.U.); Tel.: (+420-2)-4106-2828 (P.J.); (+420-2)-4106-2619 (L.M.U.); Fax: (+420-2)-4106-2706 (P.J. & L.M.U.)
| | - Lucia Machova Urdzikova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083 Prague, Czech Republic; (P.K.); (K.S.); (J.C.K.); (J.W.F.); (V.C.)
- Department of Neuroscience, Charles University, Second Faculty of Medicine, 15006 Prague, Czech Republic
- Correspondence: (P.J.); (L.M.U.); Tel.: (+420-2)-4106-2828 (P.J.); (+420-2)-4106-2619 (L.M.U.); Fax: (+420-2)-4106-2706 (P.J. & L.M.U.)
| |
Collapse
|
27
|
Zonisamide ameliorates progression of cervical spondylotic myelopathy in a rat model. Sci Rep 2020; 10:13138. [PMID: 32753675 PMCID: PMC7403578 DOI: 10.1038/s41598-020-70068-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
Cervical spondylotic myelopathy (CSM) is caused by chronic compression of the spinal cord and is the most common cause of myelopathy in adults. No drug is currently available to mitigate CSM. Herein, we made a rat model of CSM by epidurally implanting an expanding water-absorbent polymer underneath the laminae compress the spinal cord. The CSM rats exhibited progressive motor impairments recapitulating human CSM. CSM rats had loss of spinal motor neurons, and increased lipid peroxidation in the spinal cord. Zonisamide (ZNS) is clinically used for epilepsy and Parkinson's disease. We previously reported that ZNS protected primary spinal motor neurons against oxidative stress. We thus examined the effects of ZNS on our rat CSM model. CSM rats with daily intragastric administration of 0.5% methylcellulose (n = 11) and ZNS (30 mg/kg/day) in 0.5% methylcellulose (n = 11). Oral administration of ZNS ameliorated the progression of motor impairments, spared the number of spinal motor neurons, and preserved myelination of the pyramidal tracts. In addition, ZNS increased gene expressions of cystine/glutamate exchange transporter (xCT) and metallothionein 2A in the spinal cord in CSM rats, and also in the primary astrocytes. ZNS increased the glutathione (GSH) level in the spinal motor neurons of CSM rats. ZNS potentially ameliorates loss of the spinal motor neurons and demyelination of the pyramidal tracts in patients with CSM.
Collapse
|
28
|
Akter F, Yu X, Qin X, Yao S, Nikrouz P, Syed YA, Kotter M. The Pathophysiology of Degenerative Cervical Myelopathy and the Physiology of Recovery Following Decompression. Front Neurosci 2020; 14:138. [PMID: 32425740 PMCID: PMC7203415 DOI: 10.3389/fnins.2020.00138] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/03/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Degenerative cervical myelopathy (DCM), also known as cervical spondylotic myelopathy is the leading cause of spinal cord compression in adults. The mainstay of treatment is surgical decompression, which leads to partial recovery of symptoms, however, long term prognosis of the condition remains poor. Despite advances in treatment methods, the underlying pathobiology is not well-known. A better understanding of the disease is therefore required for the development of treatments to improve outcomes following surgery. Objective: To systematically evaluate the pathophysiology of DCM and the mechanism underlying recovery following decompression. Methods: A total of 13,808 published articles were identified in our systematic search of electronic databases (PUBMED, WEB OF SCIENCE). A total of 51 studies investigating the secondary injury mechanisms of DCM or physiology of recovery in animal models of disease underwent comprehensive review. Results: Forty-seven studies addressed the pathophysiology of DCM. Majority of the studies demonstrated evidence of neuronal loss following spinal cord compression. A number of studies provided further details of structural changes in neurons such as myelin damage and axon degeneration. The mechanisms of injury to cells included direct apoptosis and increased inflammation. Only four papers investigated the pathobiological changes that occur in spinal cords following decompression. One study demonstrated evidence of axonal plasticity following decompressive surgery. Another study demonstrated ischaemic-reperfusion injury following decompression, however this phenomenon was worse when decompression was delayed. Conclusions: In preclinical studies, the pathophysiology of DCM has been poorly studied and a number of questions remain unanswered. The physiological changes seen in the decompressed spinal cord has not been widely investigated and it is paramount that researchers investigate the decompressed spinal cord further to enable the development of therapeutic tools, to enhance recovery following surgery.
Collapse
Affiliation(s)
- Farhana Akter
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Faculty of Arts and Sciences, Harvard University, Cambridge, MA, United States.,Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, United States
| | - Xinming Yu
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Xingping Qin
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, United States
| | - Shun Yao
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Parisa Nikrouz
- Maidstone and Tunbridge Wells Trust, Maidstone, United Kingdom
| | - Yasir Ahmed Syed
- Neuroscience and Mental Health Research Institute (NMHRI), Cathays, United Kingdom.,School of Bioscience, Cardiff University, The Sir Martin Evans Building, Cardiff, United Kingdom
| | - Mark Kotter
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
29
|
Degenerative cervical myelopathy - update and future directions. Nat Rev Neurol 2020; 16:108-124. [PMID: 31974455 DOI: 10.1038/s41582-019-0303-0] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2019] [Indexed: 11/09/2022]
Abstract
Degenerative cervical myelopathy (DCM) is the leading cause of spinal cord dysfunction in adults worldwide. DCM encompasses various acquired (age-related) and congenital pathologies related to degeneration of the cervical spinal column, including hypertrophy and/or calcification of the ligaments, intervertebral discs and osseous tissues. These pathologies narrow the spinal canal, leading to chronic spinal cord compression and disability. Owing to the ageing population, rates of DCM are increasing. Expeditious diagnosis and treatment of DCM are needed to avoid permanent disability. Over the past 10 years, advances in basic science and in translational and clinical research have improved our understanding of the pathophysiology of DCM and helped delineate evidence-based practices for diagnosis and treatment. Surgical decompression is recommended for moderate and severe DCM; the best strategy for mild myelopathy remains unclear. Next-generation quantitative microstructural MRI and neurophysiological recordings promise to enable quantification of spinal cord tissue damage and help predict clinical outcomes. Here, we provide a comprehensive, evidence-based review of DCM, including its definition, epidemiology, pathophysiology, clinical presentation, diagnosis and differential diagnosis, and non-operative and operative management. With this Review, we aim to equip physicians across broad disciplines with the knowledge necessary to make a timely diagnosis of DCM, recognize the clinical features that influence management and identify when urgent surgical intervention is warranted.
Collapse
|
30
|
Yan R, Chen R, Wang J, Shi J, dos Santos WF, Xu Z, Liu L. Jingshu Keli and its Components Notoginsenoside R1 and Ginsenoside Rb1 Alleviate the Symptoms of Cervical Myelopathy through Kir3.1 Mediated Mechanisms. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:631-642. [DOI: 10.2174/0929866526666190911150514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/20/2018] [Accepted: 05/06/2019] [Indexed: 12/16/2022]
Abstract
Background & Objective::
Cervical Spondylotic Myelopathy (CSM) is one of the most serious
spinal cord disorders in adults. Pharmacological modulation of ion channels is a common strategy
to interfere with CSM and prevent neuronal damage.
Methods:
Here, we investigated the effects of Jingshu Keli (JSKL), a traditional Chinese herbal formula,
on CSM-related gait abnormality, mechanical allodynia and thermal hyperalgesia, and assessed
the neuronal mechanisms of JSKL on cultured brainstem cells. Behavioral tests and patch clamp recordings
were performed to make this assessment.
Results:
In our study, we found that JSKL significantly recovered the gait performance (P<0.001) and
decreased the levels of mechanical pain in 18.9% (P<0.01) and thermal pain in 18.1% (P<0.05). Further
investigation suggested that JSKL and its containing ginsenoside Rb1 (GRb1), notoginsenoside
R1 (NGR1) reduced the action potential frequency in 38.5%, 27.2%, 25.9%, and hyperpolarized resting
membrane potential in 15.0%, 13.8%, 12.1%, respectively. Kir channels, not KV channels and KCa
channels, were the major intermediate factors achieving treatment effects. Finally, immunostaining results
showed that the phosphorylation of Kir3.1 was promoted, whereas the total expression level did
not change.
Conclusion:
Our study reveals a novel strategy of treating CSM by using Traditional Chinese Medicines
(TCMs) containing active components.
Collapse
Affiliation(s)
- Renjie Yan
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Jingan District, Shanghai, China; State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Rui Chen
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Jingan District, Shanghai, China; State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Jiahui Wang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Jingan District, Shanghai, China; State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Jian Shi
- Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Wagner Ferreira dos Santos
- Laboratory of Neurobiology and Venoms, Department of Biology, FFCLRP, University of Sao Paulo, Sao Paulo, Brazil
| | - Zhiru Xu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Jingan District, Shanghai, China; State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Li Liu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Jingan District, Shanghai, China; State Institute of Pharmaceutical Industry, Shanghai 200437, China
| |
Collapse
|
31
|
Tanaka T, Murata H, Miyazaki R, Yoshizumi T, Sato M, Ohtake M, Tateishi K, Kim P, Yamamoto T. Human recombinant erythropoietin improves motor function in rats with spinal cord compression-induced cervical myelopathy. PLoS One 2019; 14:e0214351. [PMID: 31821342 PMCID: PMC6903714 DOI: 10.1371/journal.pone.0214351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 11/12/2019] [Indexed: 01/11/2023] Open
Abstract
Objective Erythropoietin (EPO) is a clinically available hematopoietic cytokine. EPO has shown beneficial effects in the context of spinal cord injury and other neurological conditions. The aim of this study was to evaluate the effect of EPO on a rat model of spinal cord compression-induced cervical myelopathy and to explore the possibility of its use as a pharmacological treatment. Methods To develop the compression-induced cervical myelopathy model, an expandable polymer was implanted under the C5-C6 laminae of rats. EPO administration was started 8 weeks after implantation of a polymer. Motor function of rotarod performance and grip strength was measured after surgery, and motor neurons were evaluated with H-E, NeuN and choline acetyltransferase staining. Apoptotic cell death was assessed with TUNEL and Caspase-3 staining. The 5HT, GAP-43 and synaptophysin were evaluated to investigate the protection and plasticity of axons. Amyloid beta precursor protein (APP) was assessed to evaluate axonal injury. To assess transfer of EPO into spinal cord tissue, the EPO levels in spinal cord tissue were measured with an ELISA for each group after subcutaneous injection of EPO. Results High-dose EPO maintained motor function in the compression groups. EPO significantly prevented the loss of motor neurons and significantly decreased neuronal apoptotic cells. Expression of 5HT and synaptophysin was significantly preserved in the EPO group. APP expression was partly reduced in the EPO group. The EPO levels in spinal cord tissue were significantly higher in the high-dose EPO group than other groups. Conclusion EPO improved motor function in rats with compression-induced cervical myelopathy. EPO suppressed neuronal cell apoptosis, protected motor neurons, and induced axonal protection and plasticity. The neuroprotective effects were produced following transfer of EPO into the spinal cord tissue. These findings suggest that EPO has high potential as a treatment for degenerative cervical myelopathy.
Collapse
Affiliation(s)
- Takahiro Tanaka
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hidetoshi Murata
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- * E-mail:
| | - Ryohei Miyazaki
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tetsuya Yoshizumi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Mitsuru Sato
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Makoto Ohtake
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Phyo Kim
- Department of Neurosurgery, Dokkyo Medical University, Tochigi, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
32
|
David G, Mohammadi S, Martin AR, Cohen-Adad J, Weiskopf N, Thompson A, Freund P. Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nat Rev Neurol 2019; 15:718-731. [PMID: 31673093 DOI: 10.1038/s41582-019-0270-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 01/23/2023]
Abstract
Pathophysiological changes in the spinal cord white and grey matter resulting from injury can be observed with MRI techniques. These techniques provide sensitive markers of macrostructural and microstructural tissue integrity, which correlate with histological findings. Spinal cord MRI findings in traumatic spinal cord injury (tSCI) and nontraumatic spinal cord injury - the most common form of which is degenerative cervical myelopathy (DCM) - have provided important insights into the pathophysiological processes taking place not just at the focal injury site but also rostral and caudal to the spinal injury. Although tSCI and DCM have different aetiologies, they show similar degrees of spinal cord pathology remote from the injury site, suggesting the involvement of similar secondary degenerative mechanisms. Advanced quantitative MRI protocols that are sensitive to spinal cord pathology have the potential to improve diagnosis and, more importantly, predict outcomes in patients with tSCI or nontraumatic spinal cord injury. This Review describes the insights into tSCI and DCM that have been revealed by neuroimaging and outlines current activities and future directions for the field.
Collapse
Affiliation(s)
- Gergely David
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Siawoosh Mohammadi
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Allan R Martin
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Nikolaus Weiskopf
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alan Thompson
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland. .,Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK. .,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. .,Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK. .,Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
33
|
The changes in systemic monocytes in humans undergoing surgical decompression for degenerative cervical myelopathy may influence clinical neurological recovery. J Neuroimmunol 2019; 336:577024. [PMID: 31450156 DOI: 10.1016/j.jneuroim.2019.577024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Degenerative cervical myelopathy (DCM) is the most common cause of non-traumatic spinal cord injury worldwide. Surgical decompression is recommended as the preferred treatment strategy for DCM as it halts disease progression and improves neurologic symptoms. We previously demonstrated that neuroinflammation, including monocytes, plays a critical role in the pathobiology of DCM and in ischemic-reperfusion injury (IRI) following surgical decompression. Monocytes are able to enter the spinal cord and brain tissues due to damage to the blood spinal cord and blood brain barrier following injury. Studies have demonstrated that stroke patients and individuals undergoing hip replacement surgery have increased systemic levels of monocytes. Additionally, changes in the signalling responses of monocytes are associated with post-surgical recovery or with ischemic neural tissue damage. Herein, we investigated the role of systemic monocytes as a predictive biomarker for clinical recovery following decompressive surgery for DCM. FINDINGS There was a 2-fold increase in the number of monocytes in DCM patients at 24 h following decompression as compared to baseline levels, which was associated with a significant improvement in the modified Japanese Orthopedic Association scale (mJOA) at 6-months after surgery (p < .0001). In a mouse model of DCM, depleting acute monocytes reduced the non-classical (Ly6Clow) subset from circulation (p < .05) and resulted in a 1.8-fold increase in CD11b expression in the spinal cord at 5 weeks following decompression. Acute monocyte depletion was accompanied by a modest decline in long-term overground locomotion, as evidenced by significantly reduced hindlimb swing speed. CONCLUSIONS This work demonstrated that decompressive surgery leads to an acute increase in peripheral monocytes in human DCM patients, which is modestly associated with clinical recovery. We anticipate that this work could contribute to the implementation of routine measurements of blood monocyte subsets, their activation state, and production of cytokines following decompressive surgery. This information could help to select perioperative anti-inflammatory treatments that can enhance the beneficial effects of decompressive surgery and reduce the incidence of post-operative complications, while avoiding a reduction in systemic monocytes.
Collapse
|
34
|
MRI evidence of brain atrophy, white matter damage, and functional adaptive changes in patients with cervical spondylosis and prolonged spinal cord compression. Eur Radiol 2019; 30:357-369. [DOI: 10.1007/s00330-019-06352-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
|
35
|
Moxon SR, Corbett NJ, Fisher K, Potjewyd G, Domingos M, Hooper NM. Blended alginate/collagen hydrogels promote neurogenesis and neuronal maturation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109904. [PMID: 31499954 PMCID: PMC6873778 DOI: 10.1016/j.msec.2019.109904] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/23/2019] [Accepted: 06/17/2019] [Indexed: 12/30/2022]
Abstract
Brain extracellular matrix (ECM) is complex, heterogeneous and often poorly replicated in traditional 2D cell culture systems. The development of more physiologically relevant 3D cell models capable of emulating the native ECM is of paramount importance for the study of human induced pluripotent stem cell (iPSC)-derived neurons. Due to its structural similarity with hyaluronic acid, a primary component of brain ECM, alginate is a potential biomaterial for 3D cell culture systems. However, a lack of cell adhesion motifs within the chemical structure of alginate has limited its application in neural culture systems. This study presents a simple and accessible method of incorporating collagen fibrils into an alginate hydrogel by physical mixing and controlled gelation under physiological conditions and tests the hypothesis that such a substrate could influence the behaviour of human neurons in 3D culture. Regulation of the gelation process enabled the penetration of collagen fibrils throughout the hydrogel structure as demonstrated by transmission electron microscopy. Encapsulated human iPSC-derived neurons adhered to the blended hydrogel as evidenced by the increased expression of α1, α2 and β1 integrins. Furthermore, immunofluorescence microscopy revealed that encapsulated neurons formed complex neural networks and matured into branched neurons expressing synaptophysin, a key protein involved in neurotransmission, along the neurites. Mechanical tuning of the hydrogel stiffness by modulation of the alginate ionic crosslinker concentration also influenced neuron-specific gene expression. In conclusion, we have shown that by tuning the physicochemical properties of the alginate/collagen blend it is possible to create different ECM-like microenvironments where complex mechanisms underpinning the growth and development of human neurons can be simulated and systematically investigated. Alginate and collagen are blended to create a bespoke hydrogel that mimics aspects of brain ECM. Encapsulated human pluripotent stem cell derived neurons adhere to the hydrogel matrix and form 3D neural networks. Neuronal differentiation and maturation is promoted within the hydrogel matrix. Mechanical properties of the hydrogel can be easily tuned to optimise neurogenesis. The hydrogel presents a platform for studying neuronal function and dysfunction in health and disease.
Collapse
Affiliation(s)
- Samuel R Moxon
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Nicola J Corbett
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Kate Fisher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Geoffrey Potjewyd
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; School of Mechanical, Aerospace and Civil Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Marco Domingos
- School of Mechanical, Aerospace and Civil Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Nigel M Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| |
Collapse
|
36
|
Janssen PTJ, Breukink SO, Melenhorst J, Stassen LPS, Bouvy ND, Temel Y, Jahanshahi A. Behavioral outcomes of a novel, pelvic nerve damage rat model of fecal incontinence. Neurogastroenterol Motil 2018; 30:e13242. [PMID: 29144006 DOI: 10.1111/nmo.13242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/28/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Fecal incontinence (FI) has a multifactorial pathophysiology with a severe social impact. The most common cause for FI is pudendal nerve damage, which mostly occurs in women during or after labor. A better understanding of the pathophysiology is required to optimize treatment of FI. In this study, we evaluate the use of a novel pelvic nerve damage rat model of FI. METHODS This new model simulates the forces on the pelvic floor during labor by prolonged transvaginal, retro-uterine intrapelvic balloon distention in female rats. Number of fecal pellets produced per day and defecation pattern was compared between the experimental and control group for 2 weeks. The cages of the rats were divided in food, nesting and latrine areas to evaluate changes in defecation pattern. The FI Index (FII) was calculated to assess the ratio of fecal pellets between the non-latrine areas and the total number of pellets. A higher score represents more random distribution of feces outside the latrine area. RESULTS Total number of fecal pellets was higher in the experimental group as compared with the controls. In both groups most fecal pellets were deposited in the nesting area, which is closest to the food area. The experimental group deposited more fecal pellets in the latrine area and had a lower FII indicating less random distribution of feces outside the latrine area. CONCLUSION Transvaginal, retro-uterine intrapelvic balloon distention is a safe and feasible animal model simulating the human physiologic impact of labor by downwards pressure on the pelvic floor.
Collapse
Affiliation(s)
- P T J Janssen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - S O Breukink
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - J Melenhorst
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - L P S Stassen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - N D Bouvy
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Y Temel
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - A Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
37
|
Hori M, Hagiwara A, Fukunaga I, Ueda R, Kamiya K, Suzuki Y, Liu W, Murata K, Takamura T, Hamasaki N, Irie R, Kamagata K, Kumamaru KK, Suzuki M, Aoki S. Application of Quantitative Microstructural MR Imaging with Atlas-based Analysis for the Spinal Cord in Cervical Spondylotic Myelopathy. Sci Rep 2018; 8:5213. [PMID: 29581458 PMCID: PMC5979956 DOI: 10.1038/s41598-018-23527-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Mapping of MR fiber g-ratio, which is the ratio of the diameter of the axon to the diameter of the neuronal fiber, is introduced in this article. We investigated the MR fiber g-ratio, the axon volume fraction (AVF) and the myelin volume fraction (MVF) to evaluate microstructural changes in the spinal cord in patients with cervical spondylotic myelopathy (CSM) in vivo, using atlas-based analysis. We used diffusion MRI data acquired with a new simultaneous multi-slice accelerated readout-segmented echo planar imaging sequence for diffusion analysis for AVF calculation and magnetization transfer saturation imaging for MVF calculation. The AVFs of fasciculus gracilis in the affected side spinal cord, fasciculus cuneatus and lateral corticospinal tracts (LSCT) in the affected and unaffected side spinal cord were significantly lower (P = 0.019, 0.001, 0019, 0.000, and 0.002, respectively) than those of normal controls. No difference was found in the MVFs. The fiber g-ratio of LSCT was significantly lower (P = 0.040) in the affected side spinal cords than in the normal controls. The pathological microstructural changes in the spinal cord in patients with CSM, presumably partial axonal degenerations with preserved myelin. This technique has the potential to be a clinical biomarker in patients with CSM in vivo.
Collapse
Affiliation(s)
- Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Fukunaga
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryo Ueda
- Health Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Kouhei Kamiya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuichi Suzuki
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Wei Liu
- Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen, China
| | | | - Tomohiro Takamura
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nozomi Hamasaki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryusuke Irie
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Michimasa Suzuki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Neuroprotective Potential of Gentongping in Rat Model of Cervical Spondylotic Radiculopathy Targeting PPAR- γ Pathway. J Immunol Res 2017; 2017:9152960. [PMID: 29230425 PMCID: PMC5694586 DOI: 10.1155/2017/9152960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/15/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022] Open
Abstract
Cervical spondylotic radiculopathy (CSR) is the most general form of spinal degenerative disease and is characterized by pain and numbness of the neck and arm. Gentongping (GTP) granule, as a classical Chinese patent medicine, has been widely used in curing CSR, whereas the underlying mechanism remains unclear. Therefore, the aim of this study is to explore the pharmacological mechanisms of GTP on CSR. The rat model of CSR was induced by spinal cord injury (SCI). Our results showed that GTP could significantly alleviate spontaneous pain as well as ameliorate gait. The HE staining and Western blot results showed that GTP could increase the quantity of motoneuron and enhance the activation of peroxisome proliferator-activated receptor gamma (PPAR-γ) in the spinal cord tissues. Meanwhile, immunofluorescence staining analysis indicated that GTP could reduce the expression of TNF-α in the spinal cord tissues. Furthermore, the protein level of Bax was decreased whereas the protein levels of Bcl-2 and NF200 were increased after the GTP treatment. These findings demonstrated that GTP might modulate the PPAR-γ pathway by inhibiting the inflammatory response and apoptosis as well as by protecting the cytoskeletal integrity of the spinal cord, ultimately play a neuroprotective role in CSR.
Collapse
|
39
|
Abstract
Degenerative cervical myelopathy (DCM) is a common spinal cord disease caused by chronic mechanical compression of the spinal cord. The mechanism by which mechanical stress results in spinal cord injury is poorly understood. The most common mechanisms involved in the pathobiology of DCM include apoptosis, inflammation, and vascular changes leading to loss of neurons, axonal degeneration, and myelin changes. However, the exact pathophysiologic mechanisms of DCM are unclear. A better understanding of the pathogenesis of DCM is required for the development of treatments to improve outcomes. This review highlights the mechanisms of injury and pathology in DCM.
Collapse
Affiliation(s)
- Farhana Akter
- Department of Clinical Neurosciences, Ann McLaren Laboratory of Regenerative Medicine, University of Cambridge, West Forvie Building, Forvie Site Box 213, Hills Road, Cambridge CB2 0SZ, UK.
| | - Mark Kotter
- Department of Clinical Neurosciences, Ann McLaren Laboratory of Regenerative Medicine, University of Cambridge, West Forvie Building, Forvie Site Box 213, Hills Road, Cambridge CB2 0SZ, UK
| |
Collapse
|