1
|
Cai Y, Wang T. Regulation of presynaptic homeostatic plasticity by glial signalling in Alzheimer's disease. J Physiol 2024. [PMID: 39705214 DOI: 10.1113/jp286751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/04/2024] [Indexed: 12/22/2024] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia among the elderly, affects numerous individuals worldwide. Despite advances in understanding the molecular underpinnings of AD pathology, effective treatments to prevent or cure the disease remain elusive. AD is characterized not only by pathological hallmarks such as amyloid plaques and neurofibrillary tangles but also by impairments in synaptic physiology, circuit activity and cognitive function. Synaptic homeostatic plasticity plays a vital role in maintaining the stability of synaptic and neural functions amid genetic and environmental disturbances. A key component of this regulation is presynaptic homeostatic potentiation, where increased presynaptic neurotransmitter release compensates for reduced postsynaptic glutamate receptor functionality, thereby stabilizing neuronal excitability. The role of presynaptic homeostatic plasticity in synapse stabilization in AD, however, remains unclear. Moreover, recent advances in transcriptomics have illuminated the complex roles of glial cells in regulating synaptic function in ageing brains and in the progression of neurodegenerative diseases. Yet, the impact of AD-related abnormalities in glial signalling on synaptic homeostatic plasticity has not been fully delineated. This review discusses recent findings on how glial dysregulation in AD affects presynaptic homeostatic plasticity. There is increasing evidence that disrupted glial signalling, particularly through aberrant histone acetylation and transcriptomic changes in glia, compromises this plasticity in AD. Notably, the sphingosine signalling pathway has been identified as being protective in stabilizing synaptic physiology through epigenetic and homeostatic mechanisms, presenting potential therapeutic targets for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Yimei Cai
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Tingting Wang
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C., USA
| |
Collapse
|
2
|
Hou Q, Hu W, Peterson L, Gilbert J, Liu R, Man HY. SIK1 Downregulates Synaptic AMPA Receptors and Contributes to Cognitive Defects in Alzheimer's Disease. Mol Neurobiol 2024; 61:10365-10380. [PMID: 38727976 DOI: 10.1007/s12035-024-04177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/22/2024] [Indexed: 11/24/2024]
Abstract
A reduction in AMPA receptor (AMPAR) expression and weakened synaptic activity is early cellular phenotypes in Alzheimer's disease (AD). However, the molecular processes leading to AMPAR downregulation are complex and remain less clear. Here, we report that the salt inducible kinase SIK1 interacts with AMPARs, leading to a reduced accumulation of AMPARs at synapses. SIK1 protein level is sensitive to amyloid beta (Aβ) and shows a marked increase in the presence of Aβ and in AD brains. In neurons, Aβ incubation causes redistribution of SIK1 to synaptic sites and enhances SIK1-GluA1 association. SIK1 function is required for Aβ-induced AMPAR reduction. Importantly, in 3xTG AD mice, knockdown of SIK1 in the brain leads to restoration of AMPAR expression and a rescue of the cognitive deficits. These findings indicate an important role for SIK1 in meditating the cellular and functional pathology in AD.
Collapse
Affiliation(s)
- Qingming Hou
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, 266071, China
| | - Wenting Hu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Lucy Peterson
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St, Boston, MA, 02118, USA
| | - James Gilbert
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Rong Liu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St, Boston, MA, 02118, USA.
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA, 02215, USA.
| |
Collapse
|
3
|
Mitias S, Schaffer N, Nair S, Hook C, Lindberg I. ProSAAS is preferentially up-regulated during homeostatic scaling and reduces amyloid plaque burden in the 5xFAD mouse hippocampus. J Neurochem 2024; 168:3235-3249. [PMID: 39115041 PMCID: PMC11449639 DOI: 10.1111/jnc.16193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/21/2024]
Abstract
The accumulation of β-amyloid in Alzheimer's disease greatly impacts neuronal health and synaptic function. To maintain network stability in the face of altered synaptic activity, neurons engage a feedback mechanism termed homeostatic scaling; however, this process is thought to be disrupted during disease progression. Previous proteomics studies have shown that one of the most highly regulated proteins in cell culture models of homeostatic scaling is the small secretory chaperone proSAAS. Our prior work has shown that proSAAS exhibits anti-aggregant behavior against alpha-synuclein and β-amyloid fibrillation in vitro and is up-regulated in cell models of proteostatic stress. However, the specific role that this protein might play in homeostatic scaling, and its anti-aggregant role in Alzheimer's progression, is not clear. To learn more about the role of proSAAS in maintaining hippocampal proteostasis, we compared its expression in a primary neuron model of homeostatic scaling to other synaptic components using western blotting and qPCR, revealing that proSAAS protein responses to homeostatic up- and down-regulation were significantly higher than those of two other synaptic vesicle components, 7B2 and carboxypeptidase E. However, proSAAS mRNA expression was static, suggesting translational control and/or altered protein degradation. ProSAAS was readily released upon depolarization of differentiated hippocampal cultures, supporting its synaptic localization. Immunohistochemical analysis demonstrated abundant proSAAS within the mossy fiber layer of the hippocampus in both wild-type and 5xFAD mice; in the latter, proSAAS was also concentrated around amyloid plaques. Importantly, overexpression of proSAAS in the CA1 region via stereotaxic injection of proSAAS-encoding AAV2/1 significantly decreased amyloid plaque burden in 5xFAD mice. We hypothesize that dynamic changes in proSAAS expression play a critical role in hippocampal proteostatic processes, both in the context of normal homeostatic plasticity and in the control of protein aggregation during Alzheimer's disease progression.
Collapse
Affiliation(s)
- Samira Mitias
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Nicholas Schaffer
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Saaya Nair
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Chelsea Hook
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Iris Lindberg
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
4
|
Mitias S, Schaffer N, Nair S, Hook C, Lindberg I. ProSAAS is Preferentially Secreted from Neurons During Homeostatic Scaling and Reduces Amyloid Plaque Size in the 5xFAD Mouse Hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590133. [PMID: 38712265 PMCID: PMC11071301 DOI: 10.1101/2024.04.18.590133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The accumulation of β-amyloid in Alzheimer's disease greatly impacts neuronal health and synaptic function. To maintain network stability in the face of altered synaptic activity, neurons engage a feedback mechanism termed homeostatic scaling; however, this process is thought to be disrupted during disease progression. Previous proteomics studies have shown that one of the most highly regulated proteins in cell culture models of homeostatic scaling is the small secretory chaperone proSAAS. Our prior work has shown that proSAAS exhibits anti-aggregant behavior against alpha synuclein and β-amyloid fibrillation in vitro, and is upregulated in cell models of proteostatic stress. However, the specific role that this protein might play in homeostatic scaling, and its anti-aggregant role in Alzheimer's progression, is not clear. To learn more about the role of proSAAS in maintaining hippocampal proteostasis, we compared its expression in a primary neuron model of homeostatic scaling to other synaptic components using Western blotting and qPCR, revealing that proSAAS protein responses to homeostatic up- and down-regulation were significantly higher than those of two other synaptic vesicle components, 7B2 and carboxypeptidase E. However, proSAAS mRNA expression was static, suggesting translational control (and/or reduced degradation). ProSAAS was readily released upon depolarization of differentiated hippocampal cultures, supporting its synaptic localization. Immunohistochemical analysis demonstrated abundant proSAAS within the mossy fiber layer of the hippocampus in both wild-type and 5xFAD mice; in the latter, proSAAS was also concentrated around amyloid plaques. Interestingly, overexpression of proSAAS in the CA1 region via stereotaxic injection of proSAAS-encoding AAV2/1 significantly decreased amyloid plaque burden in 5xFAD mice. We hypothesize that dynamic changes in proSAAS expression play a critical role in hippocampal proteostatic processes, both in the context of normal homeostatic plasticity and in the control of protein aggregation during Alzheimer's disease progression.
Collapse
Affiliation(s)
- Samira Mitias
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Nicholas Schaffer
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Saaya Nair
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Chelsea Hook
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Iris Lindberg
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
5
|
Slutsky I. Linking activity dyshomeostasis and sleep disturbances in Alzheimer disease. Nat Rev Neurosci 2024; 25:272-284. [PMID: 38374463 DOI: 10.1038/s41583-024-00797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
The presymptomatic phase of Alzheimer disease (AD) starts with the deposition of amyloid-β in the cortex and begins a decade or more before the emergence of cognitive decline. The trajectory towards dementia and neurodegeneration is shaped by the pathological load and the resilience of neural circuits to the effects of this pathology. In this Perspective, I focus on recent advances that have uncovered the vulnerability of neural circuits at early stages of AD to hyperexcitability, particularly when the brain is in a low-arousal states (such as sleep and anaesthesia). Notably, this hyperexcitability manifests before overt symptoms such as sleep and memory deficits. Using the principles of control theory, I analyse the bidirectional relationship between homeostasis of neuronal activity and sleep and propose that impaired activity homeostasis during sleep leads to hyperexcitability and subsequent sleep disturbances, whereas sleep disturbances mitigate hyperexcitability via negative feedback. Understanding the interplay among activity homeostasis, neuronal excitability and sleep is crucial for elucidating the mechanisms of vulnerability to and resilience against AD pathology and for identifying new therapeutic avenues.
Collapse
Affiliation(s)
- Inna Slutsky
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
6
|
Koesters AG, Rich MM, Engisch KL. Diverging from the Norm: Reevaluating What Miniature Excitatory Postsynaptic Currents Tell Us about Homeostatic Synaptic Plasticity. Neuroscientist 2024; 30:49-70. [PMID: 35904350 DOI: 10.1177/10738584221112336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The idea that the nervous system maintains a set point of network activity and homeostatically returns to that set point in the face of dramatic disruption-during development, after injury, in pathologic states, and during sleep/wake cycles-is rapidly becoming accepted as a key plasticity behavior, placing it alongside long-term potentiation and depression. The dramatic growth in studies of homeostatic synaptic plasticity of miniature excitatory synaptic currents (mEPSCs) is attributable, in part, to the simple yet elegant mechanism of uniform multiplicative scaling proposed by Turrigiano and colleagues: that neurons sense their own activity and globally multiply the strength of every synapse by a single factor to return activity to the set point without altering established differences in synaptic weights. We have recently shown that for mEPSCs recorded from control and activity-blocked cultures of mouse cortical neurons, the synaptic scaling factor is not uniform but is close to 1 for the smallest mEPSC amplitudes and progressively increases as mEPSC amplitudes increase, which we term divergent scaling. Using insights gained from simulating uniform multiplicative scaling, we review evidence from published studies and conclude that divergent synaptic scaling is the norm rather than the exception. This conclusion has implications for hypotheses about the molecular mechanisms underlying synaptic scaling.
Collapse
Affiliation(s)
- Andrew G Koesters
- Department of Behavior, Cognition, and Neurophysiology, Environmental Health Effects Laboratory, Naval Medical Research Unit-Dayton, Wright-Patterson AFB, OH, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology, and Physiology, College of Science and Mathematics, and Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Kathrin L Engisch
- Department of Neuroscience, Cell Biology, and Physiology, College of Science and Mathematics, and Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
7
|
Wang H, Li J, Tu W, Wang Z, Zhang Y, Chang L, Wu Y, Zhang X. Identification of Blood Biomarkers Related to Energy Metabolism and Construction of Diagnostic Prediction Model Based on Three Independent Alzheimer's Disease Cohorts. J Alzheimers Dis 2024; 100:1261-1287. [PMID: 39093073 PMCID: PMC11380308 DOI: 10.3233/jad-240301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Background Blood biomarkers are crucial for the diagnosis and therapy of Alzheimer's disease (AD). Energy metabolism disturbances are closely related to AD. However, research on blood biomarkers related to energy metabolism is still insufficient. Objective This study aims to explore the diagnostic and therapeutic significance of energy metabolism-related genes in AD. Methods AD cohorts were obtained from GEO database and single center. Machine learning algorithms were used to identify key genes. GSEA was used for functional analysis. Six algorithms were utilized to establish and evaluate diagnostic models. Key gene-related drugs were screened through network pharmacology. Results We identified 4 energy metabolism genes, NDUFA1, MECOM, RPL26, and RPS27. These genes have been confirmed to be closely related to multiple energy metabolic pathways and different types of T cell immune infiltration. Additionally, the transcription factors INSM2 and 4 lncRNAs were involved in regulating 4 genes. Further analysis showed that all biomarkers were downregulated in the AD cohorts and not affected by aging and gender. More importantly, we constructed a diagnostic prediction model of 4 biomarkers, which has been validated by various algorithms for its diagnostic performance. Furthermore, we found that valproic acid mainly interacted with these biomarkers through hydrogen bonding, salt bonding, and hydrophobic interaction. Conclusions We constructed a predictive model based on 4 energy metabolism genes, which may be helpful for the diagnosis of AD. The 4 validated genes could serve as promising blood biomarkers for AD. Their interaction with valproic acid may play a crucial role in the therapy of AD.
Collapse
Affiliation(s)
- Hongqi Wang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jilai Li
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Wenjun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiqun Wang
- Department of Radiology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Yiming Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xia Zhang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Ueda S, Kuzuya A, Kawata M, Okawa K, Honjo C, Wada T, Matsumoto M, Goto K, Miyamoto M, Yonezawa A, Tanabe Y, Ikeda A, Kinoshita A, Takahashi R. Acute inhibition of AMPA receptors by perampanel reduces amyloid β-protein levels by suppressing β-cleavage of APP in Alzheimer's disease models. FASEB J 2023; 37:e23252. [PMID: 37850918 DOI: 10.1096/fj.202300837r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Hippocampal hyperexcitability is a promising therapeutic target to prevent Aβ deposition in AD since enhanced neuronal activity promotes presynaptic Aβ production and release. This article highlights the potential application of perampanel (PER), an AMPA receptor (AMPAR) antagonist approved for partial seizures, as a therapeutic agent for AD. Using transgenic AD mice combined with in vivo brain microdialysis and primary neurons under oligomeric Aβ-evoked neuronal hyperexcitability, the acute effects of PER on Aβ metabolism were investigated. A single oral administration of PER rapidly decreased ISF Aβ40 and Aβ42 levels in the hippocampus of J20, APP transgenic mice, without affecting the Aβ40 /Aβ42 ratio; 5 mg/kg PER resulted in declines of 20% and 31%, respectively. Moreover, PER-treated J20 manifested a marked decrease in hippocampal APP βCTF levels with increased FL-APP levels. Consistently, acute treatment of PER reduced sAPPβ levels, a direct byproduct of β-cleavage of APP, released to the medium in primary neuronal cultures under oligomeric Aβ-induced neuronal hyperexcitability. To further evaluate the effect of PER on ISF Aβ clearance, a γ-secretase inhibitor was administered to J20 1 h after PER treatment. PER did not influence the elimination of ISF Aβ, indicating that the acute effect of PER is predominantly on Aβ production. In conclusion, acute treatment of PER reduces Aβ production by suppressing β-cleavage of amyloid-β precursor protein effectively, indicating a potential effect of PER against Aβ pathology in AD.
Collapse
Affiliation(s)
- Sakiho Ueda
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Kuzuya
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayoshi Kawata
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Kohei Okawa
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chika Honjo
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takafumi Wada
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mizuki Matsumoto
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuya Goto
- Department of Regulation of Neurocognitive Disorders, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masakazu Miyamoto
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Yasuto Tanabe
- Department of Regulation of Neurocognitive Disorders, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ayae Kinoshita
- School of Human Health Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Lepolard C, Rombaut C, Jaouen F, Borges A, Caccomo-Garcia E, Popa N, Gascon E. Optimized miR-124 reporters uncover differences in miR-124 expression among neuronal populations in vitro. Front Neurosci 2023; 17:1257599. [PMID: 37920296 PMCID: PMC10619730 DOI: 10.3389/fnins.2023.1257599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023] Open
Abstract
Introduction Although intensively studied in the last decades, how microRNAs (miRNAs) are expressed across different cell types in the brain remains largely unknown. Materials To address this issue, we sought to develop optimized fluorescence reporters that could be expressed in precise cellular subsets and used to accurately quantify miR contents in vivo. Results Focusing on miR-124, we tested different reporter designs whose efficiency was confirmed in different in vitro settings including cell lines and primary neuronal cultures from different brain structures. Unlike previous reporters, we provide experimental evidence that our optimized designs can faithfully translate miR levels in vitro. Discussion Tools developed here would enable assessing miRNA expression at the single cell resolution and are expected to significantly contribute to future miRNA research in vivo.
Collapse
Affiliation(s)
- Catherine Lepolard
- Aix Marseille University, CNRS, INT, Institute of Neuroscience of la Timone, Marseille, France
| | - Cynthia Rombaut
- Aix Marseille University, CNRS, INT, Institute of Neuroscience of la Timone, Marseille, France
| | - Florence Jaouen
- Aix Marseille University, CNRS, INT, Institute of Neuroscience of la Timone, Marseille, France
- Neurobiotools Facility (Neurovir), Aix Marseille University, CNRS, INT, Institute of Neuroscience of la Timone, Marseille, France
| | - Ana Borges
- Aix Marseille University, CNRS, INT, Institute of Neuroscience of la Timone, Marseille, France
| | - Elodie Caccomo-Garcia
- Aix Marseille University, CNRS, INT, Institute of Neuroscience of la Timone, Marseille, France
| | - Natalia Popa
- Aix Marseille University, CNRS, INT, Institute of Neuroscience of la Timone, Marseille, France
| | - Eduardo Gascon
- Aix Marseille University, CNRS, INT, Institute of Neuroscience of la Timone, Marseille, France
| |
Collapse
|
10
|
The role of post-translational modifications in synaptic AMPA receptor activity. Biochem Soc Trans 2023; 51:315-330. [PMID: 36629507 DOI: 10.1042/bst20220827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023]
Abstract
AMPA-type receptors for the neurotransmitter glutamate are very dynamic entities, and changes in their synaptic abundance underlie different forms of synaptic plasticity, including long-term synaptic potentiation (LTP), long-term depression (LTD) and homeostatic scaling. The different AMPA receptor subunits (GluA1-GluA4) share a common modular structure and membrane topology, and their intracellular C-terminus tail is responsible for the interaction with intracellular proteins important in receptor trafficking. The latter sequence differs between subunits and contains most sites for post-translational modifications of the receptors, including phosphorylation, O-GlcNAcylation, ubiquitination, acetylation, palmitoylation and nitrosylation, which affect differentially the various subunits. Considering that each single subunit may undergo modifications in multiple sites, and that AMPA receptors may be formed by the assembly of different subunits, this creates multiple layers of regulation of the receptors with impact in synaptic function and plasticity. This review discusses the diversity of mechanisms involved in the post-translational modification of AMPA receptor subunits, and their impact on the subcellular distribution and synaptic activity of the receptors.
Collapse
|
11
|
Tian T, Cai Y, Qin X, Wang J, Wang Y, Yang X. Forebrain E-I balance controlled in cognition through coordinated inhibition and inhibitory transcriptome mechanism. Front Cell Neurosci 2023; 17:1114037. [PMID: 36909282 PMCID: PMC10000298 DOI: 10.3389/fncel.2023.1114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
Introduction Forebrain neural networks are vital for cognitive functioning, and their excitatory-inhibitory (E-I) balance is governed by neural homeostasis. However, the homeostatic control strategies and transcriptomic mechanisms that maintain forebrain E-I balance and optimal cognition remain unclear. Methods We used patch-clamp and RNA sequencing to investigate the patterns of neural network homeostasis with suppressing forebrain excitatory neural activity and spatial training. Results We found that inhibitory transmission and receptor transcription were reduced in tamoxifen-inducible Kir2.1 conditional knock-in mice. In contrast, spatial training increased inhibitory synaptic connections and the transcription of inhibitory receptors. Discussion Our study provides significant evidence that inhibitory systems play a critical role in the homeostatic control of the E-I balance in the forebrain during cognitive training and E-I rebalance, and we have provided insights into multiple gene candidates for cognition-related homeostasis in the forebrain.
Collapse
Affiliation(s)
- Tian Tian
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - You Cai
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Neurology, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xin Qin
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| | - Jiangang Wang
- Henan International Joint Laboratory of Non-Invasive Neuromodulation, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - Yali Wang
- Henan International Joint Laboratory of Non-Invasive Neuromodulation, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - Xin Yang
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
12
|
Lin Y, Li Q, Wang L, Guo Q, Liu S, Zhu S, Sun Y, Fan Y, Sun Y, Li H, Tian X, Luo D, Shi S. Advances in regenerative medicine applications of tetrahedral framework nucleic acid-based nanomaterials: an expert consensus recommendation. Int J Oral Sci 2022; 14:51. [PMID: 36316311 PMCID: PMC9622686 DOI: 10.1038/s41368-022-00199-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 01/18/2023] Open
Abstract
With the emergence of DNA nanotechnology in the 1980s, self-assembled DNA nanostructures have attracted considerable attention worldwide due to their inherent biocompatibility, unsurpassed programmability, and versatile functions. Especially promising nanostructures are tetrahedral framework nucleic acids (tFNAs), first proposed by Turberfield with the use of a one-step annealing approach. Benefiting from their various merits, such as simple synthesis, high reproducibility, structural stability, cellular internalization, tissue permeability, and editable functionality, tFNAs have been widely applied in the biomedical field as three-dimensional DNA nanomaterials. Surprisingly, tFNAs exhibit positive effects on cellular biological behaviors and tissue regeneration, which may be used to treat inflammatory and degenerative diseases. According to their intended application and carrying capacity, tFNAs could carry functional nucleic acids or therapeutic molecules through extended sequences, sticky-end hybridization, intercalation, and encapsulation based on the Watson and Crick principle. Additionally, dynamic tFNAs also have potential applications in controlled and targeted therapies. This review summarized the latest progress in pure/modified/dynamic tFNAs and demonstrated their regenerative medicine applications. These applications include promoting the regeneration of the bone, cartilage, nerve, skin, vasculature, or muscle and treating diseases such as bone defects, neurological disorders, joint-related inflammatory diseases, periodontitis, and immune diseases.
Collapse
Affiliation(s)
- Yunfeng Lin
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian Li
- grid.16821.3c0000 0004 0368 8293School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Wang
- grid.458506.a0000 0004 0497 0637The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Zhangjiang Laboratory, Shanghai, China
| | - Quanyi Guo
- grid.488137.10000 0001 2267 2324Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Shuyun Liu
- grid.488137.10000 0001 2267 2324Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Shihui Zhu
- grid.73113.370000 0004 0369 1660Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yu Sun
- grid.73113.370000 0004 0369 1660Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yujiang Fan
- grid.13291.380000 0001 0807 1581National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yong Sun
- grid.13291.380000 0001 0807 1581College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Haihang Li
- Jiangsu Trautec Medical Technology Company Limited, Changzhou, China
| | - Xudong Tian
- Jiangsu Trautec Medical Technology Company Limited, Changzhou, China
| | - Delun Luo
- Chengdu Jingrunze Gene Technology Company Limited, Chengdu, China
| | - Sirong Shi
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Martinsson I, Quintino L, Garcia MG, Konings SC, Torres-Garcia L, Svanbergsson A, Stange O, England R, Deierborg T, Li JY, Lundberg C, Gouras GK. Aβ/Amyloid Precursor Protein-Induced Hyperexcitability and Dysregulation of Homeostatic Synaptic Plasticity in Neuron Models of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:946297. [PMID: 35928998 PMCID: PMC9344931 DOI: 10.3389/fnagi.2022.946297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is increasingly seen as a disease of synapses and diverse evidence has implicated the amyloid-β peptide (Aβ) in synapse damage. The molecular and cellular mechanism(s) by which Aβ and/or its precursor protein, the amyloid precursor protein (APP) can affect synapses remains unclear. Interestingly, early hyperexcitability has been described in human AD and mouse models of AD, which precedes later hypoactivity. Here we show that neurons in culture with either elevated levels of Aβ or with human APP mutated to prevent Aβ generation can both induce hyperactivity as detected by elevated calcium transient frequency and amplitude. Since homeostatic synaptic plasticity (HSP) mechanisms normally maintain a setpoint of activity, we examined whether HSP was altered in AD transgenic neurons. Using methods known to induce HSP, we demonstrate that APP protein levels are regulated by chronic modulation of activity and that AD transgenic neurons have an impaired adaptation of calcium transients to global changes in activity. Further, AD transgenic compared to WT neurons failed to adjust the length of their axon initial segments (AIS), an adaptation known to alter excitability. Thus, we show that both APP and Aβ influence neuronal activity and that mechanisms of HSP are disrupted in primary neuron models of AD.
Collapse
Affiliation(s)
- Isak Martinsson
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Experimental Neuroinflammation Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- *Correspondence: Isak Martinsson,
| | - Luis Quintino
- CNS Gene Therapy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Megg G. Garcia
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Experimental Neuroinflammation Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laura Torres-Garcia
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Neural Plasticity and Repair, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Alexander Svanbergsson
- Neural Plasticity and Repair, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oliver Stange
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Rebecca England
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jia-Yi Li
- Neural Plasticity and Repair, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cecilia Lundberg
- CNS Gene Therapy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Gunnar K. Gouras
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Gunnar K. Gouras,
| |
Collapse
|
14
|
Hanley JG. Regulation of AMPAR expression by microRNAs. Neuropharmacology 2021; 197:108723. [PMID: 34274347 DOI: 10.1016/j.neuropharm.2021.108723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
AMPA receptors (AMPARs) are the major excitatory neurotransmitter receptor in the brain, and their expression at synapses is a critical determinant of synaptic transmission and therefore brain function. Synaptic plasticity involves increases or decreases in synaptic strength, caused by changes in the number or subunit-specific subtype of AMPARs expressed at synapses, and resulting in modifications of functional connectivity of neuronal circuits, a process which is thought to underpin learning and the formation or loss of memories. Furthermore, numerous neurological disorders involve dysregulation of excitatory synaptic transmission or aberrant recruitment of plasticity processes. MicroRNAs (miRNAs) repress the translation of target genes by partial complementary base pairing with mRNAs, and are the core component of a mechanism widely used in a range of cell processes for regulating protein translation. MiRNA-dependent translational repression can occur locally in neuronal dendrites, close to synapses, and can also result in relatively rapid changes in protein expression. MiRNAs are therefore well-placed to regulate synaptic plasticity via the local control of AMPAR subunit synthesis, and can also result in synaptic dysfunction in the event of dysregulation in disease. Here, I will review the miRNAs that have been identified as playing a role in physiological or pathological changes in AMPAR subunit expression at synapses, focussing on miRNAs that target mRNAs encoding AMPAR subunits, and on miRNAs that target AMPAR accessory proteins involved in AMPAR trafficking and hence the regulation of AMPAR synaptic localisation.
Collapse
Affiliation(s)
- Jonathan G Hanley
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
15
|
Sciaccaluga M, Megaro A, Bellomo G, Ruffolo G, Romoli M, Palma E, Costa C. An Unbalanced Synaptic Transmission: Cause or Consequence of the Amyloid Oligomers Neurotoxicity? Int J Mol Sci 2021; 22:ijms22115991. [PMID: 34206089 PMCID: PMC8199544 DOI: 10.3390/ijms22115991] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β (Aβ) 1-40 and 1-42 peptides are key mediators of synaptic and cognitive dysfunction in Alzheimer's disease (AD). Whereas in AD, Aβ is found to act as a pro-epileptogenic factor even before plaque formation, amyloid pathology has been detected among patients with epilepsy with increased risk of developing AD. Among Aβ aggregated species, soluble oligomers are suggested to be responsible for most of Aβ's toxic effects. Aβ oligomers exert extracellular and intracellular toxicity through different mechanisms, including interaction with membrane receptors and the formation of ion-permeable channels in cellular membranes. These damages, linked to an unbalance between excitatory and inhibitory neurotransmission, often result in neuronal hyperexcitability and neural circuit dysfunction, which in turn increase Aβ deposition and facilitate neurodegeneration, resulting in an Aβ-driven vicious loop. In this review, we summarize the most representative literature on the effects that oligomeric Aβ induces on synaptic dysfunction and network disorganization.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
- Correspondence: (M.S.); (C.C.); Tel.: +39-0755858180 (M.S.); +39-0755784233 (C.C.)
| | - Alfredo Megaro
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
| | - Giovanni Bellomo
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
- IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Michele Romoli
- Neurology Unit, Rimini “Infermi” Hospital—AUSL Romagna, 47923 Rimini, Italy;
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
- Correspondence: (M.S.); (C.C.); Tel.: +39-0755858180 (M.S.); +39-0755784233 (C.C.)
| |
Collapse
|
16
|
Eadaim A, Hahm ET, Justice ED, Tsunoda S. Cholinergic Synaptic Homeostasis Is Tuned by an NFAT-Mediated α7 nAChR-K v4/Shal Coupled Regulatory System. Cell Rep 2021; 32:108119. [PMID: 32905767 PMCID: PMC7521586 DOI: 10.1016/j.celrep.2020.108119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/23/2020] [Accepted: 08/17/2020] [Indexed: 11/26/2022] Open
Abstract
Homeostatic synaptic plasticity (HSP) involves compensatory mechanisms employed by neurons and circuits to preserve signaling when confronted with global changes in activity that may occur during physiological and pathological conditions. Cholinergic neurons, which are especially affected in some pathologies, have recently been shown to exhibit HSP mediated by nicotinic acetylcholine receptors (nAChRs). In Drosophila central neurons, pharmacological blockade of activity induces a homeostatic response mediated by the Drosophila α7 (Dα7) nAChR, which is tuned by a subsequent increase in expression of the voltage-dependent Kv4/Shal channel. Here, we show that an in vivo reduction of cholinergic signaling induces HSP mediated by Dα7 nAChRs, and this upregulation of Dα7 itself is sufficient to trigger transcriptional activation, mediated by nuclear factor of activated T cells (NFAT), of the Kv4/Shal gene, revealing a receptor-ion channel system coupled for homeostatic tuning in cholinergic neurons. Eadaim et al. show that in vivo reduction of cholinergic signaling in Drosophila neurons induces synaptic homeostasis mediated by Dα7 nAChRs. This upregulation of Dα7 induces Kv4/Shal gene expression mediated by nuclear factor of activated T cells (NFAT), revealing a receptor-ion channel system coupled for homeostatic tuning in cholinergic neurons.
Collapse
Affiliation(s)
- Abdunaser Eadaim
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Eu-Teum Hahm
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Elizabeth D Justice
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
17
|
Pérez-Sisqués L, Martín-Flores N, Masana M, Solana-Balaguer J, Llobet A, Romaní-Aumedes J, Canal M, Campoy-Campos G, García-García E, Sánchez-Fernández N, Fernández-García S, Gilbert JP, Rodríguez MJ, Man HY, Feinstein E, Williamson DL, Soto D, Gasull X, Alberch J, Malagelada C. RTP801 regulates motor cortex synaptic transmission and learning. Exp Neurol 2021; 342:113755. [PMID: 33984337 DOI: 10.1016/j.expneurol.2021.113755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/24/2021] [Accepted: 05/08/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND RTP801/REDD1 is a stress-regulated protein whose upregulation is necessary and sufficient to trigger neuronal death in in vitro and in vivo models of Parkinson's and Huntington's diseases and is up regulated in compromised neurons in human postmortem brains of both neurodegenerative disorders. Indeed, in both Parkinson's and Huntington's disease mouse models, RTP801 knockdown alleviates motor-learning deficits. RESULTS We investigated the physiological role of RTP801 in neuronal plasticity and we found RTP801 in rat, mouse and human synapses. The absence of RTP801 enhanced excitatory synaptic transmission in both neuronal cultures and brain slices from RTP801 knock-out (KO) mice. Indeed, RTP801 KO mice showed improved motor learning, which correlated with lower spine density but increased basal filopodia and mushroom spines in the motor cortex layer V. This paralleled with higher levels of synaptosomal GluA1 and TrkB receptors in homogenates derived from KO mice motor cortex, proteins that are associated with synaptic strengthening. CONCLUSIONS Altogether, these results indicate that RTP801 has an important role modulating neuronal plasticity and motor learning. They will help to understand its role in neurodegenerative disorders where RTP801 levels are detrimentally upregulated.
Collapse
Affiliation(s)
- Leticia Pérez-Sisqués
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, Catalonia, Spain; Institut de Neurociències, University of Barcelona, 08036, Catalonia, Spain.
| | - Núria Martín-Flores
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, Catalonia, Spain; Institut de Neurociències, University of Barcelona, 08036, Catalonia, Spain
| | - Mercè Masana
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, Catalonia, Spain; Institut de Neurociències, University of Barcelona, 08036, Catalonia, Spain; IDIBAPS- Institut d'Investigacions BiomèdiquesAugust Pi i Sunyer, Barcelona, 08036, Catalonia, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, 08036, Catalonia, Spain
| | - Júlia Solana-Balaguer
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, Catalonia, Spain; Institut de Neurociències, University of Barcelona, 08036, Catalonia, Spain
| | - Arnau Llobet
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, Catalonia, Spain
| | - Joan Romaní-Aumedes
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, Catalonia, Spain; Institut de Neurociències, University of Barcelona, 08036, Catalonia, Spain
| | - Mercè Canal
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, Catalonia, Spain; Institut de Neurociències, University of Barcelona, 08036, Catalonia, Spain
| | - Genís Campoy-Campos
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, Catalonia, Spain; Institut de Neurociències, University of Barcelona, 08036, Catalonia, Spain
| | - Esther García-García
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, Catalonia, Spain; Institut de Neurociències, University of Barcelona, 08036, Catalonia, Spain; IDIBAPS- Institut d'Investigacions BiomèdiquesAugust Pi i Sunyer, Barcelona, 08036, Catalonia, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, 08036, Catalonia, Spain
| | | | - Sara Fernández-García
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, Catalonia, Spain; Institut de Neurociències, University of Barcelona, 08036, Catalonia, Spain; IDIBAPS- Institut d'Investigacions BiomèdiquesAugust Pi i Sunyer, Barcelona, 08036, Catalonia, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, 08036, Catalonia, Spain
| | - James P Gilbert
- Department of Biology, Pharmacology and Experimental Therapeutics, Boston University, Boston, MA 02215, USA
| | - Manuel José Rodríguez
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, Catalonia, Spain; Institut de Neurociències, University of Barcelona, 08036, Catalonia, Spain; IDIBAPS- Institut d'Investigacions BiomèdiquesAugust Pi i Sunyer, Barcelona, 08036, Catalonia, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, 08036, Catalonia, Spain
| | - Heng-Ye Man
- Department of Biology, Pharmacology and Experimental Therapeutics, Boston University, Boston, MA 02215, USA
| | | | - David L Williamson
- Kinesiology Program, School of Behavioral Sciences and Education, Penn State Harrisburg, Middletown, PA 17057, USA
| | - David Soto
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, Catalonia, Spain; Institut de Neurociències, University of Barcelona, 08036, Catalonia, Spain; IDIBAPS- Institut d'Investigacions BiomèdiquesAugust Pi i Sunyer, Barcelona, 08036, Catalonia, Spain
| | - Xavier Gasull
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, Catalonia, Spain; Institut de Neurociències, University of Barcelona, 08036, Catalonia, Spain; IDIBAPS- Institut d'Investigacions BiomèdiquesAugust Pi i Sunyer, Barcelona, 08036, Catalonia, Spain
| | - Jordi Alberch
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, Catalonia, Spain; Institut de Neurociències, University of Barcelona, 08036, Catalonia, Spain; IDIBAPS- Institut d'Investigacions BiomèdiquesAugust Pi i Sunyer, Barcelona, 08036, Catalonia, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, 08036, Catalonia, Spain
| | - Cristina Malagelada
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, Catalonia, Spain; Institut de Neurociències, University of Barcelona, 08036, Catalonia, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, 08036, Catalonia, Spain.
| |
Collapse
|
18
|
Amyloid-Beta Mediates Homeostatic Synaptic Plasticity. J Neurosci 2021; 41:5157-5172. [PMID: 33926999 PMCID: PMC8211553 DOI: 10.1523/jneurosci.1820-20.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/02/2021] [Accepted: 03/28/2021] [Indexed: 12/25/2022] Open
Abstract
The physiological role of the amyloid-precursor protein (APP) is insufficiently understood. Recent work has implicated APP in the regulation of synaptic plasticity. Substantial evidence exists for a role of APP and its secreted ectodomain APPsα in Hebbian plasticity. Here, we addressed the relevance of APP in homeostatic synaptic plasticity using organotypic tissue cultures prepared from APP -/- mice of both sexes. In the absence of APP, dentate granule cells failed to strengthen their excitatory synapses homeostatically. Homeostatic plasticity is rescued by amyloid-β and not by APPsα, and it is neither observed in APP+/+ tissue treated with β- or γ-secretase inhibitors nor in synaptopodin-deficient cultures lacking the Ca2+-dependent molecular machinery of the spine apparatus. Together, these results suggest a role of APP processing via the amyloidogenic pathway in homeostatic synaptic plasticity, representing a function of relevance for brain physiology as well as for brain states associated with increased amyloid-β levels.
Collapse
|
19
|
Simons ES, Smith MA, Dengler-Crish CM, Crish SD. Retinal ganglion cell loss and gliosis in the retinofugal projection following intravitreal exposure to amyloid-beta. Neurobiol Dis 2021; 147:105146. [PMID: 33122075 DOI: 10.1016/j.nbd.2020.105146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 01/07/2023] Open
Abstract
Pathological accumulations of amyloid-beta (Aβ) peptide are found in retina early in Alzheimer's disease, yet its effects on retinal neuronal structure remain unknown. To investigate this, we injected fibrillized Aβ1-42 protein into the eye of adult C57BL/6 J mice and analyzed the retina, optic nerve (ON), and the superior colliculus (SC), the primary retinal target in mice. We found that retinal Aβ exposure stimulated microglial activation and retinal ganglion cell (RGC) loss as early as 1-week post-injection. Pathology was not limited to the retina, but propagated into other areas of the central nervous system. Microgliosis spread throughout the retinal projection (retina, ON, and SC), with multiplex protein quantitation demonstrating an increase in endogenously produced Aβ in the ON and SC corresponding to the injected retinas. Surprisingly, this pathology spread to the opposite side, with unilateral Aβ eye injections driving increased Aβ levels, neuroinflammation, and RGC death in the opposite, un-injected retinal projection. As Aβ-mediated microglial activation has been shown to propagate Aβ pathology, we also investigated the role of the Aβ-binding microglial scavenger receptor CD36 in this pathology. Transgenic mice lacking the CD36 receptor were resistant to Aβ-induced inflammation and RGC death up to 2 weeks following exposure. These results indicate that Aβ pathology drives regional neuropathology in the retina and does not remain isolated to the affected eye, but spreads throughout the nervous system. Further, CD36 may serve as a promising target to prevent Aβ-mediated inflammatory damage.
Collapse
Affiliation(s)
- E S Simons
- Northeast Ohio Medical University, Rootstown, OH 44272, United States; Kent State Biomedical Sciences Graduate Program, Kent, OH 44240, United States
| | - M A Smith
- Northeast Ohio Medical University, Rootstown, OH 44272, United States; Kent State Biomedical Sciences Graduate Program, Kent, OH 44240, United States; Akron Children's Hospital, Rebecca D. Considine Research Institute, Akron, OH 44302, United States
| | - C M Dengler-Crish
- Northeast Ohio Medical University, Rootstown, OH 44272, United States; Kent State Biomedical Sciences Graduate Program, Kent, OH 44240, United States
| | - S D Crish
- Northeast Ohio Medical University, Rootstown, OH 44272, United States; Kent State Biomedical Sciences Graduate Program, Kent, OH 44240, United States.
| |
Collapse
|
20
|
Sundman MH, Lim K, Ton That V, Mizell JM, Ugonna C, Rodriguez R, Chen NK, Fuglevand AJ, Liu Y, Wilson RC, Fellous JM, Rapcsak S, Chou YH. Transcranial magnetic stimulation reveals diminished homoeostatic metaplasticity in cognitively impaired adults. Brain Commun 2020; 2:fcaa203. [PMID: 33376989 PMCID: PMC7750948 DOI: 10.1093/braincomms/fcaa203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/22/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Homoeostatic metaplasticity is a neuroprotective physiological feature that counterbalances Hebbian forms of plasticity to prevent network destabilization and hyperexcitability. Recent animal models highlight dysfunctional homoeostatic metaplasticity in the pathogenesis of Alzheimer's disease. However, the association between homoeostatic metaplasticity and cognitive status has not been systematically characterized in either demented or non-demented human populations, and the potential value of homoeostatic metaplasticity as an early biomarker of cognitive impairment has not been explored in humans. Here, we report that, through pre-conditioning the synaptic activity prior to non-invasive brain stimulation, the association between homoeostatic metaplasticity and cognitive status could be established in a population of non-demented human subjects (older adults across cognitive spectrums; all within the non-demented range). All participants (n = 40; age range, 65-74, 47.5% female) underwent a standardized neuropsychological battery, magnetic resonance imaging and a transcranial magnetic stimulation protocol. Specifically, we sampled motor-evoked potentials with an input/output curve immediately before and after repetitive transcranial magnetic stimulation to assess neural plasticity with two experimental paradigms: one with voluntary muscle contraction (i.e. modulated synaptic activity history) to deliberately introduce homoeostatic interference, and one without to serve as a control condition. From comparing neuroplastic responses across these experimental paradigms and across cohorts grouped by cognitive status, we found that (i) homoeostatic metaplasticity is diminished in our cohort of cognitively impaired older adults and (ii) this neuroprotective feature remains intact in cognitively normal participants. This novel finding suggests that (i) future studies should expand their scope beyond just Hebbian forms of plasticity that are traditionally assessed when using non-invasive brain stimulation to investigate cognitive ageing and (ii) the potential value of homoeostatic metaplasticity in serving as a biomarker for cognitive impairment should be further explored.
Collapse
Affiliation(s)
- Mark H Sundman
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Koeun Lim
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Viet Ton That
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | | | - Chidi Ugonna
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
- Department of Medical Imaging, University of Arizona, Tucson, AZ 85721, USA
| | - Rudolph Rodriguez
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Nan-Kuei Chen
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
- Department of Medical Imaging, University of Arizona, Tucson, AZ 85721, USA
| | - Andrew J Fuglevand
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ 85721, USA
- Department of Neuroscience, College of Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Yilin Liu
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Robert C Wilson
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Jean-Marc Fellous
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Steven Rapcsak
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
- Department of Neurology, University of Arizona, Tucson, AZ 85721, USA
| | - Ying-Hui Chou
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
- Evelyn F. McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
21
|
Wang JKT. Uniting homeostatic plasticity and exosome biology: A revision of the conceptual framework for drug discovery in neurodegenerative diseases? ADVANCES IN PHARMACOLOGY 2020; 90:277-306. [PMID: 33706937 DOI: 10.1016/bs.apha.2020.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Neurodegenerative diseases (NDDs) are in need of new drug discovery approaches. Our previous systematic analyses of Huntington's Disease (HD) literature for protein-protein interactors (PPIs) and modifiers of mutant Huntingtin-driven phenotypes revealed enrichment for PPIs of genes required for homeostatic synaptic plasticity (HSP) and exosome (EV) function and exosomal proteins, which in turn highly overlapped each other and with PPIs of genes associated with other NDDs. We proposed that HSP and EVs are linked to each other and are also involved in NDD pathophysiology. Recent studies showed that HSP is indeed altered in HD and AD, and that presynaptic homeostatic plasticity in motoneurons compensates for ALS pathology. Eliminating it causes earlier degeneration and death. If this holds true in other NDDs, drug discovery in animal models should then include elucidation of homeostatic compensation that either masks phenotypes of physiologically expressed mutant genes or are overridden by their overexpression. In this new conceptual framework, enhancing such underlying homeostatic compensation forms the basis for novel therapeutic strategies to slow progression of NDDs. Moreover, if EVs are linked to HSP, then their ability to penetrate the brain, target cell types, deliver miRNA and other molecules can be leveraged to develop attractive drug modalities. Testing this new framework is posed as four questions on model development and mechanistic studies progressing from higher throughput platforms to mouse models. Similar approaches may apply to other CNS disorders including schizophrenia, autism, Rett and Fragile X syndromes due to potential links of their susceptibility genes to HSP and EVs.
Collapse
|
22
|
Qu W, Yuan B, Liu J, Liu Q, Zhang X, Cui R, Yang W, Li B. Emerging role of AMPA receptor subunit GluA1 in synaptic plasticity: Implications for Alzheimer's disease. Cell Prolif 2020; 54:e12959. [PMID: 33188547 PMCID: PMC7791177 DOI: 10.1111/cpr.12959] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
It is well established that GluA1 mediated synaptic plasticity plays a central role in the early development of AD. The complex cellular and molecular mechanisms that enable GluA1‐related synaptic regulation remain to fully understood. Particularly, understanding the mechanisms that disrupt GluA1 related synaptic plasticity is central to the development of disease‐modifying therapies which are sorely needed as the incidence of AD rises. We surmise that the published evidence establishes deficits in synaptic plasticity as a central factor of AD aetiology. We additionally highlight potential therapeutic strategies for the treatment of AD, and we delve into the roles of GluA1 in learning and memory. Particularly, we review the current understanding of the molecular interactions that confer the actions of this ubiquitous excitatory receptor subunit including post‐translational modification and accessory protein recruitment of the GluA1 subunit. These are proposed to regulate receptor trafficking, recycling, channel conductance and synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Baoming Yuan
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Jun Liu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Qianqian Liu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xi Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Li S, Selkoe DJ. A mechanistic hypothesis for the impairment of synaptic plasticity by soluble Aβ oligomers from Alzheimer's brain. J Neurochem 2020; 154:583-597. [PMID: 32180217 DOI: 10.1111/jnc.15007] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
It is increasingly accepted that early cognitive impairment in Alzheimer's disease results in considerable part from synaptic dysfunction caused by the accumulation of a range of oligomeric assemblies of amyloid β-protein (Aβ). Most studies have used synthetic Aβ peptides to explore the mechanisms of memory deficits in rodent models, but recent work suggests that Aβ assemblies isolated from human (AD) brain tissue are far more potent and disease-relevant. Although reductionist experiments show Aβ oligomers to impair synaptic plasticity and neuronal viability, the responsible mechanisms are only partly understood. Glutamatergic receptors, GABAergic receptors, nicotinic receptors, insulin receptors, the cellular prion protein, inflammatory mediators, and diverse signaling pathways have all been suggested. Studies using AD brain-derived soluble Aβ oligomers suggest that only certain bioactive forms (principally small, diffusible oligomers) can disrupt synaptic plasticity, including by binding to plasma membranes and changing excitatory-inhibitory balance, perturbing mGluR, PrP, and other neuronal surface proteins, down-regulating glutamate transporters, causing glutamate spillover, and activating extrasynaptic GluN2B-containing NMDA receptors. We synthesize these emerging data into a mechanistic hypothesis for synaptic failure in Alzheimer's disease that can be modified as new knowledge is added and specific therapeutics are developed.
Collapse
Affiliation(s)
- Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Yan Y, Yang H, Xie Y, Ding Y, Kong D, Yu H. Research Progress on Alzheimer's Disease and Resveratrol. Neurochem Res 2020; 45:989-1006. [PMID: 32162143 DOI: 10.1007/s11064-020-03007-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), a common irreversible neurodegenerative disease characterized by amyloid-β plaques, neurofibrillary tangles, and changes in tau phosphorylation, is accompanied by memory loss and symptoms of cognitive dysfunction. Increases in disease incidence due to the ageing of the population have placed a great burden on society. To date, the mechanism of AD and the identities of adequate drugs for AD prevention and treatment have eluded the medical community. It has been confirmed that phytochemicals have certain neuroprotective effects against AD. For example, some progress has been made in research on the use of resveratrol, a natural polyphenolic phytochemical, for the prevention and treatment of AD in recent years. Elucidation of the pathogenesis of AD will create a solid foundation for drug treatment. In addition, research on resveratrol, including its mechanism of action, the roles of signalling pathways and its therapeutic targets, will provide new ideas for AD treatment, which is of great significance. In this review, we discuss the possible relationships between AD and the following factors: synapses, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs), silent information regulator 1 (SIRT1), and estrogens. We also discuss the findings of previous studies regarding these relationships in the context of AD treatment and further summarize research progress related to resveratrol treatment.
Collapse
Affiliation(s)
- Yan Yan
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Huihuang Yang
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yuxun Xie
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yuanlin Ding
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Danli Kong
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| | - Haibing Yu
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
25
|
Srivastava A, Das B, Yao AY, Yan R. Metabotropic Glutamate Receptors in Alzheimer's Disease Synaptic Dysfunction: Therapeutic Opportunities and Hope for the Future. J Alzheimers Dis 2020; 78:1345-1361. [PMID: 33325389 PMCID: PMC8439550 DOI: 10.3233/jad-201146] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence of neuritic plaques and neurofibrillary tangles. The impaired synaptic plasticity and dendritic loss at the synaptic level is an early event associated with the AD pathogenesis. The abnormal accumulation of soluble oligomeric amyloid-β (Aβ), the major toxic component in amyloid plaques, is viewed to trigger synaptic dysfunctions through binding to several presynaptic and postsynaptic partners and thus to disrupt synaptic transmission. Over time, the abnormalities in neural transmission will result in cognitive deficits, which are commonly manifested as memory loss in AD patients. Synaptic plasticity is regulated through glutamate transmission, which is mediated by various glutamate receptors. Here we review recent progresses in the study of metabotropic glutamate receptors (mGluRs) in AD cognition. We will discuss the role of mGluRs in synaptic plasticity and their modulation as a possible strategy for AD cognitive improvement.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Brati Das
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Annie Y. Yao
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
26
|
The Interaction Between Contactin and Amyloid Precursor Protein and Its Role in Alzheimer’s Disease. Neuroscience 2020; 424:184-202. [DOI: 10.1016/j.neuroscience.2019.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 01/06/2023]
|
27
|
Wang G, Zhong J, Guttieres D, Man HY. Non-scaling regulation of AMPA receptors in homeostatic synaptic plasticity. Neuropharmacology 2019; 158:107700. [PMID: 31283924 DOI: 10.1016/j.neuropharm.2019.107700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/10/2019] [Accepted: 07/04/2019] [Indexed: 11/28/2022]
Abstract
Homeostatic synaptic plasticity (HSP) as an activity-dependent negative feedback regulation of synaptic strength plays important roles in the maintenance of neuronal and neural circuitry stability. A primary cellular substrate for HSP expression is alterations in synaptic accumulation of glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR). It is widely believed that during HSP, AMPAR accumulation changes with the same proportion at each synapse of a neuron, a process known as synaptic scaling. However, direct evidence on AMPAR synaptic scaling remains largely lacking. Here we report a direct examination of inactivity-induced homeostatic scaling of AMPAR at individual synapse by live-imaging. Surprisingly, instead of uniform up-scaling, a scattered pattern of changes in synaptic AMPAR was observed in cultured rat hippocampal neurons. While the majority of synapses showed up-regulation after activity inhibition, a reduction of AMPAR could be detected in certain synapses. More importantly, among the up-regulated synapses, a wide range of AMPAR changes was observed in synapses of the same neuron. We also found that synapses with higher levels of pre-existing AMPAR tend to be up-regulated by lesser extents, whereas the locations of synapses relative to the soma seem not affecting AMPAR scaling strengths. In addition, we observed strong competition between neighboring synapses during HSP. These results reveal that synaptic AMPAR may not be scaled during HSP, suggesting novel molecular mechanisms for information processing and storage at synapses.
Collapse
Affiliation(s)
- Guan Wang
- Department of Biology, Boston University, Boston, MA, USA; School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jia Zhong
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, USA; Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
28
|
Lee KY, Jewett KA, Chung HJ, Tsai NP. Loss of fragile X protein FMRP impairs homeostatic synaptic downscaling through tumor suppressor p53 and ubiquitin E3 ligase Nedd4-2. Hum Mol Genet 2019; 27:2805-2816. [PMID: 29771335 DOI: 10.1093/hmg/ddy189] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/09/2018] [Indexed: 12/23/2022] Open
Abstract
Synaptic scaling allows neurons to homeostatically readjust synaptic strength upon chronic neural activity perturbations. Although altered synaptic scaling has been implicated to underlie imbalanced brain excitability in neurological disorders such as autism spectrum disorders and epilepsy, the molecular dysregulation and restoration of synaptic scaling in those diseases have not been demonstrated. Here, we showed that the homeostatic synaptic downscaling is absent in the hippocampal neurons of Fmr1 KO mice, the mouse model of the most common inherited autism, fragile X syndrome (FXS). We found that the impaired homeostatic synaptic downscaling in Fmr1 KO neurons is caused by loss-of-function dephosphorylation of an epilepsy-associated ubiquitin E3 ligase, neural precursor cell expressed developmentally down-regulated gene 4-2, Nedd4-2. Such dephosphorylation of Nedd4-2 is surprisingly caused by abnormally stable tumor suppressor p53 and subsequently destabilized kinase Akt. Dephosphorylated Nedd4-2 fails to elicit 14-3-3-dependent ubiquitination and down-regulation of the GluA1 subunit of AMPA receptor, and therefore impairs synaptic downscaling. Most importantly, using a pharmacological inhibitor of p53, Nedd4-2 phosphorylation, GluA1 ubiquitination and synaptic downscaling are all restored in Fmr1 KO neurons. Together, our results discover a novel cellular mechanism underlying synaptic downscaling, and demonstrate the dysregulation and successful restoration of this mechanism in the FXS mouse model.
Collapse
Affiliation(s)
- Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology
| | - Kathryn A Jewett
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
29
|
Hu L, Zhang R, Yuan Q, Gao Y, Yang MQ, Zhang C, Huang J, Sun Y, Yang W, Yang JY, Min ZL, Cheng J, Deng Y, Hu X. The emerging role of microRNA-4487/6845-3p in Alzheimer's disease pathologies is induced by Aβ25-35 triggered in SH-SY5Y cell. BMC SYSTEMS BIOLOGY 2018; 12:119. [PMID: 30547775 PMCID: PMC6293494 DOI: 10.1186/s12918-018-0633-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Accumulation of amyloid β-peptide (Aβ) is implicated in the pathogenesis and development of Alzheimer’s disease (AD). Neuron-enriched miRNA was aberrantly regulated and may be associated with the pathogenesis of AD. However, regarding whether miRNA is involved in the accumulation of Aβ in AD, the underlying molecule mechanism remains unclear. Therefore, we conduct a systematic identification of the promising role of miRNAs in Aβ deposition, and shed light on the molecular mechanism of target miRNAs underlying SH-SY5Y cells treated with Aβ-induced cytotoxicity. Results Statistical analyses of microarray data revealed that 155 significantly upregulated and 50 significantly downregulated miRNAs were found on the basis of log2 | Fold Change | ≥ 0.585 and P < 0.05 filter condition through 2588 kinds of mature miRNA probe examined. PCR results show that the expression change trend of the selected six miRNAs (miR-6845-3p, miR-4487, miR-4534, miR-3622-3p, miR-1233-3p, miR-6760-5p) was consistent with the results of the gene chip. Notably, Aβ25–35 downregulated hsa-miR-4487 and upregulated hsa-miR-6845-3p in SH-SY5Y cell lines associated with Aβ-mediated pathophysiology. Increase of hsa-miR-4487 could inhibit cells apoptosis, and diminution of hsa-miR-6845-3p could attenuate axon damage mediated by Aβ25–35 in SH-SY5Y. Conclusions Together, these findings suggest that dysregulation of hsa-miR-4487 and hsa-miR-6845-3p contributed to the pathogenesis of AD associated with Aβ25–35 mediated by triggering cell apoptosis and synaptic dysfunction. It might be beneficial to understand the pathogenesis and development of clinical diagnosis and treatment of AD. Further, our well-designed validation studies will test the miRNAs signature as a prognostication tool associated with clinical outcomes in AD.
Collapse
Affiliation(s)
- Ling Hu
- Department of Anesthesiology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430064, China.,Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei Province, China
| | - Rong Zhang
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei Province, China
| | - Qiong Yuan
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei Province, China
| | - Yinping Gao
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Mary Q Yang
- MidSouth Bioinformatics Center, Department of Information Science, George Washington Donaghey College of Engineering and Information Technology and Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR, 72204, USA
| | - Chunxiang Zhang
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei Province, China.,Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama, Birmingham, 35201, USA
| | - Jiankun Huang
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Yufei Sun
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - William Yang
- MidSouth Bioinformatics Center, Department of Information Science, George Washington Donaghey College of Engineering and Information Technology and Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR, 72204, USA
| | - Jack Y Yang
- MidSouth Bioinformatics Center, Department of Information Science, George Washington Donaghey College of Engineering and Information Technology and Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR, 72204, USA
| | - Zhen-Li Min
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei Province, China
| | - Jing Cheng
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei Province, China
| | - Youping Deng
- Bioinformatics Core, Department of Complementary & Integrative Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, 96813, USA.
| | - Xiamin Hu
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
30
|
Shao X, Ma W, Xie X, Li Q, Lin S, Zhang T, Lin Y. Neuroprotective Effect of Tetrahedral DNA Nanostructures in a Cell Model of Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23682-23692. [PMID: 29927573 DOI: 10.1021/acsami.8b07827] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Accumulating evidence supports the abnormal deposition of amyloid β-peptide (Aβ) as the main cause of Alzheimer's disease (AD). Therefore, fighting against the formation, deposition, and toxicity of Aβ is a basic strategy for the treatment of AD. In the process of in vitro nerve cell culture, screening out drugs that can antagonize a series of toxic reactions caused by β-amyloid deposition has become an effective method for the follow-up treatment of AD. Our previous studies showed that tetrahedral DNA nanostructures (TDNs) had good biocompatibility and had some positive effects on the biological behavior of cells. In this study, the main aim of our work was to explore the effects and potential mechanism of TDNs in protecting neuronal PC12 cells from the toxicity of Aβ. Our study demonstrated that TDNs can protect and rescue PC12 cell death through Aβ25-35-induced PC12 cell apoptosis. Further studies showed that TDNs significantly improved the apoptosis by affecting the abnormal cell cycle, restoring abnormal nuclear morphology and caspase activity. Western blot analysis showed that TDNs could prevent the damage caused by Aβ deposition by activating the ERK1/2 pathway and thus be a potential therapeutic agent with a neuroprotective effect in Alzheimer's disease. Our finding provides a potential application of TDNs in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Xiaoru Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610021 , China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610021 , China
| | - Xueping Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610021 , China
| | - Qianshun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610021 , China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610021 , China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610021 , China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610021 , China
| |
Collapse
|
31
|
Peineau S, Rabiant K, Pierrefiche O, Potier B. Synaptic plasticity modulation by circulating peptides and metaplasticity: Involvement in Alzheimer's disease. Pharmacol Res 2018; 130:385-401. [PMID: 29425728 DOI: 10.1016/j.phrs.2018.01.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 10/18/2022]
Abstract
Synaptic plasticity is a cellular process involved in learning and memory whose alteration in its two main forms (Long Term Depression (LTD) and Long Term Potentiation (LTP)), is observed in most brain pathologies, including neurodegenerative disorders such as Alzheimer's disease (AD). In humans, AD is associated at the cellular level with neuropathological lesions composed of extracellular deposits of β-amyloid (Aβ) protein aggregates and intracellular neurofibrillary tangles, cellular loss, neuroinflammation and a general brain homeostasis dysregulation. Thus, a dramatic synaptic environment perturbation is observed in AD patients, involving changes in brain neuropeptides, cytokines, growth factors or chemokines concentration and diffusion. Studies performed in animal models demonstrate that these circulating peptides strongly affect synaptic functions and in particular synaptic plasticity. Besides this neuromodulatory action of circulating peptides, other synaptic plasticity regulation mechanisms such as metaplasticity are altered in AD animal models. Here, we will review new insights into the study of synaptic plasticity regulatory/modulatory mechanisms which could influence the process of synaptic plasticity in the context of AD with a particular attention to the role of metaplasticity and peptide dependent neuromodulation.
Collapse
Affiliation(s)
- Stéphane Peineau
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France; Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.
| | - Kevin Rabiant
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Olivier Pierrefiche
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France.
| | - Brigitte Potier
- Laboratoire Aimé Cotton, CNRS-ENS UMR9188, Université Paris-Sud, Orsay, France.
| |
Collapse
|
32
|
Styr B, Slutsky I. Imbalance between firing homeostasis and synaptic plasticity drives early-phase Alzheimer's disease. Nat Neurosci 2018; 21:463-473. [PMID: 29403035 DOI: 10.1038/s41593-018-0080-x] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/08/2018] [Indexed: 12/18/2022]
Abstract
During recent years, the preclinical stage of Alzheimer's disease (AD) has become a major focus of research. Continued failures in clinical trials and the realization that early intervention may offer better therapeutic outcome triggered a conceptual shift from late-stage AD pathology to early-stage pathophysiology. While much effort has been directed at understanding the factors initiating AD, little is known about the principle basis underlying the disease progression at its early stages. In this Perspective, we suggest a hypothesis to explain the transition from 'silent' signatures of aberrant neural circuit activity to clinically evident memory impairments. Namely, we propose that failures in firing homeostasis and imbalance between firing stability and synaptic plasticity in cortico-hippocampal circuits represent the driving force of early disease progression. We analyze the main types of possible homeostatic failures and provide the essential conceptual framework for examining the causal link between dysregulation of firing homeostasis, aberrant neural circuit activity and memory-related plasticity impairments associated with early AD.
Collapse
Affiliation(s)
- Boaz Styr
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
33
|
Extracellular Cyclic GMP Modulates Membrane Expression of The GluA1 and GluA2 Subunits of AMPA Receptor in Cerebellum: Molecular Mechanisms Involved. Sci Rep 2017; 7:17656. [PMID: 29247190 PMCID: PMC5732250 DOI: 10.1038/s41598-017-18024-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023] Open
Abstract
There is increasing evidence that extracellular cGMP modulates glutamatergic neurotransmission and some forms of learning. However, the underlying mechanisms remain unknown. We proposed the hypotheses that extracellular cGMP may regulate membrane expression of AMPA receptors. To do this extracellular cGMP should act on a membrane protein and activate signal transduction pathways modulating phosphorylation of the GluA1 and/or GluA2 subunits. It has been shown that extracellular cGMP modulates glycine receptors. The aims of this work were to assess: 1) whether extracellular cGMP modulates membrane expression of GluA1 and GluA2 subunits of AMPA receptors in cerebellum in vivo; 2) whether this is mediated by glycine receptors; 3) the role of GluA1 and GluA2 phosphorylation and 4) identify steps of the intracellular pathways involved. We show that extracellular cGMP modulates membrane expression of GluA1 and GluA2 in cerebellum in vivo and unveil the mechanisms involved. Extracellular cGMP reduced glycine receptor activation, modulating cAMP, protein kinases and phosphatases, and GluA1 and GluA2 phosphorylation, resulting in increased GluA1 and reduced GluA2 membrane expression. Extracellular cGMP therefore modulates membrane expression of AMPA receptors and glutamatergic neurotransmission. The steps identified may be therapeutic targets to improve neurotransmission and neurological function in pathological situations with abnormal glutamatergic neurotransmission.
Collapse
|
34
|
Gilbert J, Man HY. Fundamental Elements in Autism: From Neurogenesis and Neurite Growth to Synaptic Plasticity. Front Cell Neurosci 2017; 11:359. [PMID: 29209173 PMCID: PMC5701944 DOI: 10.3389/fncel.2017.00359] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/31/2017] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders with a high prevalence and impact on society. ASDs are characterized by deficits in both social behavior and cognitive function. There is a strong genetic basis underlying ASDs that is highly heterogeneous; however, multiple studies have highlighted the involvement of key processes, including neurogenesis, neurite growth, synaptogenesis and synaptic plasticity in the pathophysiology of neurodevelopmental disorders. In this review article, we focus on the major genes and signaling pathways implicated in ASD and discuss the cellular, molecular and functional studies that have shed light on common dysregulated pathways using in vitro, in vivo and human evidence. HighlightsAutism spectrum disorder (ASD) has a prevalence of 1 in 68 children in the United States. ASDs are highly heterogeneous in their genetic basis. ASDs share common features at the cellular and molecular levels in the brain. Most ASD genes are implicated in neurogenesis, structural maturation, synaptogenesis and function.
Collapse
Affiliation(s)
- James Gilbert
- Department of Biology, Boston University, Boston, MA, United States
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, United States.,Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
35
|
Gilbert J, Shu S, Yang X, Lu Y, Zhu LQ, Man HY. Erratum to: β-Amyloid triggers aberrant over-scaling of homeostatic synaptic plasticity. Acta Neuropathol Commun 2017; 5:20. [PMID: 28279228 PMCID: PMC5343392 DOI: 10.1186/s40478-017-0423-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|