1
|
Hyun DG, Ahn JH, Huh JW, Hong SB, Koh Y, Oh DK, Lee SY, Park MH, Lim CM. The association of arterial partial oxygen pressure with mortality in critically ill sepsis patients: a nationwide observational cohort study. Crit Care 2024; 28:187. [PMID: 38816883 PMCID: PMC11140987 DOI: 10.1186/s13054-024-04960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Although several trials were conducted to optimize the oxygenation range in intensive care unit (ICU) patients, no studies have yet reached a universal recommendation on the optimal a partial pressure of oxygen in arterial blood (PaO2) range in patients with sepsis. Our aim was to evaluate whether a relatively high arterial oxygen tension is associated with longer survival in sepsis patients compared with conservative arterial oxygen tension. METHODS From the Korean Sepsis Alliance nationwide registry, patients treated with liberal PaO2 (PaO2 ≥ 80 mm Hg) were 1:1 matched with those treated with conservative PaO2 (PaO2 < 80 mm Hg) over the first three days after ICU admission according to the propensity score. The primary outcome was 28-day mortality. RESULTS The median values of PaO2 over the first three ICU days in 1211 liberal and 1211 conservative PaO2 groups were, respectively, 107.2 (92.0-134.0) and 84.4 (71.2-112.0) in day 1110.0 (93.4-132.0) and 80.0 (71.0-100.0) in day 2, and 106.0 (91.9-127.4) and 78.0 (69.0-94.5) in day 3 (all p-values < 0.001). The liberal PaO2 group showed a lower likelihood of death at day 28 (14.9%; hazard ratio [HR], 0.79; 95% confidence interval [CI] 0.65-0.96; p-value = 0.017). ICU (HR, 0.80; 95% CI 0.67-0.96; p-value = 0.019) and hospital mortalities (HR, 0.84; 95% CI 0.73-0.97; p-value = 0.020) were lower in the liberal PaO2 group. On ICU days 2 (p-value = 0.007) and 3 (p-value < 0.001), but not ICU day 1, hyperoxia was associated with better prognosis compared with conservative oxygenation., with the lowest 28-day mortality, especially at PaO2 of around 100 mm Hg. CONCLUSIONS In critically ill patients with sepsis, higher PaO2 (≥ 80 mm Hg) during the first three ICU days was associated with a lower 28-day mortality compared with conservative PaO2.
Collapse
Affiliation(s)
- Dong-Gon Hyun
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jee Hwan Ahn
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sang-Bum Hong
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Younsuck Koh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Dong Kyu Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Su Yeon Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Mi Hyeon Park
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Chae-Man Lim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
2
|
Okoyeocha EOM, Tewari-Singh N. Chloropicrin induced ocular injury: Biomarkers, potential mechanisms, and treatments. Toxicol Lett 2024; 396:70-80. [PMID: 38677567 DOI: 10.1016/j.toxlet.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Ocular tissue, especially the cornea, is overly sensitive to chemical exposures. The availability and adoption of chemical threat agent chloropicrin (CP) is growing in the United States as a pesticide and fumigant; thereby increasing the risk of its use in warfare, terrorist attacks and non-intentional exposure. Exposure to CP results in immediate ocular, respiratory, and dermal injury; however, we lack knowledge on its mechanism of toxicity as well as of its breakdown products like chlorine and phosgene, and effective therapies are elusive. Herein, we have reviewed the recent findings on exposure route, toxicity and likely mechanisms of CP induced ocular toxicity based on other vesicating chemical warfare agents that cause ocular injury. We have focused on the implication of their toxicity and mechanistic outcomes in the ocular tissue, especially the cornea, which could be useful in the development of broad-spectrum effective therapeutic options. We have discussed on the potential countermeasures, overall hallmarks and challenges involved in studying ocular injuries from chemical threat agent exposures. Finally, we reviewed useful available technologies and methods that can assist in the identification of effective medical countermeasures for chemical threat agents related ocular injuries.
Collapse
Affiliation(s)
- Ebenezar O M Okoyeocha
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
3
|
da Silva PB, Fernandes SES, Gomes M, da Silveira CDG, Amorim FFP, de Aquino Carvalho AL, Shintaku LS, Miazato LY, Amorim FFP, Maia MDO, Neves FDAR, Amorim FF. Hyperoxemia Induced by Oxygen Therapy in Nonsurgical Critically Ill Patients. Am J Crit Care 2024; 33:82-92. [PMID: 38424024 DOI: 10.4037/ajcc2024723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
BACKGROUND Hyperoxemia, often overlooked in critically ill patients, is common and may have adverse consequences. OBJECTIVE To evaluate the incidence of hyperoxemia induced by oxygen therapy in nonsurgical critically ill patients at intensive care unit (ICU) admission and the association of hyperoxemia with hospital mortality. METHODS This prospective cohort study included all consecutive admissions of nonsurgical patients aged 18 years or older who received oxygen therapy on admission to the Hospital Santa Luzia Rede D'Or São Luiz adult ICU from July 2018 through June 2021. Patients were categorized into 3 groups according to Pao2 level at ICU admission: hypoxemia (Pao2<60 mm Hg), normoxemia (Pao2= 60-120 mm Hg), and hyperoxemia (Pao2 >120 mm Hg). RESULTS Among 3088 patients, hyperoxemia was present in 1174 (38.0%) and was independently associated with hospital mortality (odds ratio [OR], 1.32; 95% CI, 1.04-1.67; P=.02). Age (OR, 1.02; 95% CI, 1.02-1.02; P<.001) and chronic kidney disease (OR, 1.55; 95% CI, 1.02-2.36; P=.04) were associated with a higher rate of hyperoxemia. Factors associated with a lower rate of hyperoxemia were Sequential Organ Failure Assessment score (OR, 0.88; 95% CI, 0.83-0.93; P<.001); late-night admission (OR, 0.80; 95% CI, 0.67-0.96; P=.02); and renal/metabolic (OR, 0.22; 95% CI, 0.13-1.39; P<.001), neurologic (OR, 0.02; 95% CI, 0.01-0.05; P<.001), digestive (OR, 0.23; 95% CI, 0.13-0.41; P<.001), and soft tissue/skin/orthopedic (OR, 0.32; 95% CI, 0.13-0.79; P=.01) primary reasons for hospital admission. CONCLUSION Hyperoxemia induced by oxygen therapy was common in critically ill patients and was linked to increased risk of hospital mortality. Health care professionals should be aware of this condition because of its potential risks and unnecessary costs.
Collapse
Affiliation(s)
- Priscilla Barbosa da Silva
- Priscilla Barbosa da Silva is a master's student, Graduate Program in Health Sciences, Escola Superior de Ciências da Saúde (ESCS), Brasília, Federal District, Brazil, and a staff nurse, intensive care unit, Hospital Santa Luzia Rede D'Or São Luiz, Brasília
| | | | - Maura Gomes
- Maura Gomes is a staff nurse, intensive care unit, Hospital Santa Luzia Rede D'Or São Luiz
| | - Carlos Darwin Gomes da Silveira
- Carlos Darwin Gomes da Silveira is a professor, Medical School, ESCS, and a professor, Medical School, Centro Universitário do Planalto Central, Brasília
| | - Flávio Ferreira Pontes Amorim
- Flávio Ferreira Pontes Amorim is an undergraduate student, Medical School, Universidade Católica de Brasília, Brasília
| | - André Luiz de Aquino Carvalho
- André Luiz de Aquino Carvalho is a master's student, Graduate Program in Health Sciences, ESCS, and a professor, Medical School, ESCS
| | | | | | | | - Marcelo de Oliveira Maia
- Marcelo de Oliveira Maia is a master's student, Graduate Program in Health Sciences, ESCS, and an intensivist, intensive care unit, Hospital Santa Luzia Rede D'Or São Luiz
| | | | - Fábio Ferreira Amorim
- Fábio Ferreira Amorim is a professor, Graduate Program in Health Sciences, ESCS, and a professor, Graduate Program in Health Sciences, Universidade de Brasília
| |
Collapse
|
4
|
Zhao YT, Yuan Y, Tang YG, Zhang SW, Zhou H, Xie ZY. The association between high-oxygen saturation and prognosis for intracerebral hemorrhage. Neurosurg Rev 2024; 47:45. [PMID: 38217753 DOI: 10.1007/s10143-024-02283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/30/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Concerns about the adverse effects of excessive oxygen have grown over the years. This study investigated the relationship between high oxygen saturation and short-term prognosis of patients with spontaneous intracerebral hemorrhage (sICH) after liberal use of oxygen. METHODS This retrospective cohort study collected data from the Medical Information Mart for Intensive Care III (MIMIC-III) database (ICU cohort) and a tertiary stroke center (general ward cohort). The data on pulse oximetry-derived oxygen saturation (SpO2) during the first 24 h in ICU and general wards were respectively extracted. RESULTS Overall, 1117 and 372 patients were included in the ICU and general ward cohort, respectively. Among the patients from the ICU cohort, a spoon-shaped association was observed between minimum SpO2 and the risk of in-hospital mortality (non-linear P<0.0001). In comparison with minimum SpO2 of 93-97%, the minimum SpO2>97% was associated with a significantly higher risk of in-hospital mortality after adjustment for confounders. Sensitivity analysis conducted using propensity score matching did not change this significance. The same spoon-shaped association between minimum SpO2 and the risk of in-hospital mortality was also detected for the general ward cohort. In comparison with the group with 95-97% SpO2, the group with SpO2>97% showed a stronger association with, but non-significant risk for, in-hospital mortality after adjustment for confounders. The time-weighted average SpO2>97% was associated significantly with in-hospital mortality in both cohorts. CONCLUSION Higher SpO2 (especially a minimum SpO2>97%) was unrewarding after liberal use of oxygen among patients with sICH and might even be potentially detrimental.
Collapse
Affiliation(s)
- Yu-Tong Zhao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 76 Linjiang Road, Chongqing, 400010, China
| | - Ye Yuan
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 76 Linjiang Road, Chongqing, 400010, China
| | - Yu-Guang Tang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 76 Linjiang Road, Chongqing, 400010, China
| | - Shu-Wei Zhang
- Department of Intensive Care Unit, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Hai Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 76 Linjiang Road, Chongqing, 400010, China
| | - Zong-Yi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 76 Linjiang Road, Chongqing, 400010, China.
| |
Collapse
|
5
|
Macherey-Meyer S, Heyne S, Meertens MM, Braumann S, Hueser C, Mauri V, Baldus S, Lee S, Adler C. Restrictive versus high-dose oxygenation strategy in post-arrest management following adult non-traumatic cardiac arrest: a meta-analysis. Crit Care 2023; 27:387. [PMID: 37798666 PMCID: PMC10557287 DOI: 10.1186/s13054-023-04669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE Neurological damage is the main cause of death or withdrawal of care in comatose survivors of cardiac arrest (CA). Hypoxemia and hyperoxemia following CA were described as potentially harmful, but reports were inconsistent. Current guidelines lack specific oxygen targets after return of spontaneous circulation (ROSC). OBJECTIVES The current meta-analysis assessed the effects of restrictive compared to high-dose oxygenation strategy in survivors of CA. METHODS A structured literature search was performed. Randomized controlled trials (RCTs) comparing two competing oxygenation strategies in post-ROSC management after CA were eligible. The primary end point was short-term survival (≤ 90 days). The meta-analysis was prospectively registered in PROSPERO database (CRD42023444513). RESULTS Eight RCTs enrolling 1941 patients were eligible. Restrictive oxygenation was applied to 964 patients, high-dose regimens were used in 977 participants. Short-term survival rate was 55.7% in restrictive and 56% in high-dose oxygenation group (8 trials, RR 0.99, 95% CI 0.90 to 1.10, P = 0.90, I2 = 18%, no difference). No evidence for a difference was detected in survival to hospital discharge (5 trials, RR 0.98, 95% CI 0.79 to 1.21, P = 0.84, I2 = 32%). Episodes of hypoxemia more frequently occurred in restrictive oxygenation group (4 trials, RR 2.06, 95% CI 1.47 to 2.89, P = 0.004, I2 = 13%). CONCLUSION Restrictive and high-dose oxygenation strategy following CA did not result in differences in short-term or in-hospital survival. Restrictive oxygenation strategy may increase episodes of hypoxemia, even with restrictive oxygenation targets exceeding intended saturation levels, but the clinical relevance is unknown. There is still a wide gap in the evidence of optimized oxygenation in post-ROSC management and specific targets cannot be concluded from the current evidence.
Collapse
Affiliation(s)
- S Macherey-Meyer
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany.
| | - S Heyne
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - M M Meertens
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
- Center of Cardiology, Cardiology III -Angiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - S Braumann
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - C Hueser
- Faculty of Medicine and University Hospital Cologne, Clinic II for Internal Medicine, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Emergency Department, University of Cologne, Cologne, Germany
| | - V Mauri
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - S Baldus
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - S Lee
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - C Adler
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| |
Collapse
|
6
|
Xu Y, Li Y, Zhai D, Yan C, Liang J, Ichinomiya T, Hara T, Inadomi C, Li TS. Hyperoxia but not high tidal volume contributes to ventilator-induced lung injury in healthy mice. BMC Pulm Med 2023; 23:354. [PMID: 37730597 PMCID: PMC10510264 DOI: 10.1186/s12890-023-02626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Mechanical ventilation is a supportive therapy used to maintain respiratory function in several clinical and surgical cases but is always accompanied by lung injury risk due to improper treatment. We investigated how tidal volume and oxygen delivery would contribute independently or synergistically to ventilator-induced lung injury (VILI). METHODS Under general anesthesia and tracheal intubation, healthy female C57BL/6 N mice (9 weeks old) were randomly ventilated for 2 h by standard (7 ml/kg) or high (14 ml/kg) tidal volume at positive end-expiratory pressure (PEEP) of 2 cmH2O, with room air, 50% O2 (moderate hyperoxia), or 100% O2 (severe hyperoxia); respectively. Mice were sacrificed 4 h after mechanical ventilation, and lung tissues were collected for experimental assessments on lung injury. RESULTS Compared with the healthy control, severe hyperoxia ventilation by either standard or high tidal volume resulted in significantly higher wet-to-dry lung weight ratio and higher levels of IL-1β and 8-OHdG in the lungs. However, moderate hyperoxia ventilation, even by high tidal volume did not significantly increase the levels of IL-1β and 8-OHdG in the lungs. Western blot analysis showed that the expression of RhoA, ROCK1, MLC2, and p-MLC2 was not significantly induced in the ventilated lungs, even by high tidal volume at 2 cmH2O PEEP. CONCLUSION Severe hyperoxia ventilation causes inflammatory response and oxidative damage in mechanically ventilated lungs, while high tidal volume ventilation at a reasonable PEEP possibly does not cause VILI.
Collapse
Affiliation(s)
- Yong Xu
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yu Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, 330006, Jiangxi Province, China
| | - Da Zhai
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Chen Yan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, P.R. China
| | - Taiga Ichinomiya
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Tetsuya Hara
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Chiaki Inadomi
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
7
|
Su W, Li J, Jiang L, Lei L, Li H. Hexokinase 2-mediated glycolysis supports inflammatory responses to Porphyromonas gingivalis in gingival fibroblasts. BMC Oral Health 2023; 23:103. [PMID: 36793034 PMCID: PMC9933269 DOI: 10.1186/s12903-023-02807-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND When infected with Porphyromonas gingivalis, gingival fibroblasts undergo metabolic reprogramming, and rely on aerobic glycolysis rather than oxidative phosphorylation for rapid energy replenishment. Hexokinases (HKs) are catalysts for glucose metabolism, and HK2 constitutes the major HK inducible isoform. The objective of this study is to determine whether HK2-mediated glycolysis promotes inflammatory responses in inflamed gingiva. METHODS Levels of glycolysis-related genes were assessed in normal and inflamed gingiva. Human gingival fibroblasts were harvested and infected with Porphyromonas gingivalis in order to mimic periodontal inflammation. 2-deoxy-d-glucose, an analogue of glucose, was used to block HK2-mediated glycolysis, while small interfering RNA was used to knock down HK2 expression. The mRNA and protein levels of genes were analyzed by real-time quantitative PCR and western blotting, respectively. HK2 activity and lactate production were assessed by ELISA. Cell proliferation was assessed by confocal microscopy. The generation of reactive oxygen species was assessed by flow cytometry. RESULTS Elevated expression of HK2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 was observed in the inflamed gingiva. P. gingivalis infection was shown to promote glycolysis in human gingival fibroblasts, as evidenced by increased gene transcription of HK2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, cell glucose consumption, and HK2 activity. Inhibition and knockdown of HK2 resulted in reduced cytokine production, cell proliferation, and reactive oxygen species generation. Furthermore, P. gingivalis infection activated the hypoxia-inducible factor-1α signaling pathway, thus promoting HK2-mediated glycolysis and proinflammatory responses. CONCLUSIONS HK2-mediated glycolysis promotes inflammatory responses in gingival tissues, and therefore glycolysis can be targeted in order to inhibit the progression of periodontal inflammation.
Collapse
Affiliation(s)
- Wenqi Su
- grid.41156.370000 0001 2314 964XDepartment of Periodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, #30 Zhongyang Road, Nanjing, 210008 Jiangsu China ,grid.41156.370000 0001 2314 964XCentral Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingwen Li
- grid.41156.370000 0001 2314 964XDepartment of Periodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, #30 Zhongyang Road, Nanjing, 210008 Jiangsu China ,grid.41156.370000 0001 2314 964XCentral Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lishan Jiang
- grid.41156.370000 0001 2314 964XDepartment of Periodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, #30 Zhongyang Road, Nanjing, 210008 Jiangsu China ,grid.41156.370000 0001 2314 964XCentral Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lang Lei
- grid.41156.370000 0001 2314 964XDepartment of Orthodontics, Medical School of Nanjing University, Nanjing Stomatological Hospital, Nanjing, China
| | - Houxuan Li
- Department of Periodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, #30 Zhongyang Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
8
|
Oxidative Stress Response's Kinetics after 60 Minutes at Different (30% or 100%) Normobaric Hyperoxia Exposures. Int J Mol Sci 2022; 24:ijms24010664. [PMID: 36614106 PMCID: PMC9821105 DOI: 10.3390/ijms24010664] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Oxygen is a powerful trigger for cellular reactions and is used in many pathologies, including oxidative stress. However, the effects of oxygen over time and at different partial pressures remain poorly understood. In this study, the metabolic responses of normobaric oxygen intake for 1 h to mild (30%) and high (100%) inspired fractions were investigated. Fourteen healthy non-smoking subjects (7 males and 7 females; age: 29.9 ± 11.1 years, height: 168.2 ± 9.37 cm; weight: 64.4 ± 12.3 kg; BMI: 22.7 ± 4.1) were randomly assigned in the two groups. Blood samples were taken before the intake at 30 min, 2 h, 8 h, 24 h, and 48 h after the single oxygen exposure. The level of oxidation was evaluated by the rate of reactive oxygen species (ROS) and the levels of isoprostane. Antioxidant reactions were observed by total antioxidant capacity (TAC), superoxide dismutase (SOD), and catalase (CAT). The inflammatory response was measured using interleukin-6 (IL-6), neopterin, creatinine, and urates. Oxidation markers increased from 30 min on to reach a peak at 8 h. From 8 h post intake, the markers of inflammation took over, and more significantly with 100% than with 30%. This study suggests a biphasic response over time characterized by an initial "permissive oxidation" followed by increased inflammation. The antioxidant protection system seems not to be the leading actor in the first place. The kinetics of enzymatic reactions need to be better studied to establish therapeutic, training, or rehabilitation protocols aiming at a more targeted use of oxygen.
Collapse
|
9
|
Xu Y, Abdelghany L, Sekiya R, Zhai D, Jingu K, Li TS. Optimization on the dose and time of nicaraven administration for mitigating the side effects of radiotherapy in a preclinical tumor-bearing mouse model. Ther Adv Respir Dis 2022; 16:17534666221137277. [PMID: 36404753 PMCID: PMC9677297 DOI: 10.1177/17534666221137277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Radiation-induced lung injury (RILI) is one of the serious complications of radiotherapy. We have recently demonstrated that nicaraven can effectively mitigate RILI in healthy mice. Here, we further tried to optimize the dose and time of nicaraven administration for alleviating the side effects of radiotherapy in tumor-bearing mice. METHODS AND RESULTS A subcutaneous tumor model was established in the back of the chest in C57BL/6N mice by injecting Lewis lung cancer cells. Therapeutic thoracic irradiations were done, and placebo or different doses of nicaraven (20, 50, 100 mg/kg) were administrated intraperitoneally pre-irradiation (at almost 5-10 min before irradiation) or post-irradiation (within 5 min after irradiation). Mice that received radiotherapy and nicaraven were sacrificed on the 30th day, but control mice were sacrificed on the 15th day. Serum and lung tissues were collected for evaluation. Nicaraven significantly decreased the level of CCL8, but did not clearly change the levels of 8-OHdG, TGF-β, IL-1β, and IL-6 in serum. Besides these, nicaraven effectively decreased the levels of TGF-β, IL-1β, and SOD2 in the lungs, especially by post-irradiation administration with the dose of 20 mg/kg. Although there was no significant difference, the expression of SOD1, 53BP1, and caspase 3 was detected lower in the lungs of mice received nicaraven post-irradiation than that of pre-irradiation. CONCLUSION According to our data, the administration of nicaraven at a relatively low dose soon after radiotherapy will be recommended for attenuating the side effects of radiotherapy.
Collapse
Affiliation(s)
- Yong Xu
- Department of Stem Cell Biology, Atomic Bomb
Disease Institute, Nagasaki University, Nagasaki, Japan,Department of Stem Cell Biology, Graduate
School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Lina Abdelghany
- Department of Stem Cell Biology, Atomic Bomb
Disease Institute, Nagasaki University, Nagasaki, Japan,Department of Stem Cell Biology, Graduate
School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Reiko Sekiya
- Department of Stem Cell Biology, Atomic Bomb
Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Da Zhai
- Department of Stem Cell Biology, Atomic Bomb
Disease Institute, Nagasaki University, Nagasaki, Japan,Department of Stem Cell Biology, Graduate
School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Graduate
School of Medicine, Tohoku University, Sendai, Japan
| | | |
Collapse
|
10
|
Smuszkiewicz P, Jawień N, Szrama J, Lubarska M, Kusza K, Guzik P. Admission Lactate Concentration, Base Excess, and Alactic Base Excess Predict the 28-Day Inward Mortality in Shock Patients. J Clin Med 2022; 11:jcm11206125. [PMID: 36294445 PMCID: PMC9604570 DOI: 10.3390/jcm11206125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
Base excess (BE) and lactate concentration may predict mortality in critically ill patients. However, the predictive values of alactic BE (aBE; the sum of BE and lactate), or a combination of BE and lactate are unknown. The study aimed to investigate whether BE, lactate, and aBE measured on admission to ICU may predict the 28-day mortality for patients undergoing any form of shock. In 143 consecutive adults, arterial BE, lactate, and aBE were measured upon ICU admission. Receiver Operating Curve (ROC) characteristics and Cox proportional hazard regression models (adjusted to age, gender, forms of shock, and presence of severe renal failure) were then used to investigate any association between these parameters and 28-day mortality. aBE < −3.63 mmol/L was found to be associated with a hazard ratio of 3.19 (HR; 95% confidence interval (CI): 1.62−6.27) for mortality. Risk of death was higher for BE < −9.5 mmol/L (HR: 4.22; 95% CI: 2.21−8.05), particularly at lactate concentrations > 4.5 mmol/L (HR: 4.62; 95% CI: 2.56−8.33). A 15.71% mortality rate was found for the combined condition of BE > cut-off and lactate < cut-off. When BE was below but lactate above their respective cut-offs, the mortality rate increased to 78.91%. The Cox regression model demonstrated that the predictive values of BE and lactate were mutually independent and additive. The 28-day mortality in shock patients admitted to ICU can be predicted by aBE, but BE and lactate deliver greater prognostic value, particularly when combined. The clinical value of our findings deserves further prospective evaluation.
Collapse
Affiliation(s)
- Piotr Smuszkiewicz
- Department of Anesthesiology, Intensive Therapy and Pain Management, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Natalia Jawień
- Department of Anesthesiology, Intensive Therapy and Pain Management, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Jakub Szrama
- Department of Anesthesiology, Intensive Therapy and Pain Management, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marta Lubarska
- Department of Cardiology—Intensive Therapy, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Krzysztof Kusza
- Department of Anesthesiology, Intensive Therapy and Pain Management, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Przemysław Guzik
- Department of Cardiology—Intensive Therapy, Poznan University of Medical Sciences, 60-355 Poznan, Poland
- Correspondence: ; Tel.: +48-618691391
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Although COVID-19 was originally characterized as a respiratory disease, recent findings have shown lingering side effects in those who have recovered, and much is still unknown about the long-term consequences of the illness. Thus, the potential of unearthing multi-system dysfunction is high, with current data revealing significant impacts on musculoskeletal health. RECENT FINDINGS Multiple animal models of COVID-19 infection have revealed significant post-infection bone loss at several different skeletal sites. While how this loss occurred is unknown, this current review discusses the primary bone loss studies, and examines the possible mechanisms of action including: direct infection of bone marrow macrophages or hematopoietic progenitors, a proinflammatory response as a result of the COVID-19 induced cytokine storm, and/or a result of hypoxia and oxidative stress. This review will further examine how therapeutics used to treat COVID-19 affect the skeletal system. Finally, this review will examine the possible consequence that delayed care and limited healthcare accessibility has on musculoskeletal-related patient outcomes. It is important to investigate the potential impact COVID-19 infection has on musculoskeletal health.
Collapse
Affiliation(s)
- Olatundun D Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 635 Barnhill Drive, MS 549, Indianapolis, IN, 46202, USA
| | - Ushashi C Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 635 Barnhill Drive, MS 549, Indianapolis, IN, 46202, USA
| | - Erik A Imel
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 635 Barnhill Drive, MS 549, Indianapolis, IN, 46202, USA.
- Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
12
|
Varying Oxygen Partial Pressure Elicits Blood-Borne Microparticles Expressing Different Cell-Specific Proteins-Toward a Targeted Use of Oxygen? Int J Mol Sci 2022; 23:ijms23147888. [PMID: 35887238 PMCID: PMC9322965 DOI: 10.3390/ijms23147888] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
Oxygen is a powerful trigger for cellular reactions, but there are few comparative investigations assessing the effects over a large range of partial pressures. We investigated a metabolic response to single exposures to either normobaric (10%, 15%, 30%, 100%) or hyperbaric (1.4 ATA, 2.5 ATA) oxygen. Forty-eight healthy subjects (32 males/16 females; age: 43.7 ± 13.4 years, height: 172.7 ± 10.07 cm; weight 68.4 ± 15.7 kg) were randomly assigned, and blood samples were taken before and 2 h after each exposure. Microparticles (MPs) expressing proteins specific to different cells were analyzed, including platelets (CD41), neutrophils (CD66b), endothelial cells (CD146), and microglia (TMEM). Phalloidin binding and thrombospondin-1 (TSP), which are related to neutrophil and platelet activation, respectively, were also analyzed. The responses were found to be different and sometimes opposite. Significant elevations were identified for MPs expressing CD41, CD66b, TMEM, and phalloidin binding in all conditions but for 1.4 ATA, which elicited significant decreases. Few changes were found for CD146 and TSP. Regarding OPB, further investigation is needed to fully understand the future applications of such findings.
Collapse
|
13
|
Prem PN, Sivakumar B, Boovarahan SR, Kurian GA. Recent advances in potential of Fisetin in the management of myocardial ischemia-reperfusion injury-A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154123. [PMID: 35533608 DOI: 10.1016/j.phymed.2022.154123] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/26/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The primary therapeutic strategy in managing ischemic heart diseases is to restore the perfusion of the myocardial ischemic area by surgical methods that often result in an unavoidable injury called ischemia-reperfusion injury (IR). Fisetin is an effective flavonoid with antioxidant and anti-inflammatory properties, proven to be cardioprotective against IR injury in both in-vitro and invivo models, apart from its promising health benefits against cancer, diabetes, and neurodegenerative ailments. PURPOSE The potential of fisetin in attenuating myocardial IR is inconclusive as the effectiveness of fisetin needs more understanding in terms of its possible target sites and underlying different mechanisms. Considering the surge in recent scientific interests in fisetin as a pharmacological agent, this review not only updates the existing preclinical and clinical studies with fisetin and its underlying mechanisms but also summarizes its possible targets during IR protection. METHODS We performed a literature survey using search engines Pubmed, PMC, Science direct, Google, and research gate published across the years 2006-2021. The relevant studies were extracted from the databases with the combinations of the following keywords and summarized: myocardial ischemia-reperfusion injury, natural products, flavonoid, fisetin, PI3K, JAK-STAT, Nrf2, PKC, JNK, autophagy. RESULTS Fisetin is reported to be effective in attenuating IR injury by delaying the clotting time, preserving the mitochondrial function, reducing oxidative stress, and inhibiting GSK 3β. But it failed to protect diseased cardiomyocytes challenged to IR. As discussed in the current review, fisetin not only acts as a conventional antioxidant and anti-inflammatory agent to exert its biological effect but may also exert modulatory action on the cellular metabolism and adaptation via direct action on various signalling pathways that comprise PI3K, JAK-STAT, Nrf2, PKC, JNK, and autophagy. Moreover, the dosage of fisetin and co-morbidities like diabetes and obesity are found to be detrimental factors for cardioprotection. CONCLUSION For further evaluation and smooth clinical translation of the fisetin molecule in IR treatment, researchers should pay close attention to the potential of fisetin to possibly alter the key cardioprotective pathways and dosage, as the efficacy of fisetin is tissue and cell type-specific and varies with different doses.
Collapse
Affiliation(s)
- Priyanka N Prem
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Bhavana Sivakumar
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Sri Rahavi Boovarahan
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Gino A Kurian
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India; School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
14
|
Girault C, Boyer D, Jolly G, Carpentier D, Béduneau G, Frat JP. Principes de fonctionnement, effets physiologiques et aspects pratiques de l’oxygénothérapie à haut débit. Rev Mal Respir 2022; 39:455-468. [DOI: 10.1016/j.rmr.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/27/2022] [Indexed: 12/29/2022]
|
15
|
González-Ruiz FJ. Pharmacological and non-pharmacological strategies in coronavirus disease 2019: A literature review. Ann Med Surg (Lond) 2022; 77:103709. [PMID: 35574221 PMCID: PMC9080675 DOI: 10.1016/j.amsu.2022.103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/26/2022] [Accepted: 05/01/2022] [Indexed: 01/08/2023] Open
Abstract
The impact on mortality associated with covid-19 today exceeds five million deaths worldwide, and the number of deaths continues to rise. The complications of the survivors, socio-economic implications at a global level, economic limitations in the health systems, and physical and emotional exhaustion of health personnel are detrimental. Therapeutic strategies are required to limit the evolution of the disease, improve the prognosis of critically ill patients, and, in countries with low purchasing power, create affordable alternatives that can help contain the evolution towards the severity of infected people with mild to moderate symptoms. The misinformation and myths that today are more frequent on social networks and the implementation of practices without scientific support is a problem that aggravates the general panorama. This review aims to concentrate on the best evidence for treating SARS-CoV-2 infection in a simple and summarized manner, addressing therapies from their bases to the most innovative alternatives available today. The pathophysiological bases of classic ADRS differ significantly from those related to ARDS due to COVID-19. The therapeutic objective based on the pathophysiological aspects could improve the clinical evolution of the affected patients. The objectives set for oxygen saturation should be reconsidered since oxygen in high concentrations could have deleterious effects, especially in this patient population. Extracorporeal membrane circulation should not be left aside, and early implementation could save many lives in well-selected patients.
Collapse
|
16
|
Graf PT, Boesing C, Brumm I, Biehler J, Müller KW, Thiel M, Pelosi P, Rocco PRM, Luecke T, Krebs J. Ultraprotective versus apneic ventilation in acute respiratory distress syndrome patients with extracorporeal membrane oxygenation: a physiological study. J Intensive Care 2022; 10:12. [PMID: 35256012 PMCID: PMC8900404 DOI: 10.1186/s40560-022-00604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/27/2022] [Indexed: 11/15/2022] Open
Abstract
Background Even an ultraprotective ventilation strategy in severe acute respiratory distress syndrome (ARDS) patients treated with extracorporeal membrane oxygenation (ECMO) might induce ventilator-induced lung injury and apneic ventilation with the sole application of positive end-expiratory pressure may, therefore, be an alternative ventilation strategy. We, therefore, compared the effects of ultraprotective ventilation with apneic ventilation on oxygenation, oxygen delivery, respiratory system mechanics, hemodynamics, strain, air distribution and recruitment of the lung parenchyma in ARDS patients with ECMO. Methods In a prospective, monocentric physiological study, 24 patients with severe ARDS managed with ECMO were ventilated using ultraprotective ventilation (tidal volume 3 ml/kg of predicted body weight) with a fraction of inspired oxygen (FiO2) of 21%, 50% and 90%. Patients were then treated with apneic ventilation with analogous FiO2. The primary endpoint was the effect of the ventilation strategy on oxygenation and oxygen delivery. The secondary endpoints were mechanical power, stress, regional air distribution, lung recruitment and the resulting strain, evaluated by chest computed tomography, associated with the application of PEEP (apneic ventilation) and/or low VT (ultraprotective ventilation). Results Protective ventilation, compared to apneic ventilation, improved oxygenation (arterial partial pressure of oxygen, p < 0.001 with FiO2 of 50% and 90%) and reduced cardiac output. Both ventilation strategies preserved oxygen delivery independent of the FiO2. Protective ventilation increased driving pressure, stress, strain, mechanical power, as well as induced additional recruitment in the non-dependent lung compared to apneic ventilation. Conclusions In patients with severe ARDS managed with ECMO, ultraprotective ventilation compared to apneic ventilation improved oxygenation, but increased stress, strain, and mechanical power. Apneic ventilation might be considered as one of the options in the initial phase of ECMO treatment in severe ARDS patients to facilitate lung rest and prevent ventilator-induced lung injury. Trial registration: German Clinical Trials Register (DRKS00013967). Registered 02/09/2018. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00013967. Supplementary Information The online version contains supplementary material available at 10.1186/s40560-022-00604-9.
Collapse
|
17
|
Busani S, Sarti M, Serra F, Gelmini R, Venturelli S, Munari E, Girardis M. Revisited Hyperoxia Pathophysiology in the Perioperative Setting: A Narrative Review. Front Med (Lausanne) 2021; 8:689450. [PMID: 34746165 PMCID: PMC8569225 DOI: 10.3389/fmed.2021.689450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/22/2021] [Indexed: 01/05/2023] Open
Abstract
The widespread use of high-dose oxygen, to avoid perioperative hypoxemia along with WHO-recommended intraoperative hyperoxia to reduce surgical site infections, is an established clinical practice. However, growing pathophysiological evidence has demonstrated that hyperoxia exerts deleterious effects on many organs, mainly mediated by reactive oxygen species. The purpose of this narrative review was to present the pathophysiology of perioperative hyperoxia on surgical wound healing, on systemic macro and microcirculation, on the lungs, heart, brain, kidneys, gut, coagulation, and infections. We reported here that a high systemic oxygen supply could induce oxidative stress with inflammation, vasoconstriction, impaired microcirculation, activation of hemostasis, acute and chronic lung injury, coronary blood flow disturbances, cerebral ischemia, surgical anastomosis impairment, gut dysbiosis, and altered antibiotics susceptibility. Clinical studies have provided rather conflicting results on the definitions and outcomes of hyperoxic patients, often not speculating on the biological basis of their results, while this review highlighted what happens when supranormal PaO2 values are reached in the surgical setting. Based on the assumptions analyzed in this study, we may suggest that the maintenance of PaO2 within physiological ranges, avoiding unnecessary oxygen administration, may be the basis for good clinical practice.
Collapse
Affiliation(s)
- Stefano Busani
- Cattedra e Servizio di Anestesia e Rianimazione, Azienda Universitaria Policlinico di Modena, Modena, Italy
| | - Marco Sarti
- Cattedra e Servizio di Anestesia e Rianimazione, Azienda Universitaria Policlinico di Modena, Modena, Italy
| | - Francesco Serra
- Chirurgia Generale d'Urgenza e Oncologica, Azienda Universitaria Policlinico di Modena, Modena, Italy
| | - Roberta Gelmini
- Chirurgia Generale d'Urgenza e Oncologica, Azienda Universitaria Policlinico di Modena, Modena, Italy
| | - Sophie Venturelli
- Cattedra e Servizio di Anestesia e Rianimazione, Azienda Universitaria Policlinico di Modena, Modena, Italy
| | - Elena Munari
- Chirurgia Generale d'Urgenza e Oncologica, Azienda Universitaria Policlinico di Modena, Modena, Italy
| | - Massimo Girardis
- Cattedra e Servizio di Anestesia e Rianimazione, Azienda Universitaria Policlinico di Modena, Modena, Italy
| |
Collapse
|
18
|
Lu L, Lu Y, Gao C, Zhang N. Age moderates the relationships between obesity, glucose variability, and intensive care unit mortality: a retrospective cohort study. J Intensive Care 2021; 9:68. [PMID: 34702376 PMCID: PMC8549309 DOI: 10.1186/s40560-021-00582-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/15/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Although the associations between obesity, glucose variability (GV), and Intensive Care Unit (ICU) mortality have been studied extensively, whether age moderates these associations is not well understood. MATERIALS AND METHODS The medical records of 1062 patients, who were admitted into ICU at Sir Run Run Shaw Hospital (Zhejiang, China), were studied. Logistic regression was used to test the associations between obesity, GV, and ICU mortality. Furthermore, the moderation effect of age was tested. RESULTS After controlling for covariates, the underweight group had the highest odds of death (OR 2.38, 95% CI 1.43-3.95, p < 0.001) in comparison with the control group (overweight). However, normal weight (OR 1.29, 95% CI 0.88-1.89, p = 0.185) and obese (OR 1.08, 95% CI 0.61-1.90, p = 0.790) groups had similar odds of death, compared to the overweight group. Age significantly moderated the association between obesity and mortality, where being overweight was more advantageous than being normal weight in older adults (B = 0.03, SE = 0.01, OR 1.03, 95% CI 1.001-1.06, p = 0.045). Meanwhile, higher GV predicted greater mortality in adjusted models (OR 1.23, 95% CI 1.06-1.42, p = 0.005). We also found an interaction between age and GV (B = - 0.01, SE = 0.01, OR 0.99, 95% CI 0.98-0.999, p = 0.025), which suggested that the association between GV and mortality becomes weaker with increasing age. CONCLUSIONS With increasing age, the association between BMI and mortality becomes stronger and the association between glucose variability and mortality becomes weaker. Future studies should investigate the underlying mechanisms of such phenomenon and the causal relationship between obesity, GV, and ICU mortality.
Collapse
Affiliation(s)
- Lusi Lu
- Department of Endocrinology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun E Rd, Hangzhou, Zhejiang, China
| | - Yifeng Lu
- Touro College of Osteopathic Medicine, 60 Prospect Ave, Middletown, NY, 10940, USA
| | - Chenlu Gao
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, 221 Longwood Ave, Boston, MA, 02115, USA
| | - Nan Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun E Rd, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Ortega MA, Fraile-Martinez O, García-Montero C, Callejón-Peláez E, Sáez MA, Álvarez-Mon MA, García-Honduvilla N, Monserrat J, Álvarez-Mon M, Bujan J, Canals ML. A General Overview on the Hyperbaric Oxygen Therapy: Applications, Mechanisms and Translational Opportunities. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:864. [PMID: 34577787 PMCID: PMC8465921 DOI: 10.3390/medicina57090864] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022]
Abstract
Hyperbaric oxygen therapy (HBOT) consists of using of pure oxygen at increased pressure (in general, 2-3 atmospheres) leading to augmented oxygen levels in the blood (Hyperoxemia) and tissue (Hyperoxia). The increased pressure and oxygen bioavailability might be related to a plethora of applications, particularly in hypoxic regions, also exerting antimicrobial, immunomodulatory and angiogenic properties, among others. In this review, we will discuss in detail the physiological relevance of oxygen and the therapeutical basis of HBOT, collecting current indications and underlying mechanisms. Furthermore, potential areas of research will also be examined, including inflammatory and systemic maladies, COVID-19 and cancer. Finally, the adverse effects and contraindications associated with this therapy and future directions of research will be considered. Overall, we encourage further research in this field to extend the possible uses of this procedure. The inclusion of HBOT in future clinical research could be an additional support in the clinical management of multiple pathologies.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcala de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Enrique Callejón-Peláez
- Underwater and Hyperbaric Medicine Service, Central University Hospital of Defence—UAH Madrid, 28801 Alcala de Henares, Spain;
| | - Miguel A. Sáez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence—UAH Madrid, 28801 Alcala de Henares, Spain
| | - Miguel A. Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases—Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - María Luisa Canals
- ISM, IMHA Research Chair, Former of IMHA (International Maritime Health Association), 43001 Tarragona, Spain;
| |
Collapse
|
20
|
Saheb Sharif-Askari N, Saheb Sharif-Askari F, Mdkhana B, Hussain Alsayed HA, Alsafar H, Alrais ZF, Hamid Q, Halwani R. Upregulation of oxidative stress gene markers during SARS-COV-2 viral infection. Free Radic Biol Med 2021; 172:688-698. [PMID: 34186206 PMCID: PMC8233550 DOI: 10.1016/j.freeradbiomed.2021.06.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/03/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
Severe viral infections, including SARS-COV-2, could trigger disruption of the balance between pro-oxidant and antioxidant mediators; the magnitude of which could reflect the severity of infection and lung injury. Using publicly available COVID-19 transcriptomic datasets, we conducted an in-silico analyses to evaluate the expression levels of 125 oxidative stress genes, including 37 pro-oxidant genes, 32 oxidative-responsive genes, and 56 antioxidant genes. Seven oxidative stress genes were found to be upregulated in whole blood and lung autopsies (MPO, S100A8, S100A9, SRXN1, GCLM, SESN2, and TXN); these genes were higher in severe versus non-severe COVID-19 leucocytes. Oxidative genes were upregulated in inflammatory cells comprising macrophages and CD8+ T cells isolated from bronchioalveolar fluid (BALF), and neutrophils isolated from peripheral blood. MPO, S100A8, and S100A9 were top most upregulated oxidative markers within COVID-19's lung autopsies, whole blood, leucocytes, BALF derived macrophages and circulating neutrophils. The calprotectin's, S100A8 and S100A9 were upregulated in SARS-COV-2 infected human lung epithelium. To validate our in-silico analysis, we conducted qRT-PCR to measure MPO and calprotectin's levels in blood and saliva samples. Relative to uninfected donor controls, MPO, S100A8 and S100A9 were significantly higher in blood and saliva of severe versus asymptomatic COVID-19 patients. Compared to other different viral respiratory infections, coronavirus infection showed a prominent upregulation in oxidative stress genes with MPO and calprotectin at the top of the list. In conclusion, SARS-COV-2 induce the expression of oxidative stress genes via both immune as well as lung structural cells. The observed correlation between oxidative stress genes dysregulation and COVID-19 disease severity deserve more attention. Mechanistical studies are required to confirm the correlation between oxidative stress gene dysregulation, COVID-19 severity, and the net oxidative stress balance.
Collapse
Affiliation(s)
| | | | - Bushra Mdkhana
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Habiba Alsafar
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Zeyad Faoor Alrais
- Anaesthesia and Intensive Care Unit, Dubai Health Authority, Dubai, United Arab Emirates
| | - Qutayba Hamid
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center, McGill University, Montreal, QC, Canada
| | - Rabih Halwani
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Saudi Arabia.
| |
Collapse
|
21
|
Durkin C, Romano K, Egan S, Lohser J. Hypoxemia During One-Lung Ventilation: Does It Really Matter? CURRENT ANESTHESIOLOGY REPORTS 2021; 11:414-420. [PMID: 34254003 PMCID: PMC8263011 DOI: 10.1007/s40140-021-00470-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Hypoxemia during one-lung ventilation, while decreasing in frequency, persists as an intraoperative challenge for anesthesiologists. Discerning when desaturation and resultant hypoxemia correlates to tissue hypoxia is challenging in the perioperative setting and requires a thorough understanding of the physiology of oxygen delivery and tissue utilization. RECENT FINDINGS Oxygen delivery is not directly correlated with peripheral oxygen saturation in patients undergoing one-lung ventilation, emphasizing the importance of hemoglobin concentration and cardiac output in avoiding tissue hypoxia. While healthy humans can tolerate acute hypoxemia without long-term consequences, there is a paucity of evidence from patients undergoing thoracic surgery. Increasingly recognized is the potential harm of hyperoxic states, particularly in the setting of complex patients with comorbid diseases. SUMMARY Anesthesiologists are left to determine an acceptable oxygen saturation nadir that is individualized to the patient and procedure based on an understanding of oxygen supply, demand, and the consequences of interventions.
Collapse
Affiliation(s)
- Chris Durkin
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver General Hospital, JPP3 Room 3400, 899 West 12th Avenue, Vancouver, British Columbia V5Z-1M9 Canada
| | - Kali Romano
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver General Hospital, JPP3 Room 3400, 899 West 12th Avenue, Vancouver, British Columbia V5Z-1M9 Canada
| | - Sinead Egan
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver General Hospital, JPP3 Room 3400, 899 West 12th Avenue, Vancouver, British Columbia V5Z-1M9 Canada
| | - Jens Lohser
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver General Hospital, JPP3 Room 3400, 899 West 12th Avenue, Vancouver, British Columbia V5Z-1M9 Canada
| |
Collapse
|
22
|
Peng Y, Yuan X, Zhang Y, Wang L. Conservative oxygen supplementation versus usual oxygen supplementation among septic medical intensive care units patients: A before-after investigation. Sci Prog 2021; 104:368504211016953. [PMID: 34121519 PMCID: PMC10395172 DOI: 10.1177/00368504211016953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Patients admitted in the intensive care unit (ICU) are always managed with excessive high fraction of inspired oxygen and have hyperoxia for a significant period of time, which has potential harms. The guidelines for the management of patients in ICUs do not provide the target values for partial pressure of oxygen or arterial oxyhemoglobin saturations. The study was a before-after investigation comparing two time periods in which different oxygenation strategies were applied. Data of oxygen control, outcome measures, and mortality of a total of 273 patients (>18 years) admitted at least for 2 days in ICUs and received treatment for the sepsis were retrospectively collected and analyzed. Patients were received usual oxygen supplementation (targeted partial pressure of oxygen: 150 mmHg; a high fraction of inspired oxygen: 0.4; UOS cohort; n = 142) or conservative oxygen supplementation (targeted partial pressure of oxygen: 70-100 mmHg; a high fraction of inspired oxygen as low as possible; COS cohort; n = 131). Mechanical ventilation-free hours were significantly higher for patients of COS cohort than those of UOS cohort (77.99 ± 21.26 h/patient vs 70.01 ± 23.57 h/patient, p = 0.016). ICUs length of stays of patients of COS cohort was fewer than those of UOS cohort (7.05 ± 2.13 days/patient vs 7.69 ± 2.43 days/patients, p = 0.016). The probability of survival of patients was higher among patients of COS cohort than those of UOS cohort (p = 0.049). A higher number of patients from UOS cohort needed vasopressors than those from COS cohort (55 vs 35, p = 0.039). Conservative oxygen supplementation to maintain partial pressure of oxygen was improved outcome measures and decreases mortality as compared to that of usual oxygen supplementation.Level of Evidence: III.Technical Efficacy Stage: 4.
Collapse
Affiliation(s)
- Ying Peng
- Department of Burn Rectification, The Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, China
| | - Xiaoyan Yuan
- Department of Emergency Medicine, Gongli Hospital, Pudong New Area, Shanghai, China
| | - Yi Zhang
- Department of Burn Rectification, The Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, China
| | - Lei Wang
- Department of Emergency Medicine, Gongli Hospital, Pudong New Area, Shanghai, China
| |
Collapse
|