1
|
Celestine L, Zosiamliana R, Kima L, Chettri B, Singh YT, Gurung S, Surajkumar Singh N, Laref A, Rai DP. Hybrid-DFT study of halide perovskites, an energy-efficient material under compressive pressure for piezoelectric applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:325501. [PMID: 38670125 DOI: 10.1088/1361-648x/ad443e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
Recent studies have reported that lead-halide perovskites are the most efficient energy-harvesting materials. Regardless of their high-output energy and structural stability, lead-based products have risk factors due to their toxicity. Therefore, lead-free perovskites that offer green energy are the expected alternatives. We have taken CsGeX3(X = Cl, Br, and I) as lead-free halide perovskites despite knowing the low power conversion rate. Herein, we have tried to study the mechanisms of enhancement of energy-harvesting capabilities involving an interplay between structure and electronic properties. A density functional theory simulation of these materials shows a decrease in the band gaps, lattice parameters, and volumes with increasing applied pressure. We report the high piezoelectric responses and high electro-mechanical conversion rates, which are intriguing for generating electricity through mechanical stress.
Collapse
Affiliation(s)
- L Celestine
- Department of Physics, Physical Sciences Research Center (PSRC), Pachhunga University College, Mizoram University, Aizawl 796001, India
- Department of Physics, Mizoram University, Aizawl 796004, India
| | - R Zosiamliana
- Department of Physics, Physical Sciences Research Center (PSRC), Pachhunga University College, Mizoram University, Aizawl 796001, India
- Department of Physics, Mizoram University, Aizawl 796004, India
| | - Lalrin Kima
- Department of Physics, Physical Sciences Research Center (PSRC), Pachhunga University College, Mizoram University, Aizawl 796001, India
- Department of Physics, Mizoram University, Aizawl 796004, India
| | - Bhanu Chettri
- Department of Physics, Physical Sciences Research Center (PSRC), Pachhunga University College, Mizoram University, Aizawl 796001, India
- Department of Physics, North-Eastern Hill University, Shillong, India
| | - Y T Singh
- Department of Physics, Physical Sciences Research Center (PSRC), Pachhunga University College, Mizoram University, Aizawl 796001, India
- Department of Physics, North-Eastern Hill University, Shillong, India
| | - Shivraj Gurung
- Department of Physics, Physical Sciences Research Center (PSRC), Pachhunga University College, Mizoram University, Aizawl 796001, India
| | - N Surajkumar Singh
- Department of Physics, Physical Sciences Research Center (PSRC), Pachhunga University College, Mizoram University, Aizawl 796001, India
| | - A Laref
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - D P Rai
- Department of Physics, Physical Sciences Research Center (PSRC), Pachhunga University College, Mizoram University, Aizawl 796001, India
- Department of Physics, Mizoram University, Aizawl 796004, India
- Researcher, Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan
| |
Collapse
|
2
|
Fan P, Fan H, Wang S. From emerging modalities to advanced applications of hydrogel piezoelectrics based on chitosan, gelatin and related biological macromolecules: A review. Int J Biol Macromol 2024; 262:129691. [PMID: 38272406 DOI: 10.1016/j.ijbiomac.2024.129691] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/29/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
The rapid development of functional materials and manufacturing technologies is fostering advances in piezoelectric materials (PEMs). PEMs can convert mechanical energy into electrical energy. Unlike traditional power sources, which need to be replaced and are inconvenient to carry, PEMs have extensive potential applications in smart wearable and implantable devices. However, the application of conventional PEMs is limited by their poor flexibility, low ductility, and susceptibility to fatigue failure. Incorporating hydrogels, which are flexible, stretchable, and self-healing, providing a way to overcome these limitations of PEMs. Hydrogel-based piezoelectric materials (H-PEMs) not only resolve the shortcomings of traditional PEMs but also provide biocompatibility and more promising application potential. This paper summarizes the working principle of H-PEMs. Recent advances in the use of H-PEMs as sensors and in vitro energy harvesting devices for smart wearable devices are described in detail, with emphasis on application scenarios in human body like fingers, wrists, ankles, and feet. In addition, the recent progress of H-PEMs in implantable medical devices, especially the potential applications in human body parts such as bones, skin, and heart, are also elaborated. In addition, challenges and potential improvements in H-PEMs are discussed.
Collapse
Affiliation(s)
- Peng Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Hengwei Fan
- Department of Hepatic Surgery Dept I, the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, No. 225 Changhai Road, Shanghai 200438, PR China.
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China; Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, PR China.
| |
Collapse
|
3
|
Das KK, Basu B, Maiti P, Dubey AK. Piezoelectric nanogenerators for self-powered wearable and implantable bioelectronic devices. Acta Biomater 2023; 171:85-113. [PMID: 37673230 DOI: 10.1016/j.actbio.2023.08.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/05/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
One of the recent innovations in the field of personalized healthcare is the piezoelectric nanogenerators (PENGs) for various clinical applications, including self-powered sensors, drug delivery, tissue regeneration etc. Such innovations are perceived to potentially address some of the unmet clinical needs, e.g., limited life-span of implantable biomedical devices (e.g., pacemaker) and replacement related complications. To this end, the generation of green energy from biomechanical sources for wearable and implantable bioelectronic devices gained considerable attention in the scientific community. In this perspective, this article provides a comprehensive state-of-the-art review on the recent developments in the processing, applications and associated concerns of piezoelectric materials (synthetic/biological) for personalized healthcare applications. In particular, this review briefly discusses the concepts of piezoelectric energy harvesting, piezoelectric materials (ceramics, polymers, nature-inspired), and the various applications of piezoelectric nanogenerators, such as, self-powered sensors, self-powered pacemakers, deep brain stimulators etc. Important distinction has been made in terms of the potential clinical applications of PENGs, either as wearable or implantable bioelectronic devices. While discussing the potential applications as implantable devices, the biocompatibility of the several hybrid devices using large animal models is summarized. This review closes with the futuristic vision of integrating data science approaches in developmental pipeline of PENGs as well as clinical translation of the next generation PENGs. STATEMENT OF SIGNIFICANCE: Piezoelectric nanogenerators (PENGs) hold great promise for transforming personalized healthcare through self-powered sensors, drug delivery systems, and tissue regeneration. The limited battery life of implantable devices like pacemakers presents a significant challenge, leading to complications from repititive surgeries. To address such a critical issue, researchers are focusing on generating green energy from biomechanical sources to power wearable and implantable bioelectronic devices. This comprehensive review critically examines the latest advancements in synthetic and nature-inspired piezoelectric materials for PENGs in personalized healthcare. Moreover, it discusses the potential of piezoelectric materials and data science approaches to enhance the efficiency and reliability of personalized healthcare devices for clinical applications.
Collapse
Affiliation(s)
- Kuntal Kumar Das
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Bikramjit Basu
- Materials Research Center, Indian Institute of Science, Bengaluru 560012, India
| | - Pralay Maiti
- SMST, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India.
| |
Collapse
|
4
|
Hsieh GW, Chien CY. Wearable Capacitive Tactile Sensor Based on Porous Dielectric Composite of Polyurethane and Silver Nanowire. Polymers (Basel) 2023; 15:3816. [PMID: 37765670 PMCID: PMC10535873 DOI: 10.3390/polym15183816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, the implementation of wearable and biocompatible tactile sensing elements with sufficient response into healthcare, medical detection, and electronic skin/amputee prosthetics has been an intriguing but challenging quest. Here, we propose a flexible all-polyurethane capacitive tactile sensor that utilizes a salt crystal-templated porous elastomeric framework filling with silver nanowire as the composite dielectric material, sandwiched by a set of polyurethane films covering silver nanowire networks as electrodes. With the aids of these cubic air pores and conducting nanowires, the fabricated capacitive tactile sensor provides pronounced enhancement of both sensor compressibility and effective relative dielectric permittivity across a broad pressure regime (from a few Pa to tens of thousands of Pa). The fabricated silver nanowire-porous polyurethane sensor presents a sensitivity improvement of up to 4-60 times as compared to a flat polyurethane device. An ultrasmall external stimulus as light as 3 mg, equivalent to an applied pressure of ∼0.3 Pa, can also be clearly recognized. Our all-polyurethane capacitive tactile sensor based on a porous dielectric framework hybrid with conducting nanowire reveals versatile potential applications in physiological activity detection, arterial pulse monitoring, and spatial pressure distribution, paving the way for wearable electronics and artificial skin.
Collapse
Affiliation(s)
- Gen-Wen Hsieh
- Institute of Lighting and Energy Photonics, College of Photonics, National Yang Ming Chiao Tung University, 301, Gaofa 3rd Road, Section 2, Guiren District, Tainan 71150, Taiwan
| | - Chih-Yang Chien
- Institute of Photonic System, College of Photonics, National Yang Ming Chiao Tung University, 301, Section 2, Gaofa 3rd Road, Guiren District, Tainan 71150, Taiwan
| |
Collapse
|
5
|
Alam MN, Kumar V, Jung HS, Park SS. Fabrication of High-Performance Natural Rubber Composites with Enhanced Filler-Rubber Interactions by Stearic Acid-Modified Diatomaceous Earth and Carbon Nanotubes for Mechanical and Energy Harvesting Applications. Polymers (Basel) 2023; 15:3612. [PMID: 37688238 PMCID: PMC10490170 DOI: 10.3390/polym15173612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Mechanical robustness and high energy efficiency of composite materials are immensely important in modern stretchable, self-powered electronic devices. However, the availability of these materials and their toxicities are challenging factors. This paper presents the mechanical and energy-harvesting performances of low-cost natural rubber composites made of stearic acid-modified diatomaceous earth (mDE) and carbon nanotubes (CNTs). The obtained mechanical properties were significantly better than those of unfilled rubber. Compared to pristine diatomaceous earth, mDE has higher reinforcing efficiencies in terms of mechanical properties because of the effective chemical surface modification by stearic acid and enhanced filler-rubber interactions. The addition of a small amount of CNT as a component in the hybrid filler systems not only improves the mechanical properties but also improves the electrical properties of the rubber composites and has electromechanical sensitivity. For example, the fracture toughness of unfilled rubber (9.74 MJ/m3) can be enhanced by approximately 484% in a composite (56.86 MJ/m3) with 40 phr (per hundred grams of rubber) hybrid filler, whereas the composite showed electrical conductivity. At a similar mechanical load, the energy-harvesting efficiency of the composite containing 57 phr mDE and 3 phr CNT hybrid filler was nearly double that of the only 3 phr CNT-containing composite. The higher energy-harvesting efficiency of the mDE-filled conductive composites may be due to their increased dielectric behaviour. Because of their bio-based materials, rubber composites made by mDE can be considered eco-friendly composites for mechanical and energy harvesting applications and suitable electronic health monitoring devices.
Collapse
Affiliation(s)
| | | | | | - Sang-Shin Park
- School of Mechanical Engineering, Yeungnam University, 280, Daehak-ro, Gyeongsan 38541, Republic of Korea; (M.N.A.); (V.K.); (H.-S.J.)
| |
Collapse
|
6
|
Vijayakanth T, Shankar S, Finkelstein-Zuta G, Rencus-Lazar S, Gilead S, Gazit E. Perspectives on recent advancements in energy harvesting, sensing and bio-medical applications of piezoelectric gels. Chem Soc Rev 2023; 52:6191-6220. [PMID: 37585216 PMCID: PMC10464879 DOI: 10.1039/d3cs00202k] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 08/17/2023]
Abstract
The development of next-generation bioelectronics, as well as the powering of consumer and medical devices, require power sources that are soft, flexible, extensible, and even biocompatible. Traditional energy storage devices (typically, batteries and supercapacitors) are rigid, unrecyclable, offer short-lifetime, contain hazardous chemicals and possess poor biocompatibility, hindering their utilization in wearable electronics. Therefore, there is a genuine unmet need for a new generation of innovative energy-harvesting materials that are soft, flexible, bio-compatible, and bio-degradable. Piezoelectric gels or PiezoGels are a smart crystalline form of gels with polar ordered structures that belongs to the broader family of piezoelectric material, which generate electricity in response to mechanical stress or deformation. Given that PiezoGels are structurally similar to hydrogels, they offer several advantages including intrinsic chirality, crystallinity, degree of ordered structures, mechanical flexibility, biocompatibility, and biodegradability, emphasizing their potential applications ranging from power generation to bio-medical applications. Herein, we describe recent examples of new functional PiezoGel materials employed for energy harvesting, sensing, and wound dressing applications. First, this review focuses on the principles of piezoelectric generators (PEGs) and the advantages of using hydrogels as PiezoGels in energy and biomedical applications. Next, we provide a detailed discussion on the preparation, functionalization, and fabrication of PiezoGel-PEGs (P-PEGs) for the applications of energy harvesting, sensing and wound healing/dressing. Finally, this review concludes with a discussion of the current challenges and future directions of P-PEGs.
Collapse
Affiliation(s)
- Thangavel Vijayakanth
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
| | - Sudha Shankar
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv-6997801, Israel
| | - Gal Finkelstein-Zuta
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv-6997801, Israel.
| | - Sigal Rencus-Lazar
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
| | - Sharon Gilead
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv-6997801, Israel
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv-6997801, Israel.
| |
Collapse
|
7
|
Du Y, Jian G, Zhang C, Wang F. Coral-like BaTiO 3-Filled Polymeric Composites as Piezoelectric Nanogenerators for Movement Sensing. Polymers (Basel) 2023; 15:3191. [PMID: 37571084 PMCID: PMC10421448 DOI: 10.3390/polym15153191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Piezoelectric nanogenerators have prospective uses for generating mechanical energy and powering electronic devices due to their high output and flexible behavior. In this research, the synthesis of the three-dimensional coral-like BaTiO3 (CBT) and its filling into a polyvinylidene fluoride (PVDF) matrix to obtain composites with excellent energy harvesting properties are reported. The CBT-based PENG has a 163 V voltage and a 16.7 µA current at a frequency of 4 Hz with 50 N compression. Simulations show that the high local stresses in the CBT coral branch structure are the main reason for the improved performance. The piezoelectric nanogenerator showed good durability at 5000 cycles, and 50 commercial light-emitting diodes were turned on. The piezoelectric nanogenerator generates a voltage of 4.68-12 V to capture the energy generated by the ball falling from different heights and a voltage of ≈0.55 V to capture the mechanical energy of the ball's movement as it passes. This study suggests a CBT-based piezoelectric nanogenerator for potential use in piezoelectric sensors that has dramatically improved energy harvesting characteristics.
Collapse
Affiliation(s)
- Yuhang Du
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.D.); (C.Z.); (F.W.)
| | - Gang Jian
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chen Zhang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.D.); (C.Z.); (F.W.)
| | - Fengwei Wang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.D.); (C.Z.); (F.W.)
| |
Collapse
|
8
|
Wang Y, Hong M, Venezuela J, Liu T, Dargusch M. Expedient secondary functions of flexible piezoelectrics for biomedical energy harvesting. Bioact Mater 2023; 22:291-311. [PMID: 36263099 PMCID: PMC9556936 DOI: 10.1016/j.bioactmat.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Flexible piezoelectrics realise the conversion between mechanical movements and electrical power by conformally attaching onto curvilinear surfaces, which are promising for energy harvesting of biomedical devices due to their sustainable body movements and/or deformations. Developing secondary functions of flexible piezoelectric energy harvesters is becoming increasingly significant in recent years via aiming at issues that cannot be addressed or mitigated by merely increasing piezoelectric efficiencies. These issues include loose interfacial contact and pucker generation by stretching, power shortage or instability induced by inadequate mechanical energy, and premature function degeneration or failure caused by fatigue fracture after cyclic deformations. Herein, the expedient secondary functions of flexible piezoelectrics to mitigate above issues are reviewed, including stretchability, hybrid energy harvesting, and self-healing. Efforts have been devoted to understanding the state-of-the-art strategies and their mechanisms of achieving secondary functions based on piezoelectric fundamentals. The link between structural characteristic and function performance is unravelled by providing insights into carefully selected progresses. The remaining challenges of developing secondary functions are proposed in the end with corresponding outlooks. The current work hopes to help and inspire future research in this promising field focusing on developing the secondary functions of flexible piezoelectric energy harvesters.
Collapse
Affiliation(s)
- Yuan Wang
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Min Hong
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Jeffrey Venezuela
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ting Liu
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Matthew Dargusch
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
9
|
Okhay O, Tkach A. Current Achievements in Flexible Piezoelectric Nanogenerators Based on Barium Titanate. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:988. [PMID: 36985882 PMCID: PMC10053931 DOI: 10.3390/nano13060988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Harvesting ambient mechanical energy at the nanometric scale holds great promise for powering small electronics and achieving self-powered electronic devices. The current review is focused on kinetic energy harvesters, particularly on flexible piezoelectric nanogenerators (p-NGs) based on barium titanate (BaTiO3) nanomaterials. p-NGs based on nanotubes, nanowires, nanofibres, nanoplatelets, nanocubes or nanoparticles of BaTiO3 fabricated in vertical or lateral orientation, as well as mixed composite structures, are overviewed here. The achievable power output level is shown to depend on the fabrication method, processing parameters and potential application conditions. Therefore, the most widely studied aspects, such as influence of geometry/orientation, BaTiO3 content, poling process and other factors in the output performance of p-NGs, are discussed. The current standing of BaTiO3-based p-NGs as possible candidates for various applications is summarized, and the issues that need to be addressed for realization of practical piezoelectric energy harvesting devices are discussed.
Collapse
Affiliation(s)
- Olena Okhay
- TEMA-Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
- LASI-Intelligent Systems Associate Laboratory, 4800-058 Guimaraes, Portugal
| | - Alexander Tkach
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Kulkarni ND, Kumari P. Role of rGO on mechanical, thermal, and piezoelectric behaviour of PVDF-BTO nanocomposites for energy harvesting applications. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Kumar M, Seo H. Adaptive Memory and In Materia Reinforcement Learning Enabled by Flexoelectric-like Response from Ultrathin HfO 2. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54876-54884. [PMID: 36450008 DOI: 10.1021/acsami.2c19148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Reinforcement learning (RL) is a mathematical framework of neural learning by trial and error that revolutionized the field of artificial intelligence. However, until now, RL has been implemented in algorithms with the compatibly of traditional complementary metal-oxide-semiconductor-based von Neumann digital platforms, which thus limits performance in terms of latency, fault tolerance, and robustness. Here, we demonstrate that nanocolumnar (∼12 nm) HfO2 structures can be used as building blocks to conduct the RL within the material by combining its stress-adjustable charge transport and memory functions. Specifically, HfO2 nanostructures grown by the sputtering method exhibit self-assembled vertical nanocolumnar structures that generate voltage depending on the impact of stress under self-biased conditions. The observed results are attributed to the flexoelectric-like response of HfO2. Further, multilevel current (>10-3 A) modulation with touch and controlled suspension (∼10-12 A) with a short electric pulse (100 ms) were demonstrated, yielding a proof-of-concept memory with an on/off ratio greater than 109. Utilizing multipattern dynamic memory and tactile sensing, RL was implemented to successfully solve a maze game using an array of 6 × 4. This work could pave the way to do RL within materials for a variety of applications such as memory storage, neuromorphic sensors, smart robots, and human-machine interaction systems.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Energy Systems Research, Ajou University, Suwon16499, Republic of Korea
- Department of Materials Science and Engineering, Ajou University, Suwon16499, Republic of Korea
| | - Hyungtak Seo
- Department of Energy Systems Research, Ajou University, Suwon16499, Republic of Korea
- Department of Materials Science and Engineering, Ajou University, Suwon16499, Republic of Korea
| |
Collapse
|
12
|
Pattipaka S, Bae YM, Jeong CK, Park KI, Hwang GT. Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239506. [PMID: 36502209 PMCID: PMC9735637 DOI: 10.3390/s22239506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/12/2023]
Abstract
In the ongoing fourth industrial revolution, the internet of things (IoT) will play a crucial role in collecting and analyzing information related to human healthcare, public safety, environmental monitoring and home/industrial automation. Even though conventional batteries are widely used to operate IoT devices as a power source, these batteries have a drawback of limited capacity, which impedes broad commercialization of the IoT. In this regard, piezoelectric energy harvesting technology has attracted a great deal of attention because piezoelectric materials can convert electricity from mechanical and vibrational movements in the ambient environment. In particular, piezoelectric-based flexible energy harvesters can precisely harvest tiny mechanical movements of muscles and internal organs from the human body to produce electricity. These inherent properties of flexible piezoelectric harvesters make it possible to eliminate conventional batteries for lifetime extension of implantable and wearable IoTs. This paper describes the progress of piezoelectric perovskite material-based flexible energy harvesters for self-powered IoT devices for biomedical/wearable electronics over the last decade.
Collapse
Affiliation(s)
- Srinivas Pattipaka
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Young Min Bae
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Chang Kyu Jeong
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kwi-Il Park
- School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Geon-Tae Hwang
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| |
Collapse
|
13
|
Bakhtar LJ, Abdoos H, Rashidi S. A review on fabrication and in vivo applications of piezoelectric nanocomposites for energy harvesting. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Hanani Z, Izanzar I, Merselmiz S, Amjoud M, Mezzane D, Ghanbaja J, Saadoune I, Lahcini M, Spreitzer M, Vengust D, El Marssi M, Kutnjak Z, Luk'yanchuk IA, Gouné M. The benefits of combining 1D and 3D nanofillers in a piezocomposite nanogenerator for biomechanical energy harvesting. NANOSCALE ADVANCES 2022; 4:4658-4668. [PMID: 36341296 PMCID: PMC9595181 DOI: 10.1039/d2na00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Mechanical energy harvesting using piezoelectric nanogenerators (PNGs) offers an attractive solution for driving low-power portable devices and self-powered electronic systems. Here, we designed an eco-friendly and flexible piezocomposite nanogenerator (c-PNG) based on H2(Zr0.1Ti0.9)3O7 nanowires (HZTO-nw) and Ba0.85Ca0.15Zr0.10Ti0.90O3 multipods (BCZT-mp) as fillers and polylactic acid (PLA) as a biodegradable polymer matrix. The effects of the applied stress amplitude, frequency and pressing duration on the electric outputs in the piezocomposite nanogenerator (c-PNG) device were investigated by simultaneous recording of the mechanical input and the electrical outputs. The fabricated c-PNG shows a maximum output voltage, current and volumetric power density of 11.5 V, 0.6 μA and 9.2 mW cm-3, respectively, under cyclic finger imparting. A high-pressure sensitivity of 0.86 V kPa-1 (equivalent to 3.6 V N-1) and fast response time of 45 ms were obtained in the dynamic pressure sensing. Besides this, the c-PNG demonstrates high-stability and durability of the electrical outputs for around three months, and can drive commercial electronics (charging capacitor, glowing light-emitting diodes and powering a calculator). Multi-physics simulations indicate that the presence of BCZT-mp is crucial in enhancing the piezoelectric response of the c-PNG. Accordingly, this work reveals that combining 1D and 3D fillers in a polymer composite-based PNG could be beneficial in improving the mechanical energy harvesting performances in flexible piezoelectric nanogenerators for application in electronic skin and wearable devices.
Collapse
Affiliation(s)
- Zouhair Hanani
- IMED-Lab, Cadi Ayyad University Marrakesh 40000 Morocco
- ICMCB, University of Bordeaux Pessac 33600 France
- Jozef Stefan Institute Ljubljana 1000 Slovenia
| | | | | | | | - Daoud Mezzane
- IMED-Lab, Cadi Ayyad University Marrakesh 40000 Morocco
- LPMC, University of Picardy Jules Verne Amiens 80039 France
| | | | - Ismael Saadoune
- IMED-Lab, Cadi Ayyad University Marrakesh 40000 Morocco
- Mohammed VI Polytechnic University Ben Guerir 43150 Morocco
| | - Mohammed Lahcini
- IMED-Lab, Cadi Ayyad University Marrakesh 40000 Morocco
- Mohammed VI Polytechnic University Ben Guerir 43150 Morocco
| | | | | | | | | | - Igor A Luk'yanchuk
- LPMC, University of Picardy Jules Verne Amiens 80039 France
- Department of Building Materials, Kyiv National University of Construction and Architecture Kyiv Ukraine
| | | |
Collapse
|
15
|
Zhao C, Gao S, Kleebe HJ, Tan X, Koruza J, Rödel J. Coherent Precipitates with Strong Domain Wall Pinning in Alkaline Niobate Ferroelectrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202379. [PMID: 35999187 DOI: 10.1002/adma.202202379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/21/2022] [Indexed: 06/15/2023]
Abstract
High-power piezoelectric applications are predicted to share approximately one-third of the lead-free piezoelectric ceramic market in 2024 with alkaline niobates as the primary competitor. To suppress self-heating in high-power devices due to mechanical loss when driven by large electric fields, piezoelectric hardening to restrict domain wall motion is required. In the present work, highly effective piezoelectric hardening via coherent plate-like precipitates in a model system of the (Li,Na)NbO3 (LNN) solid solution delivers a reduction in losses, quantified as an electromechanical quality factor, by a factor of ten. Various thermal aging schemes are demonstrated to control the average size, number density, and location of the precipitates. The established properties are correlated with a detailed determination of short- and long-range atomic structure by X-ray diffraction and pair distribution function analysis, respectively, as well as microstructure determined by transmission electron microscopy. The impact of microstructure with precipitates on both small- and large-field properties is also established. These results pave the way to implement precipitate hardening in piezoelectric materials, analogous to precipitate hardening in metals, broadening their use cases in applications.
Collapse
Affiliation(s)
- Changhao Zhao
- Department of Materials and Earth Sciences, Nonmetallic Inorganic Materials, Technical University of Darmstadt, Alarich-Weiss-Straße 2, 64287, Darmstadt, Germany
| | - Shuang Gao
- Department of Materials and Earth Sciences, Nonmetallic Inorganic Materials, Technical University of Darmstadt, Alarich-Weiss-Straße 2, 64287, Darmstadt, Germany
| | - Hans-Joachim Kleebe
- Department of Materials and Earth Sciences, Nonmetallic Inorganic Materials, Technical University of Darmstadt, Alarich-Weiss-Straße 2, 64287, Darmstadt, Germany
| | - Xiaoli Tan
- Department of Materials Science and Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Jurij Koruza
- Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
| | - Jürgen Rödel
- Department of Materials and Earth Sciences, Nonmetallic Inorganic Materials, Technical University of Darmstadt, Alarich-Weiss-Straße 2, 64287, Darmstadt, Germany
| |
Collapse
|
16
|
Guo H, Li L, Wang F, Kim SW, Sun H. Mitigating the Negative Piezoelectricity in Organic/Inorganic Hybrid Materials for High-performance Piezoelectric Nanogenerators. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34733-34741. [PMID: 35867959 DOI: 10.1021/acsami.2c08162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The conversion of ecofriendly waste energy into useable electrical energy is of significant interest for energy harvesting technologies. Piezoelectric nanogenerators based on organic/inorganic hybrid materials are a key promising technology for harvesting mechanical energy due to their high piezoelectric coefficient and good mechanical flexibility. However, the negative piezoelectric effect of the polymer component in composite devices severely undermines its overall piezoelectricity, compromising the output performance of PVDF-based piezoelectric hybrid nanogenerators. Here, to conquer this, we report a two-step poling schedule to orient the dipoles of organic and inorganic components in the same direction. The optimized nanogenerator delivers a combination of high piezoelectric coefficient, great output performance, and remarkable stability. The isotropic piezoelectricity in the composite device collaborates to output a maximum voltage of 110 V and a power density of 7.8 μW cm-2. This strategy is also applied to elevate the piezoelectricity of other organic/inorganic-hybrid-based nanogenerators, substantiating its universal applicability for composite piezoelectric nanogenerators. This study presents a feasible strategy for enhancing the effective output capability of composite nanogenerator technologies.
Collapse
Affiliation(s)
- Huiling Guo
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Liang Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Fang Wang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Sang-Woo Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Huajun Sun
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Advanced Ceramics Institute of Zibo New & High-Tech Industrial Development Zone, Zibo 255000, China
| |
Collapse
|
17
|
A Bibliometric Analysis of Low-Cost Piezoelectric Micro-Energy Harvesting Systems from Ambient Energy Sources: Current Trends, Issues and Suggestions. MICROMACHINES 2022; 13:mi13060975. [PMID: 35744589 PMCID: PMC9227358 DOI: 10.3390/mi13060975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 01/18/2023]
Abstract
The scientific interest in piezoelectric micro-energy harvesting (PMEH) has been fast-growing, demonstrating that the field has made a major improvement in the long-term evolution of alternative energy sources. Although various research works have been performed and published over the years, only a few attempts have been made to examine the research's influence in this field. Therefore, this paper presents a bibliometric study into low-cost PMEH from ambient energy sources within the years 2010-2021, outlining current research trends, analytical assessment, novel insights, impacts, challenges and recommendations. The major goal of this paper is to provide a bibliometric evaluation that is based on the top-cited 100 articles employing the Scopus databases, information and refined keyword searches. This study analyses various key aspects, including PMEH emerging applications, authors' contributions, collaboration, research classification, keywords analysis, country's networks and state-of-the-art research areas. Moreover, several issues and concerns regarding PMEH are identified to determine the existing constraints and research gaps, such as technical, modeling, economics, power quality and environment. The paper also provides guidelines and suggestions for the development and enhancement of future PMEH towards improving energy efficiency, topologies, design, operational performance and capabilities. The in-depth information, critical discussion and analysis of this bibliometric study are expected to contribute to the advancement of the sustainable pathway for PMEH research.
Collapse
|
18
|
Deng W, Zhou Y, Libanori A, Chen G, Yang W, Chen J. Piezoelectric nanogenerators for personalized healthcare. Chem Soc Rev 2022; 51:3380-3435. [PMID: 35352069 DOI: 10.1039/d1cs00858g] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of flexible piezoelectric nanogenerators has experienced rapid progress in the past decade and is serving as the technological foundation of future state-of-the-art personalized healthcare. Due to their highly efficient mechanical-to-electrical energy conversion, easy implementation, and self-powering nature, these devices permit a plethora of innovative healthcare applications in the space of active sensing, electrical stimulation therapy, as well as passive human biomechanical energy harvesting to third party power on-body devices. This article gives a comprehensive review of the piezoelectric nanogenerators for personalized healthcare. After a brief introduction to the fundamental physical science of the piezoelectric effect, material engineering strategies, device structural designs, and human-body centered energy harvesting, sensing, and therapeutics applications are also systematically discussed. In addition, the challenges and opportunities of utilizing piezoelectric nanogenerators for self-powered bioelectronics and personalized healthcare are outlined in detail.
Collapse
Affiliation(s)
- Weili Deng
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA. .,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Alberto Libanori
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Weiqing Yang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| |
Collapse
|
19
|
Hsieh GW, Shih LC, Chen PY. Porous Polydimethylsiloxane Elastomer Hybrid with Zinc Oxide Nanowire for Wearable, Wide-Range, and Low Detection Limit Capacitive Pressure Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:256. [PMID: 35055273 PMCID: PMC8779111 DOI: 10.3390/nano12020256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023]
Abstract
We propose a flexible capacitive pressure sensor that utilizes porous polydimethylsiloxane elastomer with zinc oxide nanowire as nanocomposite dielectric layer via a simple porogen-assisted process. With the incorporation of nanowires into the porous elastomer, our capacitive pressure sensor is not only highly responsive to subtle stimuli but vigorously so to gentle touch and verbal stimulation from 0 to 50 kPa. The fabricated zinc oxide nanowire-porous polydimethylsiloxane sensor exhibits superior sensitivity of 0.717 kPa-1, 0.360 kPa-1, and 0.200 kPa-1 at the pressure regimes of 0-50 Pa, 50-1000 Pa, and 1000-3000 Pa, respectively, presenting an approximate enhancement by 21-100 times when compared to that of a flat polydimethylsiloxane device. The nanocomposite dielectric layer also reveals an ultralow detection limit of 1.0 Pa, good stability, and durability after 4000 loading-unloading cycles, making it capable of perception of various human motions, such as finger bending, calligraphy writing, throat vibration, and airflow blowing. A proof-of-concept trial in hydrostatic water pressure sensing has been demonstrated with the proposed sensors, which can detect tiny changes in water pressure and may be helpful for underwater sensing research. This work brings out the efficacy of constructing wearable capacitive pressure sensors based on a porous dielectric hybrid with stress-sensitive nanostructures, providing wide prospective applications in wearable electronics, health monitoring, and smart artificial robotics/prosthetics.
Collapse
Affiliation(s)
- Gen-Wen Hsieh
- Institute of Lighting and Energy Photonics, College of Photonics, National Yang Ming Chiao Tung University, 301, Section 2, Gaofa 3rd Road, Guiren District, Tainan 71150, Taiwan
| | - Liang-Cheng Shih
- Institute of Photonic System, College of Photonics, National Yang Ming Chiao Tung University, 301, Gaofa 3rd Road, Section 2, Guiren District, Tainan 71150, Taiwan; (L.-C.S.); (P.-Y.C.)
| | - Pei-Yuan Chen
- Institute of Photonic System, College of Photonics, National Yang Ming Chiao Tung University, 301, Gaofa 3rd Road, Section 2, Guiren District, Tainan 71150, Taiwan; (L.-C.S.); (P.-Y.C.)
| |
Collapse
|
20
|
Ahmed A, Azam A, Wang Y, Zhang Z, Li N, Jia C, Mushtaq RT, Rehman M, Gueye T, Shahid MB, Wajid BA. Additively manufactured nano-mechanical energy harvesting systems: advancements, potential applications, challenges and future perspectives. NANO CONVERGENCE 2021; 8:37. [PMID: 34851459 PMCID: PMC8633623 DOI: 10.1186/s40580-021-00289-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/11/2021] [Indexed: 05/14/2023]
Abstract
Additively manufactured nano-MEH systems are widely used to harvest energy from renewable and sustainable energy sources such as wind, ocean, sunlight, raindrops, and ambient vibrations. A comprehensive study focusing on in-depth technology evolution, applications, problems, and future trends of specifically 3D printed nano-MEH systems with an energy point of view is rarely conducted. Therefore, this paper looks into the state-of-the-art technologies, energy harvesting sources/methods, performance, implementations, emerging applications, potential challenges, and future perspectives of additively manufactured nano-mechanical energy harvesting (3DP-NMEH) systems. The prevailing challenges concerning renewable energy harvesting capacities, optimal energy scavenging, power management, material functionalization, sustainable prototyping strategies, new materials, commercialization, and hybridization are discussed. A novel solution is proposed for renewable energy generation and medicinal purposes based on the sustainable utilization of recyclable municipal and medical waste generated during the COVID-19 pandemic. Finally, recommendations for future research are presented concerning the cutting-edge issues hurdling the optimal exploitation of renewable energy resources through NMEHs. China and the USA are the most significant leading forces in enhancing 3DP-NMEH technology, with more than 75% contributions collectively. The reported output energy capacities of additively manufactured nano-MEH systems were 0.5-32 mW, 0.0002-45.6 mW, and 0.3-4.67 mW for electromagnetic, piezoelectric, and triboelectric nanogenerators, respectively. The optimal strategies and techniques to enhance these energy capacities are compiled in this paper.
Collapse
Affiliation(s)
- Ammar Ahmed
- Department of Industry Engineering, Northwestern Polytechnical University, Xi’an, 710072 People’s Republic of China
- Mechanical Engineering Department, University of Engineering and Technology Lahore, Lahore, Pakistan
| | - Ali Azam
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031 People’s Republic of China
| | - Yanen Wang
- Department of Industry Engineering, Northwestern Polytechnical University, Xi’an, 710072 People’s Republic of China
| | - Zutao Zhang
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031 People’s Republic of China
| | - Ning Li
- Graduate School of Tangshan, Southwest Jiaotong University, Tangshan, 063008 People’s Republic of China
| | - Changyuan Jia
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031 People’s Republic of China
| | - Ray Tahir Mushtaq
- Department of Industry Engineering, Northwestern Polytechnical University, Xi’an, 710072 People’s Republic of China
| | - Mudassar Rehman
- Department of Industry Engineering, Northwestern Polytechnical University, Xi’an, 710072 People’s Republic of China
| | - Thierno Gueye
- Department of Industry Engineering, Northwestern Polytechnical University, Xi’an, 710072 People’s Republic of China
| | - Muhammad Bilal Shahid
- School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 610031 People’s Republic of China
| | - Basit Ali Wajid
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
21
|
|
22
|
High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting. Nat Commun 2021; 12:4689. [PMID: 34344899 PMCID: PMC8333367 DOI: 10.1038/s41467-021-25047-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/06/2021] [Indexed: 11/08/2022] Open
Abstract
Non-contact triboelectric nanogenerator (TENG) enabled for both high conversion efficiency and durability is appropriate to harvest random micro energy owing to the advantage of low driving force. However, the low output (<10 μC m-2) of non-contact TENG caused by the drastic charge decay limits its application. Here, we propose a floating self-excited sliding TENG (FSS-TENG) by a self-excited amplification between rotator and stator to achieve self-increased charge density, and the air breakdown model of non-contact TENG is given for a maximum charge density. The charge density up to 71.53 μC m-2 is achieved, 5.46 times as that of the traditional floating TENG. Besides, the high output enables it to continuously power small electronics at 3 m s-1 weak wind. This work provides an effective strategy to address the low output of floating sliding TENG, and can be easily adapted to capture the varied micro mechanical energies anywhere.
Collapse
|
23
|
Abstract
Wearable self-powered sensors represent a theme of interest in the literature due to the progress in the Internet of Things and implantable devices. The integration of different materials to harvest energy from body movement or the environment to power up sensors or act as an active component of the detection of analytes is a frontier to be explored. This review describes the most relevant studies of the integration of nanogenerators in wearables based on the interaction of piezoelectric and triboelectric devices into more efficient and low-cost harvesting systems to power up batteries or to use the generated power to identify multiple analytes in self-powered sensors and biosensors.
Collapse
|
24
|
Qi D, Zhang K, Tian G, Jiang B, Huang Y. Stretchable Electronics Based on PDMS Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003155. [PMID: 32830370 DOI: 10.1002/adma.202003155] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/05/2020] [Indexed: 05/27/2023]
Abstract
Stretchable electronics, which can retain their functions under stretching, have attracted great interest in recent decades. Elastic substrates, which bear the applied strain and regulate the strain distribution in circuits, are indispensable components in stretchable electronics. Moreover, the self-healing property of the substrate is a premise to endow stretchable electronics with the same characteristics, so the device may recover from failure resulting from large and frequent deformations. Therefore, the properties of the elastic substrate are crucial to the overall performance of stretchable devices. Poly(dimethylsiloxane) (PDMS) is widely used as the substrate material for stretchable electronics, not only because of its advantages, which include stable chemical properties, good thermal stability, transparency, and biological compatibility, but also because of its capability of attaining designer functionalities via surface modification and bulk property tailoring. Herein, the strategies for fabricating stretchable electronics on PDMS substrates are summarized, and the influence of the physical and chemical properties of PDMS, including surface chemical status, physical modulus, geometric structures, and self-healing properties, on the performance of stretchable electronics is discussed. Finally, the challenges and future opportunities of stretchable electronics based on PDMS substrates are considered.
Collapse
Affiliation(s)
- Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Kuiyuan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Gongwei Tian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Bo Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
25
|
Zhang Y, Kim H, Wang Q, Jo W, Kingon AI, Kim SH, Jeong CK. Progress in lead-free piezoelectric nanofiller materials and related composite nanogenerator devices. NANOSCALE ADVANCES 2020; 2:3131-3149. [PMID: 36134257 PMCID: PMC9418676 DOI: 10.1039/c9na00809h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/29/2020] [Indexed: 05/25/2023]
Abstract
Current piezoelectric device systems need a significant reduction in size and weight so that electronic modules of increasing capacity and functionality can be incorporated into a great range of applications, particularly in energy device platforms. The key question for most applications is whether they can compete in the race of down-scaling and an easy integration with highly adaptable properties into various system technologies such as nano-electro-mechanical systems (NEMS). Piezoelectric NEMS have potential to offer access to a parameter space for sensing, actuating, and powering, which is inflential and intriguing. Fortunately, recent advances in modelling, synthesis, and characterization techniques are spurring unprecedented developments in a new field of piezoelectric nano-materials and devices. While the need for looking more closely at the piezoelectric nano-materials is driven by the relentless drive of miniaturization, there is an additional motivation: the piezoelectric materials, which are showing the largest electromechanical responses, are currently toxic lead (Pb)-based perovskite materials (such as the ubiquitous Pb(Zr,Ti)O3, PZT). This is important, as there is strong legislative and moral push to remove toxic lead compounds from commercial products. By far, the lack of viable alternatives has led to continuing exemptions to allow their temporary use in piezoelectric applications. However, the present exemption will expire soon, and the concurrent improvement of lead-free piezoelectric materials has led to the possibility that no new exemption will be granted. In this paper, the universal approaches and recent progresses in the field of lead-free piezoelectric nano-materials, initially focusing on hybrid composite materials as well as individual nanoparticles, and related energy harvesting devices are systematically elaborated. The paper begins with a short introduction to the properties of interest in various piezoelectric nanomaterials and a brief description of the current state-of-the-art for lead-free piezoelectric nanostructured materials. We then describe several key methodologies for the synthesis of nanostructure materials including nanoparticles, followed by the discussion on the critical current and emerging applications in detail.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Silicate Materials for Architectures, Center for Smart Materials and Device Integration, School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
- Department of Materials Science and Engineering, National University of Singapore 9 Engineering Drive 1 117575 Singapore
| | - Hyunseung Kim
- Hydrogen and Fuel Cell Research Center, Department of Energy Storage/Conversion Engineering, Jeonbuk National University Jeonju Jeonbuk 54896 Republic of Korea
| | - Qing Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802 USA
| | - Wook Jo
- School of Materials Science and Engineering, Jülich-UNIST Joint Leading Institute for Advanced Energy Research (JULIA), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Angus I Kingon
- School of Engineering, Brown University Providence RI 02912 USA
| | - Seung-Hyun Kim
- School of Engineering, Brown University Providence RI 02912 USA
| | - Chang Kyu Jeong
- Hydrogen and Fuel Cell Research Center, Department of Energy Storage/Conversion Engineering, Jeonbuk National University Jeonju Jeonbuk 54896 Republic of Korea
- Division of Advanced Materials Engineering, Jeonbuk National University Jeonju Jeonbuk 54896 Republic of Korea
| |
Collapse
|
26
|
Lu H, Hong Y, Yang Y, Yang Z, Shen Y. Battery-Less Soft Millirobot That Can Move, Sense, and Communicate Remotely by Coupling the Magnetic and Piezoelectric Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000069. [PMID: 32670756 PMCID: PMC7341101 DOI: 10.1002/advs.202000069] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/19/2020] [Indexed: 05/19/2023]
Abstract
The soft millirobot is a promising candidate for emerging applications in various in-vivo/vitro biomedical settings. Despite recent success in its design and actuation, the absence of sensing ability makes it still far from being a reality. Here, a radio frequency identification (RFID) based battery-less soft millirobot that can move, sense, and communicate remotely by coupling the magnetic and piezoelectric effects is reported. This design integrates the robot actuation and power generation units within a thin multilayer film (<0.5 mm), i.e., a lower magnetic composite limb decorated with multiple feet imparts locomotion and a flexible piezoceramic composite film recovers energy simultaneously. Under a trigger of external magnetic guidance, the millirobot can achieve remote locomotion, environment monitoring, and wireless communication with no requirement of any on-board battery or external wired power supply. Furthermore, this robot demonstrates the sensing capability in measuring environment temperature and contact interface by two different sensing models, i.e., carried-on and build-in sensing mode, respectively. This research represents a remarkable advance in the emerging area of untethered soft robotics, benefiting a broad spectrum of promising applications, such as in-body monitoring, diagnosis, and drug delivery.
Collapse
Affiliation(s)
- Haojian Lu
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Ying Hong
- Department of Mechanical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Yuanyuan Yang
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Zhengbao Yang
- Department of Mechanical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
- Shenzhen Research Institute of City University of Hong KongShenzhen518057China
| | - Yajing Shen
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
- Shenzhen Research Institute of City University of Hong KongShenzhen518057China
| |
Collapse
|
27
|
Hao Y, Hou Y, Fu J, Yu X, Gao X, Zheng M, Zhu M. Flexible piezoelectric energy harvester with an ultrahigh transduction coefficient by the interconnected skeleton design strategy. NANOSCALE 2020; 12:13001-13009. [PMID: 32530013 DOI: 10.1039/d0nr03056b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Based on the strong demand for self-powered wearable electronic devices, flexible piezoelectric energy harvesters (FPEHs) have recently attracted much attention. A polymer-based piezocomposite is the core of an FPEH and its transduction coefficient (d33×g33) is directly related to the material's power generation capacity. Unfortunately, the traditional 0-3 type design method generally causes a weak stress transfer and poor dispersion of the filler in the polymer matrix, making it difficult to obtain a high d33×g33. In this work, a unique interconnected skeleton design strategy has been proposed to overcome these shortcomings. By using the freeze-casting method, an ice-templated 2-2 type composite material has been constructed with the popular piezoelectric relaxor 0.2Pb(Zn1/3Nb2/3)O3-0.8Pb(Zr1/2Ti1/2)O3 (PZN-PZT) as the filler and PDMS as the polymer matrix. Both the theoretical simulation and the experimental results revealed a remarkable enhancement in the stress transfer ability and piezoelectric response. In particular, the 2-2 type piezocomposite has an ultrahigh transduction coefficient of 58 213 × 10-15 m2 N-1, which is significantly better than those of previously reported composite materials, and even textured piezoceramics. This work provides a promising paradigm for the development of high-performance FPEH materials.
Collapse
Affiliation(s)
- Yijin Hao
- College of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Tian G, Xiong D, Su Y, Yang T, Gao Y, Yan C, Deng W, Jin L, Zhang H, Fan X, Wang C, Deng W, Yang W. Understanding the Potential Screening Effect through the Discretely Structured ZnO Nanorods Piezo Array. NANO LETTERS 2020; 20:4270-4277. [PMID: 32412244 DOI: 10.1021/acs.nanolett.0c00793] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The potential screening effect of one-dimensional ZnO nanorods from carriers has been theoretically proved to severely limit its piezoelectricity, but its exact mechanism needs to be further revealed in experiments to guide the design of piezoelectric semiconductors. Here, a discretely structured design was proposed to prevent the free carriers from tunneling among adjacent ZnO nanorods for suppressing the screening effect. Piezoresponse force microscope and finite element analysis were employed in combination to uncover the underlying mechanism in experiment. Further, the output voltage of this discretely structured device was 1.62 times higher than that of the nondesigned device, which clearly authenticates this suppression behavior. Besides, this design prompts an unexpected improvement in flexibility, where the flexural modulus of this piezo-film was reduced by 35.74%. Notably, this work opens a new way to understand the potential screening effect, as expected, and to advance the development of piezo-electronics toward better piezoelectricity and more excellent flexibility.
Collapse
Affiliation(s)
- Guo Tian
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Da Xiong
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuhan Su
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuyu Gao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Cheng Yan
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wen Deng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Long Jin
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Haitao Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaoqiang Fan
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chaoming Wang
- School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Weili Deng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
29
|
Joo H, Jung D, Sunwoo SH, Koo JH, Kim DH. Material Design and Fabrication Strategies for Stretchable Metallic Nanocomposites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906270. [PMID: 32022440 DOI: 10.1002/smll.201906270] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Stretchable conductive nanocomposites fabricated by integrating metallic nanomaterials with elastomers have become a vital component of human-friendly electronics, such as wearable and implantable devices, due to their unconventional electrical and mechanical characteristics. Understanding the detailed material design and fabrication strategies to improve the conductivity and stretchability of the nanocomposites is therefore important. This Review discusses the recent technological advances toward high performance stretchable metallic nanocomposites. First, the effect of the filler material design on the conductivity is briefly discussed, followed by various nanocomposite fabrication techniques to achieve high conductivity. Methods for maintaining the initial conductivity over a long period of time are also summarized. Then, strategies on controlled percolation of nanomaterials are highlighted, followed by a discussion regarding the effects of the morphology of the nanocomposite and postfabricated 3D structures on achieving high stretchability. Finally, representative examples of applications of such nanocomposites in biointegrated electronics are provided. A brief outlook concludes this Review.
Collapse
Affiliation(s)
- Hyunwoo Joo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongjun Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
30
|
|
31
|
Waseem A, Johar MA, Hassan MA, Bagal IV, Ha JS, Lee JK, Ryu SW. Enhanced stability of piezoelectric nanogenerator based on GaN/V 2O 5 core-shell nanowires with capacitive contact. NANOTECHNOLOGY 2020. [PMID: 31675751 DOI: 10.1016/j.nanoen.2019.03.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Enhanced stability of a piezoelectric nanogenerator (PNG) was demonstrated using c- and m-axis GaN/V2O5 core-shell nanowires (NWs) by analyzing the capacitive coupling of the PNG's output. The NW array grown on GaN thin film was embedded in polydimethylsiloxane (PDMS) matrix, following which the matrix was transferred to an indium (In)-coated PET substrate for achieving superior flexibility of the PNG. The stability of the PNG was enhanced by holding the NW PDMS composite with a PDMS polymer as a bonding material on the PET substrate. The inserted PDMS layer improved the lifetime of the PNG, however, because of the insulating nature of PDMS, the piezoelectric output of GaN NWs was coupled capacitively to In contact on PET substrate and it resulted in a slight degradation of piezoelectric output due to the voltage drop across the bottom capacitive contact. The maximum piezoelectric current was 64 nA and output voltage was 11.9 V from the PNG with c-axis NWs. While the PNG with direct bottom contact exhibited 57% output reduction after 72 000 operation cycles, the PNG with capacitive contact did not show any degradation in stability even after 150 000 cycles.
Collapse
Affiliation(s)
- Aadil Waseem
- Department of Physics, Chonnam National University, Gwangju 61186, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Yoshiyama K, Mori M, Hagiwara M, Fujihara S. Effect of particle size and morphology on the performance of BiFeO3–PDMS piezoelectric generators. CrystEngComm 2020. [DOI: 10.1039/d0ce00067a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of the size and morphology of piezoelectric BiFeO3 particles on the performance of BiFeO3–PDMS composite generators is revealed.
Collapse
Affiliation(s)
- Kohei Yoshiyama
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Masae Mori
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Manabu Hagiwara
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Shinobu Fujihara
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| |
Collapse
|
33
|
Lee GJ, Lee MK, Park JJ, Hyeon DY, Jeong CK, Park KI. Piezoelectric Energy Harvesting from Two-Dimensional Boron Nitride Nanoflakes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37920-37926. [PMID: 31549809 DOI: 10.1021/acsami.9b12187] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) piezoelectric hexagonal boron nitride nanoflakes (h-BN NFs) were synthesized by a mechanochemical exfoliation process and transferred onto an electrode line-patterned plastic substrate to characterize the energy harvesting ability of individual NFs by external stress. A single BN NF produced alternate piezoelectric output sources of ∼50 mV and ∼30 pA when deformed by mechanical bendings. The piezoelectric voltage coefficient (g11) of a single BN NF was experimentally determined to be 2.35 × 10-3 V·m·N-1. The piezoelectric composite composed of BN NFs and an elastomer was spin-coated onto a bulk Si substrate and then transferred onto the electrode-coated plastic substrates to fabricate a BN NFs-based flexible piezoelectric energy harvester (f-PEH) which converted a piezoelectric voltage of ∼9 V, a current of ∼200 nA, and an effective output power of ∼0.3 μW. This result provides a new strategy for precisely characterizing the energy generation ability of piezoelectric nanostructures and for demonstrating f-PEH based on 2D piezomaterials.
Collapse
Affiliation(s)
- Gyoung-Ja Lee
- Sensor System Research Team , Korea Atomic Energy Research Institute , 111 Daedeok-daero, 989 Beon-gil , Yuseong-gu, Daejeon 34057 , Republic of Korea
| | - Min-Ku Lee
- Sensor System Research Team , Korea Atomic Energy Research Institute , 111 Daedeok-daero, 989 Beon-gil , Yuseong-gu, Daejeon 34057 , Republic of Korea
| | - Jin-Ju Park
- Sensor System Research Team , Korea Atomic Energy Research Institute , 111 Daedeok-daero, 989 Beon-gil , Yuseong-gu, Daejeon 34057 , Republic of Korea
| | - Dong Yeol Hyeon
- School of Materials Science and Engineering , Kyungpook National University , 80 Daehak-ro , Buk-gu, Daegu 41566 , Republic of Korea
| | | | - Kwi-Il Park
- School of Materials Science and Engineering , Kyungpook National University , 80 Daehak-ro , Buk-gu, Daegu 41566 , Republic of Korea
| |
Collapse
|
34
|
Hwang S, Park NI, Choi YJ, Lee SM, Han SY, Chung DW, Lee S. PEDOT:PSS nanocomposite via partial intercalation of monomer into colloidal graphite prepared by in-situ polymerization. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Lee BY, Kim DH, Park J, Park KI, Lee KJ, Jeong CK. Modulation of surface physics and chemistry in triboelectric energy harvesting technologies. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:758-773. [PMID: 31447955 PMCID: PMC6691791 DOI: 10.1080/14686996.2019.1631716] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 05/03/2023]
Abstract
Mechanical energy harvesting technology converting mechanical energy wasted in our surroundings to electrical energy has been regarded as one of the critical technologies for self-powered sensor network and Internet of Things (IoT). Although triboelectric energy harvesters based on contact electrification have attracted considerable attention due to their various advantages compared to other technologies, a further improvement of the output performance is still required for practical applications in next-generation IoT devices. In recent years, numerous studies have been carried out to enhance the output power of triboelectric energy harvesters. The previous research approaches for enhancing the triboelectric charges can be classified into three categories: i) materials type, ii) device structure, and iii) surface modification. In this review article, we focus on various mechanisms and methods through the surface modification beyond the limitations of structural parameters and materials, such as surficial texturing/patterning, functionalization, dielectric engineering, surface charge doping and 2D material processing. This perspective study is a cornerstone for establishing next-generation energy applications consisting of triboelectric energy harvesters from portable devices to power industries.
Collapse
Affiliation(s)
- Bo-Yeon Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Nature-Inspired Nano-convergence System, Korea Institute of Machinery and Materials (KIMM), Daejeon, Republic of Korea
| | - Dong Hyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jiseul Park
- Division of Advanced Materials Engineering, Chonbuk National University, Jeonju, Republic of Korea
| | - Kwi-Il Park
- School of Materials Science and Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chang Kyu Jeong
- Division of Advanced Materials Engineering, Chonbuk National University, Jeonju, Republic of Korea
- Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
36
|
Han JH, Park KI, Jeong CK. Dual-Structured Flexible Piezoelectric Film Energy Harvesters for Effectively Integrated Performance. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1444. [PMID: 30909637 PMCID: PMC6470648 DOI: 10.3390/s19061444] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 02/05/2023]
Abstract
Improvement of energy harvesting performance from flexible thin film-based energy harvesters is essential to accomplish future self-powered electronics and sensor systems. In particular, the integration of harvesting signals should be established as a single device configuration without complicated device connections or expensive methodologies. In this research, we study the dual-film structures of the flexible PZT film energy harvester experimentally and theoretically to propose an effective principle for integrating energy harvesting signals. Laser lift-off (LLO) processes are used for fabrication because this is known as the most efficient technology for flexible high-performance energy harvesters. We develop two different device structures using the multistep LLO: a stacked structure and a double-faced (bimorph) structure. Although both structures are well demonstrated without serious material degradation, the stacked structure is not efficient for energy harvesting due to the ineffectively applied strain to the piezoelectric film in bending. This phenomenon stems from differences in position of mechanical neutral planes, which is investigated by finite element analysis and calculation. Finally, effectively integrated performance is achieved by a bimorph dual-film-structured flexible energy harvester. Our study will foster the development of various structures in flexible energy harvesters towards self-powered sensor applications with high efficiency.
Collapse
Affiliation(s)
- Jae Hyun Han
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Kwi-Il Park
- School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Korea.
| | - Chang Kyu Jeong
- Division of Advanced Materials Engineering, Chonbuk National University, Jeonju, Jeonbuk 54896, Korea.
- Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896, Korea.
| |
Collapse
|
37
|
Hybrid dual-functioning electrodes for combined ambient energy harvesting and charge storage: Towards self-powered systems. Biosens Bioelectron 2019; 126:275-291. [DOI: 10.1016/j.bios.2018.10.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022]
|
38
|
Ma R, Chou SY, Xie Y, Pei Q. Morphological/nanostructural control toward intrinsically stretchable organic electronics. Chem Soc Rev 2019; 48:1741-1786. [DOI: 10.1039/c8cs00834e] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The development of intrinsically stretchable electronics poses great challenges in synthesizing elastomeric conductors, semiconductors and dielectric materials.
Collapse
Affiliation(s)
- Rujun Ma
- Soft Materials Research Laboratory
- Department of Materials Science and Engineering
- Henry Samueli School of Engineering and Applied Science
- University of California
- Los Angeles
| | - Shu-Yu Chou
- Soft Materials Research Laboratory
- Department of Materials Science and Engineering
- Henry Samueli School of Engineering and Applied Science
- University of California
- Los Angeles
| | - Yu Xie
- Soft Materials Research Laboratory
- Department of Materials Science and Engineering
- Henry Samueli School of Engineering and Applied Science
- University of California
- Los Angeles
| | - Qibing Pei
- Soft Materials Research Laboratory
- Department of Materials Science and Engineering
- Henry Samueli School of Engineering and Applied Science
- University of California
- Los Angeles
| |
Collapse
|
39
|
Feasibility Study of Steel Bar Corrosion Monitoring Using a Piezoceramic Transducer Enabled Time Reversal Method. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8112304] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Steel bars, which are commonly used as reinforcements in concrete structures, are slender rods and are good conduits for stress wave propagation. In this paper, a lead zirconate titanate (PZT)-based steel bar corrosion monitoring approach was proposed. Two PZT transducers are surface-bonded on the two ends of a steel rod, respectively. One works as actuator to generate stress waves, and the other functions as a sensor to detect the propagated stress waves. Time reverse technology was applied in this research to monitor the corrosion of the steel bars with a high signal to noise ratio (SNR). Accelerated corrosion experiments of steel bars were conducted. The anti-corrosion performance of the protected piezoceramic transducers was tested first, and then they were used to monitor the corrosion of the steel bar using the time reversal method. The degree of corrosion in the steel bar was determined by the ratio of mass loss during the experiment. The experimental results show that the peak values of the signal that were obtained by time reversal operation are linearly related to the degree of corrosion of the steel bar, which demonstrates the feasibility of the proposed approach for monitoring the corrosion of steel bars using the time reversal method enabled by piezoceramic transducers.
Collapse
|
40
|
Zhang Y, Sun H, Jeong CK. Biomimetic Porifera Skeletal Structure of Lead-Free Piezocomposite Energy Harvesters. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35539-35546. [PMID: 30256607 DOI: 10.1021/acsami.8b13261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The elastic composite-based piezoelectric energy-harvesting technology is highly desired to enable a wide range of device applications, including self-powered wearable electronics, robotic skins, and biomedical devices. Recently developed piezoelectric composites are based on inorganic piezoelectric fillers and polymeric soft matrix to take advantages of both components. However, there are still limitations such as weak stress transfer to piezoelectric elements and poor dispersion of fillers in matrix. In this report, a highly enhanced piezocomposite energy harvester (PCEH) is developed using a three-dimensional electroceramic skeleton by mimicking and reproducing the sea porifera architecture. This new mechanically reinforced PCEH is demonstrated to resolve the problems of previous reported conventional piezocomposites and in turn induces stronger piezoelectric energy-harvesting responses. The generated voltage, current density, and instantaneous power density of the biomimetic PCEH device reach up to ∼16 times higher power output than that of conventional randomly dispersed particle-based PCEH. This work broadens further developments of the high-output elastic piezocomposite energy harvesting and sensor application with biomimetic architecture.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Silicate Materials for Architectures , Wuhan University of Technology , Wuhan 430070 , China
| | - Huajun Sun
- State Key Laboratory of Silicate Materials for Architectures , Wuhan University of Technology , Wuhan 430070 , China
| | - Chang Kyu Jeong
- Division of Advanced Materials Engineering , Chonbuk National University , Jeonju , Jeollabuk-do 54896 , Republic of Korea
| |
Collapse
|
41
|
Zhang C, Fan Y, Li H, Li Y, Zhang L, Cao S, Kuang S, Zhao Y, Chen A, Zhu G, Wang ZL. Fully Rollable Lead-Free Poly(vinylidene fluoride)-Niobate-Based Nanogenerator with Ultra-Flexible Nano-Network Electrodes. ACS NANO 2018; 12:4803-4811. [PMID: 29701953 DOI: 10.1021/acsnano.8b01534] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A fully rollable nanocomposite-based nanogenerator (NCG) is developed by integrating a lead-free piezoelectric hybrid layer with a type of nanofiber-supported silver nanowire (AgNW) network as electrodes. The thin-film nanocomposite is composed of electroactive polyvinylidene fluoride (PVDF) polymer matrix and compositionally modified potassium sodium niobate-based nanoparticles (NPs) with a high piezoelectric coefficient ( d33) of 53 pm/V, which is revealed by the piezoresponse force microscopy measurements. Under periodical agitation at a compressive force of 50 N and 1 Hz, the NCG can steadily render high electric output up to an open-circuit voltage of 18 V and a short-circuit current of 2.6 μA. Of particular importance is the decent rollability of the NCG, as indicated by the negligible decay in the electric output after it being repeatedly rolled around a gel pen for 200 cycles. Besides, the biocompatible NCG can potentially be used to scavenge biomechanical energy from low-frequency human motions, as demonstrated by the scenarios of walking and elbow joint movement. These results rationally expand the feasibility of the developed NCG toward applications in lightweight, diminutive, and multifunctional rollable or wearable electronic devices.
Collapse
Affiliation(s)
- Chen Zhang
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
| | - Youjun Fan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100048 , China
| | - Huayang Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100048 , China
| | - Yayuan Li
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , China
| | - Lei Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , China
| | - Shubo Cao
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , China
| | - Shuangyang Kuang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100048 , China
| | - Yongbin Zhao
- Shandong Oubo New Material Co. Ltd , Dongying , Shandong 257088 , China
| | - Aihua Chen
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , China
- Beijing Advanced Innovation Centre for Biomedical Engineering , Beihang University , Beijing 100191 , China
| | - Guang Zhu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- Department of Mechanical, Materials and Manufacturing Engineering , The University of Nottingham Ningbo China , Ningbo 315100 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100048 , China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100048 , China
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
42
|
Jeong CK, Baek C, Kingon AI, Park KI, Kim SH. Lead-Free Perovskite Nanowire-Employed Piezopolymer for Highly Efficient Flexible Nanocomposite Energy Harvester. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704022. [PMID: 29655226 DOI: 10.1002/smll.201704022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/28/2018] [Indexed: 05/24/2023]
Abstract
In the past two decades, mechanical energy harvesting technologies have been developed in various ways to support or power small-scale electronics. Nevertheless, the strategy for enhancing current and charge performance of flexible piezoelectric energy harvesters using a simple and cost-effective process is still a challenging issue. Herein, a 1D-3D (1-3) fully piezoelectric nanocomposite is developed using perovskite BaTiO3 (BT) nanowire (NW)-employed poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) for a high-performance hybrid nanocomposite generator (hNCG) device. The harvested output of the flexible hNCG reaches up to ≈14 V and ≈4 µA, which is higher than the current levels of even previous piezoceramic film-based flexible energy harvesters. Finite element analysis method simulations study that the outstanding performance of hNCG devices attributes to not only the piezoelectric synergy of well-controlled BT NWs and within P(VDF-TrFE) matrix, but also the effective stress transferability of piezopolymer. As a proof of concept, the flexible hNCG is directly attached to a hand to scavenge energy using a human motion in various biomechanical frequencies for self-powered wearable patch device applications. This research can pave the way for a new approach to high-performance wearable and biocompatible self-sufficient electronics.
Collapse
Affiliation(s)
- Chang Kyu Jeong
- Division of Advanced Materials Engineering, Chonbuk National University, 567 Baekje-daero, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Changyeon Baek
- Samsung Electro-Mechanics Co., 150 Maeyeong-ro, Yeongtong-gu, Suwon, Gyeonggi, 16674, Republic of Korea
| | - Angus I Kingon
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Kwi-Il Park
- Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH), 33 Dongjin-ro, Jinju, Gyeongnam, 52725, Republic of Korea
| | - Seung-Hyun Kim
- School of Engineering, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
43
|
Chen X, Parida K, Wang J, Xiong J, Lin MF, Shao J, Lee PS. A Stretchable and Transparent Nanocomposite Nanogenerator for Self-Powered Physiological Monitoring. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42200-42209. [PMID: 29111642 DOI: 10.1021/acsami.7b13767] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Smart sensing electronic devices with good transparency, high stretchability, and self-powered sensing characteristics are essential in wearable health monitoring systems. This paper innovatively proposes a stretchable nanocomposite nanogenerator with good transparency that can be conformally attached to the human body to harvest biomechanical energy and monitor physiological signals. The work reports an innovative device that uses sprayed silver nanowires as transparent electrodes and sandwiches a nanocomposite of piezoelectric BaTiO3 and polydimethylsiloxane as the sensing layer, which exhibits good transparency and mechanical transformability with stretchable, foldable, and twistable properties. The highly flexible nanogenerator affords a good input-output linearity under the vertical force and the sensing ability to detect lateral stretching deformation up to 60% strain under piezoelectric mechanisms. Furthermore, the proposed device can effectively harvest touch energies from the human body as a single-electrode triboelectric nanogenerator. Under periodic contact and separation, a maximum output voltage of 105 V, a current density of 6.5 μA/cm2, and a power density of 102 μW/cm2 can be achieved, exhibiting a good power generation performance. Owing to the high conformability and excellent sensitivity of the nanogenerator, it can also act as a self-powered wearable sensor attached to different parts of the human body for real-time monitoring of the human physiological signals such as eye blinking, pronunciation, arm movement, and radial artery pulse. The designed nanocomposite nanogenerator shows great potential for use in self-powered e-skins and healthcare monitoring systems.
Collapse
Affiliation(s)
- Xiaoliang Chen
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University , Xi'an, Shaanxi 710049, China
| | - Kaushik Parida
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Jiangxin Wang
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Jiaqing Xiong
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Meng-Fang Lin
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Jinyou Shao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University , Xi'an, Shaanxi 710049, China
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
44
|
Li J, Zhu Z, Fang L, Guo S, Erturun U, Zhu Z, West JE, Ghosh S, Kang SH. Analytical, numerical, and experimental studies of viscoelastic effects on the performance of soft piezoelectric nanocomposites. NANOSCALE 2017; 9:14215-14228. [PMID: 28914318 DOI: 10.1039/c7nr05163h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Piezoelectric composite (p-NC) made of a polymeric matrix and piezoelectric nanoparticles with conductive additives is an attractive material for many applications. As the matrix of p-NC is made of viscoelastic materials, both elastic and viscous characteristics of the matrix are expected to contribute to the piezoelectric response of p-NC. However, there is limited understanding of how viscoelasticity influences the piezoelectric performance of p-NC. Here we combined analytical and numerical analyses with experimental studies to investigate effects of viscoelasticity on piezoelectric performance of p-NC. The viscoelastic properties of synthesized p-NCs were controlled by changing the ratio between monomer and cross-linker of the polymer matrix. We found good agreement between our analytical models and experimental results for both quasi-static and dynamic loadings. It is found that, under quasi-static loading conditions, the piezoelectric coefficients (d33) of the specimen with the lowest Young's modulus (∼0.45 MPa at 5% strain) were ∼120 pC N-1, while the one with the highest Young's modulus (∼1.3 MPa at 5% strain) were ∼62 pC N-1. The results suggest that softer matrices enhance the energy harvesting performance because they can result in larger deformation for a given load. Moreover, from our theoretical analysis and experiments under dynamic loading conditions, we found the viscous modulus of a matrix is also important for piezoelectric performance. For instance, at 40 Hz and 50 Hz the storage moduli of the softest specimen were ∼0.625 MPa and ∼0.485 MPa, while the loss moduli were ∼0.108 MPa and ∼0.151 MPa, respectively. As piezocomposites with less viscous loss can transfer mechanical energy to piezoelectric particles more efficiently, the dynamic piezoelectric coefficient (d'33) measured at 40 Hz (∼53 pC N-1) was larger than that at 50 Hz (∼47 pC N-1) though it has a larger storage modulus. As an application of our findings, we fabricated 3D piezo-shells with different viscoelastic properties and compared the charging time. The results showed a good agreement with the predicted trend that the composition with the smallest elastic and viscous moduli showed the fastest charging rate. Our findings can open new opportunities for optimizing the performance of polymer-based multifunctional materials by harnessing viscoelasticity.
Collapse
Affiliation(s)
- Jing Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Characterization of Piezoelectric Microgenerator with Nanobranched ZnO Grown on a Polymer Coated Flexible Substrate. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7090890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Zheng Q, Shi B, Li Z, Wang ZL. Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700029. [PMID: 28725529 PMCID: PMC5515112 DOI: 10.1002/advs.201700029] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/13/2017] [Indexed: 05/17/2023]
Abstract
Implantable medical devices (IMDs) have become indispensable medical tools for improving the quality of life and prolonging the patient's lifespan. The minimization and extension of lifetime are main challenges for the development of IMDs. Current innovative research on this topic is focused on internal charging using the energy generated by the physiological environment or natural body activity. To harvest biomechanical energy efficiently, piezoelectric and triboelectric energy harvesters with sophisticated structural and material design have been developed. Energy from body movement, muscle contraction/relaxation, cardiac/lung motions, and blood circulation is captured and used for powering medical devices. Other recent progress in this field includes using PENGs and TENGs for our cognition of the biological processes by biological pressure/strain sensing, or direct intervention of them for some special self-powered treatments. Future opportunities lie in the fabrication of intelligent, flexible, stretchable, and/or fully biodegradable self-powered medical systems for monitoring biological signals and treatment of various diseases in vitro and in vivo.
Collapse
Affiliation(s)
- Qiang Zheng
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesNational Center for Nanoscience and Technology (NCNST)Beijing100083P. R. China
| | - Bojing Shi
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesNational Center for Nanoscience and Technology (NCNST)Beijing100083P. R. China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesNational Center for Nanoscience and Technology (NCNST)Beijing100083P. R. China
| | - Zhong Lin Wang
- School of Materials Science and Engineering Georgia Institute of TechnologyAtlantaGA30332
| |
Collapse
|