1
|
Nardini P, Zizi V, Molino M, Fazi C, Calvani M, Carrozzo F, Giuseppetti G, Calosi L, Guasti D, Biagini D, Di Francesco F, Filippi L, Pini A. Protective Effects of Beta-3 Adrenoceptor Agonism on Mucosal Integrity in Hyperoxia-Induced Ileal Alterations. Antioxidants (Basel) 2024; 13:863. [PMID: 39061931 PMCID: PMC11273805 DOI: 10.3390/antiox13070863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Organogenesis occurs in the uterus under low oxygen levels (4%). Preterm birth exposes immature newborns to a hyperoxic environment, which can induce a massive production of reactive oxygen species and potentially affect organ development, leading to diseases such as necrotizing enterocolitis. The β3-adrenoreceptor (β3-AR) has an oxygen-dependent regulatory mechanism, and its activation exerts an antioxidant effect. To test the hypothesis that β3-AR could protect postnatal ileal development from the negative impact of high oxygen levels, Sprague-Dawley rat pups were raised under normoxia (21%) or hyperoxia (85%) for the first 2 weeks after birth and treated or not with BRL37344, a selective β3-AR agonist, at 1, 3, or 6 mg/kg. Hyperoxia alters ileal mucosal morphology, leading to increased cell lipid oxidation byproducts, reduced presence of β3-AR-positive resident cells, decreased junctional protein expression, disrupted brush border, mucin over-production, and impaired vascularization. Treatment with 3 mg/kg of BRL37344 prevented these alterations, although not completely, while the lower 1 mg/kg dose was ineffective, and the higher 6 mg/kg dose was toxic. Our findings indicate the potential of β3-AR agonism as a new therapeutic approach to counteract the hyperoxia-induced ileal alterations and, more generally, the disorders of prematurity related to supra-physiologic oxygen exposure.
Collapse
Affiliation(s)
- Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (G.G.); (L.C.); (D.G.)
- Imaging Platform, Department Experimental and Clinical Medicine & Joint Laboratory with Department Biology, University of Florence, 50139 Florence, Italy
| | - Virginia Zizi
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (G.G.); (L.C.); (D.G.)
| | - Marta Molino
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (G.G.); (L.C.); (D.G.)
| | - Camilla Fazi
- Department of Pediatric, Meyer Children’s University Hospital, 50139 Florence, Italy;
| | - Maura Calvani
- Azienda Ospedaliera Universitaria Meyer, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 50139 Florence, Italy;
| | - Francesco Carrozzo
- Department of Health Science, University of Florence, 50139 Florence, Italy;
| | - Giorgia Giuseppetti
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (G.G.); (L.C.); (D.G.)
| | - Laura Calosi
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (G.G.); (L.C.); (D.G.)
- Imaging Platform, Department Experimental and Clinical Medicine & Joint Laboratory with Department Biology, University of Florence, 50139 Florence, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (G.G.); (L.C.); (D.G.)
- Imaging Platform, Department Experimental and Clinical Medicine & Joint Laboratory with Department Biology, University of Florence, 50139 Florence, Italy
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (D.B.); (F.D.F.)
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (D.B.); (F.D.F.)
| | - Luca Filippi
- Neonatology and Neonatal Intensive Care Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (G.G.); (L.C.); (D.G.)
- Imaging Platform, Department Experimental and Clinical Medicine & Joint Laboratory with Department Biology, University of Florence, 50139 Florence, Italy
| |
Collapse
|
2
|
Šegrt Ribičić I, Valić M, Lušić Kalcina L, Božić J, Obad A, Glavaš D, Glavičić I, Valić Z. Effects of Oxygen Prebreathing on Bubble Formation, Flow-Mediated Dilatation, and Psychomotor Performance during Trimix Dives. Sports (Basel) 2024; 12:35. [PMID: 38275984 PMCID: PMC10820603 DOI: 10.3390/sports12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Introduction: This research was performed to examine the effects of air and oxygen prebreathing on bubble formation, flow-mediated dilatation, and psychomotor performance after scuba dives. Methods: Twelve scuba divers performed two dives using a gas mixture of oxygen, nitrogen, and helium (trimix). In a randomized protocol, they breathed air or oxygen 30 min before the trimix dives. Venous bubble formation, flow-mediated dilatation, and psychomotor performance were evaluated. The participants solved three psychomotor tests: determining the position of a light signal, coordination of complex psychomotor activity, and simple arithmetic operations. The total test solving time, minimum single-task solving time, and median solving time were analyzed. Results: The bubble grade was decreased in the oxygen prebreathing protocol in comparison to the air prebreathing protocol (1.5 vs. 2, p < 0.001). The total test solving times after the dives, in tests of complex psychomotor coordination and simple arithmetic operations, were shorter in the oxygen prebreathing protocol (25 (21-28) vs. 31 (26-35) and 87 (82-108) vs. 106 (90-122) s, p = 0.028). Conclusions: In the oxygen prebreathing protocol, the bubble grade was significantly reduced with no change in flow-mediated dilatation after the dives, indicating a beneficial role for endothelial function. The post-dive psychomotor speed was faster in the oxygen prebreathing protocol.
Collapse
Affiliation(s)
- Ivana Šegrt Ribičić
- Department of Pulmonary Diseases, University Hospital Center Split, 21000 Split, Croatia;
| | - Maja Valić
- Department of Neuroscience, University of Split School of Medicine, 21000 Split, Croatia;
| | - Linda Lušić Kalcina
- Department of Neuroscience, University of Split School of Medicine, 21000 Split, Croatia;
| | - Joško Božić
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia;
| | - Ante Obad
- Department of Health Studies, University of Split, 21000 Split, Croatia;
| | - Duška Glavaš
- Department of Internal Medicine, University of Split School of Medicine, 21000 Split, Croatia;
| | - Igor Glavičić
- Department of Marine Studies, University of Split, 21000 Split, Croatia;
| | - Zoran Valić
- Department of Physiology, University of Split School of Medicine, 21000 Split, Croatia;
| |
Collapse
|
3
|
Long Y, Chen H, Deng J, Ning J, Yang P, Qiao L, Cao Z. Deficiency of endothelial FGFR1 alleviates hyperoxia-induced bronchopulmonary dysplasia in neonatal mice. Front Pharmacol 2022; 13:1039103. [PMID: 36467073 PMCID: PMC9716472 DOI: 10.3389/fphar.2022.1039103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Disrupted neonatal lung angiogenesis and alveologenesis often give rise to bronchopulmonary dysplasia (BPD), the most common chronic lung disease in children. Hyperoxia-induced pulmonary vascular and alveolar damage in premature infants is one of the most common and frequent factors contributing to BPD. The purpose of the present study was to explore the key molecules and the underlying mechanisms in hyperoxia-induced lung injury in neonatal mice and to provide a new strategy for the treatment of BPD. In this work, we reported that hyperoxia decreased the proportion of endothelial cells (ECs) in the lungs of neonatal mice. In hyperoxic lung ECs of neonatal mice, we detected upregulated fibroblast growth factor receptor 1 (FGFR1) expression, accompanied by upregulation of the classic downstream signaling pathway of activated FGFR1, including the ERK/MAPK signaling pathway and PI3K-Akt signaling pathway. Specific deletion of Fgfr1 in the ECs of neonatal mice protected the lungs from hyperoxia-induced lung injury, with improved angiogenesis, alveologenesis and respiratory metrics. Intriguingly, the increased Fgfr1 expression was mainly attributed to aerosol capillary endothelial (aCap) cells rather than general capillary endothelial (gCap) cells. Deletion of endothelial Fgfr1 increased the expression of gCap cell markers but decreased the expression of aCap cell markers. Additionally, inhibition of FGFR1 by an FGFR1 inhibitor improved alveologenesis and respiratory metrics. In summary, this study suggests that in neonatal mice, hyperoxia increases the expression of endothelial FGFR1 in lung ECs and that deficiency of endothelial Fgfr1 can ameliorate hyperoxia-induced BPD. These data suggest that FGFR1 may be a potential therapeutic target for BPD, which will provide a new strategy for the prevention and treatment of BPD.
Collapse
Affiliation(s)
| | | | | | | | | | - Lina Qiao
- *Correspondence: Lina Qiao, ; Zhongwei Cao,
| | | |
Collapse
|
4
|
Siwicka-Gieroba D, Robba C, Gołacki J, Badenes R, Dabrowski W. Cerebral Oxygen Delivery and Consumption in Brain-Injured Patients. J Pers Med 2022; 12:1763. [PMID: 36573716 PMCID: PMC9698645 DOI: 10.3390/jpm12111763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/30/2022] Open
Abstract
Organism survival depends on oxygen delivery and utilization to maintain the balance of energy and toxic oxidants production. This regulation is crucial to the brain, especially after acute injuries. Secondary insults after brain damage may include impaired cerebral metabolism, ischemia, intracranial hypertension and oxygen concentration disturbances such as hypoxia or hyperoxia. Recent data highlight the important role of clinical protocols in improving oxygen delivery and resulting in lower mortality in brain-injured patients. Clinical protocols guide the rules for oxygen supplementation based on physiological processes such as elevation of oxygen supply (by mean arterial pressure (MAP) and intracranial pressure (ICP) modulation, cerebral vasoreactivity, oxygen capacity) and reduction of oxygen demand (by pharmacological sedation and coma or hypothermia). The aim of this review is to discuss oxygen metabolism in the brain under different conditions.
Collapse
Affiliation(s)
- Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Chiara Robba
- Department of Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Jakub Gołacki
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Rafael Badenes
- Department of Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari, University of Valencia, 46010 Valencia, Spain
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| |
Collapse
|
5
|
Harijith A, Basa P, Ha A, Thomas J, Jafri A, Fu P, MacFarlane PM, Raffay TM, Natarajan V, Sudhadevi T. NOX4 Mediates Epithelial Cell Death in Hyperoxic Acute Lung Injury Through Mitochondrial Reactive Oxygen Species. Front Pharmacol 2022; 13:880878. [PMID: 35662702 PMCID: PMC9160661 DOI: 10.3389/fphar.2022.880878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Management of acute respiratory distress involves O2 supplementation, which is lifesaving, but causes severe hyperoxic acute lung injury (HALI). NADPH oxidase (NOX) could be a major source of reactive oxygen species (ROS) in hyperoxia (HO). Epithelial cell death is a crucial step in the development of many lung diseases. Alveolar type II (AT2) cells are the metabolically active epithelial cells of alveoli that serve as a source of AT1 cells following lung injury. The aim of this study was to determine the possible role of AT2 epithelial cell NOX4 in epithelial cell death from HALI. Wild type (WT), Nox4 fl/fl (control), and Nox4 -/- Spc-Cre mice were exposed to room air (NO) or 95% O2 (HO) to investigate the structural and functional changes in the lung. C57BL/6J WT animals subjected to HO showed increased expression of lung NOX4 compared to NO. Significant HALI, increased bronchoalveolar lavage cell counts, increased protein levels, elevated proinflammatory cytokines and increased AT2 cell death seen in hyperoxic Nox4 fl/fl control mice were attenuated in HO-exposed Nox4 -/- Spc-Cre mice. HO-induced expression of NOX4 in MLE cells resulted in increased mitochondrial (mt) superoxide production and cell apoptosis, which was reduced in NOX4 siRNA silenced cells. This study demonstrates a novel role for epithelial cell NOX4 in accelerating lung epithelial cell apoptosis from HALI. Deletion of the Nox4 gene in AT2 cells or silencing NOX4 in lung epithelial cells protected the lungs from severe HALI with reduced apoptosis and decreased mt ROS production in HO. These results suggest NOX4 as a potential target for the treatment of HALI.
Collapse
Affiliation(s)
- Anantha Harijith
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Prathima Basa
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Alison Ha
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jaya Thomas
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Anjum Jafri
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Panfeng Fu
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Peter M. MacFarlane
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas M. Raffay
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Internal Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Tara Sudhadevi
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
6
|
Theunissen S, Balestra C, Bolognési S, Borgers G, Vissenaeken D, Obeid G, Germonpré P, Honoré PM, De Bels D. Effects of Acute Hypobaric Hypoxia Exposure on Cardiovascular Function in Unacclimatized Healthy Subjects: A "Rapid Ascent" Hypobaric Chamber Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095394. [PMID: 35564787 PMCID: PMC9102089 DOI: 10.3390/ijerph19095394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Background: This study aimed to observe the effects of a fast acute ascent to simulated high altitudes on cardiovascular function both in the main arteries and in peripheral circulation. Methods: We examined 17 healthy volunteers, between 18 and 50 years old, at sea level, at 3842 m of hypobaric hypoxia and after return to sea level. Cardiac output (CO) was measured with Doppler transthoracic echocardiography. Oxygen delivery was estimated as the product of CO and peripheral oxygen saturation (SpO2). The brachial artery’s flow-mediated dilation (FMD) was measured with the ultrasound method. Post-occlusion reactive hyperemia (PORH) was assessed by digital plethysmography. Results: During altitude stay, peripheral oxygen saturation decreased (84.9 ± 4.2% of pre-ascent values; p < 0.001). None of the volunteers presented any hypoxia-related symptoms. Nevertheless, an increase in cardiac output (143.2 ± 36.2% of pre-ascent values, p < 0.001) and oxygen delivery index (120.6 ± 28.4% of pre-ascent values; p > 0.05) was observed. FMD decreased (97.3 ± 4.5% of pre-ascent values; p < 0.05) and PORH did not change throughout the whole experiment. Τhe observed changes disappeared after return to sea level, and normoxia re-ensued. Conclusions: Acute exposure to hypobaric hypoxia resulted in decreased oxygen saturation and increased compensatory heart rate, cardiac output and oxygen delivery. Pre-occlusion vascular diameters increase probably due to the reduction in systemic vascular resistance preventing flow-mediated dilation from increasing. Mean Arterial Pressure possibly decrease for the same reason without altering post-occlusive reactive hyperemia throughout the whole experiment, which shows that compensation mechanisms that increase oxygen delivery are effective.
Collapse
Affiliation(s)
- Sigrid Theunissen
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium;
- Correspondence: (S.T.); (C.B.)
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium;
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Correspondence: (S.T.); (C.B.)
| | - Sébastien Bolognési
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium;
| | - Guy Borgers
- Hypobaric Centre, Queen Astrid Military Hospital, 1120 Brussels, Belgium; (G.B.); (D.V.)
| | - Dirk Vissenaeken
- Hypobaric Centre, Queen Astrid Military Hospital, 1120 Brussels, Belgium; (G.B.); (D.V.)
| | - Georges Obeid
- Military Hospital Queen Elizabeth, 1120 Brussels, Belgium; (G.O.); (P.G.)
| | - Peter Germonpré
- Military Hospital Queen Elizabeth, 1120 Brussels, Belgium; (G.O.); (P.G.)
| | - Patrick M. Honoré
- Department of Intensive Care Medicine, CHU-Brugmann, 1020 Brussels, Belgium; (P.M.H.); (D.D.B.)
| | - David De Bels
- Department of Intensive Care Medicine, CHU-Brugmann, 1020 Brussels, Belgium; (P.M.H.); (D.D.B.)
| |
Collapse
|
7
|
Lascaris B, Thorne AM, Lisman T, Nijsten MWN, Porte RJ, de Meijer VE. Long-term normothermic machine preservation of human livers: what is needed to succeed? Am J Physiol Gastrointest Liver Physiol 2022; 322:G183-G200. [PMID: 34756122 DOI: 10.1152/ajpgi.00257.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although short-term machine perfusion (≤24 h) allows for resuscitation and viability assessment of high-risk donor livers, the donor organ shortage might be further remedied by long-term perfusion machines. Extended preservation of injured donor livers may allow reconditioning, repairing, and regeneration. This review summarizes the necessary requirements and challenges for long-term liver machine preservation, which requires integrating multiple core physiological functions to mimic the physiological environment inside the body. A pump simulates the heart in the perfusion system, including automatically controlled adjustment of flow and pressure settings. Oxygenation and ventilation are required to account for the absence of the lungs combined with continuous blood gas analysis. To avoid pressure necrosis and achieve heterogenic tissue perfusion during preservation, diaphragm movement should be simulated. An artificial kidney is required to remove waste products and control the perfusion solution's composition. The perfusate requires an oxygen carrier, but will also be challenged by coagulation and activation of the immune system. The role of the pancreas can be mimicked through closed-loop control of glucose concentrations by automatic injection of insulin or glucagon. Nutrients and bile salts, generally transported from the intestine to the liver, have to be supplemented when preserving livers long term. Especially for long-term perfusion, the container should allow maintenance of sterility. In summary, the main challenge to develop a long-term perfusion machine is to maintain the liver's homeostasis in a sterile, carefully controlled environment. Long-term machine preservation of human livers may allow organ regeneration and repair, thereby ultimately solving the shortage of donor livers.
Collapse
Affiliation(s)
- Bianca Lascaris
- Section of Hepatopancreatobiliary Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adam M Thorne
- Section of Hepatopancreatobiliary Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten W N Nijsten
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J Porte
- Section of Hepatopancreatobiliary Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vincent E de Meijer
- Section of Hepatopancreatobiliary Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Levenez M, Lambrechts K, Mrakic-Sposta S, Vezzoli A, Germonpré P, Pique H, Virgili F, Bosco G, Lafère P, Balestra C. Full-Face Mask Use during SCUBA Diving Counters Related Oxidative Stress and Endothelial Dysfunction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020965. [PMID: 35055791 PMCID: PMC8776018 DOI: 10.3390/ijerph19020965] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/29/2022]
Abstract
Impaired flow mediated dilation (FMD), an index of vascular stress, is known after SCUBA diving. This is related to a dysfunction of nitric oxide (NO) availability and a disturbance of the redox status, possibly induced by hyperoxic/hyperbaric gas breathing. SCUBA diving is usually performed with a mask only covering “half face” (HF) and therefore forcing oral breathing. Nasal NO production is involved in vascular homeostasis and, as consequence, can significantly reduce NO possibly promoting vascular dysfunction. More recently, the utilization of “full-face” (FF) mask, allowing nasal breathing, became more frequent, but no reports are available describing their effects on vascular functions in comparison with HF masks. In this study we assessed and compared the effects of a standard shallow dive (20 min at 10 m) wearing either FF or a HF mask on different markers of vascular function (FMD), oxidative stress (ROS, 8-iso-PGF2α) and NO availability and metabolism (NO2, NOx and 3-NT and iNOS expression). Data from a dive breathing a hypoxic (16% O2 at depth) gas mixture with HF mask are shown allowing hyperoxic/hypoxic exposure. Our data suggest that nasal breathing might significantly reduce the occurrence of vascular dysfunction possibly due to better maintenance of NO production and bioavailability, resulting in a better ability to counter reactive oxygen and nitrogen species. Besides the obvious outcomes in terms of SCUBA diving safety, our data permit a better understanding of the effects of oxygen concentrations, either in normal conditions or as a strategy to induce selected responses in health and disease.
Collapse
Affiliation(s)
- Morgan Levenez
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
| | - Kate Lambrechts
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 20162 Milano, Italy; (S.M.-S.); (A.V.)
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 20162 Milano, Italy; (S.M.-S.); (A.V.)
| | - Peter Germonpré
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
- Hyperbaric Centre, Queen Astrid Military Hospital, 1120 Brussels, Belgium
- DAN Europe Research Division, Contrada Padune, 64026 Roseto, Italy
| | - Hadrien Pique
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
| | - Fabio Virgili
- Council for Agricultural Research and Economics—Food and Nutrition Research Centre (CREA-AN), Via Ardeatina 548, 00187 Rome, Italy
- Correspondence: (F.V.); (C.B.)
| | - Gerardo Bosco
- Environmental Physiology & Medicine Laboratory, Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy;
| | - Pierre Lafère
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
- DAN Europe Research Division, Contrada Padune, 64026 Roseto, Italy
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
- DAN Europe Research Division, Contrada Padune, 64026 Roseto, Italy
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- Correspondence: (F.V.); (C.B.)
| |
Collapse
|
9
|
Busani S, Sarti M, Serra F, Gelmini R, Venturelli S, Munari E, Girardis M. Revisited Hyperoxia Pathophysiology in the Perioperative Setting: A Narrative Review. Front Med (Lausanne) 2021; 8:689450. [PMID: 34746165 PMCID: PMC8569225 DOI: 10.3389/fmed.2021.689450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/22/2021] [Indexed: 01/05/2023] Open
Abstract
The widespread use of high-dose oxygen, to avoid perioperative hypoxemia along with WHO-recommended intraoperative hyperoxia to reduce surgical site infections, is an established clinical practice. However, growing pathophysiological evidence has demonstrated that hyperoxia exerts deleterious effects on many organs, mainly mediated by reactive oxygen species. The purpose of this narrative review was to present the pathophysiology of perioperative hyperoxia on surgical wound healing, on systemic macro and microcirculation, on the lungs, heart, brain, kidneys, gut, coagulation, and infections. We reported here that a high systemic oxygen supply could induce oxidative stress with inflammation, vasoconstriction, impaired microcirculation, activation of hemostasis, acute and chronic lung injury, coronary blood flow disturbances, cerebral ischemia, surgical anastomosis impairment, gut dysbiosis, and altered antibiotics susceptibility. Clinical studies have provided rather conflicting results on the definitions and outcomes of hyperoxic patients, often not speculating on the biological basis of their results, while this review highlighted what happens when supranormal PaO2 values are reached in the surgical setting. Based on the assumptions analyzed in this study, we may suggest that the maintenance of PaO2 within physiological ranges, avoiding unnecessary oxygen administration, may be the basis for good clinical practice.
Collapse
Affiliation(s)
- Stefano Busani
- Cattedra e Servizio di Anestesia e Rianimazione, Azienda Universitaria Policlinico di Modena, Modena, Italy
| | - Marco Sarti
- Cattedra e Servizio di Anestesia e Rianimazione, Azienda Universitaria Policlinico di Modena, Modena, Italy
| | - Francesco Serra
- Chirurgia Generale d'Urgenza e Oncologica, Azienda Universitaria Policlinico di Modena, Modena, Italy
| | - Roberta Gelmini
- Chirurgia Generale d'Urgenza e Oncologica, Azienda Universitaria Policlinico di Modena, Modena, Italy
| | - Sophie Venturelli
- Cattedra e Servizio di Anestesia e Rianimazione, Azienda Universitaria Policlinico di Modena, Modena, Italy
| | - Elena Munari
- Chirurgia Generale d'Urgenza e Oncologica, Azienda Universitaria Policlinico di Modena, Modena, Italy
| | - Massimo Girardis
- Cattedra e Servizio di Anestesia e Rianimazione, Azienda Universitaria Policlinico di Modena, Modena, Italy
| |
Collapse
|
10
|
Wu J, Zhang G, Xiong H, Zhang Y, Ding G, Ge J. miR-181c-5p mediates apoptosis of vascular endothelial cells induced by hyperoxemia via ceRNA crosstalk. Sci Rep 2021; 11:16582. [PMID: 34400675 PMCID: PMC8368219 DOI: 10.1038/s41598-021-95712-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Oxygen therapy has been widely used in clinical practice, especially in anesthesia and emergency medicine. However, the risks of hyperoxemia caused by excessive O2 supply have not been sufficiently appreciated. Because nasal inhalation is mostly used for oxygen therapy, the pulmonary capillaries are often the first to be damaged by hyperoxia, causing many serious consequences. Nevertheless, the molecular mechanism by which hyperoxia injures pulmonary capillary endothelial cells (LMECs) has not been fully elucidated. Therefore, we systematically investigated these issues using next-generation sequencing and functional research techniques by focusing on non-coding RNAs. Our results showed that hyperoxia significantly induced apoptosis and profoundly affected the transcriptome profiles of LMECs. Hyperoxia significantly up-regulated miR-181c-5p expression, while down-regulated the expressions of NCAPG and lncRNA-DLEU2 in LMECs. Moreover, LncRNA-DLEU2 could bind complementarily to miR-181c-5p and acted as a miRNA sponge to block the inhibitory effect of miR-181c-5p on its target gene NCAPG. The down-regulation of lncRNA-DLEU2 induced by hyperoxia abrogated its inhibition of miR-181c-5p function, which together with the hyperoxia-induced upregulation of miR-181c-5p, all these significantly decreased the expression of NCAPG, resulting in apoptosis of LMECs. Our results demonstrated a ceRNA network consisting of lncRNA-DLEU2, miR-181c-5p and NCAPG, which played an important role in hyperoxia-induced apoptosis of vascular endothelial injury. Our findings will contribute to the full understanding of the harmful effects of hyperoxia and to find ways for effectively mitigating its deleterious effects.
Collapse
Affiliation(s)
- Jizhi Wu
- Department of Anesthesiology, Shandong Second Provincial General Hospital, Jinan, Shandong People’s Republic of China
| | - Guangqi Zhang
- Department of Anesthesiology, Jinan Second People’s Hospital, No. 148 Jingyi Road, Jinan, 250021 Shandong People’s Republic of China
| | - Hui Xiong
- grid.440144.10000 0004 1803 8437Department of Pediatric Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong People’s Republic of China
| | - Yuguang Zhang
- Eye Reseach Institute, Jinan Eye Hospital, Jinan, Shandong People’s Republic of China
| | - Gang Ding
- Ophthalmology, Jinan Eye Hospital, Jinan, Shandong People’s Republic of China
| | - Junfeng Ge
- Department of Anesthesiology, Jinan Second People’s Hospital, No. 148 Jingyi Road, Jinan, 250021 Shandong People’s Republic of China
| |
Collapse
|
11
|
Yue L, Lu X, Dennery PA, Yao H. Metabolic dysregulation in bronchopulmonary dysplasia: Implications for identification of biomarkers and therapeutic approaches. Redox Biol 2021; 48:102104. [PMID: 34417157 PMCID: PMC8710987 DOI: 10.1016/j.redox.2021.102104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/03/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature infants. Accumulating evidence shows that dysregulated metabolism of glucose, lipids and amino acids are observed in premature infants. Animal and cell studies demonstrate that abnormal metabolism of these substrates results in apoptosis, inflammation, reduced migration, abnormal proliferation or senescence in response to hyperoxic exposure, and that rectifying metabolic dysfunction attenuates neonatal hyperoxia-induced alveolar simplification and vascular dysgenesis in the lung. BPD is often associated with several comorbidities, including pulmonary hypertension and neurodevelopmental abnormalities, which significantly increase the morbidity and mortality of this disease. Here, we discuss recent progress on dysregulated metabolism of glucose, lipids and amino acids in premature infants with BPD and in related in vivo and in vitro models. These findings suggest that metabolic dysregulation may serve as a biomarker of BPD and plays important roles in the pathogenesis of this disease. We also highlight that targeting metabolic pathways could be employed in the prevention and treatment of BPD.
Collapse
Affiliation(s)
- Li Yue
- Department of Orthopedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Xuexin Lu
- Department of Pediatrics, Ascension St. John Hospital, Detroit, MI, USA
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA; Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
12
|
Garcia D, Carr JF, Chan F, Peterson AL, Ellis KA, Scaffa A, Ghio AJ, Yao H, Dennery PA. Short exposure to hyperoxia causes cultured lung epithelial cell mitochondrial dysregulation and alveolar simplification in mice. Pediatr Res 2021; 90:58-65. [PMID: 33144707 PMCID: PMC8089115 DOI: 10.1038/s41390-020-01224-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Prolonged exposure to high oxygen concentrations in premature infants, although lifesaving, can induce lung oxidative stress and increase the risk of developing BPD, a form of chronic lung disease. The lung alveolar epithelium is damaged by sustained hyperoxia, causing oxidative stress and alveolar simplification; however, it is unclear what duration of exposure to hyperoxia negatively impacts cellular function. METHODS Here we investigated the role of a very short exposure to hyperoxia (95% O2, 5% CO2) on mitochondrial function in cultured mouse lung epithelial cells and neonatal mice. RESULTS In epithelial cells, 4 h of hyperoxia reduced oxidative phosphorylation, respiratory complex I and IV activity, utilization of mitochondrial metabolites, and caused mitochondria to form elongated tubular networks. Cells allowed to recover in air for 24 h exhibited a persistent global reduction in fuel utilization. In addition, neonatal mice exposed to hyperoxia for only 12 h demonstrated alveolar simplification at postnatal day 14. CONCLUSION A short exposure to hyperoxia leads to changes in lung cell mitochondrial metabolism and dynamics and has a long-term impact on alveolarization. These findings may help inform our understanding and treatment of chronic lung disease. IMPACT Many studies use long exposures (up to 14 days) to hyperoxia to mimic neonatal chronic lung disease. We show that even a very short exposure to hyperoxia leads to long-term cellular injury in type II-like epithelial cells. This study demonstrates that a short (4 h) period of hyperoxia has long-term residual effects on cellular metabolism. We show that neonatal mice exposed to hyperoxia for a short time (12 h) demonstrate later alveolar simplification. This work suggests that any exposure to clinical hyperoxia leads to persistent lung dysfunction.
Collapse
Affiliation(s)
- David Garcia
- Department of Chemistry, Brown University, Providence, Rhode Island
| | - Jennifer F. Carr
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Felix Chan
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Abigail L. Peterson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Kimberlyn A. Ellis
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Alejandro Scaffa
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island
| | - Andrew J. Ghio
- US Environmental Protection Agency, Chapel Hill, North Carolina
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Phyllis A. Dennery
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island,Department of Pediatrics, Warren Alpert Medical School, Brown University, Providence, Rhode Island,Hasbro Children’s Hospital, Providence, Rhode Island.,Corresponding author information: Phyllis A. Dennery; Hasbro Children’s Hospital, Department of Pediatrics, 593 Eddy St, Providence, RI 02903; ; (401) 444-5648
| |
Collapse
|
13
|
Cameron T, Bennet T, Rowe EM, Anwer M, Wellington CL, Cheung KC. Review of Design Considerations for Brain-on-a-Chip Models. MICROMACHINES 2021; 12:441. [PMID: 33921018 PMCID: PMC8071412 DOI: 10.3390/mi12040441] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
In recent years, the need for sophisticated human in vitro models for integrative biology has motivated the development of organ-on-a-chip platforms. Organ-on-a-chip devices are engineered to mimic the mechanical, biochemical and physiological properties of human organs; however, there are many important considerations when selecting or designing an appropriate device for investigating a specific scientific question. Building microfluidic Brain-on-a-Chip (BoC) models from the ground-up will allow for research questions to be answered more thoroughly in the brain research field, but the design of these devices requires several choices to be made throughout the design development phase. These considerations include the cell types, extracellular matrix (ECM) material(s), and perfusion/flow considerations. Choices made early in the design cycle will dictate the limitations of the device and influence the end-point results such as the permeability of the endothelial cell monolayer, and the expression of cell type-specific markers. To better understand why the engineering aspects of a microfluidic BoC need to be influenced by the desired biological environment, recent progress in microfluidic BoC technology is compared. This review focuses on perfusable blood-brain barrier (BBB) and neurovascular unit (NVU) models with discussions about the chip architecture, the ECM used, and how they relate to the in vivo human brain. With increased knowledge on how to make informed choices when selecting or designing BoC models, the scientific community will benefit from shorter development phases and platforms curated for their application.
Collapse
Affiliation(s)
- Tiffany Cameron
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.C.); (T.B.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tanya Bennet
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.C.); (T.B.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Elyn M. Rowe
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (E.M.R.); (M.A.); (C.L.W.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mehwish Anwer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (E.M.R.); (M.A.); (C.L.W.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (E.M.R.); (M.A.); (C.L.W.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karen C. Cheung
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.C.); (T.B.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Electrical & Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
14
|
Wohlrab P, Johann Danhofer M, Schaubmayr W, Tiboldi A, Krenn K, Markstaller K, Ullrich R, Ulrich Klein K, Tretter V. Oxygen conditions oscillating between hypoxia and hyperoxia induce different effects in the pulmonary endothelium compared to constant oxygen conditions. Physiol Rep 2021; 9:e14590. [PMID: 33565273 PMCID: PMC7873712 DOI: 10.14814/phy2.14590] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
The pulmonary endothelium is an immediate recipient of high oxygen concentrations upon oxygen therapy and mediates down-stream responses. Cyclic collapse and reopening of atelectatic lung areas during mechanical ventilation with high fractions of inspired oxygen result in the propagation of oxygen oscillations in the hypoxic/hyperoxic range. We used primary murine lung endothelial cell cultures to investigate cell responses to constant and oscillating oxygen conditions in the hypoxic to hyperoxic range. Severe constant hyperoxia had pro-inflammatory and cytotoxic effects including an increase in expression of ICAM1, E-selectin, and RAGE at 24 hr exposure. The coagulative/fibrinolytic system responded by upregulation of uPA, tPA, and vWF and PAI1 under constant severe hyperoxia. Among antioxidant enzymes, the upregulation of SOD2, TXN1, TXNRD3, GPX1, and Gstp1 at 24 hr, but downregulation of SOD3 at 72 hr constant hyperoxia was evident. Hypoxic/hyperoxic oscillating oxygen conditions induced pro-inflammatory cytokine release to a lesser extent and later than constant hyperoxia. Gene expression analyses showed upregulation of NFKB p65 mRNA at 72 hr. More evident was a biphasic response of NOS3 and ACE1 gene expression (downregulation until 24 hr and upregulation at 72 hr). ACE2 mRNA was upregulated until 72 hr, but shedding of the mature protein from the cell surface favored ACE1. Oscillations resulted in severe production of peroxynitrite, but apart from upregulation of Gstp1 at 24 hr responses of antioxidative proteins were less pronounced than under constant hyperoxia. Oscillating oxygen in the hypoxic/hyperoxic range has a characteristical impact on vasoactive mediators like NOS3 and on the activation of the renin-angiotensin system in the lung endothelium.
Collapse
Affiliation(s)
- Peter Wohlrab
- Department of Anesthesia and General Intensive Care, Medical University Vienna, Vienna, Austria
| | - Michael Johann Danhofer
- Department of Anesthesia and General Intensive Care, Medical University Vienna, Vienna, Austria
| | - Wolfgang Schaubmayr
- Department of Anesthesia and General Intensive Care, Medical University Vienna, Vienna, Austria
| | - Akos Tiboldi
- Department of Anesthesia and General Intensive Care, Medical University Vienna, Vienna, Austria
| | - Katharina Krenn
- Department of Anesthesia and General Intensive Care, Medical University Vienna, Vienna, Austria
| | - Klaus Markstaller
- Department of Anesthesia and General Intensive Care, Medical University Vienna, Vienna, Austria
| | - Roman Ullrich
- Department of Anesthesia and General Intensive Care, Medical University Vienna, Vienna, Austria
| | - Klaus Ulrich Klein
- Department of Anesthesia and General Intensive Care, Medical University Vienna, Vienna, Austria
| | - Verena Tretter
- Department of Anesthesia and General Intensive Care, Medical University Vienna, Vienna, Austria
| |
Collapse
|
15
|
Nakane M. Biological effects of the oxygen molecule in critically ill patients. J Intensive Care 2020; 8:95. [PMID: 33317639 PMCID: PMC7734465 DOI: 10.1186/s40560-020-00505-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
The medical use of oxygen has been widely and frequently proposed for patients, especially those under critical care; however, its benefit and drawbacks remain controversial for certain conditions. The induction of oxygen therapy is commonly considered for either treating or preventing hypoxia. Therefore, the concept of different types of hypoxia should be understood, particularly in terms of their mechanism, as the effect of oxygen therapy principally varies by the physiological characteristics of hypoxia. Oxygen molecules must be constantly delivered to all cells throughout the human body and utilized effectively in the process of mitochondrial oxidative phosphorylation, which is necessary for generating energy through the formation of adenosine triphosphate. If the oxygen availability at the cellular level is inadequate for sustaining the metabolism, the condition of hypoxia which is characterized as heterogeneity in tissue oxygen tension may develop, which is called dysoxia, a more physiological concept that is related to hypoxia. In such hypoxic patients, repetitive measurements of the lactate level in blood are generally recommended in order to select the adequate therapeutic strategy targeting a reduction in lactate production. Excessive oxygen, however, may actually induce a hyperoxic condition which thus can lead to harmful oxidative stress by increasing the production of reactive oxygen species, possibly resulting in cellular dysfunction or death. In contrast, the human body has several oxygen-sensing mechanisms for preventing both hypoxia and hyperoxia that are employed to ensure a proper balance between the oxygen supply and demand and prevent organs and cells from suffering hyperoxia-induced oxidative stress. Thus, while the concept of hyperoxia is known to have possible adverse effects on the lung, the heart, the brain, or other organs in various pathological conditions of critically ill patients, and no obvious evidence has yet been proposed to totally support liberal oxygen supplementation in any subset of critically ill patients, relatively conservative oxygen therapy with cautious monitoring appears to be safe and may improve the outcome by preventing harmful oxidative stress resulting from excessive oxygen administration. Given the biological effects of oxygen molecules, although the optimal target levels remain controversial, unnecessary oxygen administration should be avoided, and exposure to hyperoxemia should be minimized in critically ill patients.
Collapse
Affiliation(s)
- Masaki Nakane
- Department of Emergency and Critical Care Medicine, Yamagata University Hospital, 2-2-2 Iida-nishi, Yamagata, 990-9585, Japan.
| |
Collapse
|
16
|
Hyperoxia in portal vein causes enhanced vasoconstriction in arterial vascular bed. Sci Rep 2020; 10:20966. [PMID: 33262362 PMCID: PMC7708838 DOI: 10.1038/s41598-020-77915-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Long-term perfusion of liver grafts outside of the body may enable repair of poor-quality livers that are currently declined for transplantation, mitigating the global shortage of donor livers. In current ex vivo liver perfusion protocols, hyperoxic blood (arterial blood) is commonly delivered in the portal vein (PV). We perfused porcine livers for one week and investigated the effect of and mechanisms behind hyperoxia in the PV on hepatic arterial resistance. Applying PV hyperoxia in porcine livers (n = 5, arterial PV group), we observed an increased need for vasodilator Nitroprussiat (285 ± 162 ml/week) to maintain the reference hepatic artery flow of 0.25 l/min during ex vivo perfusion. With physiologic oxygenation (venous blood) in the PV the need for vasodilator could be reduced to 41 ± 34 ml/week (p = 0.011; n = 5, venous PV group). This phenomenon has not been reported previously, owing to the fact that such experiments are not feasible practically in vivo. We investigated the mechanism of the variation in HA resistance in response to blood oxygen saturation with a focus on the release of vasoactive substances, such as Endothelin 1 (ET-1) and nitric oxide (NO), at the protein and mRNA levels. However, no difference was found between groups for ET-1 and NO release. We propose direct oxygen sensing of endothelial cells and/or increased NO break down rate with hyperoxia as possible explanations for enhanced HA resistance.
Collapse
|
17
|
Alda-1 attenuates hyperoxia-induced mitochondrial dysfunction in lung vascular endothelial cells. Aging (Albany NY) 2020; 11:3909-3918. [PMID: 31209184 PMCID: PMC6628993 DOI: 10.18632/aging.102012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022]
Abstract
Acute lung injury (ALI) is a major cause of morbidity and mortality worldwide, especially in aged populations. Mitochondrial damage is one of the key features of ALI. Hyperoxia-induced lung injury model in mice has been widely used for ALI study because it features many ALI phenotypes including, but not limited to, mitochondrial and vascular endothelial cell damage. Recently, accumulating evidence has shown that mitochondrial aldehyde dehydrogenase 2 (ALDH2) has a protective effect against oxidative stress mediated cell damage in epithelial cells. However, it is not known whether ALDH2 protects against oxidative stress in vascular endothelial cells. In this current study, we attempted to find the capacity of Alda-1 [(N-(1,3benzodioxol-5-ylmethyl)-2,6- dichloro-benzamide), an ALDH2 activator] to protect against oxidative stress in human microvascular endothelial cells (HMVEC). HMVEC pretreated with Alda-1 prior to hyperoxic exposure vs non-treated controls showed i) lower 4-hydroxynonenal (4-HNE) levels, ii) significantly decreased expressions of Bax and Cytochrome C, iii) partially restored activity and expression of ALDH2 and iv) significantly improved mitochondrial membrane potential. These results suggest that ALDH2 protein in lung vascular endothelial cells is a promising therapeutic target for the treatment of ALI and that Alda-1 is a potential treatment option.
Collapse
|
18
|
Caldwell HG, Hoiland RL, Barak OF, Mijacika T, Burma JS, Dujić Ž, Ainslie PN. Alterations in resting cerebrovascular regulation do not affect reactivity to hypoxia, hyperoxia or neurovascular coupling following a SCUBA dive. Exp Physiol 2020; 105:1540-1549. [PMID: 32618374 DOI: 10.1113/ep088746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the characteristics of cerebral blood flow (CBF) regulation following a single SCUBA dive to a depth of 18 m sea water with a 47 min bottom time. What is the main finding and its importance? Acute alterations in CBF regulation at rest, including extra-cranial vasodilatation, reductions in shear patterns and elevations in intra-cranial blood velocity were observed at rest following a single SCUBA dive. These subtle changes in CBF regulation did not translate into any functional changes in cerebrovascular reactivity to hypoxia or hyperoxia, or neurovascular coupling following a single SCUBA dive. ABSTRACT Reductions in vascular function during a SCUBA dive - due to hyperoxia-induced oxidative stress, arterial and venous gas emboli and altered endothelial integrity - may also extend to the cerebrovasculature following return to the surface. This study aimed to characterize cerebral blood flow (CBF) regulation following a single SCUBA dive to a depth of 18 m sea water with a 47 min bottom time. Prior to and following the dive, participants (n = 11) completed (1) resting CBF in the internal carotid (ICA) and vertebral (VA) arteries (duplex ultrasound) and intra-cranial blood velocity (v) of the middle and posterior cerebral arteries (MCAv and PCAv, respectively) (transcranial Doppler ultrasound); (2) cerebrovascular reactivity to acute poikilocapnic hypoxia (i.e. F I O 2 , 0.10) and hyperoxia (i.e. F I O 2 , 1.0); and (3) neurovascular coupling (NVC; regional CBF response to local increases in cerebral metabolism). Global CBF, cerebrovascular reactivity to hypoxia and hyperoxia, and NVC were unaltered following a SCUBA dive (all P > 0.05); however, there were subtle changes in other cerebrovascular metrics post-dive, including reductions in ICA (-13 ± 8%, P = 0.003) and VA (-11 ± 14%, P = 0.021) shear rate, lower ICAv (-10 ± 9%, P = 0.008) and VAv (-9 ± 14%, P = 0.028), increases in ICA diameter (+4 ± 5%, P = 0.017) and elevations in PCAv (+10 ± 19%, P = 0.047). Although we observed subtle alterations in CBF regulation at rest, these changes did not translate into any functional changes in cerebrovascular reactivity to hypoxia or hyperoxia, or NVC. Whether prolonged exposure to hyperoxia and hyperbaria during longer, deeper, colder and/or repetitive SCUBA dives would provoke changes to the cerebrovasculature requires further investigation.
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| | - Otto F Barak
- Department of Physiology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Faculty of Sports and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Tanja Mijacika
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Joel S Burma
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Željko Dujić
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| |
Collapse
|
19
|
Eshmuminov D, Becker D, Bautista Borrego L, Hefti M, Schuler MJ, Hagedorn C, Muller X, Mueller M, Onder C, Graf R, Weber A, Dutkowski P, Rudolf von Rohr P, Clavien PA. An integrated perfusion machine preserves injured human livers for 1 week. Nat Biotechnol 2020; 38:189-198. [PMID: 31932726 PMCID: PMC7008032 DOI: 10.1038/s41587-019-0374-x] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 11/18/2019] [Indexed: 12/26/2022]
Abstract
The ability to preserve metabolically active livers ex vivo for 1 week or more could allow repair of poor-quality livers that would otherwise be declined for transplantation. Current approaches for normothermic perfusion can preserve human livers for only 24 h. Here we report a liver perfusion machine that integrates multiple core physiological functions, including automated management of glucose levels and oxygenation, waste-product removal and hematocrit control. We developed the machine in a stepwise fashion using pig livers. Study of multiple ex vivo parameters and early phase reperfusion in vivo demonstrated the viability of pig livers perfused for 1 week without the need for additional blood products or perfusate exchange. We tested the approach on ten injured human livers that had been declined for transplantation by all European centers. After a 7-d perfusion, six of the human livers showed preserved function as indicated by bile production, synthesis of coagulation factors, maintained cellular energy (ATP) and intact liver structure. Livers are stored long term in a sophisticated perfusion system.
Collapse
Affiliation(s)
- Dilmurodjon Eshmuminov
- Department of Surgery and Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich, Switzerland.,Wyss Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Dustin Becker
- Wyss Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.,Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Lucia Bautista Borrego
- Department of Surgery and Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich, Switzerland.,Wyss Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Max Hefti
- Wyss Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.,Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Martin J Schuler
- Wyss Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.,Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Catherine Hagedorn
- Department of Surgery and Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich, Switzerland.,Wyss Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Xavier Muller
- Department of Surgery and Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich, Switzerland.,Wyss Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Matteo Mueller
- Department of Surgery and Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich, Switzerland.,Wyss Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Christopher Onder
- Wyss Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.,Institute for Dynamic Systems and Control, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Rolf Graf
- Department of Surgery and Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich, Switzerland.,Wyss Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, and Institute of Molecular Cancer Research (IMCR), University Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich, Switzerland.,Wyss Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Philipp Rudolf von Rohr
- Wyss Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.,Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery and Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich, Switzerland. .,Wyss Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
Impact of Hyperoxia and Hypocapnia on Neurological Outcomes in Patients with Aneurysmal Subarachnoid Hemorrhage: A Retrospective Study. Crit Care Res Pract 2019; 2019:7584573. [PMID: 31885915 PMCID: PMC6925754 DOI: 10.1155/2019/7584573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 01/13/2023] Open
Abstract
In recent decades, there is increasing evidence suggesting that hyperoxia and hypocapnia are associated with poor outcomes in critically ill patients with cardiac arrest or traumatic brain injury. Yet, the impact of hyperoxia and hypocapnia on neurological outcome in patients with subarachnoid hemorrhage (SAH) has not been well studied. In the present study, we evaluated the impact of hyperoxia and hypocapnia on neurological outcomes in patients with aneurysmal SAH (aSAH). Patients with aSAH who were admitted to the intensive care unit (ICU) of a tertiary hospital in Hong Kong between January 2011 and December 2016 were retrospectively recruited. Patients' demographics, comorbidities, radiological findings, clinical grades of SAH, PO2, and PCO2 within 24 hours of ICU admission, and Glasgow Outcome Scale (GOS) at 3 months after admission were recorded. Patients with a GOS score of 3 or less were considered having poor neurological outcomes. Among the 244 patients with aSAH, 122 of them (50%) had poor neurological outcomes at 3 months. Early hyperoxia (PO2 > 200 mmHg) and hypercapnia (PCO2 > 45 mmHg) were more common among patients with poor neurological outcomes. Logistic regression analysis indicated that hyperoxia independently predicted poor neurological outcomes (OR 3.788, 95% CI 1.131-12.690, P=0.031). Classification tree analysis revealed that hypocapnia was associated with poor neurological outcomes in patients who were less critically ill (APACHE < 50) and without concomitant intracranial hemorrhage (ICH) or intraventricular hemorrhage (IVH) (adjusted P=0.006, χ 2 = 7.452). These findings suggested that hyperoxia and hypocapnia may be associated with poor neurological outcomes in patients with aSAH.
Collapse
|
21
|
Šegrt Ribičić I, Valić M, Božić J, Obad A, Glavaš D, Glavičić I, Valić Z. Influence of oxygen enriched gases during decompression on bubble formation and endothelial function in self-contained underwater breathing apparatus diving: a randomized controlled study. Croat Med J 2019. [PMID: 31187955 PMCID: PMC6563167 DOI: 10.3325/cmj.2019.60.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aim To assess the effect of air, gas mixture composed of 50% nitrogen and 50% oxygen (nitrox 50), or gas mixture composed of 1% nitrogen and 99% oxygen (nitrox 99) on bubble formation and vascular/endothelial function during decompression after self-contained underwater breathing apparatus diving. Methods This randomized controlled study, conducted in 2014, involved ten divers. Each diver performed three dives in a randomized protocol using three gases: air, nitrox 50, or nitrox 99 during ascent. The dives were performed on three different days limited to 45 m sea water (msw) depth with 20 min bottom time. Nitrogen bubbles formation was assessed by ultrasound detection after dive. Arterial/endothelial function was evaluated by brachial artery flow mediated dilatation (FMD) before and after dive. Results Nitrox 99 significantly reduced bubble formation after cough compared with air and nitrox 50 (grade 1 vs 3 and vs 3, respectively, P = 0.026). Nitrox 50 significantly decreased post-dive FMD compared with pre-dive FMD (3.62 ± 5.57% vs 12.11 ± 6.82% P = 0.010), while nitrox 99 did not cause any significant change. Conclusion Nitrox 99 reduced bubble formation, did not change post-dive FMD, and decreased total dive duration, indicating that it might better preserve endothelial function compared with air and nitrox 50 dive protocols.
Collapse
Affiliation(s)
| | - Maja Valić
- Maja Valić, Department of Neuroscience, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia,
| | | | | | | | | | | |
Collapse
|
22
|
Kühlbach C, da Luz S, Baganz F, Hass VC, Mueller MM. A Microfluidic System for the Investigation of Tumor Cell Extravasation. Bioengineering (Basel) 2018; 5:E40. [PMID: 29882894 PMCID: PMC6027408 DOI: 10.3390/bioengineering5020040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 01/05/2023] Open
Abstract
Metastatic dissemination of cancer cells is a very complex process. It includes the intravasation of cells into the metastatic pathways, their passive distribution within the blood or lymph flow, and their extravasation into the surrounding tissue. Crucial steps during extravasation are the adhesion of the tumor cells to the endothelium and their transendothelial migration. However, the molecular mechanisms that are underlying this process are still not fully understood. Novel three dimensional (3D) models for research on the metastatic cascade include the use of microfluidic devices. Different from two dimensional (2D) models, these devices take cell⁻cell, structural, and mechanical interactions into account. Here we introduce a new microfluidic device in order to study tumor extravasation. The device consists of three different parts, containing two microfluidic channels and a porous membrane sandwiched in between them. A smaller channel together with the membrane represents the vessel equivalent and is seeded separately with primary endothelial cells (EC) that are isolated from the lung artery. The second channel acts as reservoir to collect the migrated tumor cells. In contrast to many other systems, this device does not need an additional coating to allow EC growth, as the primary EC that is used produces their own basement membrane. VE-Cadherin, an endothelial adherence junction protein, was expressed in regular localization, which indicates a tight barrier function and cell⁻cell connections of the endothelium. The EC in the device showed in vivo-like behavior under flow conditions. The GFP-transfected tumor cells that were introduced were of epithelial or mesenchymal origin and could be observed by live cell imaging, which indicates tightly adherent tumor cells to the endothelial lining under different flow conditions. These results suggest that the new device can be used for research on molecular requirements, conditions, and mechanism of extravasation and its inhibition.
Collapse
Affiliation(s)
- Claudia Kühlbach
- Department of Mechanical und Medical Engineering, Hochschule Furtwangen University, Villingen-Schwenningen 78054, Germany.
- Department of Biochemical Engineering, University College London, London WC1E 6BT, UK.
| | - Sabrina da Luz
- Hahn-Schickard, Villingen-Schwenningen 78054, Germany, .
| | - Frank Baganz
- Department of Biochemical Engineering, University College London, London WC1E 6BT, UK.
| | - Volker C Hass
- Department of Biochemical Engineering, University College London, London WC1E 6BT, UK.
- HFU Hochschule Furtwangen, Department Medical and Life Science, Villingen-Schwenningen 78054, Germany.
| | - Margareta M Mueller
- Department of Mechanical und Medical Engineering, Hochschule Furtwangen University, Villingen-Schwenningen 78054, Germany.
| |
Collapse
|
23
|
|
24
|
Terraneo L, Samaja M. Comparative Response of Brain to Chronic Hypoxia and Hyperoxia. Int J Mol Sci 2017; 18:ijms18091914. [PMID: 28880206 PMCID: PMC5618563 DOI: 10.3390/ijms18091914] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 12/25/2022] Open
Abstract
Two antithetic terms, hypoxia and hyperoxia, i.e., insufficient and excess oxygen availability with respect to needs, are thought to trigger opposite responses in cells and tissues. This review aims at summarizing the molecular and cellular mechanisms underlying hypoxia and hyperoxia in brain and cerebral tissue, a context that may prove to be useful for characterizing not only several clinically relevant aspects, but also aspects related to the evolution of oxygen transport and use by the tissues. While the response to acute hypoxia/hyperoxia presumably recruits only a minor portion of the potentially involved cell machinery, focusing into chronic conditions, instead, enables to take into consideration a wider range of potential responses to oxygen-linked stress, spanning from metabolic to genic. We will examine how various brain subsystems, including energetic metabolism, oxygen sensing, recruitment of pro-survival pathways as protein kinase B (Akt), mitogen-activated protein kinases (MAPK), neurotrophins (BDNF), erythropoietin (Epo) and its receptors (EpoR), neuroglobin (Ngb), nitric oxide (NO), carbon monoxide (CO), deal with chronic hypoxia and hyperoxia to end-up with the final outcomes, oxidative stress and brain damage. A more complex than expected pattern results, which emphasizes the delicate balance between the severity of the stress imposed by hypoxia and hyperoxia and the recruitment of molecular and cellular defense patterns. While for certain functions the expectation that hypoxia and hyperoxia should cause opposite responses is actually met, for others it is not, and both emerge as dangerous treatments.
Collapse
Affiliation(s)
- Laura Terraneo
- Department of Health Science, University of Milan, I-20142 Milano, Italy.
| | - Michele Samaja
- Department of Health Science, University of Milan, I-20142 Milano, Italy.
| |
Collapse
|