1
|
Choi J, Sung K, Hyun J, Shin S. Sheet-laminated additive manufacturing of bacterial cellulose nanofiber-reinforced hydrogels. Carbohydr Polym 2025; 349:122972. [PMID: 39638517 DOI: 10.1016/j.carbpol.2024.122972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/18/2024] [Accepted: 11/09/2024] [Indexed: 12/07/2024]
Abstract
Three-dimensional (3D) printing of hydrogels offers promising potential for creating intricate, customizable structures with superior elasticity, softness, and biocompatibility. However, due to their high-water content, hydrogels often suffer from reduced mechanical strength, which is further decreased when they absorb water, limiting their use in environments requiring high mechanical durability. To address this, we developed a novel 3D printing technique to fabricate bacterial cellulose (BC) nanofiber-reinforced hydrogels, which we term sheet-laminated additive manufacturing (SLAM). SLAM is based on digital light processing (DLP) 3D printing technology and involves a process of sequentially layering BC nanofiber sheets impregnated with a photocrosslinkable monomer. The BC nanofiber sheets provide a unique 3D network, resulting in a significant enhancement of the mechanical strength of various photocrosslinkable hydrogels. A unique aspect of BC sheets is their ability to further improve mechanical properties by inducing nanofiber alignment or adjusting nanofiber density through stretching and compression pretreatments. The printed BC nanofiber-reinforced hydrogels maintained their strength after swelling and demonstrated exceptional performance in applications requiring high mechanical robustness. Our SLAM approach successfully created complex 3D structures, such as BC-reinforced hydrogel earthworm structures and pressure sensors, demonstrating its potential for advanced applications in high-stress environments.
Collapse
Affiliation(s)
- Junsik Choi
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Kiho Sung
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinho Hyun
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sungchul Shin
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Akhoon BA, Qiao Q, Stewart A, Chen J, Rodriguez Lopez CM, Corbin KR. Pangenomic analysis of the bacterial cellulose-producing genera Komagataeibacter and Novacetimonas. Int J Biol Macromol 2025; 298:139980. [PMID: 39826720 DOI: 10.1016/j.ijbiomac.2025.139980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/06/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Bacterial cellulose holds significant commercial potential due to its unique structural and chemical properties, making it suitable for applications in electronics, medicine, and pharmaceuticals. However, large-scale BC production remains limited by challenges related to bacterial performance. In this study, we compared 79 microbial genomes from three genera-Komagataeibacter, Novacetimonas, and Gluconacetobacter-to investigate their pangenomes, genetic diversity, and evolutionary relationships. Through comparative genomic and phylogenetic analyses, we identified distinct genome compositions and evolutionary patterns that differ from previous reports. The role of horizontal gene transfer in shaping the genetic diversity and adaptability of these bacteria was also explored. Key determinants in BC production, such as variations in the bacterial cellulose biosynthesis (bcs) operon, carbohydrate uptake genes, and carbohydrate-active enzymes, were examined. Additionally, several biosynthetic gene clusters, including Linocin M18 and sactipeptides, which encode for antimicrobial peptides known as bacteriocins, were identified. These findings reveal new aspects of the genetic diversity in cellulose-producing bacteria and present a comprehensive genomic toolkit that will support future efforts to optimize BC production and improve microbial performance for commercial applications.
Collapse
Affiliation(s)
- Bashir A Akhoon
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Qi Qiao
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA; College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Alexander Stewart
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Jin Chen
- Department of Internal Medicine and Department of Computer Science, Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, USA; The University of Alabama at Birmingham, School of Medicine - Nephrology, Birmingham, AL, USA
| | - Carlos M Rodriguez Lopez
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA; Environmental Epigenetics and Genetics Group, Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Kendall R Corbin
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
3
|
Lasagni F, Cassanelli S, Gullo M. How carbon sources drive cellulose synthesis in two Komagataeibacter xylinus strains. Sci Rep 2024; 14:20494. [PMID: 39227724 PMCID: PMC11371920 DOI: 10.1038/s41598-024-71648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
Bacterial cellulose synthesis from defined media and waste products has attracted increasing interest in the circular economy context for sustainable productions. In this study, a glucose dehydrogenase-deficient Δgdh K2G30 strain of Komagataeibacter xylinus was obtained from the parental wild type through homologous recombination. Both strains were grown in defined substrates and cheese whey as an agri-food waste to assess the effect of gene silencing on bacterial cellulose synthesis and carbon source metabolism. Wild type K2G30 boasted higher bacterial cellulose yields when grown in ethanol-based medium and cheese whey, although showing an overall higher D-gluconic acid synthesis. Conversely, the mutant Δgdh strain preferred D-fructose, D-mannitol, and glycerol to boost bacterial cellulose production, while displaying higher substrate consumption rates and a lower D-gluconic acid synthesis. This study provides an in-depth investigation of two K. xylinus strains, unravelling their suitability for scale-up BC production.
Collapse
Affiliation(s)
- Federico Lasagni
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Cassanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy.
| | - Maria Gullo
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
4
|
Kolesovs S, Neiberts K, Semjonovs P, Beluns S, Platnieks O, Gaidukovs S. Evaluation of hydrolyzed cheese whey medium for enhanced bacterial cellulose production by Komagataeibacter rhaeticus MSCL 1463. Biotechnol J 2024; 19:e2300529. [PMID: 38896375 DOI: 10.1002/biot.202300529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
Industrial production of bacterial cellulose (BC) remains challenging due to significant production costs, including the choice of appropriate growth media. This research focuses on optimization of cheese whey (CW) based media for enhanced production of BC. Two modifications were made for CW medium for BC production with Komagataeibacter rhaeticus MSCL 1463. BC production in a medium of enzymatically hydrolyzed CW (final concentration of monosaccharides: glucose 0.13 g L-1, galactose 1.24 g L-1) was significantly enhanced, achieving a yield of 4.95 ± 0.25 g L-1, which markedly surpasses the yields obtained with the standard Hestrin-Schramm (HS) medium containing 20 g L-1 glucose and acid-hydrolyzed CW (final concentration of monosaccharides: glucose 1.15 g L-1, galactose 2.01 g L-1), which yielded 3.29 ± 0.12 g L-1 and 1.01 ± 0.14 g L-1, respectively. We explored the synergistic effects of combining CW with various agricultural by-products (corn steep liquor (CSL), apple juice, and sugar beet molasses). Notably, the supplementation with 15% corn steep liquor significantly enhanced BC productivity, achieving 6.97 ± 0.17 g L-1. A comprehensive analysis of the BC's physical and mechanical properties indicated significant alterations in fiber diameter (62-167 nm), crystallinity index (71.1-85.9%), and specific strength (35-82 MPa × cm3 g-1), as well as changes in the density (1.1-1.4 g cm-3). Hydrolyzed CW medium supplemented by CSL could be used for effective production of BC.
Collapse
Affiliation(s)
- Sergejs Kolesovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Riga, Latvia
| | - Kristaps Neiberts
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Riga, Latvia
| | - Pavels Semjonovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Riga, Latvia
| | - Sergejs Beluns
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
| | - Oskars Platnieks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
| | - Sergejs Gaidukovs
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
| |
Collapse
|
5
|
Tsouko E, Pilafidis S, Kourmentza K, Gomes HI, Sarris G, Koralli P, Papagiannopoulos A, Pispas S, Sarris D. A sustainable bioprocess to produce bacterial cellulose (BC) using waste streams from wine distilleries and the biodiesel industry: evaluation of BC for adsorption of phenolic compounds, dyes and metals. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:40. [PMID: 38475851 PMCID: PMC10935973 DOI: 10.1186/s13068-024-02488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND The main challenge for large-scale production of bacterial cellulose (BC) includes high production costs interlinked with raw materials, and low production rates. The valorization of renewable nutrient sources could improve the economic effectiveness of BC fermentation while their direct bioconversion into sustainable biopolymers addresses environmental pollution and/or resource depletion challenges. Herein a green bioprocess was developed to produce BC in high amounts with the rather unexplored bacterial strain Komagataeibacter rhaeticus, using waste streams such as wine distillery effluents (WDE) and biodiesel-derived glycerol. Also, BC was evaluated as a bio-adsorbent for phenolics, dyes and metals removal to enlarge its market diversification. RESULTS BC production was significantly affected by the WDE mixing ratio (0-100%), glycerol concentration (20-45 g/L), type of glycerol and media-sterilization method. A maximum BC concentration of 9.0 g/L, with a productivity of 0.90 g/L/day and a water holding capacity of 60.1 g water/g dry BC, was achieved at 100% WDE and ≈30 g/L crude glycerol. BC samples showed typical cellulose vibration bands and average fiber diameters between 37.2 and 89.6 nm. The BC capacity to dephenolize WDE and adsorb phenolics during fermentation reached respectively, up to 50.7% and 26.96 mg gallic acid equivalents/g dry BC (in-situ process). The produced BC was also investigated for dye and metal removal. The highest removal of dye acid yellow 17 (54.3%) was recorded when 5% of BC was applied as the bio-adsorbent. Experiments performed in a multi-metal synthetic wastewater showed that BC could remove up to 96% of Zn and 97% of Cd. CONCLUSIONS This work demonstrated a low-carbon approach to produce low-cost, green and biodegradable BC-based bio-adsorbents, without any chemical modification. Their potential in wastewater-treatment-applications was highlighted, promoting closed-loop systems within the circular economy era. This study may serve as an orientation for future research towards competitive or targeted adsorption technologies for wastewater treatment or resources recovery.
Collapse
Affiliation(s)
- Erminta Tsouko
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece.
| | - Sotirios Pilafidis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece
- Laboratory of Physico-Chemical & Biotechnological Valorization of Food By-Products, Department of Food Science & Nutrition, School of Environment, University of the Aegean, Leoforos Dimokratias 66, 81400, Lemnos, Greece
| | - Konstantina Kourmentza
- Food, Water, Waste Research Group, Department of Chemical & Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Green Chemicals Beacon of Excellence, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Helena I Gomes
- Food, Water, Waste Research Group, Department of Chemical & Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Giannis Sarris
- Laboratory of Physico-Chemical & Biotechnological Valorization of Food By-Products, Department of Food Science & Nutrition, School of Environment, University of the Aegean, Leoforos Dimokratias 66, 81400, Lemnos, Greece
| | - Panagiota Koralli
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
| | - Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece
| | - Dimitris Sarris
- Laboratory of Physico-Chemical & Biotechnological Valorization of Food By-Products, Department of Food Science & Nutrition, School of Environment, University of the Aegean, Leoforos Dimokratias 66, 81400, Lemnos, Greece
| |
Collapse
|
6
|
Revin VV, Liyaskina EV, Parchaykina MV, Kurgaeva IV, Efremova KV, Novokuptsev NV. Production of Bacterial Exopolysaccharides: Xanthan and Bacterial Cellulose. Int J Mol Sci 2023; 24:14608. [PMID: 37834056 PMCID: PMC10572569 DOI: 10.3390/ijms241914608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Recently, degradable biopolymers have become increasingly important as potential environmentally friendly biomaterials, providing a wide range of applications in various fields. Bacterial exopolysaccharides (EPSs) are biomacromolecules, which due to their unique properties have found applications in biomedicine, foodstuff, textiles, cosmetics, petroleum, pharmaceuticals, nanoelectronics, and environmental remediation. One of the important commercial polysaccharides produced on an industrial scale is xanthan. In recent years, the range of its application has expanded significantly. Bacterial cellulose (BC) is another unique EPS with a rapidly increasing range of applications. Due to the great prospects for their practical application, the development of their highly efficient production remains an important task. The present review summarizes the strategies for the cost-effective production of such important biomacromolecules as xanthan and BC and demonstrates for the first time common approaches to their efficient production and to obtaining new functional materials for a wide range of applications, including wound healing, drug delivery, tissue engineering, environmental remediation, nanoelectronics, and 3D bioprinting. In the end, we discuss present limitations of xanthan and BC production and the line of future research.
Collapse
Affiliation(s)
- Viktor V. Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia; (E.V.L.); (M.V.P.); (I.V.K.); (K.V.E.); (N.V.N.)
| | | | | | | | | | | |
Collapse
|
7
|
Hu G, Varamesh A, Zhong N, Kong F, Hu J. Super-strong and high-performance electrical film heater derived from silver nanowire/aligned bacterial cellulose film. BIORESOUR BIOPROCESS 2023; 10:54. [PMID: 38647935 PMCID: PMC10992140 DOI: 10.1186/s40643-023-00669-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/21/2023] [Indexed: 04/25/2024] Open
Abstract
High-performance electrical Joule heaters with high mechanical properties, low driving voltage, rapid response, and flexibility are highly desirable for portable thermal management. Herein, by using aligned bacterial cellulose (BC) and silver nanowire (AgNW), we fabricated a novel film heater based on Joule heating phenomena. The aligned BC film prepared by stretching BC hydrogel and hot-pressing drying technology showed outstanding mechanical properties and flexibility. The ultrahigh strength of up to 1018 MPa and the toughness of 20 MJ/m3 were obtained for the aligned BC film with 40% wet-stretching (BC-40). In addition, the aligned BC film could be folded into desirable shapes. The AgNW was spray-coated on the surface of aligned BC-40 film and then covered with polydimethylsiloxane to form a P@AgNW@BC heater. P@AgNW@BC heater showed excellent conductivity, which endowed the film heater with an outstanding Joule heating performance. P@AgNW@BC heater could reach ~ 98 ℃ at a very low driving voltage of 4 V with a rapid heating response (13 s) and long-term temperature stability. The P@AgNW@BC heater with such an outstanding heating performance can be used as a flexible heating device for different applications in daily life like deicing/defogging device, wearable thermotherapy, etc.Affiliations: Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.yes, we confirmed the affiliations are correct. Article title: Kindly check and confirm the edit made in the article title.Thanks, the title is no problem.
Collapse
Affiliation(s)
- Guichun Hu
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, Calgary, AB, T2N 1N4, Canada
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Shandong Academy of Sciences, Qilu University of Technology, Jinan, 250353, People's Republic of China
| | - Amir Varamesh
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, Calgary, AB, T2N 1N4, Canada
| | - Na Zhong
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, Calgary, AB, T2N 1N4, Canada
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Shandong Academy of Sciences, Qilu University of Technology, Jinan, 250353, People's Republic of China
| | - Jinguang Hu
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
8
|
van Zyl EM, Kennedy MA, Nason W, Fenlon SJ, Young EM, Smith LJ, Bhatia SR, Coburn JM. Structural properties of optically clear bacterial cellulose produced by Komagataeibacter hansenii using arabitol. BIOMATERIALS ADVANCES 2023; 148:213345. [PMID: 36889229 PMCID: PMC10075302 DOI: 10.1016/j.bioadv.2023.213345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
Bacterial cellulose (BC) exhibits beneficial properties for use in biomedical applications but is limited by its lack of tunable transparency capabilities. To overcome this deficiency, a novel method to synthesize transparent BC materials using an alternative carbon source, namely arabitol, was developed. Characterization of the BC pellicles was performed for yield, transparency, surface morphology, and molecular assembly. Transparent BC was produced using mixtures of glucose and arabitol. Zero percent arabitol pellicles exhibited 25% light transmittance, which increased with increasing arabitol concentration through to 75% light transmittance. While transparency increased, overall BC yield was maintained indicating that the altered transparency may be induced on a micro-scale rather than a macro-scale. Significant differences in fiber diameter and the presence of aromatic signatures were observed. Overall, this research outlines methods for producing BC with tunable optical transparency, while also bringing new insight to insoluble components of exopolymers produced by Komagataeibacter hansenii.
Collapse
Affiliation(s)
- Elizabeth M van Zyl
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America.
| | - Mitchell A Kennedy
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, United States of America.
| | - Wendy Nason
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, United States of America.
| | - Sawyer J Fenlon
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America.
| | - Eric M Young
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America.
| | - Luis J Smith
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, United States of America.
| | - Surita R Bhatia
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, United States of America.
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America.
| |
Collapse
|
9
|
Kolesovs S, Ruklisha M, Semjonovs P. Synthesis of bacterial cellulose by Komagataeibacter rhaeticus MSCL 1463 on whey. 3 Biotech 2023; 13:105. [PMID: 36875957 PMCID: PMC9975128 DOI: 10.1007/s13205-023-03528-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Production costs of bacterial cellulose (BC) can be reduced using alternative fermentation media, e. g., various agricultural by-products including whey. This study focuses on whey as an alternative growth medium for BC production by Komagataeibacter rhaeticus MSCL 1463. It was shown that the highest BC production on whey was 1.95 ± 0.15 g/L, which is approximately 40-50% lower that BC production on standard HS media with glucose. It was also confirmed that K. rhaeticus MSCL 1463 can utilise both lactose and galactose as the sole C source in the modified HS medium. Different whey pre-treatment methods showed that the highest BC synthesis with K. rhaeticus MSCL 1463 was achieved in undiluted whey after standard pre-treatment procedure. Moreover, BC yield from substrate on whey was significantly higher (34.33 ± 1.21%) compared to the HS medium (16.56 ± 0.64%), which shows that whey can be used as a potential fermentation medium for BC production.
Collapse
Affiliation(s)
- Sergejs Kolesovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Ojara Vaciesa Street 4, Riga, 1004 Latvia
| | - Maija Ruklisha
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Ojara Vaciesa Street 4, Riga, 1004 Latvia
| | - Pavels Semjonovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Ojara Vaciesa Street 4, Riga, 1004 Latvia
| |
Collapse
|
10
|
Fatima A, Ortiz-Albo P, Neves LA, Nascimento FX, Crespo JG. Biosynthesis and characterization of bacterial cellulose membranes presenting relevant characteristics for air/gas filtration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
11
|
Anguluri K, La China S, Brugnoli M, Cassanelli S, Gullo M. Better under stress: Improving bacterial cellulose production by Komagataeibacter xylinus K2G30 (UMCC 2756) using adaptive laboratory evolution. Front Microbiol 2022; 13:994097. [PMID: 36312960 PMCID: PMC9605694 DOI: 10.3389/fmicb.2022.994097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Among naturally produced polymers, bacterial cellulose is receiving enormous attention due to remarkable properties, making it suitable for a wide range of industrial applications. However, the low yield, the instability of microbial strains and the limited knowledge of the mechanisms regulating the metabolism of producer strains, limit the large-scale production of bacterial cellulose. In this study, Komagataeibacter xylinus K2G30 was adapted in mannitol based medium, a carbon source that is also available in agri-food wastes. K. xylinus K2G30 was continuously cultured by replacing glucose with mannitol (2% w/v) for 210 days. After a starting lag-phase, in which no changes were observed in the utilization of mannitol and in bacterial cellulose production (cycles 1-25), a constant improvement of the phenotypic performances was observed from cycle 26 to cycle 30, accompanied by an increase in mannitol consumption. At cycle 30, the end-point of the experiment, bacterial cellulose yield increased by 38% in comparision compared to cycle 1. Furthermore, considering the mannitol metabolic pathway, D-fructose is an intermediate in the bioconversion of mannitol to glucose. Based on this consideration, K. xylinus K2G30 was tested in fructose-based medium, obtaining the same trend of bacterial cellulose production observed in mannitol medium. The adaptive laboratory evolution approach used in this study was suitable for the phenotypic improvement of K. xylinus K2G30 in bacterial cellulose production. Metabolic versatility of the strain was confirmed by the increase in bacterial cellulose production from D-fructose-based medium. Moreover, the adaptation on mannitol did not occur at the expense of glucose, confirming the versatility of K2G30 in producing bacterial cellulose from different carbon sources. Results of this study contribute to the knowledge for designing new strategies, as an alternative to the genetic engineering approach, for bacterial cellulose production.
Collapse
Affiliation(s)
| | - Salvatore La China
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | | | | | | |
Collapse
|