1
|
Vaz SC, Adam JA, Delgado Bolton RC, Vera P, van Elmpt W, Herrmann K, Hicks RJ, Lievens Y, Santos A, Schöder H, Dubray B, Visvikis D, Troost EGC, de Geus-Oei LF. Joint EANM/SNMMI/ESTRO practice recommendations for the use of 2-[ 18F]FDG PET/CT external beam radiation treatment planning in lung cancer V1.0. Eur J Nucl Med Mol Imaging 2022; 49:1386-1406. [PMID: 35022844 PMCID: PMC8921015 DOI: 10.1007/s00259-021-05624-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE 2-[18F]FDG PET/CT is of utmost importance for radiation treatment (RT) planning and response monitoring in lung cancer patients, in both non-small and small cell lung cancer (NSCLC and SCLC). This topic has been addressed in guidelines composed by experts within the field of radiation oncology. However, up to present, there is no procedural guideline on this subject, with involvement of the nuclear medicine societies. METHODS A literature review was performed, followed by a discussion between a multidisciplinary team of experts in the different fields involved in the RT planning of lung cancer, in order to guide clinical management. The project was led by experts of the two nuclear medicine societies (EANM and SNMMI) and radiation oncology (ESTRO). RESULTS AND CONCLUSION This guideline results from a joint and dynamic collaboration between the relevant disciplines for this topic. It provides a worldwide, state of the art, and multidisciplinary guide to 2-[18F]FDG PET/CT RT planning in NSCLC and SCLC. These practical recommendations describe applicable updates for existing clinical practices, highlight potential flaws, and provide solutions to overcome these as well. Finally, the recent developments considered for future application are also reviewed.
Collapse
Affiliation(s)
- Sofia C. Vaz
- Nuclear Medicine Radiopharmacology, Champalimaud Centre for the Unkown, Champalimaud Foundation, Lisbon, Portugal
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judit A. Adam
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Roberto C. Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño (La Rioja), Spain
| | - Pierre Vera
- Henri Becquerel Cancer Center, QuantIF-LITIS EA 4108, Université de Rouen, Rouen, France
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Rodney J. Hicks
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Yolande Lievens
- Radiation Oncology Department, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Andrea Santos
- Nuclear Medicine Department, CUF Descobertas Hospital, Lisbon, Portugal
| | - Heiko Schöder
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Bernard Dubray
- Department of Radiotherapy and Medical Physics, Centre Henri Becquerel, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | | | - Esther G. C. Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Polycarpou I, Soultanidis G, Tsoumpas C. Synergistic motion compensation strategies for positron emission tomography when acquired simultaneously with magnetic resonance imaging. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200207. [PMID: 34218675 PMCID: PMC8255946 DOI: 10.1098/rsta.2020.0207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 05/04/2023]
Abstract
Subject motion in positron emission tomography (PET) is a key factor that degrades image resolution and quality, limiting its potential capabilities. Correcting for it is complicated due to the lack of sufficient measured PET data from each position. This poses a significant barrier in calculating the amount of motion occurring during a scan. Motion correction can be implemented at different stages of data processing either during or after image reconstruction, and once applied accurately can substantially improve image quality and information accuracy. With the development of integrated PET-MRI (magnetic resonance imaging) scanners, internal organ motion can be measured concurrently with both PET and MRI. In this review paper, we explore the synergistic use of PET and MRI data to correct for any motion that affects the PET images. Different types of motion that can occur during PET-MRI acquisitions are presented and the associated motion detection, estimation and correction methods are reviewed. Finally, some highlights from recent literature in selected human and animal imaging applications are presented and the importance of motion correction for accurate kinetic modelling in dynamic PET-MRI is emphasized. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.
Collapse
Affiliation(s)
- Irene Polycarpou
- Department of Health Sciences, European University of Cyprus, Nicosia, Cyprus
| | - Georgios Soultanidis
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charalampos Tsoumpas
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Imaging Science Department, University of Leeds, West Yorkshire, UK
- Invicro, London, UK
| |
Collapse
|
3
|
Meikle SR, Sossi V, Roncali E, Cherry SR, Banati R, Mankoff D, Jones T, James M, Sutcliffe J, Ouyang J, Petibon Y, Ma C, El Fakhri G, Surti S, Karp JS, Badawi RD, Yamaya T, Akamatsu G, Schramm G, Rezaei A, Nuyts J, Fulton R, Kyme A, Lois C, Sari H, Price J, Boellaard R, Jeraj R, Bailey DL, Eslick E, Willowson KP, Dutta J. Quantitative PET in the 2020s: a roadmap. Phys Med Biol 2021; 66:06RM01. [PMID: 33339012 PMCID: PMC9358699 DOI: 10.1088/1361-6560/abd4f7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Positron emission tomography (PET) plays an increasingly important role in research and clinical applications, catalysed by remarkable technical advances and a growing appreciation of the need for reliable, sensitive biomarkers of human function in health and disease. Over the last 30 years, a large amount of the physics and engineering effort in PET has been motivated by the dominant clinical application during that period, oncology. This has led to important developments such as PET/CT, whole-body PET, 3D PET, accelerated statistical image reconstruction, and time-of-flight PET. Despite impressive improvements in image quality as a result of these advances, the emphasis on static, semi-quantitative 'hot spot' imaging for oncologic applications has meant that the capability of PET to quantify biologically relevant parameters based on tracer kinetics has not been fully exploited. More recent advances, such as PET/MR and total-body PET, have opened up the ability to address a vast range of new research questions, from which a future expansion of applications and radiotracers appears highly likely. Many of these new applications and tracers will, at least initially, require quantitative analyses that more fully exploit the exquisite sensitivity of PET and the tracer principle on which it is based. It is also expected that they will require more sophisticated quantitative analysis methods than those that are currently available. At the same time, artificial intelligence is revolutionizing data analysis and impacting the relationship between the statistical quality of the acquired data and the information we can extract from the data. In this roadmap, leaders of the key sub-disciplines of the field identify the challenges and opportunities to be addressed over the next ten years that will enable PET to realise its full quantitative potential, initially in research laboratories and, ultimately, in clinical practice.
Collapse
Affiliation(s)
- Steven R Meikle
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Australia
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Canada
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, United States of America
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Radiology, University of California, Davis, United States of America
| | - Richard Banati
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Australia
- Australian Nuclear Science and Technology Organisation, Sydney, Australia
| | - David Mankoff
- Department of Radiology, University of Pennsylvania, United States of America
| | - Terry Jones
- Department of Radiology, University of California, Davis, United States of America
| | - Michelle James
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), CA, United States of America
- Department of Neurology and Neurological Sciences, Stanford University, CA, United States of America
| | - Julie Sutcliffe
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Internal Medicine, University of California, Davis, CA, United States of America
| | - Jinsong Ouyang
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Yoann Petibon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Suleman Surti
- Department of Radiology, University of Pennsylvania, United States of America
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, United States of America
| | - Ramsey D Badawi
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Radiology, University of California, Davis, United States of America
| | - Taiga Yamaya
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Go Akamatsu
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Georg Schramm
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Ahmadreza Rezaei
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Johan Nuyts
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Roger Fulton
- Brain and Mind Centre, The University of Sydney, Australia
- Department of Medical Physics, Westmead Hospital, Sydney, Australia
| | - André Kyme
- Brain and Mind Centre, The University of Sydney, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, The University of Sydney, Australia
| | - Cristina Lois
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Hasan Sari
- Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Julie Price
- Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Ronald Boellaard
- Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, location VUMC, Netherlands
| | - Robert Jeraj
- Departments of Medical Physics, Human Oncology and Radiology, University of Wisconsin, United States of America
- Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
| | - Dale L Bailey
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Science, The University of Sydney, Australia
| | - Enid Eslick
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Kathy P Willowson
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Science, The University of Sydney, Australia
| | - Joyita Dutta
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, United States of America
| |
Collapse
|
4
|
Artificial Intelligence and the Medical Physicist: Welcome to the Machine. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041691] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Artificial intelligence (AI) is a branch of computer science dedicated to giving machines or computers the ability to perform human-like cognitive functions, such as learning, problem-solving, and decision making. Since it is showing superior performance than well-trained human beings in many areas, such as image classification, object detection, speech recognition, and decision-making, AI is expected to change profoundly every area of science, including healthcare and the clinical application of physics to healthcare, referred to as medical physics. As a result, the Italian Association of Medical Physics (AIFM) has created the “AI for Medical Physics” (AI4MP) group with the aims of coordinating the efforts, facilitating the communication, and sharing of the knowledge on AI of the medical physicists (MPs) in Italy. The purpose of this review is to summarize the main applications of AI in medical physics, describe the skills of the MPs in research and clinical applications of AI, and define the major challenges of AI in healthcare.
Collapse
|
5
|
Impact of PET data driven respiratory motion correction and BSREM reconstruction of 68Ga-DOTATATE PET/CT for differentiating neuroendocrine tumors (NET) and intrapancreatic accessory spleens (IPAS). Sci Rep 2021; 11:2273. [PMID: 33500455 PMCID: PMC7838183 DOI: 10.1038/s41598-020-80855-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022] Open
Abstract
To evaluate whether quantitative PET parameters of motion-corrected 68Ga-DOTATATE PET/CT can differentiate between intrapancreatic accessory spleens (IPAS) and pancreatic neuroendocrine tumor (pNET). A total of 498 consecutive patients with neuroendocrine tumors (NET) who underwent 68Ga-DOTATATE PET/CT between March 2017 and July 2019 were retrospectively analyzed. Subjects with accessory spleens (n = 43, thereof 7 IPAS) and pNET (n = 9) were included, resulting in a total of 45 scans. PET images were reconstructed using ordered-subsets expectation maximization (OSEM) and a fully convergent iterative image reconstruction algorithm with β-values of 1000 (BSREM1000). A data-driven gating (DDG) technique (MOTIONFREE, GE Healthcare) was applied to extract respiratory triggers and use them for PET motion correction within both reconstructions. PET parameters among different samples were compared using non-parametric tests. Receiver operating characteristics (ROC) analyzed the ability of PET parameters to differentiate IPAS and pNETs. SUVmax was able to distinguish pNET from accessory spleens and IPAs in BSREM1000 reconstructions (p < 0.05). This result was more reliable using DDG-based motion correction (p < 0.003) and was achieved in both OSEM and BSREM1000 reconstructions. For differentiating accessory spleens and pNETs with specificity 100%, the ROC analysis yielded an AUC of 0.742 (sensitivity 56%)/0.765 (sensitivity 56%)/0.846 (sensitivity 62%)/0.840 (sensitivity 63%) for SUVmax 36.7/41.9/36.9/41.7 in OSEM/BSREM1000/OSEM + DDG/BSREM1000 + DDG, respectively. BSREM1000 + DDG can accurately differentiate pNET from accessory spleen. Both BSREM1000 and DDG lead to a significant SUV increase compared to OSEM and non-motion-corrected data.
Collapse
|
6
|
Moradi F, Brunsing RL, Sheth VR, Iagaru A. Positron Emission Tomography–Magnetic Resonance Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Walker MD, Bradley KM, McGowan DR. Data-Driven Respiratory Motion Correction in Clinical PET - A Turning Point. J Nucl Med 2020; 62:jnumed.120.257022. [PMID: 33443091 DOI: 10.2967/jnumed.120.257022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Matthew D Walker
- Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | | | - Daniel R McGowan
- Oxford University Hospitals NHS Foundation Trust, United Kingdom
| |
Collapse
|
8
|
Beyer T, Bidaut L, Dickson J, Kachelriess M, Kiessling F, Leitgeb R, Ma J, Shiyam Sundar LK, Theek B, Mawlawi O. What scans we will read: imaging instrumentation trends in clinical oncology. Cancer Imaging 2020; 20:38. [PMID: 32517801 PMCID: PMC7285725 DOI: 10.1186/s40644-020-00312-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non-invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/CT), advanced MRI, optical or ultrasound imaging.This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and, then point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now.Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by advances in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as "data", and - through the wider adoption of advanced analysis, including machine learning approaches and a "big data" concept - move to the next stage of non-invasive tumour phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi-dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging.
Collapse
Affiliation(s)
- Thomas Beyer
- QIMP Team, Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Währinger Gürtel 18-20/4L, 1090, Vienna, Austria.
| | - Luc Bidaut
- College of Science, University of Lincoln, Lincoln, UK
| | - John Dickson
- Institute of Nuclear Medicine, University College London Hospital, London, UK
| | - Marc Kachelriess
- Division of X-ray imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, DE, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074, Aachen, DE, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Am Fallturm 1, 28359, Bremen, DE, Germany
| | - Rainer Leitgeb
- Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, AT, Austria
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lalith Kumar Shiyam Sundar
- QIMP Team, Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Währinger Gürtel 18-20/4L, 1090, Vienna, Austria
| | - Benjamin Theek
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074, Aachen, DE, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Am Fallturm 1, 28359, Bremen, DE, Germany
| | - Osama Mawlawi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Büther F, Jones J, Seifert R, Stegger L, Schleyer P, Schäfers M. Clinical Evaluation of a Data-Driven Respiratory Gating Algorithm for Whole-Body PET with Continuous Bed Motion. J Nucl Med 2020; 61:1520-1527. [PMID: 32060218 DOI: 10.2967/jnumed.119.235770] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Respiratory gating is the standard to prevent respiration effects from degrading image quality in PET. Data-driven gating (DDG) using signals derived from PET raw data is a promising alternative to gating approaches requiring additional hardware (e.g., pressure-sensitive belt gating [BG]). However, continuous-bed-motion (CBM) scans require dedicated DDG approaches for axially extended PET, compared with DDG for conventional step-and-shoot scans. In this study, a CBM-capable DDG algorithm was investigated in a clinical cohort and compared with BG using optimally gated (OG) and fully motion-corrected (elastic motion correction [EMOCO]) reconstructions. Methods: Fifty-six patients with suspected malignancies in the thorax or abdomen underwent whole-body 18F-FDG CBM PET/CT using DDG and BG. Correlation analyses were performed on both gating signals. Besides static reconstructions, OG and EMOCO reconstructions were used for BG and DDG. The metabolic volume, SUVmax, and SUVmean of lesions were compared among the reconstructions. Additionally, the quality of lesion delineation in the different PET reconstructions was independently evaluated by 3 experts. Results: The global correlation coefficient between BG and DDG signals was 0.48 ± 0.11, peaking at 0.89 ± 0.07 when scanning the kidney and liver region. In total, 196 lesions were analyzed. SUV measurements were significantly higher in BG-OG, DDG-OG, BG-EMOCO, and DDG-EMOCO than in static images (P < 0.001; median SUVmax: static, 14.3 ± 13.4; BG-EMOCO, 19.8 ± 15.7; DDG-EMOCO, 20.5 ± 15.6; BG-OG, 19.6 ± 17.1; and DDG-OG, 18.9 ± 16.6). No significant differences between BG-OG and DDG-OG or between BG-EMOCO and DDG-EMOCO were found. Visual lesion delineation was significantly better in BG-EMOCO and DDG-EMOCO than in static reconstructions (P < 0.001); no significant difference was found when comparing BG and DDG for either EMOCO or OG reconstruction. Conclusion: DDG-based motion compensation of CBM PET acquisitions outperforms static reconstructions, delivering qualities comparable to BG approaches. The new algorithm may be a valuable alternative for CBM PET systems.
Collapse
Affiliation(s)
- Florian Büther
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | | | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Lars Stegger
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | | | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.,European Institute for Molecular Imaging, University of Münster, Münster, Germany
| |
Collapse
|