1
|
Patrianesha BB, Peters SMB, Hardiansyah D, Ritawidya R, Privé BM, Nagarajah J, Konijnenberg MW, Glatting G. Single-time-point dosimetry using model selection and the Bayesian fitting method: A proof of concept. Phys Med 2025; 129:104868. [PMID: 39642576 DOI: 10.1016/j.ejmp.2024.104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/04/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024] Open
Abstract
PURPOSE This study aimed to determine the effect of model selection on simplified dosimetry for the kidneys using Bayesian fitting (BF) and single-time-point (STP) imaging. METHODS Kidney biokinetics data of [177Lu]Lu-PSMA-617 from mHSPC were collected using SPECT/CT after injection of (3.1 ± 0.1) GBq at time points T1(2.3 ± 0.5), T2(23.8 ± 2.0), T3(47.7 ± 2.2), T4(71.8 ± 2.2), and T5(167.4 ± 1.9) h post-injection. Eleven functions with various parameterizations and a combination of shared and individual parameters were used for model selection. Model averaging of functions with an Akaike weight of >10 % was used to calculate the reference TIAC (TIACREF). STP BF method (STP-BF) was performed to determine the STP TIACs (TIACSTP-BF). The STP-BF performance was assessed by calculating the root-mean-square error (RMSE) of relative deviation between TIACSTP-BF and TIACREF. In addition, the STP-BF performance was compared to the Hänscheid Method. RESULTS The function [Formula: see text] with shared parameter λ2 was selected as the best function (Akaike weight of 57.91 %). STP-BF using the best function resulted in RMSEs of 20.3 %, 9.1 %, 8.4 %, 13.6 %, and 19.3 % at T1, T2, T3, T4, and T5, respectively. The RMSEs of STP-Hänscheid were 22.4 %, 14.6 %, and 21.9 % at T2, T3, and T4, respectively. CONCLUSION A model selection was presented to determine the fit function for calculating TIACs in STP-BF. This study shows that the STP dosimetry using BF and model selection performed better than the frequently used STP Hänscheid method.
Collapse
Affiliation(s)
- Bisma B Patrianesha
- Medical Physics and Biophysics, Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia; Directorate of Nuclear Facility Management, National Research and Innovation Agency (BRIN), Tangerang Selatan, 15314 Banten, Indonesia
| | - Steffie M B Peters
- Department of Medical Imaging, Radboud University Medical Center, 9101, 6500 HB Nijmegen, the Netherlands
| | - Deni Hardiansyah
- Medical Physics and Biophysics, Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia.
| | - Rien Ritawidya
- Medical Physics and Biophysics, Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia; Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314 Indonesia
| | - Bastiaan M Privé
- Department of Medical Imaging, Radboud University Medical Center, 9101, 6500 HB Nijmegen, the Netherlands; Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - James Nagarajah
- Department of Medical Imaging, Radboud University Medical Center, 9101, 6500 HB Nijmegen, the Netherlands; Röntgeninstitut Düsseldorf, Düsseldorf, Germany
| | - Mark W Konijnenberg
- Department of Medical Imaging, Radboud University Medical Center, 9101, 6500 HB Nijmegen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Gerhard Glatting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
2
|
Demirci RA, Gulati R, Hawley JE, Yezefski T, Haffner MC, Cheng HH, Montgomery RB, Schweizer MT, Yu EY, Nelson PS, Chen DL, Iravani A. SPECT/CT in Early Response Assessment of Patients with Metastatic Castration-Resistant Prostate Cancer Receiving 177Lu-PSMA-617. J Nucl Med 2024; 65:1945-1951. [PMID: 39510589 DOI: 10.2967/jnumed.124.267665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
177Lu-PSMA-617 (LuPSMA) is a newly established treatment for patients with metastatic castration-resistant prostate cancer (mCRPC), but survival outcomes vary widely, and predictors of treatment responses are needed. This study investigated the role of total tumor volumes (TTVs) and new lesions (NLs) determined by LuPSMA SPECT/CT in early cycles to predict subsequent outcomes in a real-world practice setting. Methods: Between June and December 2022, consecutive patients with mCRPC who received at least 2 administrations of LuPSMA with SPECT/CT 24 h after treatment were retrospectively reviewed. We evaluated associations between TTVs and the appearance of NLs at cycles 2 and 3 with subsequent prostate-specific antigen (PSA) progression-free survival and overall survival (OS) using multivariate Cox regression. All analyses were adjusted for changes in PSA level relative to baseline. Results: Sixty-six mCRPC patients (median age, 74 y) received a median of 4 (interquartile range, 3-5) cycles of LuPSMA. Median follow-up starting at cycle 2 was 42 wk (interquartile range, 33-48 wk), with 24 of 66 patients deceased at the time of the analysis. Changes in TTV measured at the start of cycles 2 and 3 relative to baseline correlated significantly with corresponding changes in PSA level (r = 0.55 and 0.56), but absolute TTVs did not correlate significantly (r = 0.00 and 0.18). Patients with a higher absolute TTV at the start of cycle 2 had worse PSA progression-free survival and OS (hazard ratio [HR], 1.4 [95% CI, 1.1-1.8] and 2.1 [95% CI, 1.5-2.9]), with consistent results at the start of cycle 3 (HR, 2 [95% CI, 1.4-2.9] and 2 [95% CI, 1.2-3.2]). NLs were identified in 13 of 66 and 11 of 51 patients at the start of cycles 2 and 3. NLs at the start of cycle 2 were associated with worse OS (HR, 5.8 [95% CI, 1.9-17.5]), with consistent results at the start of cycle 3 (HR, 4.9 [95% CI, 1.3-18.6]). In multivariate analysis, a higher TTV and the appearance of NLs at the start of cycles 2 and 3 were independently associated with poorer OS. Conclusion: Higher TTVs and NLs on LuPSMA SPECT/CT at the start of cycles 2 and 3 were independently associated with higher risk of death. These measures provided prognostic information independent of changes in PSA. Development of prognostic and predictive models including TTV, NLs, and PSA changes is warranted.
Collapse
Affiliation(s)
| | - Roman Gulati
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jessica E Hawley
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Todd Yezefski
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington; and
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Heather H Cheng
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Robert B Montgomery
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Michael T Schweizer
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Evan Y Yu
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Peter S Nelson
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington; and
| | - Delphine L Chen
- Department of Radiology, University of Washington, Seattle, Washington
| | - Amir Iravani
- Department of Radiology, University of Washington, Seattle, Washington;
| |
Collapse
|
3
|
Hoog C, Koulibaly PM, Sas N, Imbert L, Le Rouzic G, Popoff R, Badel JN, Ferrer L. 360° CZT-SPECT/CT cameras: 99mTc- and 177Lu-phantom-based evaluation under clinical conditions. EJNMMI Phys 2024; 11:89. [PMID: 39446222 PMCID: PMC11502619 DOI: 10.1186/s40658-024-00684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
PURPOSE For the first time, three currently available 360° CZT-SPECT/CT cameras were compared under clinical conditions using phantom-based measurements. METHODS A 99mTc- and a 177Lu-customized NEMA IEC body phantom were imaged with three different cameras, StarGuide (GE Healthcare), VERITON-CT versions 200 (V200) and 400 (V400) (Spectrum Dynamics Medical) under the same clinical conditions. Energy resolution and volumetric sensitivity were evaluated from energy spectra. Vendors provided the best reconstruction parameters dedicated to visualization and/or quantification, based on their respective software developments. For both 99mTc- and 177Lu-phantoms, noise level, quantification accuracy, and recovery coefficient (RC) were performed with 3DSlicer. Image quality metrics from an approach called "task-based" were computed with iQMetrix-CT on 99mTc visual reconstructions to assess, through spatial frequencies, noise texture in the background (NPS) and contrast restitution of a hot insert (TTF). Spatial resolution indices were calculated from frequencies corresponding to TTF10% and TTF50%. RESULTS Despite the higher sensitivity of VERITON cameras and the enhanced energy resolution of the V400 (3.2% at 140 keV, 5.2% at 113 keV, and 3.6% at 208 keV), StarGuide presents comparable image quality. This highlights the need to differentiate sensitivity from count quality, which is influenced by hardware design (collimator, detector block) and conditions image quality as well as the reconstruction process (algorithms, scatter correction, noise regulation). For 99mTc imaging, the quantitative image optimization approach based on RCmean for StarGuide versus RCmax for V200 and V400 systems (RCmean/RCmax: 0.9/1.8; 0.5/0.9; 0.5/0.9 respectively-Ø37 mm). SRTB10/50 showed nearly equivalent spatial resolution performances across the different reconstructed images. For 177Lu imaging, the 113 keV imaging of the V200 and V400 systems demonstrated strong performances in both image quality and quantification, while StarGuide and V400 systems offer even better potential due to their ability to exploit signals from both the 113 and 208 keV peaks. 177Lu quantification was optimized according to RCmax for all cameras and reconstructions (1.07 ± 0.09-Ø37 mm). CONCLUSIONS The three cameras have equivalent potential for 99mTc imaging, while StarGuide and V400 have demonstrated higher potential for 177Lu. Dedicated visual or quantitative reconstructions offer better specific performances compared to the unified visual/quantitative reconstruction. The task-based approach appears to be promising for in-depth comparison of images in the context of system characterization/comparison and protocol optimization.
Collapse
Affiliation(s)
- Christopher Hoog
- Medical Physics Department, Institut Godinot Comprehensive Cancer Center, Reims, France.
| | - Pierre-Malick Koulibaly
- Department of Diagnostic Radiology and Nuclear Medicine, Antoine Lacassagne Comprehensive Cancer Center, Université Nice-Côte d'Azur, 33 Avenue de Valombrose, 06189, Nice, France
| | - Nicolas Sas
- Department of Medical Physics, Jean Perrin Comprehensive Cancer Center, 63000, Clermont-Ferrand, France
| | - Laetitia Imbert
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, Université de Lorraine, 54000, Nancy, France
| | - Gilles Le Rouzic
- Nuclear Medicine Department, CHU Orleans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| | - Romain Popoff
- Department of Medical Physics, Georges-François Leclerc Cancer Center, 1 Rue du Professeur Marion, 21000, Dijon, France
- ICMUB, UMR 6302, CNRS, Dijon, France
| | - Jean-Noël Badel
- Centre de Lutte Contre le Cancer Léon-Bérard, CREATIS CNRS UMR 5220 INSERM U 1044, Université de Lyon, INSA-Lyon, Lyon, France
| | - Ludovic Ferrer
- Medical Physics Department, ICO René Gauducheau, Saint Herblain, 44805, France
- CRCINA, UMR 1232, INSERM, Nantes, France
| |
Collapse
|
4
|
Verger A, Cecchin D, Guedj E, Albert NL, Brendel M, Fraioli F, Tolboom N, Traub-Weidinger T, Yakushev I, Van Weehaeghe D, Fernandez PA, Garibotto V, Imbert L. EANM perspectives for CZT SPECT in brain applications. Eur J Nucl Med Mol Imaging 2024; 51:3680-3684. [PMID: 38858281 DOI: 10.1007/s00259-024-06788-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Affiliation(s)
- Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, Université de Lorraine, IADI, INSERM U1254, Allée du Morvan, Nancy, 54500, France.
| | - Diego Cecchin
- Department of Medicine, Unit of Nuclear Medicine, University Hospital of Padova, Padova, Italy
| | - Eric Guedj
- Département de Médecine Nucléaire, Aix Marseille Univ, APHM, CNRS, Centrale Marseille, Institut Fresnel, Hôpital de La Timone, CERIMED, Marseille, France
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Francesco Fraioli
- Institute of Nuclear Medicine, University College London (UCL), London, UK
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Tatjana Traub-Weidinger
- Department of Diagnostic and Therapeutic Nuclear Medicine, Clinic Donaustadt, Vienna Health Care Group, Vienna, Austria
| | - Igor Yakushev
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts dr Isar, Technical University of Munich, Munich, Germany
| | - Donatienne Van Weehaeghe
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, C. Heymanslaan 10, Ghent, 9000, Belgium
| | - Pablo Aguiar Fernandez
- CIMUS, Universidade Santiago de Compostela & Nuclear Medicine Department, Univ. Hospital IDIS, Santiago de Compostela, Spain
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, Geneva, 1205, Switzerland
- NIMTLab, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | - Laetitia Imbert
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, Université de Lorraine, IADI, INSERM U1254, Allée du Morvan, Nancy, 54500, France
| |
Collapse
|
5
|
De Schepper S, Gnanasegaran G, De Vos W, Van de Casteele E, Dickson JC, Van den Wyngaert T. From SPECT/CT towards absolute quantification? - the case of unilateral condylar hyperplasia of the mandible. EJNMMI Phys 2024; 11:74. [PMID: 39177939 PMCID: PMC11343952 DOI: 10.1186/s40658-024-00676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Unilateral condylar hyperplasia (UCH) of the mandible is a rare condition characterized by asymmetric growth of the mandibular condyles. Bone scintigraphy with SPECT(/CT) is commonly used to diagnose UCH and guide treatment. Still, varying results have been reported using the traditional threshold of 55%:45% in relative tracer uptake. While absolute quantification of uptake on SPECT/CT could improve results, optimal correction and reconstruction settings are currently unknown. METHODS Three anthropomorphic phantoms representing UCH were developed from patient CT volumes and produced using 3D printing technology. Fillable spherical inserts of different sizes (Ø: 8-15 mm) were placed in the condylar positions representing symmetrical and asymmetrical distributions. Recovery coefficients were determined for SPECT/CT using various reconstruction corrections, including attenuation and scatter correction (ACSC), resolution modeling (RM), and partial volume correction (PVC) using phantom measurements. Uptake ratios between condyles and condyle to clivus were evaluated. Finally, the impact of these correction techniques on absolute activity and diagnostic accuracy was assessed in a retrospective patient cohort for the diagnostic threshold of 55%:45%. RESULTS The activity was only partially recovered in all spherical inserts (range: 22.5-64.9%). However, RM improved relative recovery by 20.2-62.3% compared to ACSC. In the symmetric phantoms, the 95% confidence interval (CI) of condyle ratios included the diagnostic threshold (57.6%:42.4%) for UCH when using ACSC potentially leading to false positives, but not for ACSCRM datasets. Partial volume corrections coefficients from the NEMA IQ phantom was positionally dependent, with improvements seen performing PVC using coefficients derived from anthropomorphic phantoms. Retrospective application in a patient cohort showed only a weak linear correlation (R²: 0.25-0.67) and large limits of agreement (9.6-12.5%) between different reconstructions. Up to 44% of patients were reclassified using the 55%:45% threshold. Using clinical outcome data, ACSCRM had highest sensitivity (91%; 95% CI 59-100%) and specificity (66%; 95% CI 47-81%), significantly improving specificity (P = 0.038). CONCLUSIONS Anthropomorphic phantoms were shown to be essential in determining optimal settings for acquisition, reconstruction, and analysis. SPECT/CT reconstructions with attenuation and scatter correction and resolution modeling are recommended and could improve specificity when using the 55%:45% threshold to assess condylar growth.
Collapse
Affiliation(s)
- Stijn De Schepper
- Department of Nuclear Medicine, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, 2650, Belgium.
- Faculty of Medicine and Health Sciences (MICA - IPPON), University of Antwerp, Wilrijk, Belgium.
| | | | - Wouter De Vos
- Department of Oral and Maxillofacial Surgery, Antwerp University Hospital, Antwerp, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Elke Van de Casteele
- Department of Oral and Maxillofacial Surgery, Antwerp University Hospital, Antwerp, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - John C Dickson
- Institute of Nuclear Medicine, University College of London Hospitals NHS, London, UK
| | - Tim Van den Wyngaert
- Department of Nuclear Medicine, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, 2650, Belgium
- Faculty of Medicine and Health Sciences (MICA - IPPON), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
6
|
Keane G, van Rooij R, Lam M, Kappadath SC, Kovan B, Leon S, Dreher M, Fowers K, de Jong H. An international phantom study of inter-site variability in Technetium-99m image quantification: analyses from the TARGET radioembolization study. EJNMMI Phys 2024; 11:46. [PMID: 38809320 PMCID: PMC11136909 DOI: 10.1186/s40658-024-00647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Personalised multi-compartment dosimetry based on [99mTc]Tc-MAA is a valuable tool for planning 90Y radioembolization treatments. The establishment and effective application of dose-effect relationships in yttrium-90 (90Y) radioembolization requires [99mTc]Tc-MAA SPECT quantification ideally independent of clinical site. The purpose of this multi-centre phantom study was to evaluate inter-site variability of [99mTc]Tc-MAA imaging and evaluate a standardised imaging protocol. Data was obtained from the TARGET study, an international, retrospective multi-centre study including 14 sites across 8 countries. The impact of imaging related factors was estimated using a NEMA IQ phantom (representing the liver), and a uniformly filled cylindrical phantom (representing the lungs). Imaging was performed using site-specific protocols and a standardized protocol. In addition, the impact of implementing key image corrections (scatter and attenuation correction) in the site-specific protocols was investigated. Inter-site dosimetry accuracy was evaluated by comparing computed Lung Shunt Fraction (LSF) measured using planar imaging of the cylindrical and NEMA phantom, and contrast recovery coefficient (CRC) measured using SPECT imaging of the NEMA IQ phantom. RESULTS Regarding the LSF, inter-site variation with planar site-specific protocols was minimal, as determined by comparing computed LSF between sites (interquartile range 9.6-10.1%). A standardised protocol did not improve variation (interquartile range 8.4-9.0%) but did improve mean accuracy compared to the site-specific protocols (5.0% error for standardised protocol vs 8.8% error for site-specific protocols). Regarding the CRC, inter-system variation was notable for site-specific SPECT protocols and could not be improved by the standardised protocol (CRC interquartile range for 37 mm sphere 0.5-0.7 and 0.6-0.8 respectively), however the standardised protocol did improve accuracy of sphere:background determination. Implementation of key image corrections did improve inter-site variation (CRC interquartile range for 37 mm sphere 0.6-0.7). CONCLUSION Eliminating sources of variability in image corrections between imaging protocols reduces inter-site variation in quantification. A standardised protocol was not able to improve consistency of LSF or CRC but was able to improve accuracy.
Collapse
Affiliation(s)
- Grace Keane
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands.
| | - Rob van Rooij
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Marnix Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - S Cheenu Kappadath
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bilal Kovan
- Department of Nuclear Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Stephanie Leon
- Department of Radiology, University of Florida, Gainesville, FL, USA
| | | | - Kirk Fowers
- Boston Scientific Corporation, Marlborough, MA, USA
| | - Hugo de Jong
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
7
|
Li Z, Benabdallah N, Luo J, Wahl RL, Thorek DLJ, Jha AK. ISIT-QA: In Silico Imaging Trial to Evaluate a Low-Count Quantitative SPECT Method Across Multiple Scanner-Collimator Configurations for 223Ra-Based Radiopharmaceutical Therapies. J Nucl Med 2024; 65:810-817. [PMID: 38575187 PMCID: PMC11064831 DOI: 10.2967/jnumed.123.266719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/13/2024] [Indexed: 04/06/2024] Open
Abstract
Personalized dose-based treatment planning requires accurate and reproducible noninvasive measurements to ensure safety and effectiveness. Dose estimation using SPECT is possible but challenging for alpha (α)-particle-emitting radiopharmaceutical therapy (α-RPT) because of complex γ-emission spectra, extremely low counts, and various image-degrading artifacts across a plethora of scanner-collimator configurations. Through the incorporation of physics-based considerations and skipping of the potentially lossy voxel-based reconstruction step, a recently developed projection-domain low-count quantitative SPECT (LC-QSPECT) method has the potential to provide reproducible, accurate, and precise activity concentration and dose measures across multiple scanners, as is typically the case in multicenter settings. To assess this potential, we conducted an in silico imaging trial to evaluate the LC-QSPECT method for a 223Ra-based α-RPT, with the trial recapitulating patient and imaging system variabilities. Methods: A virtual imaging trial titled In Silico Imaging Trial for Quantitation Accuracy (ISIT-QA) was designed with the objectives of evaluating the performance of the LC-QSPECT method across multiple scanner-collimator configurations and comparing performance with a conventional reconstruction-based quantification method. In this trial, we simulated 280 realistic virtual patients with bone-metastatic castration-resistant prostate cancer treated with 223Ra-based α-RPT. The trial was conducted with 9 simulated SPECT scanner-collimator configurations. The primary objective of this trial was to evaluate the reproducibility of dose estimates across multiple scanner-collimator configurations using LC-QSPECT by calculating the intraclass correlation coefficient. Additionally, we compared the reproducibility and evaluated the accuracy of both considered quantification methods across multiple scanner-collimator configurations. Finally, the repeatability of the methods was evaluated in a test-retest study. Results: In this trial, data from 268 223RaCl2 treated virtual prostate cancer patients, with a total of 2,903 lesions, were used to evaluate LC-QSPECT. LC-QSPECT provided dose estimates with good reproducibility across the 9 scanner-collimator configurations (intraclass correlation coefficient > 0.75) and high accuracy (ensemble average values of recovery coefficients ranged from 1.00 to 1.02). Compared with conventional reconstruction-based quantification, LC-QSPECT yielded significantly improved reproducibility across scanner-collimator configurations, accuracy, and test-retest repeatability ([Formula: see text] Conclusion: LC-QSPECT provides reproducible, accurate, and repeatable dose estimations in 223Ra-based α-RPT as evaluated in ISIT-QA. These findings provide a strong impetus for multicenter clinical evaluations of LC-QSPECT in dose quantification for α-RPTs.
Collapse
Affiliation(s)
- Zekun Li
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Nadia Benabdallah
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
- Program in Quantitative Molecular Therapeutics, Washington University, St. Louis, Missouri
| | - Jingqin Luo
- Siteman Cancer Center, Washington University, St. Louis, Missouri
- Division of Public Health Sciences, Department of Surgery, Washington University, St. Louis, Missouri; and
- Division of Biostatistics, Washington University, St. Louis, Missouri
| | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
- Siteman Cancer Center, Washington University, St. Louis, Missouri
| | - Daniel L J Thorek
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
- Program in Quantitative Molecular Therapeutics, Washington University, St. Louis, Missouri
- Siteman Cancer Center, Washington University, St. Louis, Missouri
| | - Abhinav K Jha
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri;
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
- Siteman Cancer Center, Washington University, St. Louis, Missouri
| |
Collapse
|
8
|
Siebinga H, de Wit-van der Veen BJ, de Vries-Huizing DMV, Vogel WV, Hendrikx JJMA, Huitema ADR. Quantification of biochemical PSA dynamics after radioligand therapy with [ 177Lu]Lu-PSMA-I&T using a population pharmacokinetic/pharmacodynamic model. EJNMMI Phys 2024; 11:39. [PMID: 38656678 PMCID: PMC11043318 DOI: 10.1186/s40658-024-00642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND There is an unmet need for prediction of treatment outcome or patient selection for [177Lu]Lu-PSMA therapy in patients with metastatic castration-resistant prostate cancer (mCRPC). Quantification of the tumor exposure-response relationship is pivotal for further treatment optimization. Therefore, a population pharmacokinetic (PK) model was developed for [177Lu]Lu-PSMA-I&T using SPECT/CT data and, subsequently, related to prostate-specific antigen (PSA) dynamics after therapy in patients with mCRPC using a pharmacokinetic/pharmacodynamic (PKPD) modelling approach. METHODS A population PK model was developed using quantitative SPECT/CT data (406 scans) of 76 patients who received multiple cycles [177Lu]Lu-PSMA-I&T (± 7.4 GBq with either two- or six-week interval). The PK model consisted of five compartments; central, salivary glands, kidneys, tumors and combined remaining tissues. Covariates (tumor volume, renal function and cycle number) were tested to explain inter-individual variability on uptake into organs and tumors. The final PK model was expanded with a PD compartment (sequential fitting approach) representing PSA dynamics during and after treatment. To explore the presence of a exposure-response relationship, individually estimated [177Lu]Lu-PSMA-I&T tumor concentrations were related to PSA changes over time. RESULTS The population PK model adequately described observed data in all compartments (based on visual inspection of goodness-of-fit plots) with adequate precision of parameters estimates (< 36.1% relative standard error (RSE)). A significant declining uptake in tumors (k14) during later cycles was identified (uptake decreased to 73%, 50% and 44% in cycle 2, 3 and 4-7, respectively, compared to cycle 1). Tumor growth (defined by PSA increase) was described with an exponential growth rate (0.000408 h-1 (14.2% RSE)). Therapy-induced PSA decrease was related to estimated tumor concentrations (MBq/L) using both a direct and delayed drug effect. The final model adequately captured individual PSA concentrations after treatment (based on goodness-of-fit plots). Simulation based on the final PKPD model showed no evident differences in response for the two different dosing regimens currently used. CONCLUSIONS Our population PK model accurately described observed [177Lu]Lu-PSMA-I&T uptake in salivary glands, kidneys and tumors and revealed a clear declining tumor uptake over treatment cycles. The PKPD model adequately captured individual PSA observations and identified population response rates for the two dosing regimens. Hence, a PKPD modelling approach can guide prediction of treatment response and thus identify patients in whom radioligand therapy is likely to fail.
Collapse
Affiliation(s)
- Hinke Siebinga
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute: Antoni Van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Department of Nuclear Medicine, The Netherlands Cancer Institute: Antoni Van Leeuwenhoek, Amsterdam, The Netherlands.
| | | | - Daphne M V de Vries-Huizing
- Department of Nuclear Medicine, The Netherlands Cancer Institute: Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - Wouter V Vogel
- Department of Nuclear Medicine, The Netherlands Cancer Institute: Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Radiation Oncology, The Netherlands Cancer Institute: Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - Jeroen J M A Hendrikx
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute: Antoni Van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Nuclear Medicine, The Netherlands Cancer Institute: Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute: Antoni Van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
9
|
Ramonaheng K, Qebetu M, Ndlovu H, Swanepoel C, Smith L, Mdanda S, Mdlophane A, Sathekge M. Activity quantification and dosimetry in radiopharmaceutical therapy with reference to 177Lutetium. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1355912. [PMID: 39355215 PMCID: PMC11440950 DOI: 10.3389/fnume.2024.1355912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 10/03/2024]
Abstract
Radiopharmaceutical therapy has been widely adopted owing primarily to the development of novel radiopharmaceuticals. To fully utilize the potential of these RPTs in the era of precision medicine, therapy must be optimized to the patient's tumor characteristics. The vastly disparate dosimetry methodologies need to be harmonized as the first step towards this. Multiple factors play a crucial role in the shift from empirical activity administration to patient-specific dosimetry-based administrations from RPT. Factors such as variable responses seen in patients with presumably similar clinical characteristics underscore the need to standardize and validate dosimetry calculations. These efforts combined with ongoing initiatives to streamline the dosimetry process facilitate the implementation of radiomolecular precision oncology. However, various challenges hinder the widespread adoption of personalized dosimetry-based activity administration, particularly when compared to the more convenient and resource-efficient approach of empiric activity administration. This review outlines the fundamental principles, procedures, and methodologies related to image activity quantification and dosimetry with a specific focus on 177Lutetium-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Keamogetswe Ramonaheng
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Milani Qebetu
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Honest Ndlovu
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Cecile Swanepoel
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Liani Smith
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Sipho Mdanda
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Amanda Mdlophane
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mike Sathekge
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Grkovski M, O'Donoghue JA, Imber BS, Andl G, Tu C, Lafontaine D, Schwartz J, Thor M, Zelefsky MJ, Humm JL, Bodei L. Lesion Dosimetry for [ 177Lu]Lu-PSMA-617 Radiopharmaceutical Therapy Combined with Stereotactic Body Radiotherapy in Patients with Oligometastatic Castration-Sensitive Prostate Cancer. J Nucl Med 2023; 64:1779-1787. [PMID: 37652541 PMCID: PMC10626375 DOI: 10.2967/jnumed.123.265763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/11/2023] [Indexed: 09/02/2023] Open
Abstract
A single-institution prospective pilot clinical trial was performed to demonstrate the feasibility of combining [177Lu]Lu-PSMA-617 radiopharmaceutical therapy (RPT) with stereotactic body radiotherapy (SBRT) for the treatment of oligometastatic castration-sensitive prostate cancer. Methods: Six patients with 9 prostate-specific membrane antigen (PSMA)-positive oligometastases received 2 cycles of [177Lu]Lu-PSMA-617 RPT followed by SBRT. After the first intravenous infusion of [177Lu]Lu-PSMA-617 (7.46 ± 0.15 GBq), patients underwent SPECT/CT at 3.2 ± 0.5, 23.9 ± 0.4, and 87.4 ± 12.0 h. Voxel-based dosimetry was performed with calibration factors (11.7 counts per second/MBq) and recovery coefficients derived from in-house phantom experiments. Lesions were segmented on baseline PSMA PET/CT (50% SUVmax). After a second cycle of [177Lu]Lu-PSMA-617 (44 ± 3 d; 7.50 ± 0.10 GBq) and an interim PSMA PET/CT scan, SBRT (27 Gy in 3 fractions) was delivered to all PSMA-avid oligometastatic sites, followed by post-PSMA PET/CT. RPT and SBRT voxelwise dose maps were scaled (α/β = 3 Gy; repair half-time, 1.5 h) to calculate the biologically effective dose (BED). Results: All patients completed the combination therapy without complications. No grade 3+ toxicities were noted. The median of the lesion SUVmax as measured on PSMA PET was 16.8 (interquartile range [IQR], 11.6) (baseline), 6.2 (IQR, 2.7) (interim), and 2.9 (IQR, 1.4) (post). PET-derived lesion volumes were 0.4-1.7 cm3 The median lesion-absorbed dose (AD) from the first cycle of [177Lu]Lu-PSMA-617 RPT (ADRPT) was 27.7 Gy (range, 8.3-58.2 Gy; corresponding to 3.7 Gy/GBq, range, 1.1-7.7 Gy/GBq), whereas the median lesion AD from SBRT was 28.1 Gy (range, 26.7-28.8 Gy). Spearman rank correlation, ρ, was 0.90 between the baseline lesion PET SUVmax and SPECT SUVmax (P = 0.005), 0.74 (P = 0.046) between the baseline PET SUVmax and the lesion ADRPT, and -0.81 (P = 0.022) between the lesion ADRPT and the percent change in PET SUVmax (baseline to interim). The median for the lesion BED from RPT and SBRT was 159 Gy (range, 124-219 Gy). ρ between the BED from RPT and SBRT and the percent change in PET SUVmax (baseline to post) was -0.88 (P = 0.007). Two cycles of [177Lu]Lu-PSMA-617 RPT contributed approximately 40% to the maximum BED from RPT and SBRT. Conclusion: Lesional dosimetry in patients with oligometastatic castration-sensitive prostate cancer undergoing [177Lu]Lu-PSMA-617 RPT followed by SBRT is feasible. Combined RPT and SBRT may provide an efficient method to maximize the delivery of meaningful doses to oligometastatic disease while addressing potential microscopic disease reservoirs and limiting the dose exposure to normal tissues.
Collapse
Affiliation(s)
- Milan Grkovski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York;
| | - Joseph A O'Donoghue
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brandon S Imber
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - George Andl
- Varian Medical Systems Inc., Palo Alto, California; and
| | - Cheng Tu
- Varian Medical Systems Inc., Palo Alto, California; and
| | - Daniel Lafontaine
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jazmin Schwartz
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria Thor
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael J Zelefsky
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lisa Bodei
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
11
|
Vergnaud L, Badel JN, Giraudet AL, Kryza D, Mognetti T, Baudier T, Rida H, Dieudonné A, Sarrut D. Performance study of a 360° CZT camera for monitoring 177Lu-PSMA treatment. EJNMMI Phys 2023; 10:58. [PMID: 37736779 PMCID: PMC10516832 DOI: 10.1186/s40658-023-00576-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the quantification performance of a 360° CZT camera for 177Lu-based treatment monitoring. METHODS Three phantoms with known 177Lu activity concentrations were acquired: (1) a uniform cylindrical phantom for calibration, (2) a NEMA IEC body phantom for analysis of different-sized spheres to optimise quantification parameters and (3) a phantom containing two large vials simulating organs at risk for tests. Four sets of reconstruction parameters were tested: (1) Scatter, (2) Scatter and Point Spread Function Recovery (PSFR), (3) PSFR only and (4) Penalised likelihood option and Scatter, varying the number of updates (iterations × subsets) with CT-based attenuation correction only. For each, activity concentration (ARC) and contrast recovery coefficients (CRC) were estimated as well as root mean square. Visualisation and quantification parameters were applied to reconstructed patient image data. RESULTS Optimised quantification parameters were determined to be: CT-based attenuation correction, scatter correction, 12 iterations, 8 subsets and no filter. ARC, CRC and RMS results were dependant on the methodology used for calculations. Two different reconstruction parameters were recommended for visualisation and for quantification. 3D whole-body SPECT images were acquired and reconstructed for 177Lu-PSMA patients in 2-3 times faster than the time taken for a conventional gamma camera. CONCLUSION Quantification of whole-body 3D images of patients treated with 177Lu-PSMA is feasible and an optimised set of parameters has been determined. This camera greatly reduces procedure time for whole-body SPECT.
Collapse
Affiliation(s)
- Laure Vergnaud
- Centre de lutte contre le cancer Léon Bérard, Lyon, France.
- CREATIS, CNRS UMR 5220, INSERM U 1044, Université de Lyon, INSA-Lyon, Université Lyon 1, Lyon, France.
| | - Jean-Noël Badel
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
- CREATIS, CNRS UMR 5220, INSERM U 1044, Université de Lyon, INSA-Lyon, Université Lyon 1, Lyon, France
| | | | - David Kryza
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
- Hospices Civils de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, Lyon, France
| | | | - Thomas Baudier
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
- CREATIS, CNRS UMR 5220, INSERM U 1044, Université de Lyon, INSA-Lyon, Université Lyon 1, Lyon, France
| | - Hanan Rida
- Département de médecine nucléaire, Centre Henri Becquerel, Rouen, France
| | - Arnaud Dieudonné
- Département de médecine nucléaire, Centre Henri Becquerel, Rouen, France
| | - David Sarrut
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
- CREATIS, CNRS UMR 5220, INSERM U 1044, Université de Lyon, INSA-Lyon, Université Lyon 1, Lyon, France
| |
Collapse
|
12
|
Hoog C, Verrecchia-Ramos E, Dejust S, Lalire P, Sezin G, Moubtakir A, El Farsaoui K, Caquot PA, Guendouzen S, Morland D, Papathanassiou D. Implementation of xSPECT, xSPECT bone and Broadquant from literature, clinical survey and innovative phantom study with task-based image quality assessment. Phys Med 2023; 112:102611. [PMID: 37329742 DOI: 10.1016/j.ejmp.2023.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/19/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023] Open
Abstract
OBJECTIVE From patient and phantom studies, we aimed to highlight an original implementation process and share a two-years experience clinical feedback on xSPECT (xS), xSPECT Bone (xB) and Broadquant quantification (Siemens) for 99mTc-bone and 177Lu-NET (neuroendocrine tumors) imaging. METHODS Firstly, we checked the relevance of implemented protocols and Broadquant module on the basis of literature and with a homogeneous phantom study respectively. Then, we described xS and xB behaviours with reconstruction parameters (10i-0mm to 40i-20mm) and optimized the protocols through a blinded survey (7 physicians). Finally, the preferred 99mTc-bone reconstruction was assessed through an IEC NEMA phantom including liquid bone spheres. Conventional SNR, CNR, spatial resolution, Q.%error, and recovery curves; and innovative NPS, TTF and detectability score d' were performed (ImQuest software). We also sought to review the adoption of these tools in clinical routine and showed the potential of quantitative xB in the context of theranostics (Xofigo®). RESULTS We showed the need of optimization of implemented reconstruction algorithms and pointed out a decay correction particularity with Broadquant. Preferred parameters were 1s-25i-8mm and 1s-25i-5mm for xS/xB-bone and xS-NET imaging respectively. The phantom study highlighted the different image quality especially for the enhanced spatial resolution xB algorithm (1/TTF10%=2.1 mm) and showed F3D and xB shared the best performances in terms of image quality and quantification. xS was generally less efficient. CONCLUSIONS Qualitative F3D still remains the clinical standard, xB and Broadquant offer challenging perspectives in theranostics. We introduced the potential of innovative metrics for image quality analysis and showed how CT tools should be adapted to fit nuclear medicine imaging.
Collapse
Affiliation(s)
| | | | | | - Paul Lalire
- Nuclear Medicine Department, Institut Godinot, Reims, France
| | - Ghali Sezin
- Nuclear Medicine Department, Institut Godinot, Reims, France
| | | | | | | | | | - David Morland
- Nuclear Medicine Department, Institut Godinot, Reims, France; UFR de médecine, université de Reims-Champagne Ardenne, 1, rue Cognacq-Jay, 51095 Reims cedex, France; CReSTIC Centre de recherche en sciences et technologies de l'information et de la communication, EA 3804, université de Reims-Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France
| | - Dimitri Papathanassiou
- Nuclear Medicine Department, Institut Godinot, Reims, France; UFR de médecine, université de Reims-Champagne Ardenne, 1, rue Cognacq-Jay, 51095 Reims cedex, France; CReSTIC Centre de recherche en sciences et technologies de l'information et de la communication, EA 3804, université de Reims-Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France
| |
Collapse
|
13
|
Staanum PF. Tumor dosimetry using 177Lu: influence of background activity, measurement method and reconstruction algorithm. EJNMMI Phys 2023; 10:39. [PMID: 37341930 DOI: 10.1186/s40658-023-00561-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Image-based tumor dosimetry after radionuclide therapy, using the isotope 177Lu, finds application e.g., for tumor-to-organ dose comparison and for dose response evaluation. When the tumor extent is not much larger than the image resolution, and when 177Lu is found in nearby organs or other tumors, an accurate determination of tumor dose is particularly challenging. Here a quantitative evaluation of three different methods for determining the 177Lu activity concentration in a phantom is performed, and the dependence on a variety of parameters is described. The phantom (NEMA IEC body phantom) has spheres of different size in a background volume, and sphere-to-background 177Lu activity concentration ratios of infinity, 9.5, 5.0 and 2.7 are applied. The methods are simple to implement and well-known from the literature. They are based on (1) a large VOI encompassing the whole sphere, without background activity and with volume information from other sources, (2) a small VOI located in the sphere center, and (3) a VOI consisting of voxels with voxel value above a certain percentage of the maximum voxel value. RESULTS The determined activity concentration varies significantly with sphere size, sphere-to-background ratio, SPECT reconstruction method and method for determining the concentration. Based on the phantom study, criteria are identified under which the activity concentration can be determined with a maximal error of 40% even in the presence of background activity. CONCLUSIONS Tumor dosimetry is feasible in the presence of background activity using the above-mentioned methods, provided appropriate SPECT reconstructions are applied and tumors are selected for dosimetry analysis according to the following criteria for the three methods: (1) solitary tumor with diameter > 15 mm, (2) tumor diameter > 30 mm and tumor-to-background ratio > 2, and (3) tumor diameter > 30 mm and tumor-to-background ratio > 3.
Collapse
Affiliation(s)
- Peter Frøhlich Staanum
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark.
| |
Collapse
|
14
|
Kovan B, Demir B, Işık EG, Has Şimşek D, Özkan ZG, Kuyumcu S, Türkmen C, Şanlı Y. An anthropomorphic body phantom for the determination of calibration factor in radionuclide treatment dosimetry. RADIATION PROTECTION DOSIMETRY 2023:ncad176. [PMID: 37334429 PMCID: PMC10372715 DOI: 10.1093/rpd/ncad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/02/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
The aim of this study is to create an inhomogeneous human-like phantom, whose attenuation and scattering effects are similar to the human body, as an alternative to the homogeneous phantoms traditionally used in calibration factor (CF) determination. The phantom was designed to include the thorax, abdomen and upper pelvis regions sized to represent a 75-kg male with a body mass index of 25. Measurements using Lu-177 with 50- and 100-mL lesion volumes were performed using inhomogeneous anthropomorphic body phantom (ABP) and homogeneous NEMA PET body phantom. There was a difference of 5.7% of Calibration Factor including attenuation and scatter effect between ABP and NEMA PET body phantom. Because it better reflects the attenuation and scatter effect, it is recommended to use a human-like inhomogeneous phantom for determination of CF instead of a homogeneous phantom.
Collapse
Affiliation(s)
- Bilal Kovan
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul University, Fatih 34080, Turkey
| | - Bayram Demir
- Science Faculty, Department of Physics, Istanbul University, Fatih34080, Turkey
| | - Emine Göknur Işık
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul University, Fatih 34080, Turkey
| | - Duygu Has Şimşek
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul University, Fatih 34080, Turkey
| | - Zeynep Gözde Özkan
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul University, Fatih 34080, Turkey
| | - Sekan Kuyumcu
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul University, Fatih 34080, Turkey
| | - Cüneyt Türkmen
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul University, Fatih 34080, Turkey
| | - Yasemin Şanlı
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul University, Fatih 34080, Turkey
| |
Collapse
|
15
|
Veerman CHAM, Siebinga H, de Vries-Huizing DMV, Tesselaar MET, Hendrikx JJMA, Stokkel MPM, Aalbersberg EA. The effect of long-acting somatostatin analogues on the uptake of [ 177Lu]Lu-HA-DOTATATE. Eur J Nucl Med Mol Imaging 2023; 50:1434-1441. [PMID: 36598536 DOI: 10.1007/s00259-022-06094-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE According to IAEA/EANM/SNMMI guidelines, long-acting somatostatin analogues (LA-SSAs) should be discontinued 4-6 weeks prior to peptide receptor radionuclide therapy (PRRT) to prevent somatostatin receptor saturation. The aim of this study was to determine the effect of continued use of long-acting SSAs during PRRT on the uptake of [177Lu]Lu-HA-DOTATATE on SPECT/CT. METHODS Consecutive patients with neuroendocrine tumours who were treated with PRRT receiving 7.4 GBq of [177Lu]Lu-HA-DOTATATE were included. Patients were divided into 3 groups: (1) control (LA-SSA stopped > 6 weeks prior to PRRT), or continued treatment with (2) long-acting octreotide < 6 weeks prior to PRRT, or (3) long-acting lanreotide < 6 weeks prior to PRRT. The uptake of [177Lu]Lu-HA-DOTATATE was quantified in healthy tissues (spleen, liver, kidneys, bone marrow) and tumour lesions on SPECT/CT performed 24 h after PRRT. A Mann-Whitney U test was used to determine differences in uptake between the long-acting octreotide and long-acting lanreotide groups compared to the control group. RESULTS Forty-two patients with 135 cycles of PRRT were included: 28 with lanreotide, 50 with octreotide, and 57 cycles without LA-SSAs. Uptake of [177Lu]Lu-HA-DOTATATE was significantly decreased in liver parenchyma in patients with lanreotide (p < 0.001) and in the spleen in patients with either octreotide or lanreotide (both p < 0.001). No differences were observed for uptake in kidneys, bone marrow, and blood pool. Uptake of [177Lu]Lu-HA-DOTATATE in tumours was the same in patients with lanreotide compared to the control (p = 0.862) and in patients with octreotide compared to the control (p = 0.201), independent of tumour location. CONCLUSION Long-acting octreotide and lanreotide do not interfere with the uptake of [177Lu]Lu-HA-DOTATATE in tumour lesions 24 h post-injection. Uptake in healthy liver parenchyma significantly decreases after lanreotide administration prior to PRRT, while uptake in healthy spleen tissue significantly decreases with both octreotide and lanreotide administration.
Collapse
Affiliation(s)
- Chayenne H A M Veerman
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Hinke Siebinga
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daphne M V de Vries-Huizing
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Margot E T Tesselaar
- Department of Medical and Gastrointestinal Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jeroen J M A Hendrikx
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marcel P M Stokkel
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Else A Aalbersberg
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| |
Collapse
|
16
|
John N, Pathmanandavel S, Crumbaker M, Counter W, Ho B, Yam AO, Wilson P, Niman R, Ayers M, Poole A, Hickey A, Agrawal S, Perkins G, Kallinen A, Eslick E, Stockler MR, Joshua AM, Nguyen A, Emmett L. 177Lu-PSMA SPECT Quantitation at 6 Weeks (Dose 2) Predicts Short Progression-Free Survival for Patients Undergoing 177Lu-PSMA-I&T Therapy. J Nucl Med 2023; 64:410-415. [PMID: 36215568 DOI: 10.2967/jnumed.122.264677] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
177Lu-PSMA is an effective treatment in metastatic castration-resistant prostate cancer (mCRPC). Our ability to assess response rates and adjust treatment may be improved using predictive tools. This study aimed to evaluate change in 177Lu-PSMA SPECT quantitative parameters to monitor treatment response. Methods: One hundred twenty-seven men with progressive mCRPC previously treated with androgen-signaling inhibition (99%) and chemotherapy (71%) received a median of 3 (interquartile range [IQR], 2-5) 8-GBq (IQR, 8-8.5 GBq) doses of 177Lu-PSMA-I&T. Imaging included 68Ga-PSMA-11 PET/CT (SUVmax > 15 at a single site and > 10 at all sites > 2 cm), diagnostic CT, and 177Lu SPECT/CT from vertex to mid thigh (24 h after treatment). 177Lu SPECT/CT quantitative analysis was undertaken at cycles 1 (baseline) and 2 (week 6) of treatment. Clinical and biochemical results were assessed to evaluate prostate-specific antigen (PSA) progression-free survival (PFS) and overall survival (OS). Results: A PSA reduction of more than 50% was seen in 58% (74/127). The median PSA PFS was 6.1 mo (95% CI, 5.5-6.7), and OS was 16.8 mo (95% CI, 13.5-20.1). At the time of analysis, 41% (52/127) were deceased. At baseline and week 6, 76% (96/127) had analyzable serial 177Lu SPECT/CT imaging. SPECT total tumor volume (TTV) was reduced between baseline and week 6 in 74% (71/96; median, -193; IQR, -486 to -41). Any increase in SPECT TTV between baseline and week 6 was associated with significantly shorter PSA PFS (hazard ratio, 2.5; 95% CI, 1.5-4.2; P = 0.0008) but not OS. Median PSA PFS in those with an increase in SPECT TTV was 3.7 mo (95% CI, 2.8-6.8), compared with 6.7 mo (95% CI, 5.8-10.6) in those with no increase in SPECT TTV. An increase in SPECT TTV greater than 20% was also associated with PSA PFS (hazard ratio, 1.9; 95% CI, 1.2-3.0; P = 0.008) but less significantly than any change in SPECT TTV. There was a significant difference in PSA PFS between patients with both increased PSA and SPECT TTV and patients with reduced SPECT TTV and PSA (median, 2.8 vs. 9.0 mo; P < 0.0001). Conclusion: Increasing PSMA SPECT TTV on quantitative 177Lu SPECT/CT predicts short progression-free survival and may play a future role as an imaging response biomarker, identifying when to cease or intensify 177Lu-PSMA therapy.
Collapse
Affiliation(s)
- Nikeith John
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Sarennya Pathmanandavel
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - Megan Crumbaker
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Kinghorn Cancer Centre, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - William Counter
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - Bao Ho
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - Andrew O Yam
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Kinghorn Cancer Centre, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | | | - Remy Niman
- MIM Software, Inc., Cleveland, Ohio; and
| | - Maria Ayers
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - Aron Poole
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - Adam Hickey
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - Shikha Agrawal
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - Gary Perkins
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - Annukka Kallinen
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - Enid Eslick
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - Martin R Stockler
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Anthony M Joshua
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Kinghorn Cancer Centre, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - Andrew Nguyen
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Louise Emmett
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, New South Wales, Australia;
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Minczeles NS, Bos EM, de Leeuw RC, Kros JM, Konijnenberg MW, Bromberg JEC, de Herder WW, Dirven CMF, Hofland J, Brabander T. Efficacy and safety of peptide receptor radionuclide therapy with [ 177Lu]Lu-DOTA-TATE in 15 patients with progressive treatment-refractory meningioma. Eur J Nucl Med Mol Imaging 2023; 50:1195-1204. [PMID: 36454268 DOI: 10.1007/s00259-022-06044-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/13/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE There is no evidence-based systemic therapy for patients with progressive meningiomas for whom surgery or external radiotherapy is no longer an option. In this study, the efficacy and safety of peptide receptor radionuclide therapy (PRRT) in patients with progressive, treatment-refractory meningiomas were evaluated. METHODS Retrospective analysis of all meningioma patients treated with [177Lu]Lu-DOTA-TATE from 2000 to 2020 in our centre. Primary outcomes were response according to RANO bidimensional and volumetric criteria and progression-free survival (PFS). Overall survival (OS) and tumour growth rate (TGR) were secondary endpoints. TGR was calculated as the percentage change in surface or volume per month. RESULTS Fifteen meningioma patients received [177Lu]Lu-DOTA-TATE (7.5-29.6 GBq). Prior to PRRT, all patients had received external radiotherapy, and 14 patients had undergone surgery. All WHO grades were included WHO 1 (n=3), WHO 2 (n=5), and WHO 3 (n=6). After PRRT, stable disease was observed in six (40%) patients. The median PFS was 7.8 months with a 6-month PFS rate of 60%. The median OS was 13.6 months with a 12-month OS rate of 60%. All patients had progressive disease prior to PRRT, with an average TGR of 4.6% increase in surface and 14.8% increase in volume per month. After PRRT, TGR declined to 3.1% in surface (p=0.016) and 5.0% in volume (p=0.013) per month. CONCLUSION In this cohort of meningioma patients with exhaustion of surgical and radiotherapeutic options and progressive disease, it was shown that PRRT plays a role in controlling tumour growth.
Collapse
Affiliation(s)
- Noémie S Minczeles
- Department of Internal Medicine, Section of Endocrinology, ENETS Centre of Excellence Rotterdam, Erasmus MC and Erasmus MC Cancer Institute, Rotterdam, The Netherlands. .,Department of Radiology & Nuclear Medicine, ENETS Centre of Excellence Rotterdam, Erasmus MC, Rotterdam, The Netherlands.
| | - Eelke M Bos
- Department of Neurosurgery, Erasmus MC, Rotterdam, The Netherlands
| | - Reinoud C de Leeuw
- Department of Radiology & Nuclear Medicine, ENETS Centre of Excellence Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Johan M Kros
- Department of Pathology, ENETS Centre of Excellence Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Mark W Konijnenberg
- Department of Radiology & Nuclear Medicine, ENETS Centre of Excellence Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | | | - Wouter W de Herder
- Department of Internal Medicine, Section of Endocrinology, ENETS Centre of Excellence Rotterdam, Erasmus MC and Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Johannes Hofland
- Department of Internal Medicine, Section of Endocrinology, ENETS Centre of Excellence Rotterdam, Erasmus MC and Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology & Nuclear Medicine, ENETS Centre of Excellence Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Pathmanandavel S, Crumbaker M, Ho B, Yam AO, Wilson P, Niman R, Ayers M, Sharma S, Hickey A, Eu P, Stockler M, Martin AJ, Joshua AM, Nguyen A, Emmett L. Evaluation of 177Lu-PSMA-617 SPECT/CT Quantitation as a Response Biomarker Within a Prospective 177Lu-PSMA-617 and NOX66 Combination Trial (LuPIN). J Nucl Med 2023; 64:221-226. [PMID: 36008120 PMCID: PMC9902857 DOI: 10.2967/jnumed.122.264398] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
177Lu-PSMA-617 is an effective and novel treatment in metastatic castration-resistant prostate cancer (mCRPC). Our ability to assess response rates and therefore efficacy may be improved using predictive tools. This study investigated the predictive value of serial 177Lu-PSMA-617 SPECT/CT (177Lu SPECT) imaging in monitoring treatment response. Methods: Fifty-six men with progressive mCRPC previously treated with chemotherapy and novel androgen signaling inhibitor were enrolled into the LuPIN trial and received up to 6 doses of 177Lu-PSMA-617 and a radiation sensitizer (3-(4-hydroxyphenyl)-2H-1-benzopyran-7-ol [NOX66]). 68Ga-PSMA-11 and 18F-FDG PET/CT were performed at study entry and exit, and 177Lu SPECT from vertex to mid thighs was performed 24 h after each treatment. SPECT quantitative analysis was undertaken at cycles 1 (baseline) and 3 (week 12) of treatment. Results: Thirty-two of the 56 men had analyzable serial 177Lu SPECT imaging at both cycle 1 and cycle 3. In this subgroup, median prostate-specific antigen (PSA) progression-free survival (PFS) was 6.3 mo (95% CI, 5-10 mo) and median overall survival was 12.3 mo (95% CI, 12-24 mo). The PSA 50% response rate was 63% (20/32). 177Lu SPECT total tumor volume (SPECT TTV) was reduced in 68% (22/32; median, -0.20 m3 [95% CI, -1.4 to -0.001]) and increased in 31% (10/32; median, 0.36 [95% CI, 0.1-1.4]). Any increase in SPECT TTV was associated with shorter PSA PFS (hazard ratio, 4.1 [95% CI, 1.5-11.2]; P = 0.006). An increase of 30% or more in SPECT TTV was also associated with a shorter PSA PFS (hazard ratio, 3.3 [95% CI, 1.3-8.6]; P =0.02). Tumoral SUVmax was reduced in 91% (29/32) and SUVmean in 84% (27/32); neither was associated with PSA PFS or overall survival outcomes. PSA progression by week 12 was also associated with a shorter PSA PFS (hazard ratio, 26.5 [95% CI, 5.4-131]). In the patients with SPECT TTV progression at week 12, 50% (5/10) had no concurrent PSA progression (median PSA PFS, 4.5 mo [95% CI, 2.8-5.6 mo]), and 5 of 10 men had both PSA and SPECT TTV progression at week 12 (median PSA PFS, 2.8 mo [95% CI, 1.8-3.7 mo]). Conclusion: Increasing SPECT TTV on quantitative 177Lu SPECT predicts a short PFS and may play a future role as an imaging response biomarker.
Collapse
Affiliation(s)
- Sarennya Pathmanandavel
- Department of Theranostics and Nuclear Medicine, St. Vincent’s Hospital, Sydney, New South Wales, Australia
| | - Megan Crumbaker
- Kinghorn Cancer Centre, St. Vincent’s Hospital, Sydney, New South Wales, Australia;,Garvan Institute of Medical Research, Sydney, New South Wales, Australia;,St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Bao Ho
- Department of Theranostics and Nuclear Medicine, St. Vincent’s Hospital, Sydney, New South Wales, Australia
| | - Andrew O. Yam
- Kinghorn Cancer Centre, St. Vincent’s Hospital, Sydney, New South Wales, Australia;,Garvan Institute of Medical Research, Sydney, New South Wales, Australia;,St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | - Maria Ayers
- Department of Theranostics and Nuclear Medicine, St. Vincent’s Hospital, Sydney, New South Wales, Australia
| | - Shikha Sharma
- Department of Theranostics and Nuclear Medicine, St. Vincent’s Hospital, Sydney, New South Wales, Australia
| | - Adam Hickey
- Department of Theranostics and Nuclear Medicine, St. Vincent’s Hospital, Sydney, New South Wales, Australia
| | - Peter Eu
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and
| | - Martin Stockler
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew J. Martin
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Anthony M. Joshua
- Kinghorn Cancer Centre, St. Vincent’s Hospital, Sydney, New South Wales, Australia;,Garvan Institute of Medical Research, Sydney, New South Wales, Australia;,St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew Nguyen
- Department of Theranostics and Nuclear Medicine, St. Vincent’s Hospital, Sydney, New South Wales, Australia;,St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Louise Emmett
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, New South Wales, Australia; .,Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Dickson JC, Armstrong IS, Gabiña PM, Denis-Bacelar AM, Krizsan AK, Gear JM, Van den Wyngaert T, de Geus-Oei LF, Herrmann K. EANM practice guideline for quantitative SPECT-CT. Eur J Nucl Med Mol Imaging 2023; 50:980-995. [PMID: 36469107 PMCID: PMC9931838 DOI: 10.1007/s00259-022-06028-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/30/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Quantitative SPECT-CT is a modality of growing importance with initial developments in post radionuclide therapy dosimetry, and more recent expansion into bone, cardiac and brain imaging together with the concept of theranostics more generally. The aim of this document is to provide guidelines for nuclear medicine departments setting up and developing their quantitative SPECT-CT service with guidance on protocols, harmonisation and clinical use cases. METHODS These practice guidelines were written by members of the European Association of Nuclear Medicine Physics, Dosimetry, Oncology and Bone committees representing the current major stakeholders in Quantitative SPECT-CT. The guidelines have also been reviewed and approved by all EANM committees and have been endorsed by the European Association of Nuclear Medicine. CONCLUSION The present practice guidelines will help practitioners, scientists and researchers perform high-quality quantitative SPECT-CT and will provide a framework for the continuing development of quantitative SPECT-CT as an established modality.
Collapse
Affiliation(s)
- John C Dickson
- Institute of Nuclear Medicine, University College London Hospitals Foundation Trust, London, UK
| | - Ian S Armstrong
- Nuclear Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Pablo Minguez Gabiña
- Department of Medical Physics and Radiation Protection, Gurutzeta-Cruces University Hospital/Biocruces Health Research Institute, Barakaldo, Spain
- Department of Applied Physics, Faculty of Engineering, UPV/EHU, Bilbao, Spain
| | | | | | - Jonathan M Gear
- Joint Department of Physics Institute of Cancer Research and Royal Marsden, NHS Foundation Trust, Sutton, Surrey, UK
| | - Tim Van den Wyngaert
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
- Faculty of Medicine and Health Sciences (MICA - IPPON), , University of Antwerp, Wilrijk, Belgium
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany.
| |
Collapse
|
20
|
Morland D, Triumbari EKA, Hoog C, Sézin G, Dejust S, Cadiot G, Paris P, Papathanassiou D. Predicting subacute hematological toxicity of 177Lu-DOTATATE therapy using healthy organs' uptake on post-treatment quantitative SPECT: A pilot study. Medicine (Baltimore) 2022; 101:e32212. [PMID: 36626520 PMCID: PMC9750522 DOI: 10.1097/md.0000000000032212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 01/11/2023] Open
Abstract
The aim is to investigate the usefulness of 177Lu-DOTA-0-Tyr3-Octreotate (DOTATATE) healthy organs' (spleen, kidneys, bone marrow) standard uptake value for the prediction of subacute hematological toxicity in patients undergoing 177Lu-DOTATATE treatment. All patients referred from January 2021 to May 2022 for 177Lu-DOTATATE treatment were retrospectively screened. For each treatment session, baseline clinical data including age, sex, weight, delay between 177Lu-DOTATATE treatment and last cold somatostatin analogue intake were collected. Mean standardized uptake value (SUVmean) of healthy organs was measured and analyzed by generalized linear mixed effect models. Outcomes (significant decrease of platelets, hemoglobin levels and neutrophils) were assessed 1 month later, considering their within-subject biological coefficient of variation, published by the European Federation of Clinical Chemistry and Laboratory Medicine. A total of 9 patients (33 treatment sessions) were included. No predictive factors were identified for platelet and neutrophil decrease. Splenic SUVmean was found to be a significant predictor of hemoglobin levels decrease. Using an optimal threshold of ≥6.22, derived sensitivity and specificity to predict hemoglobin decrease were 85.7% [46.4; 99.0] and 76.9% [57.5; 89.2] respectively with an accuracy of 82.4%. Although not significantly predictive of hematological toxicity, bone marrow SUVmean and renal SUVmean were correlated with splenic SUVmean. Quantitative single photon emission computed tomography and healthy organs analysis might help to foresee hematological subacute toxicity in patients undergoing 177Lu-DOTATATE treatment and improve patient management.
Collapse
Affiliation(s)
- David Morland
- Service de Médecine Nucléaire, Institut Godinot, Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, Reims, France
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italia
| | - Elizabeth Katherine Anna Triumbari
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italia
| | - Christopher Hoog
- Service de Radiophysique et Radioprotection, Institut Godinot, Reims, France
| | - Ghali Sézin
- Service de Médecine Nucléaire, Institut Godinot, Reims, France
| | | | - Guillaume Cadiot
- Hépatogastroentérologie, Université de Reims Champagne-Ardenne and Hôpital Robert Debré, CHU de Reims, Reims, France
| | | | - Dimitri Papathanassiou
- Service de Médecine Nucléaire, Institut Godinot, Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
21
|
Ritt P. Recent Developments in SPECT/CT. Semin Nucl Med 2022; 52:276-285. [DOI: 10.1053/j.semnuclmed.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 01/31/2023]
|
22
|
Alqahtani MM, Willowson KP, Constable C, Fulton R, Kench PL. Optimization of
99m
Tc whole‐body SPECT/CT image quality: A phantom study. J Appl Clin Med Phys 2022; 23:e13528. [PMID: 35049129 PMCID: PMC8992937 DOI: 10.1002/acm2.13528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- Mansour M. Alqahtani
- Faculty of Medicine and Health University of Sydney Sydney Australia
- Department of Radiological sciences College of Applied Medical Science Najran University Najran Saudi Arabia
| | - Kathy P. Willowson
- Department of Nuclear Medicine Royal North Shore Hospital Sydney Australia
- Institute of Medical Physics Faculty of Science The University of Sydney Sydney Australia
| | - Chris Constable
- Faculty of Medicine and Health University of Sydney Sydney Australia
- HERMES Medical Solutions, Strandbergsgatan 16 Stockholm Sweden
| | - Roger Fulton
- Faculty of Medicine and Health University of Sydney Sydney Australia
- Department of Medical Physics Westmead Hospital Sydney Australia
| | - Peter L. Kench
- Faculty of Medicine and Health University of Sydney Sydney Australia
| |
Collapse
|
23
|
Pettinato C, Richetta E, Cremonesi M. Dosimetry with single photon emission tomography (SPECT). Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
Kennedy J, Chicheportiche A, Keidar Z. Quantitative SPECT/CT for dosimetry of peptide receptor radionuclide therapy. Semin Nucl Med 2021; 52:229-242. [PMID: 34911637 DOI: 10.1053/j.semnuclmed.2021.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuroendocrine tumors (NETs) are uncommon malignancies of increasing incidence and prevalence. As these slow growing tumors usually overexpress somatostatin receptors (SSTRs), the use of 68Ga-DOTA-peptides (gallium-68 chelated with dodecane tetra-acetic acid to somatostatin), which bind to the SSTRs, allows for PET based imaging and selection of patients for peptide receptor radionuclide therapy (PRRT). PRRT with radiolabeled somatostatin analogues such as 177Lu-DOTATATE (lutetium-177-[DOTA,Tyr3]-octreotate), is mainly used for the treatment of metastatic or inoperable NETs. However, PRRT is generally administered at a fixed injected activity in order not to exceed dose limits in critical organs, which is suboptimal given the variability in radiopharmaceutical uptake among patients. Advances in SPECT (single photon emission computed tomography) imaging enable the absolute quantitative measure of the true radiopharmaceutical distribution providing for PRRT dosimetry in each patient. Personalized PRRT based on patient-specific dosimetry could improve therapeutic efficacy by optimizing effective tumor absorbed dose while limiting treatment related radiotoxicity.
Collapse
Affiliation(s)
- John Kennedy
- Department of Nuclear Medicine, Rambam Health Care Campus, Haifa, Israel; B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Alexandre Chicheportiche
- Department of Nuclear Medicine and Biophysics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Zohar Keidar
- Department of Nuclear Medicine, Rambam Health Care Campus, Haifa, Israel; B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
25
|
Absolute Quantification in Diagnostic SPECT/CT: The Phantom Premise. Diagnostics (Basel) 2021; 11:diagnostics11122333. [PMID: 34943570 PMCID: PMC8700635 DOI: 10.3390/diagnostics11122333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
The application of absolute quantification in SPECT/CT has seen increased interest in the context of radionuclide therapies where patient-specific dosimetry is a requirement within the European Union (EU) legislation. However, the translation of this technique to diagnostic nuclear medicine outside this setting is rather slow. Clinical research has, in some examples, already shown an association between imaging metrics and clinical diagnosis, but the applications, in general, lack proper validation because of the absence of a ground truth measurement. Meanwhile, additive manufacturing or 3D printing has seen rapid improvements, increasing its uptake in medical imaging. Three-dimensional printed phantoms have already made a significant impact on quantitative imaging, a trend that is likely to increase in the future. In this review, we summarize the data of recent literature to underpin our premise that the validation of diagnostic applications in nuclear medicine using application-specific phantoms is within reach given the current state-of-the-art in additive manufacturing or 3D printing.
Collapse
|
26
|
Schatka I, Bingel A, Schau F, Bluemel S, Messroghli DR, Frumkin D, Knebel F, Diekmann SM, Elsanhoury A, Tschöpe C, Hahn K, Amthauer H, Rogasch JMM, Wetz C. An optimized imaging protocol for [ 99mTc]Tc-DPD scintigraphy and SPECT/CT quantification in cardiac transthyretin (ATTR) amyloidosis. J Nucl Cardiol 2021; 28:2483-2496. [PMID: 34331215 PMCID: PMC8709821 DOI: 10.1007/s12350-021-02715-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND In [99mTc]Tc-DPD scintigraphy for myocardial ATTR amyloidosis, planar images 3 hour p.i. and SPECT/CT acquisition in L-mode are recommended. This study investigated if earlier planar images (1 hour p.i.) are beneficial and if SPECT/CT acquisition should be preferred in H-mode (180° detector angle) or L-mode (90°). METHODS In SPECT/CT phantom measurements (NaI cameras, N = 2; CZT, N = 1), peak contrast recovery (CRpeak) was derived from sphere inserts or myocardial insert (cardiac phantom; signal-to-background ratio [SBR], 10:1 or 5:1). In 25 positive and 38 negative patients (reference: endomyocardial biopsy or clinical diagnosis), Perugini scores and heart-to-contralateral (H/CL) count ratios were derived from planar images 1 hour and 3 hour p.i. RESULTS In phantom measurements, accuracy of myocardial CRpeak at SBR 10:1 (H-mode, 0.95-0.99) and reproducibility at 5:1 (H-mode, 1.02-1.14) was comparable for H-mode and L-mode. However, L-mode showed higher variability of background counts and sphere CRpeak throughout the field of view than H-mode. In patients, sensitivity/specificity were ≥ 95% for H/CL ratios at both time points and visual scoring 3 hour. At 1 hour, visual scores showed specificity of 89% and reduced reader's confidence. CONCLUSIONS Early DPD images provided no additional value for visual scoring or H/CL ratios. In SPECT/CT, H-mode is preferred over L-mode, especially if quantification is applied apart from the myocardium.
Collapse
Affiliation(s)
- Imke Schatka
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anne Bingel
- Department of Internal Medicine and Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Franziska Schau
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stephanie Bluemel
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Daniel R Messroghli
- Department of Internal Medicine and Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - David Frumkin
- Medical Clinic for Cardiology, Angiology, Pneumology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Charité Mitte (CCM), Berlin, Germany
| | - Fabian Knebel
- Medical Clinic for Cardiology, Angiology, Pneumology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Charité Mitte (CCM), Berlin, Germany
| | - Sonja M Diekmann
- Department of Cardiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Ahmed Elsanhoury
- Berlin Institute of Health (BIH) Berlin-Brandenburger Center for Regenerative Therapies (BCRT), Charité, Berlin, Germany
| | - Carsten Tschöpe
- Department of Cardiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum (CVK), Berlin, Germany
- Berlin Institute of Health (BIH) Berlin-Brandenburger Center for Regenerative Therapies (BCRT), Charité, Berlin, Germany
| | - Katrin Hahn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Holger Amthauer
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julian M M Rogasch
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
| | - Christoph Wetz
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
27
|
Lassmann M, Eberlein U, Gear J, Konijnenberg M, Kunikowska J. Dosimetry for Radiopharmaceutical Therapy: The European Perspective. J Nucl Med 2021; 62:73S-79S. [PMID: 34857624 DOI: 10.2967/jnumed.121.262754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
This review presents efforts in Europe over the last few years with respect to standardization of quantitative imaging and dosimetry and comprises the results of several European research projects on practices regarding radiopharmaceutical therapies (RPTs). Because the European Union has regulatory requirements concerning dosimetry in RPTs, the European Association of Nuclear Medicine released a position paper in 2021 on the use of dosimetry under these requirements. The importance of radiobiology for RPTs is elucidated in another position paper by the European Association of Nuclear Medicine. Furthermore, how dosimetry interacts with clinical requirements is described, with several clinical examples. In the future, more efforts need to be undertaken to increase teaching and standardization efforts and to incorporate radiobiology for further individualizing patient treatment, with the aim of improving the outcome and safety of RPTs.
Collapse
Affiliation(s)
- Michael Lassmann
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - Uta Eberlein
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany;
| | - Jonathan Gear
- Joint Department of Physics, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands; and
| | - Jolanta Kunikowska
- Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
28
|
Staanum PF, Frellsen AF, Olesen ML, Iversen P, Arveschoug AK. Practical kidney dosimetry in peptide receptor radionuclide therapy using [ 177Lu]Lu-DOTATOC and [ 177Lu]Lu-DOTATATE with focus on uncertainty estimates. EJNMMI Phys 2021; 8:78. [PMID: 34773508 PMCID: PMC8590641 DOI: 10.1186/s40658-021-00422-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background Kidney dosimetry after peptide receptor radionuclide therapy using 177Lu-labelled somatostatin analogues is a procedure with multiple steps. We present the SPECT/CT-based implementation at Aarhus University Hospital and evaluate the uncertainty of the various steps in order to estimate the total uncertainty and to identify the major sources of uncertainty. Absorbed dose data from 115 treatment fractions are reported.
Results The total absorbed dose with uncertainty is presented for 59 treatments with [177Lu]Lu-DOTATOC and 56 treatments with [177Lu]Lu-DOTATATE. For [177Lu]Lu-DOTATOC the mean and median specific absorbed dose (dose per injected activity) is 0.37 Gy/GBq and 0.38 Gy/GBq, respectively, while for [177Lu]Lu-DOTATATE the median and mean are 0.47 Gy/GBq and 0.46 Gy/GBq, respectively. The uncertainty of the procedure is estimated to be about 13% for a single treatment fraction, where the absorbed dose calculation is based on three SPECT/CT scans 1, 4 and 7 days post-injection, while it increases to about 19% if only a single SPECT/CT scan is performed 1 day post-injection. Conclusions The specific absorbed dose values obtained with the described procedure are comparable to those from other treatment sites for both [177Lu]Lu-DOTATOC and [177Lu]Lu-DOTATATE, but towards the lower end of the range of reported values. The estimated uncertainty is also comparable to that from other reports and judged acceptable for clinical and research use, thus proving the kidney dosimetry procedure a useful tool. The greatest reduction in uncertainty can be obtained by improved activity determination, partial volume correction and additional SPECT/CT scans.
Collapse
Affiliation(s)
- Peter Frøhlich Staanum
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark.
| | - Anders Floor Frellsen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark
| | - Marie Louise Olesen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark
| | - Peter Iversen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark
| | - Anne Kirstine Arveschoug
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark
| |
Collapse
|
29
|
Peters SMB, Meyer Viol SL, van der Werf NR, de Jong N, van Velden FHP, Meeuwis A, Konijnenberg MW, Gotthardt M, de Jong HWAM, Segbers M. Correction to: Variability in lutetium-177 SPECT quantification between different state-of-the-art SPECT/CT systems. EJNMMI Phys 2021; 8:59. [PMID: 34406512 PMCID: PMC8374010 DOI: 10.1186/s40658-021-00399-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Steffie M B Peters
- Department of Radiology and Nuclear Medicine, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, The Netherlands.
| | - Sebastiaan L Meyer Viol
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Niels R van der Werf
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Nick de Jong
- Department of Radiology, Section of Medical Technology, Leiden University Medical Center, Leiden, The Netherlands
| | - Floris H P van Velden
- Department of Radiology, Section of Medical Technology, Leiden University Medical Center, Leiden, The Netherlands
| | - Antoi Meeuwis
- Department of Radiology and Nuclear Medicine, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, The Netherlands
| | - Mark W Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, The Netherlands
| | - Hugo W A M de Jong
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel Segbers
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
30
|
Tran-Gia J, Denis-Bacelar AM, Ferreira KM, Robinson AP, Calvert N, Fenwick AJ, Finocchiaro D, Fioroni F, Grassi E, Heetun W, Jewitt SJ, Kotzassarlidou M, Ljungberg M, McGowan DR, Scott N, Scuffham J, Gleisner KS, Tipping J, Wevrett J, Lassmann M. A multicentre and multi-national evaluation of the accuracy of quantitative Lu-177 SPECT/CT imaging performed within the MRTDosimetry project. EJNMMI Phys 2021; 8:55. [PMID: 34297218 PMCID: PMC8302709 DOI: 10.1186/s40658-021-00397-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Patient-specific dosimetry is required to ensure the safety of molecular radiotherapy and to predict response. Dosimetry involves several steps, the first of which is the determination of the activity of the radiopharmaceutical taken up by an organ/lesion over time. As uncertainties propagate along each of the subsequent steps (integration of the time-activity curve, absorbed dose calculation), establishing a reliable activity quantification is essential. The MRTDosimetry project was a European initiative to bring together expertise in metrology and nuclear medicine research, with one main goal of standardizing quantitative 177Lu SPECT/CT imaging based on a calibration protocol developed and tested in a multicentre inter-comparison. This study presents the setup and results of this comparison exercise. METHODS The inter-comparison included nine SPECT/CT systems. Each site performed a set of three measurements with the same setup (system, acquisition and reconstruction): (1) Determination of an image calibration for conversion from counts to activity concentration (large cylinder phantom), (2) determination of recovery coefficients for partial volume correction (IEC NEMA PET body phantom with sphere inserts), (3) validation of the established quantitative imaging setup using a 3D printed two-organ phantom (ICRP110-based kidney and spleen). In contrast to previous efforts, traceability of the activity measurement was required for each participant, and all participants were asked to calculate uncertainties for their SPECT-based activities. RESULTS Similar combinations of imaging system and reconstruction lead to similar image calibration factors. The activity ratio results of the anthropomorphic phantom validation demonstrate significant harmonization of quantitative imaging performance between the sites with all sites falling within one standard deviation of the mean values for all inserts. Activity recovery was underestimated for total kidney, spleen, and kidney cortex, while it was overestimated for the medulla. CONCLUSION This international comparison exercise demonstrates that harmonization of quantitative SPECT/CT is feasible when following very specific instructions of a dedicated calibration protocol, as developed within the MRTDosimetry project. While quantitative imaging performance demonstrates significant harmonization, an over- and underestimation of the activity recovery highlights the limitations of any partial volume correction in the presence of spill-in and spill-out between two adjacent volumes of interests.
Collapse
Affiliation(s)
- Johannes Tran-Gia
- Department of Nuclear Medicine, University of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| | | | | | - Andrew P Robinson
- National Physical Laboratory, Teddington, UK
- Christie Medical Physics and Engineering (CMPE), The Christie NHS Foundation Trust, Manchester, UK
- The University of Manchester, Manchester, UK
| | - Nicholas Calvert
- Christie Medical Physics and Engineering (CMPE), The Christie NHS Foundation Trust, Manchester, UK
| | - Andrew J Fenwick
- National Physical Laboratory, Teddington, UK
- Cardiff University, Cardiff, UK
| | - Domenico Finocchiaro
- Medical Physics Unit, Azienda Unità Sanitaria Locale di Reggio Emilia-IRCCS, Reggio Emilia, Italy
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Federica Fioroni
- Medical Physics Unit, Azienda Unità Sanitaria Locale di Reggio Emilia-IRCCS, Reggio Emilia, Italy
| | - Elisa Grassi
- Medical Physics Unit, Azienda Unità Sanitaria Locale di Reggio Emilia-IRCCS, Reggio Emilia, Italy
| | | | - Stephanie J Jewitt
- Radiation Physics and Protection, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Maria Kotzassarlidou
- Nuclear Medicine Department, "THEAGENIO" Anticancer Hospital, Thessaloniki, Greece
| | | | - Daniel R McGowan
- Radiation Physics and Protection, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Nathaniel Scott
- Radiation Physics and Protection, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - James Scuffham
- National Physical Laboratory, Teddington, UK
- Royal Surrey County Hospital, Guildford, UK
- Department of Physics, University of Surrey, Guildford, UK
| | | | - Jill Tipping
- Christie Medical Physics and Engineering (CMPE), The Christie NHS Foundation Trust, Manchester, UK
| | - Jill Wevrett
- National Physical Laboratory, Teddington, UK
- Royal Surrey County Hospital, Guildford, UK
- Department of Physics, University of Surrey, Guildford, UK
| | - Michael Lassmann
- Department of Nuclear Medicine, University of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| |
Collapse
|
31
|
Peters SMB, Privé BM, de Bakker M, de Lange F, Jentzen W, Eek A, Muselaers CHJ, Mehra N, Witjes JA, Gotthardt M, Nagarajah J, Konijnenberg MW. Intra-therapeutic dosimetry of [ 177Lu]Lu-PSMA-617 in low-volume hormone-sensitive metastatic prostate cancer patients and correlation with treatment outcome. Eur J Nucl Med Mol Imaging 2021; 49:460-469. [PMID: 34218300 PMCID: PMC8803803 DOI: 10.1007/s00259-021-05471-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/18/2021] [Indexed: 12/09/2022]
Abstract
Introduction While [177Lu]Lu-PSMA radioligand therapy is currently only applied in end-stage metastatic castrate-resistant prostate cancer (mCRPC) patients, also low-volume hormone-sensitive metastatic prostate cancer (mHSPC) patients can benefit from it. However, there are toxicity concerns related to the sink effect in low-volume disease. This prospective study aims to determine the kinetics of [177Lu]Lu-PSMA in mHSPC patients, analyzing the doses to organs at risk (salivary glands, kidneys, liver, and bone marrow) and tumor lesions < 1 cm diameter. Methods Ten mHSPC patients underwent two cycles of [177Lu]Lu-PSMA therapy. Three-bed position SPECT/CT was performed at 5 time points after each therapy. Organ dosimetry and lesion dosimetry were performed using commercial software and a manual approach, respectively. Correlation between absorbed index lesion dose and treatment response (PSA drop of > 50% at the end of the study) was calculated and given as Spearman’s r and p-values. Results Kinetics of [177Lu]Lu-PSMA in mHSPC patients are comparable to those in mCRPC patients. Lesion absorbed dose was high (3.25 ± 3.19 Gy/GBq) compared to organ absorbed dose (salivary glands: 0.39 ± 0.17 Gy/GBq, kidneys: 0.49 ± 0.11 Gy/GBq, liver: 0.09 ± 0.01 Gy/GBq, bone marrow: 0.017 ± 0.008 Gy/GBq). A statistically significant correlation was found between treatment response and absorbed index lesion dose (p = 0.047). Conclusions We successfully performed small lesion dosimetry and showed that the tumor sink effect in mHSPC patients is of less concern than was expected. Tumor-to-organ ratio of absorbed dose was high and tumor uptake correlates with PSA response. Additional treatment cycles are legitimate in terms of organ toxicity and could lead to better tumor response. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05471-4.
Collapse
Affiliation(s)
- Steffie M B Peters
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Bastiaan M Privé
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Maarten de Bakker
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Frank de Lange
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Walter Jentzen
- Department of Nuclear Medicine, University of Duisburg-Essen, Essen, Germany
| | - Annemarie Eek
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Alfred Witjes
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - James Nagarajah
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Mark W Konijnenberg
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
32
|
Dotinga M, Vriens D, van Velden F, Heijmen L, Nagarajah J, Hicks R, Kapiteijn E, de Geus-Oei LF. Managing radioiodine refractory thyroid cancer: the role of dosimetry and redifferentiation on subsequent I-131 therapy. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2021; 64:250-264. [PMID: 32744039 DOI: 10.23736/s1824-4785.20.03264-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Poor responses to iodine-131 (I-131) therapy can relate to either low iodine uptake and retention in thyroid cancer cells or to increased radioresistance. Both mechanisms are currently termed radioactive iodine (RAI)-refractory (RAI-R) thyroid cancer but the first reflects unsuitability for I-131 therapy that can be evaluated in advance of treatment, whereas the other can only be identified post hoc. Management of both represents a considerable challenge in clinical practice as failure of I-131 therapy, the most effective treatment of metastatic thyroid cancer, is associated with a poor overall prognosis. The development of targeted therapies has shown substantial promise in the treatment of RAI-R thyroid cancer in progressive patients. Recent studies show that selective tyrosine kinase inhibitors (TKIs) targeting B-type rapidly accelerated fibrosarcoma kinase (BRAF) and mitogen-activated protein kinase (MEK) can be used as redifferentiation agents to re-induce RAI uptake, thereby (re)enabling I-131 therapy. The use of dosimetry prior- and post-TKI treatment can assist in quantifying RAI uptake and improve identification of patients that will benefit from I-131 therapy. It also potentially offers the prospect of calculating individualized therapeutic administered activities to enhance efficacy and limit toxicity. In this review, we present an overview of the regulation of RAI uptake and clinically investigated redifferentiation agents, both reimbursed and in experimental setting, that induce renewed RAI uptake. We describe the role of dosimetry in redifferentiation and subsequent I-131 therapy in RAI-R thyroid cancer, explain different dosimetry approaches and discuss limitations and considerations in the field.
Collapse
Affiliation(s)
- Maaike Dotinga
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands -
| | - Dennis Vriens
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Floris van Velden
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Linda Heijmen
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - James Nagarajah
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Nuclear Medicine, Technical University Munich, Munich, Germany
| | - Rodney Hicks
- Department of Molecular Imaging, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lioe-Fee de Geus-Oei
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Biomedical Photonic Imaging Group, University of Twente, Enschede, the Netherlands
| |
Collapse
|
33
|
Ramonaheng K, van Staden JA, du Raan H. The effect of calibration factors and recovery coefficients on 177Lu SPECT activity quantification accuracy: a Monte Carlo study. EJNMMI Phys 2021; 8:27. [PMID: 33738605 PMCID: PMC7973313 DOI: 10.1186/s40658-021-00365-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Different gamma camera calibration factor (CF) geometries have been proposed to convert SPECT data into units of activity concentration. However, no consensus has been reached on a standardised geometry. The CF is dependent on the selected geometry and is further affected by partial volume effects. This study investigated the effect of two CF geometries and their corresponding recovery coefficients (RCs) on the quantification accuracy of 177Lu SPECT images using Monte Carlo simulations. METHODS The CF geometries investigated were (i) a radioactive-sphere surrounded by non-radioactive water (sphere-CF) and (ii) a cylindrical phantom uniformly filled with radioactive water (cylinder-CF). Recovery coefficients were obtained using the sphere-CF and cylinder-CF, yielding the sphere-RC and cylinder-RC values, respectively, for partial volume correction (PVC). The quantification accuracy was evaluated using four different-sized spheres (15.6-65.4 ml) and a kidney model with known activity concentrations inside a cylindrical, torso and patient phantom. Images were reconstructed with the 3D OS-EM algorithm incorporating attenuation, scatter and detector-response corrections. Segmentation was performed using the physical size and a small cylindrical volume inside the cylinder for the sphere-CF and cylinder-CF, respectively. RESULTS The sphere quantification error (without PVC) was better for the sphere-CF (≤ - 5.54%) compared to the cylinder-CF (≤ - 20.90%), attributed to the similar geometry of the quantified and CF spheres. Partial volume correction yielded comparable results for the sphere-CF-RC (≤ 3.47%) and cylinder-CF-RC (≤ 3.53%). The accuracy of the kidney quantification was poorer (≤ 22.34%) for the sphere-CF without PVC compared to the cylinder-CF (≤ 2.44%). With PVC, the kidney quantification results improved and compared well for the sphere-CF-RC (≤ 3.50%) and the cylinder-CF-RC (≤ 3.45%). CONCLUSION The study demonstrated that upon careful selection of CF-RC combinations, comparable quantification errors (≤ 3.53%) were obtained between the sphere-CF-RC and cylinder-CF-RC, when all corrections were applied.
Collapse
Affiliation(s)
- Keamogetswe Ramonaheng
- Department of Medical Physics, Faculty of Health Sciences, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa.
| | - Johannes A van Staden
- Department of Medical Physics, Faculty of Health Sciences, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Hanlie du Raan
- Department of Medical Physics, Faculty of Health Sciences, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| |
Collapse
|
34
|
Santoro L, Pitalot L, Trauchessec D, Mora-Ramirez E, Kotzki PO, Bardiès M, Deshayes E. Clinical implementation of PLANET® Dose for dosimetric assessment after [ 177Lu]Lu-DOTA-TATE: comparison with Dosimetry Toolkit® and OLINDA/EXM® V1.0. EJNMMI Res 2021; 11:1. [PMID: 33394212 PMCID: PMC7782649 DOI: 10.1186/s13550-020-00737-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/23/2020] [Indexed: 01/03/2023] Open
Abstract
Background The aim of this study was to compare a commercial dosimetry workstation (PLANET® Dose) and the dosimetry approach (GE Dosimetry Toolkit® and OLINDA/EXM® V1.0) currently used in our department for quantification of the absorbed dose (AD) to organs at risk after peptide receptor radionuclide therapy with [177Lu]Lu-DOTA-TATE. Methods An evaluation on phantom was performed to determine the SPECT calibration factor variations over time and to compare the Time Integrated Activity Coefficients (TIACs) obtained with the two approaches. Then, dosimetry was carried out with the two tools in 21 patients with neuroendocrine tumours after the first and second injection of 7.2 ± 0.2 GBq of [177Lu]Lu-DOTA-TATE (40 dosimetry analyses with each software). SPECT/CT images were acquired at 4 h, 24 h, 72 h and 192 h post-injection and were reconstructed using the Xeleris software (General Electric). The liver, spleen and kidneys masses and TIACs were determined using Dosimetry Toolkit® (DTK) and PLANET® Dose. The ADs were calculated using OLINDA/EXM® V1.0 and the Local Deposition Method (LDM) or Dose voxel-Kernel convolution (DK) on PLANET® Dose. Results With the phantom, the 3D calibration factors showed a slight variation (0.8% and 3.3%) over time, and TIACs of 225.19 h and 217.52 h were obtained with DTK and PLANET® Dose, respectively. In patients, the root mean square deviation value was 8.9% for the organ masses, 8.1% for the TIACs, and 9.1% and 7.8% for the ADs calculated with LDM and DK, respectively. The Lin’s concordance correlation coefficient was 0.99 and the Bland–Altman plot analysis estimated that the AD value difference between methods ranged from − 0.75 to 0.49 Gy, from − 0.20 to 0.64 Gy, and from − 0.43 to 1.03 Gy for 95% of the 40 liver, kidneys and spleen dosimetry analyses. The dosimetry method had a minor influence on AD differences compared with the image registration and organ segmentation steps. Conclusions The ADs to organs at risk obtained with the new workstation PLANET® Dose are concordant with those calculated with the currently used software and in agreement with the literature. These results validate the use of PLANET® Dose in clinical routine for patient dosimetry after targeted radiotherapy with [177Lu]Lu-DOTA-TATE.
Collapse
Affiliation(s)
- Lore Santoro
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), Univ. Montpellier, 208 Avenue des Apothicaires, 34298, Montpellier Cedex 5, France.
| | - L Pitalot
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), Univ. Montpellier, 208 Avenue des Apothicaires, 34298, Montpellier Cedex 5, France
| | - D Trauchessec
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), Univ. Montpellier, 208 Avenue des Apothicaires, 34298, Montpellier Cedex 5, France
| | - E Mora-Ramirez
- Centre de Recherche en Cancérologie de Toulouse, Toulouse, France.,INSERM, UMR 1037, Toulouse III Paul Sabatier University, Toulouse, France.,University of Costa Rica, Physics School, CICANUM, San José, Costa Rica
| | - P O Kotzki
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), Univ. Montpellier, 208 Avenue des Apothicaires, 34298, Montpellier Cedex 5, France.,Montpellier Cancer Research Institute, UMR 1194, Univ. Montpellier, Montpellier, France
| | - M Bardiès
- Centre de Recherche en Cancérologie de Toulouse, Toulouse, France.,INSERM, UMR 1037, Toulouse III Paul Sabatier University, Toulouse, France
| | - E Deshayes
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), Univ. Montpellier, 208 Avenue des Apothicaires, 34298, Montpellier Cedex 5, France.,Montpellier Cancer Research Institute, UMR 1194, Univ. Montpellier, Montpellier, France
| |
Collapse
|
35
|
Craig AJ, Rojas B, Wevrett JL, Hamer E, Fenwick A, Gregory R. IPEM topical report: current molecular radiotherapy service provision and guidance on the implications of setting up a dosimetry service. Phys Med Biol 2020; 65:245038. [PMID: 33142274 DOI: 10.1088/1361-6560/abc707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite a growth in molecular radiotherapy treatment (MRT) and an increase in interest, centres still rarely perform MRT dosimetry. The aims of this report were to assess the main reasons why centres are not performing MRT dosimetry and provide advice on the resources required to set-up such a service. A survey based in the United Kingdom was developed to establish how many centres provide an MRT dosimetry service and the main reasons why it is not commonly performed. Twenty-eight per cent of the centres who responded to the survey performed some form of dosimetry, with 88% of those centres performing internal dosimetry. The survey showed that a 'lack of clinical evidence', a 'lack of guidelines' and 'not current UK practice' were the largest obstacles to setting up an MRT dosimetry service. More practical considerations, such as 'lack of software' and 'lack of staff training/expertise', were considered to be of lower significance by the respondents. Following on from the survey, this report gives an overview of the current guidelines, and the evidence available demonstrating the benefits of performing MRT dosimetry. The resources required to perform such techniques are detailed with reference to guidelines, training resources and currently available software. It is hoped that the information presented in this report will allow MRT dosimetry to be performed more frequently and in more centres, both in routine clinical practice and in multicentre trials. Such trials are required to harmonise dosimetry techniques between centres, build on the current evidence base, and provide the data necessary to establish the dose-response relationship for MRT.
Collapse
Affiliation(s)
- Allison J Craig
- Joint Department of Physics, Royal Marsden NHSFT, Sutton, United Kingdom. The Institute of Cancer Research, London, United Kingdom. Author to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
36
|
Lassmann M, Eberlein U, Tran-Gia J. Multicentre Trials on Standardised Quantitative Imaging and Dosimetry for Radionuclide Therapies. Clin Oncol (R Coll Radiol) 2020; 33:125-130. [PMID: 33277151 DOI: 10.1016/j.clon.2020.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/19/2020] [Accepted: 11/13/2020] [Indexed: 11/25/2022]
Abstract
The aim of this review is to summarise the efforts undertaken so far to compare or standardise quantitative imaging with gamma cameras across centres for multicentre trials in radionuclide therapies. Overall, 10 studies were identified, five of which were set up as a multicentre effort for standardising and comparing methods for quantitative imaging. One study used positron emission tomography imaging with 124I. In the remaining studies, measurements were carried out with planar imaging, single photon emission computed tomography/computed tomography (SPECT/CT) or a combination of both. Three studies used radioactive calibration sources that were traceable to national standards. Most of the studies were set up in the framework of multicentre clinical trials in an effort to obtain comparable quantification across sites. The use of state-of-the-art SPECT/CT systems and reconstructions has emerged as the method of choice for dosimetry in clinical trials for radionuclide therapies.
Collapse
Affiliation(s)
- M Lassmann
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg, Germany.
| | - U Eberlein
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg, Germany
| | - J Tran-Gia
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
37
|
Taprogge J, Leek F, Schurrat T, Tran-Gia J, Vallot D, Bardiès M, Eberlein U, Lassmann M, Schlögl S, Vergara Gil A, Flux GD. Setting up a quantitative SPECT imaging network for a European multi-centre dosimetry study of radioiodine treatment for thyroid cancer as part of the MEDIRAD project. EJNMMI Phys 2020; 7:61. [PMID: 33030702 PMCID: PMC7544799 DOI: 10.1186/s40658-020-00332-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022] Open
Abstract
Background Differentiated thyroid cancer has been treated with radioiodine for almost 80 years, although controversial questions regarding radiation-related risks and the optimisation of treatment regimens remain unresolved. Multi-centre clinical studies are required to ensure recruitment of sufficient patients to achieve the statistical significance required to address these issues. Optimisation and standardisation of data acquisition and processing are necessary to ensure quantitative imaging and patient-specific dosimetry. Material and methods A European network of centres able to perform standardised quantitative imaging of radioiodine therapy of thyroid cancer patients was set-up within the EU consortium MEDIRAD. This network will support a concurrent series of clinical studies to determine accurately absorbed doses for thyroid cancer patients treated with radioiodine. Five SPECT(/CT) systems at four European centres were characterised with respect to their system volume sensitivity, recovery coefficients and dead time. Results System volume sensitivities of the Siemens Intevo systems (crystal thickness 3/8″) ranged from 62.1 to 73.5 cps/MBq. For a GE Discovery 670 (crystal thickness 5/8″) a system volume sensitivity of 92.2 cps/MBq was measured. Recovery coefficients measured on three Siemens Intevo systems show good agreement. For volumes larger than 10 ml, the maximum observed difference between recovery coefficients was found to be ± 0.02. Furthermore, dead-time coefficients measured on two Siemens Intevo systems agreed well with previously published dead-time values. Conclusions Results presented here provide additional support for the proposal to use global calibration parameters for cameras of the same make and model. This could potentially facilitate the extension of the imaging network for further dosimetry-based studies.
Collapse
Affiliation(s)
- Jan Taprogge
- Joint Department of Physics, Royal Marsden NHSFT, Downs Road, Sutton, SM2 5PT, UK. .,The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK.
| | - Francesca Leek
- Joint Department of Physics, Royal Marsden NHSFT, Downs Road, Sutton, SM2 5PT, UK.,The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Tino Schurrat
- Department of Nuclear Medicine, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Johannes Tran-Gia
- Department of Nuclear Medicine, University of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Delphine Vallot
- IUCT Oncopole, Av. Irène Joliot-Curie, 31100, Toulouse, France
| | - Manuel Bardiès
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, INSERM, Université Paul Sabatier, Toulouse, France
| | - Uta Eberlein
- Department of Nuclear Medicine, University of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, University of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Susanne Schlögl
- Department of Nuclear Medicine, University of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Alex Vergara Gil
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, INSERM, Université Paul Sabatier, Toulouse, France
| | | | - Glenn D Flux
- Joint Department of Physics, Royal Marsden NHSFT, Downs Road, Sutton, SM2 5PT, UK.,The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| |
Collapse
|
38
|
Huizing DMV, Sinaasappel M, Dekker MC, Stokkel MPM, de Wit – van der Veen BJ. 177
Lutetium SPECT/CT: Evaluation of collimator, photopeak and scatter correction. J Appl Clin Med Phys 2020; 21:272-277. [PMID: 32790140 PMCID: PMC7497918 DOI: 10.1002/acm2.12991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 06/26/2020] [Accepted: 07/09/2020] [Indexed: 11/10/2022] Open
Abstract
Purpose The goal of this study was to find the optimal combination of collimator, photopeak and scatter correction for 177Lutetium (177Lu) SPECT/CT imaging. Methods Three experiments [sphere‐to‐background ratios (SBR) 50:1, 10:1, and 2:1] were performed with the NEMA Image Quality phantom filled with 177Lu‐trichloride. SPECT/CT acquisitions were performed with the medium‐energy low‐penetration (MELP) collimator and 99mTc/Krypton collimator. For each acquisition six reconstructions, all with attenuation correction (AC), were made: the 113‐keV photopeak only, the 208‐keV photopeak only and both photopeaks combined, each with or without scatter correction (SC). Image quality was assessed using contrast‐to‐noise ratios (CNR), quantification accuracy by means of recovery coefficients (RCs) and the spatial resolution using line profiles. Results With SBR 50:1 and 10:1, both collimators met the Rose criterion (CNR > 5), whereas the MELP collimator showed a higher CNR for the 2:1 ratio. The RCmean was higher with the MELP collimator, most explicit after the 208‐keV AC/SC reconstruction for all acquisitions. The line profiles showed a better spatial resolution for the MELP collimator and the 208‐keV AC/SC reconstructions. Conclusion 177Lu SPECT/CT image quality and quantification was most optimal when acquired with the MELP collimator and reconstructed using the 208‐keV photopeak, with AC and SC.
Collapse
Affiliation(s)
- Daphne M. V. Huizing
- Department of Nuclear Medicine Netherlands Cancer Institute Amsterdam The Netherlands
| | - Michiel Sinaasappel
- Department of Physics Netherlands Cancer Institute Amsterdam The Netherlands
| | - Marien C. Dekker
- Department of Nuclear Medicine Netherlands Cancer Institute Amsterdam The Netherlands
| | - Marcel P. M. Stokkel
- Department of Nuclear Medicine Netherlands Cancer Institute Amsterdam The Netherlands
| | | |
Collapse
|