1
|
Gupta Y, Shanmugam C, K P, Mandal S, Tandon R, Sharma N. Pediatric keratoconus. Surv Ophthalmol 2024:S0039-6257(24)00129-2. [PMID: 39396644 DOI: 10.1016/j.survophthal.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Keratoconus is a common pediatric corneal disease, leading to vision impairment and amblyopia. Compared to its adult counterpart, pediatric keratoconus has an advanced presentation, rapid progression, higher incidence of complications such as corneal hydrops, and greater potential impact on the quality of life. It typically manifests during puberty and can evolve rapidly to more severe stages if left untreated. This rapid progression underscores the importance of early diagnosis through regular screening in pediatric populations and vigilant monitoring of pediatric keratoconus suspects. Concomitant ocular allergies, ocular anomalies, systemic diseases (e.g. syndromes), and poor compliance with contact lenses might impede prompt intervention and frequently postpone rehabilitation. Corneal collagen crosslinking is a crucial intervention in the management of pediatric keratoconus because it strengthens the corneal microstructure and halts the disease progression. When conservative measures fail, keratoplasty remains a viable option with generally favorable outcomes, though with unique challenges in post-operative care, including concerns related to sutures, long-term graft survival and need for repeated examinations under anesthesia. A multidisciplinary approach involving ophthalmologists, optometrists, pediatricians, and other healthcare professionals, focusing on early diagnosis and timely intervention, is essential for the comprehensive management of pediatric keratoconus and to mitigate its impact on children's lives.
Collapse
Affiliation(s)
- Yogita Gupta
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - Chandradevi Shanmugam
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - Priyadarshini K
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - Sohini Mandal
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India; LV Prasad Eye Institute, Bhubaneswar, Odisha, India
| | - Radhika Tandon
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - Namrata Sharma
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India.
| |
Collapse
|
2
|
Guo Y, Guo LL, Yang W, Tian L, Jie Y. Age-related analysis of corneal biomechanical parameters in healthy Chinese individuals. Sci Rep 2024; 14:21713. [PMID: 39289420 PMCID: PMC11408652 DOI: 10.1038/s41598-024-72054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
To report the correlation between corneal biomechanical parameters and age in healthy Chinese individuals. This cross-sectional study was conducted on 864 eyes of 543 healthy participants. A comprehensive ophthalmic examination and corneal biomechanics examination using Corneal Visualization Scheimpflug Technology (Corvis ST) were conducted. Based on age, all participants were further divided into five age groups (n) as follows: group A, 11-20 years (105); group B, 21-30 years (112); group C, 31-40 years (113); group D, 41-50 years (100); and group E, > 50 years (113). Using Corvis ST, we examined 35 corneal biomechanical parameters and compared them across the different age groups. Spearman's correlation coefficients and stepwise multivariate linear regression models were used to investigate whether the corneal biomechanical parameters were related to demographic and ocular characteristics. A correlation analysis between the left and right eyes revealed that 13 parameters were significantly associated with eye differences. Among the 35 corneal biomechanical parameters, 28 exhibited significant differences across the age groups, with stiffness parameter at applanation 1(SPA1) showing an upward trend after the age of 30 and stress-strain index (SSI) demonstrates a statistically significant upward trend when comparing the five age groups in the study. Additionally, Spearman's correlation analysis and stepwise multivariate linear regression analysis revealed that 11 corneal biomechanical parameters were positively correlated with age and 10 were negatively correlated with age. Corvis biomechanical index (CBI) was significantly negatively correlated with intraocular pressure (IOP) and central corneal thickness (CCT), SSI was significantly positively correlated with age and IOP, and SPA1 were positively correlated with IOP and CCT. In conclusion, most corneal biomechanical parameters showed a significant correlation with age, with corneal stiffness progressively increasing alongside advancing age, IOP, or CCT.
Collapse
Affiliation(s)
- Yihan Guo
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Li-Li Guo
- The First People's Hospital of Xuzhou, Xuzhou, China
| | - Weiqiang Yang
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lei Tian
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Ying Jie
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
3
|
Liu MX, Zhu KY, Li DL, Dong XX, Liang G, Grzybowski A, Pan CW. Corneal Biomechanical Characteristics in Myopes and Emmetropes Measured by Corvis ST: A Meta-Analysis. Am J Ophthalmol 2024; 264:154-161. [PMID: 38556185 DOI: 10.1016/j.ajo.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/17/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
PURPOSE To comprehensively identify the corneal biomechanical differences measured by Corvis ST between different degrees of myopia and emmetropia. DESIGN Systematic review and meta-analysis. METHODS Electronic databases, including PubMed, Embase, and Web of Science, were systematically searched for studies comparing the corneal biomechanics among various degrees of myopes and emmetropes using Corvis ST. The weighted mean differences and 95% confidence intervals were calculated. Meta-analysis was performed in high and nonhigh myopes and in myopes and emmetropes, respectively. RESULTS Eleven studies were included in this study. The meta-analysis among myopes and emmetropes included 1947 myopes and 621 emmetropes, and 443 high myopes and 449 nonhigh myopes were included in the meta-analysis among high and nonhigh myopia. Myopes showed the cornea with significantly longer time at the first applanation (A1t) and lower length at the second applanation (A2L) than emmetropes. High myopes showed significantly greater A1t, velocity at the second applanation (A2v), deformation amplitude at the highest concavity (HC-DA), and peak distance at the highest concavity (HC-PD) and decreased time at the second applanation (A2t) and radius of the highest concavity (HC-R). CONCLUSIONS Corneal biomechanics is different in myopia, especially in high myopia. Compared with nonhigh myopes, the corneas of high myopes deformed slower during the first applanation, faster during the second applanation, and showed greater deformation amplitude, indicating greater elasticity and viscidity.
Collapse
Affiliation(s)
- Min-Xin Liu
- School of Public Health (M.X.L., D.L.L., X.X.D., C.W.P.), Suzhou Medical College of Soochow University, Suzhou, China
| | - Ke-Yao Zhu
- Pasteurien College of Soochow University (K.Y.Z.), Suzhou, China
| | - Dan-Lin Li
- School of Public Health (M.X.L., D.L.L., X.X.D., C.W.P.), Suzhou Medical College of Soochow University, Suzhou, China
| | - Xing-Xuan Dong
- School of Public Health (M.X.L., D.L.L., X.X.D., C.W.P.), Suzhou Medical College of Soochow University, Suzhou, China
| | - Gang Liang
- Department of Ophthalmology (G.L.), The Affiliated Hospital of Yunnan University, Kunming, China
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology (A.G.), Foundation for Ophthalmology Development, Poznan, Poland
| | - Chen-Wei Pan
- School of Public Health (M.X.L., D.L.L., X.X.D., C.W.P.), Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Esporcatte LPG, Salomão MQ, Lopes BT, Sena N, Machado AP, Vinciguerra P, Vinciguerra R, Ambrósio R. Keratoconus and Corneal Ectasia with Relatively Low Keratometry. Ophthalmol Ther 2024; 13:2023-2035. [PMID: 38824471 PMCID: PMC11178753 DOI: 10.1007/s40123-024-00964-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024] Open
Abstract
INTRODUCTION The study aims to demonstrate and estimate the prevalence of clinical corneal ectasia and keratoconus (KC) in patients with relatively low keratometry (low-K KC). METHODS In a retrospective, analytical, and non-interventionist study, one eye was randomly selected from 1054 patients from the original Tomographic Biomechanical Index (TBIv1) study and the external validation (from Rio de Janeiro, Brazil, and Milan, Italy clinics). Patients were stratified into three groups. Group 1 included 736 normal patients, and groups 2 and 3 included 318 patients with clinical KC in both eyes, divided into low-K KC (90 patients) and high-K KC (228 patients), respectively. All patients underwent a comprehensive ophthalmological evaluation along with Pentacam and Corvis ST (Oculus, Wetzlar, Germany) examinations. Cases with maximum mean zone 3 mm keratometry (Kmax zone mean 3 mm) lower than 47.6 diopters (D) were considered as low-keratometry keratoconus, and cases with Kmax zone mean 3 mm higher than 47.6 D were regarded as high-keratometry keratoconus. RESULTS Ninety (28.30%) of the 318 KC group presented ectasia with low-keratometric values (low-Kmax). The average age in the normal group was 39.28 years (range 6.99-90.12), in the low-Kmax KC group it was 37.49 (range 13.35-78.45), and in the high-Kmax KC group it was 34.22 years (range 12.7-80.34). Mean and SD values and median (range), respectively, of some corneal tomographic and biomechanical parameters evaluated from the low-Kmax KC group were as follows: Belin-Ambrósio enhanced ectasia display (BAD-D) 3.79 ± 1.62 and 3.66 (0.83-9.73); Pentacam random forest index (PRFI) 0.78 ± 0.25 and 0.91 (0.05-1); corneal biomechanical index (CBI) 0.58 ± 0.43 and 0.75 (0-1); TBI 0.93 ± 0.17 and 1 (0.35-1); and stiffness parameter at A1 (SP-A1) 86.16 ± 19.62 and 86.05 (42.94-141.66). CONCLUSION Relatively low keratometry, with a Kmax lower than 47.6 D, can occur in up to 28.30% of clinical keratoconus. These cases have a less severe presentation of the disease. Future studies involving larger populations and prospective designs are necessary to confirm the prevalence of keratoconus with low keratometry and define prognostic factors in such cases.
Collapse
Affiliation(s)
- Louise Pellegrino G Esporcatte
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rua Conde de Bonfim 211/712, Rio de Janeiro, RJ, 20520-050, Brazil
- Instituto de Olhos Renato Ambrósio, Rio de Janeiro, Brazil
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Marcella Q Salomão
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rua Conde de Bonfim 211/712, Rio de Janeiro, RJ, 20520-050, Brazil
- Instituto de Olhos Renato Ambrósio, Rio de Janeiro, Brazil
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
- Instituto Benjamin Constant, Rio de Janeiro, Brazil
| | - Bernardo T Lopes
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rua Conde de Bonfim 211/712, Rio de Janeiro, RJ, 20520-050, Brazil
- Instituto de Olhos Renato Ambrósio, Rio de Janeiro, Brazil
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
- School of Engineering, University of Liverpool, Liverpool, L69 3GH, UK
| | - Nelson Sena
- Department of Ophthalmology, Federal University the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Aydano P Machado
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
- Brazilian Artificial Intelligence Networking in Medicine-BrAIN, Rio de Janeiro, Brazil
- Computing Institute, Federal University of Alagoas, Maceió, Brazil
- Brazilian Artificial Intelligence Networking in Medicine - BrAIN, Maceió, Brazil
| | - Paolo Vinciguerra
- Department of Biomedical Science, Humanitas University, Rozzano, Italy
- Eye Center, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Riccardo Vinciguerra
- School of Engineering, University of Liverpool, Liverpool, L69 3GH, UK
- Department of Ophthalmology, Humanitas San Pio X Hospital, Milan, Italy
| | - Renato Ambrósio
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rua Conde de Bonfim 211/712, Rio de Janeiro, RJ, 20520-050, Brazil.
- Instituto de Olhos Renato Ambrósio, Rio de Janeiro, Brazil.
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil.
- Brazilian Artificial Intelligence Networking in Medicine-BrAIN, Rio de Janeiro, Brazil.
- Department of Ophthalmology, Federal University the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil.
- Brazilian Artificial Intelligence Networking in Medicine - BrAIN, Maceió, Brazil.
| |
Collapse
|
5
|
Liu MX, Li DL, Yin ZJ, Li YZ, Zheng YJ, Qin Y, Ma R, Liang G, Pan CW. Corneal stress‒strain index in relation to retinal nerve fibre layer thickness among healthy young adults. Eye (Lond) 2024; 38:1654-1659. [PMID: 38402288 PMCID: PMC11156841 DOI: 10.1038/s41433-024-02985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES To determine the relationship between corneal stress-strain index (SSI) and retinal nerve fibre layer (RNFL) thickness. SUBJECTS/METHODS 1645 healthy university students from a university-based study contributed to the analysis. The RNFL thickness was measured by high-definition optical coherence tomography (HD-OCT), axial length (AL) was measured by IOL Master, and corneal biomechanics including SSI, biomechanical corrected intraocular pressure (bIOP), and central corneal thickness (CCT) were measured by Corvis ST. Multivariate linear regression was performed to evaluate the relationship between the SSI and RNFL thickness after adjusting for potential covariates. RESULTS The mean age of the participants was 19.0 ± 0.9 years, and 1132 (68.8%) were women. Lower SSI was significantly associated with thinner RNFL thickness ( β =8.601, 95% confidence interval [CI] 2.999-14.203, P = 0.003) after adjusting for age, CCT, bIOP, and AL. No significant association between SSI and RNFL was found in men, while the association was significant in women in the fully adjusted model. The association was significant in the nonhigh myopic group ( P for trend = 0.021) but not in the highly myopic group. Eyes with greater bIOP and lower SSI had significantly thinner RNFL thickness. CONCLUSIONS Eyes with lower SSI had thinner RNFL thickness after adjusting for potential covariates, especially those with higher bIOP. Our findings add novel evidence of the relationship between corneal biomechanics and retinal ganglion cell damage.
Collapse
Affiliation(s)
- Min-Xin Liu
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Dan-Lin Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhi-Jian Yin
- Department of Ophthalmology, the First Affiliated Hospital of Dali University, Dali, China
| | - Yue-Zu Li
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Ya-Jie Zheng
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Yu Qin
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Rong Ma
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Gang Liang
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China.
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China.
| | - Chen-Wei Pan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Wang Q, Chen Y, Shen K, Zhou X, Shen M, Lu F, Zhu D. Spatial mapping of corneal biomechanical properties using wave-based optical coherence elastography. JOURNAL OF BIOPHOTONICS 2024; 17:e202300534. [PMID: 38453148 DOI: 10.1002/jbio.202300534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/20/2024] [Accepted: 02/11/2024] [Indexed: 03/09/2024]
Abstract
Quantifying the mechanical properties of the cornea can provide valuable insights into the occurrence and progression of keratoconus, as well as the effectiveness of corneal crosslinking surgery. This study presents a non-contact and non-invasive wave-based optical coherence elastography system that utilizes air-pulse stimulation to create a two-dimensional map of corneal elasticity. Homogeneous and dual concentration phantoms were measured with the sampling of 25 × 25 points over a 6.6 × 6.6 mm2 area, to verify the measurement capability for elastic mapping and the spatial resolution (0.91 mm). The velocity of elastic waves distribution of porcine corneas before and after corneal crosslinking surgery were further mapped, showing a significant change in biomechanics in crosslinked region. This system features non-invasiveness and high resolution, holding great potential for application in ophthalmic clinics.
Collapse
Affiliation(s)
- Qingying Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yulei Chen
- Department of Ophthalmology, Dongguan Tungwah Hospital, Dongguan, China
| | - Kexin Shen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingyu Zhou
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meixiao Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fan Lu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dexi Zhu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Al Bdour M, Sabbagh HM, Jammal HM. Multi-modal imaging for the detection of early keratoconus: a narrative review. EYE AND VISION (LONDON, ENGLAND) 2024; 11:18. [PMID: 38730479 PMCID: PMC11088107 DOI: 10.1186/s40662-024-00386-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/21/2024] [Indexed: 05/12/2024]
Abstract
Keratoconus is a common progressive corneal disorder that can be associated with significant ocular morbidity. Various corneal imaging techniques have been used for the diagnosis of established cases. However, in the early stages of the disease, which include subclinical keratoconus and forme fruste keratoconus, detection of such cases can be challenging. The importance of detecting such cases is very important because early intervention can halt disease progression, improve visual outcomes and prevent postrefractive surgery ectasia associated with performing corneal refractive procedures in such patients. This narrative review aimed to examine several established and evolving imaging techniques for the detection of early cases of keratoconus. The utilization of combinations of these techniques may further increase their diagnostic ability.
Collapse
Affiliation(s)
- Muawyah Al Bdour
- Department of Ophthalmology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Hashem M Sabbagh
- The National Center for Diabetes Endocrinology and Genetics (NCDEG), Amman, Jordan
| | - Hisham M Jammal
- Department of Ophthalmology, Faculty of Medicine, Jordan University of Science and Technology, PO Box 3030, Irbid, 22110, Jordan.
| |
Collapse
|
8
|
Zhang P, Yang L, Mao Y, Zhang X, Cheng J, Miao Y, Bao F, Chen S, Zheng Q, Wang J. CorNet: Autonomous feature learning in raw Corvis ST data for keratoconus diagnosis via residual CNN approach. Comput Biol Med 2024; 172:108286. [PMID: 38493602 DOI: 10.1016/j.compbiomed.2024.108286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE To ascertain whether the integration of raw Corvis ST data with an end-to-end CNN can enhance the diagnosis of keratoconus (KC). METHOD The Corvis ST is a non-contact device for in vivo measurement of corneal biomechanics. The CorNet was trained and validated on a dataset consisting of 1786 Corvis ST raw data from 1112 normal eyes and 674 KC eyes. Each raw data consists of the anterior and posterior corneal surface elevation during air-puff induced dynamic deformation. The architecture of CorNet utilizes four ResNet-inspired convolutional structures that employ 1 × 1 convolution in identity mapping. Gradient-weighted Class Activation Mapping (Grad-CAM) was adopted to visualize the attention allocation to diagnostic areas. Discriminative performance was assessed using metrics including the AUC of ROC curve, sensitivity, specificity, precision, accuracy, and F1 score. RESULTS CorNet demonstrated outstanding performance in distinguishing KC from normal eyes, achieving an AUC of 0.971 (sensitivity: 92.49%, specificity: 91.54%) in the validation set, outperforming the best existing Corvis ST parameters, namely the Corvis Biomechanical Index (CBI) with an AUC of 0.947, and its updated version for Chinese populations (cCBI) with an AUC of 0.963. Though the ROC curve analysis showed no significant difference between CorNet and cCBI (p = 0.295), it indicated a notable difference between CorNet and CBI (p = 0.011). The Grad-CAM visualizations highlighted the significance of corneal deformation data during the loading phase rather than the unloading phase for KC diagnosis. CONCLUSION This study proposed an end-to-end CNN approach utilizing raw biomechanical data by Corvis ST for KC detection, showing effectiveness comparable to or surpassing existing parameters provided by Corvis ST. The CorNet, autonomously learning comprehensive temporal and spatial features, demonstrated a promising performance for advancing KC diagnosis in ophthalmology.
Collapse
Affiliation(s)
- PeiPei Zhang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - LanTing Yang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - YiCheng Mao
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - XinYu Zhang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - JiaXuan Cheng
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - YuanYuan Miao
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - FangJun Bao
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - ShiHao Chen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - QinXiang Zheng
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - JunJie Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; Department of Ophthalmology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621054, China.
| |
Collapse
|
9
|
Huo Y, Chen X, Khan GA, Wang Y. Corneal biomechanics in early diagnosis of keratoconus using artificial intelligence. Graefes Arch Clin Exp Ophthalmol 2024; 262:1337-1349. [PMID: 37943332 DOI: 10.1007/s00417-023-06307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
Keratoconus is a blinding eye disease that affects activities of daily living; therefore, early diagnosis is crucial. Great efforts have been made toward an early diagnosis of keratoconus. Recent studies have shown that corneal biomechanics is associated with the occurrence and progression of keratoconus. Hence, detecting changes in corneal biomechanics may provide a novel strategy for early diagnosis. However, an early keratoconus diagnosis remains challenging due to the subtle and localized nature of its lesions. Artificial intelligence has been used to help address this problem. Herein, we reviewed the literature regarding three aspects of keratoconus (keratoconus, early keratoconus, and keratoconus grading) based on corneal biomechanical properties using artificial intelligence. Furthermore, we summarized the current research progress, limitations, and possible prospects.
Collapse
Affiliation(s)
- Yan Huo
- School of Medicine, Nankai University, Tianjin, China
| | - Xuan Chen
- School of Medicine, Nankai University, Tianjin, China
| | - Gauhar Ali Khan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yan Wang
- School of Medicine, Nankai University, Tianjin, China.
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, 4 Gansu Road, He-ping District, Tianjin, 300020, China.
- Nankai Eye Institute, Nankai University, Tianjin, China.
| |
Collapse
|
10
|
Miao YY, Ma XM, Qu ZX, Eliasy A, Wu BW, Xu H, Wang P, Zheng XB, Wang JJ, Ye YF, Chen SH, Elsheikh A, Bao FJ. Performance of Corvis ST Parameters Including Updated Stress-Strain Index in Differentiating Between Normal, Forme-Fruste, Subclinical, and Clinical Keratoconic Eyes. Am J Ophthalmol 2024; 258:196-207. [PMID: 37879454 DOI: 10.1016/j.ajo.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE This study seeks to evaluate the ability of the updated stress strain index (SSIv2) and other Corvis ST biomechanical parameters in distinguishing between keratoconus at different disease stages and normal eyes. DESIGN Diagnostic accuracy analysis to distinguish disease stages. METHODS 1084 eyes were included and divided into groups of normal (199 eyes), forme fruste keratoconus (FFKC, 194 eyes), subclinical keratoconus (SKC, 113 eyes), mild clinical keratoconus (CKC-Ⅰ, 175 eyes), moderate clinical keratoconus (CKC-Ⅱ, 204 eyes), and severe clinical keratoconus (CKC-Ⅲ, 199 eyes). Each eye was subjected to a Corvis ST examination to determine the central corneal thickness (CCT), biomechanically corrected intraocular pressure (bIOP), SSIv2 (updated stress-strain index), and other 8 Corvis parameters including the stress-strain index (SSIv1), stiffness parameter at first applanation (SP-A1), first applanation time (A1T), Ambrósio relational thickness to the horizontal profile (ARTh), integrated inverse radius (IIR), maximum deformation amplitude (DAM), ratio between deformation amplitude at the apex and at 2 mm nasal and temporal (DARatio2), and Corvis biomechanical index (CBI). The sensitivity and specificity of these parameters in diagnosing keratoconus were analyzed through receiver operating characteristic curves. RESULTS Before and after correction for CCT and bIOP, SSIv2 and ARTh were significantly higher and IIR and CBI were significantly lower in the normal group than in the FFKC group, SKC group and the 3 CKC groups (all P < .05). There were also significant correlations between the values of SSIv2, ARTh, IIR, CBI, and the CKC severity (all P < .05). AUC of SSIv2 was significantly higher than all other Corvis parameters in distinguishing normal eyes from FFKC, followed by IIR, ARTh and CBI. CONCLUSION Corvis ST's updated stress-strain index, SSIv2, demonstrated superior performance in differentiating between normal and keratoconic corneas, and between corneas with different keratoconus stages. Similar, but less pronounced, performance was demonstrated by the IIR, ARTh and CBI.
Collapse
Affiliation(s)
- Yuan-Yuan Miao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, WenZhou Medical University (Y.-Y.M., Z.-X.Q., B.-W.W., H.X., P.W., X.-B.Z., J.-J.W., Y.-F.Y., S.-H.C., F.-J.B), Wenzhou, Zhejiang, China
| | - Xiao-Min Ma
- Shanghai Eighth People's Hospital (X.-M.M.), Shanghai, China
| | - Zhan-Xin Qu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, WenZhou Medical University (Y.-Y.M., Z.-X.Q., B.-W.W., H.X., P.W., X.-B.Z., J.-J.W., Y.-F.Y., S.-H.C., F.-J.B), Wenzhou, Zhejiang, China
| | - Ashkan Eliasy
- School of Engineering, University of Liverpool (A.Eli., A.Els.), Liverpool, United Kingdom
| | - Bo-Wen Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, WenZhou Medical University (Y.-Y.M., Z.-X.Q., B.-W.W., H.X., P.W., X.-B.Z., J.-J.W., Y.-F.Y., S.-H.C., F.-J.B), Wenzhou, Zhejiang, China
| | - Hui Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, WenZhou Medical University (Y.-Y.M., Z.-X.Q., B.-W.W., H.X., P.W., X.-B.Z., J.-J.W., Y.-F.Y., S.-H.C., F.-J.B), Wenzhou, Zhejiang, China
| | - Pu Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, WenZhou Medical University (Y.-Y.M., Z.-X.Q., B.-W.W., H.X., P.W., X.-B.Z., J.-J.W., Y.-F.Y., S.-H.C., F.-J.B), Wenzhou, Zhejiang, China
| | - Xiao-Bo Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, WenZhou Medical University (Y.-Y.M., Z.-X.Q., B.-W.W., H.X., P.W., X.-B.Z., J.-J.W., Y.-F.Y., S.-H.C., F.-J.B), Wenzhou, Zhejiang, China; The Institute of Ocular Biomechanics, Wenzhou Medical University (X.-B.Z., J.-J.W., S.-H.C., F.-J.B.), Wenzhou, Zhejiang, China
| | - Jun-Jie Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, WenZhou Medical University (Y.-Y.M., Z.-X.Q., B.-W.W., H.X., P.W., X.-B.Z., J.-J.W., Y.-F.Y., S.-H.C., F.-J.B), Wenzhou, Zhejiang, China; The Institute of Ocular Biomechanics, Wenzhou Medical University (X.-B.Z., J.-J.W., S.-H.C., F.-J.B.), Wenzhou, Zhejiang, China
| | - Yu-Feng Ye
- National Clinical Research Center for Ocular Diseases, Eye Hospital, WenZhou Medical University (Y.-Y.M., Z.-X.Q., B.-W.W., H.X., P.W., X.-B.Z., J.-J.W., Y.-F.Y., S.-H.C., F.-J.B), Wenzhou, Zhejiang, China
| | - Shi-Hao Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, WenZhou Medical University (Y.-Y.M., Z.-X.Q., B.-W.W., H.X., P.W., X.-B.Z., J.-J.W., Y.-F.Y., S.-H.C., F.-J.B), Wenzhou, Zhejiang, China; The Institute of Ocular Biomechanics, Wenzhou Medical University (X.-B.Z., J.-J.W., S.-H.C., F.-J.B.), Wenzhou, Zhejiang, China.
| | - Ahmed Elsheikh
- School of Engineering, University of Liverpool (A.Eli., A.Els.), Liverpool, United Kingdom; National Institute for Health Research (NIHR) Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology (A.Els.), London, United Kingdom; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University (A.Els.), Beijing, China
| | - Fang-Jun Bao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, WenZhou Medical University (Y.-Y.M., Z.-X.Q., B.-W.W., H.X., P.W., X.-B.Z., J.-J.W., Y.-F.Y., S.-H.C., F.-J.B), Wenzhou, Zhejiang, China; The Institute of Ocular Biomechanics, Wenzhou Medical University (X.-B.Z., J.-J.W., S.-H.C., F.-J.B.), Wenzhou, Zhejiang, China.
| |
Collapse
|
11
|
Kenia VP, Kenia RV, Bendre P, Pirdankar OH. Corneal stress-strain index in myopic Indian population. Oman J Ophthalmol 2024; 17:47-52. [PMID: 38524314 PMCID: PMC10957058 DOI: 10.4103/ojo.ojo_122_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/18/2023] [Indexed: 03/26/2024] Open
Abstract
AIM The purpose is to study the corneal stress-strain index (SSI) in myopic refractive error among Indian subjects. METHODS A retrospective study where young myopic subjects aged between 11 and 35 years who had undergone corneal biomechanics assessment using Corvis ST between January 2017 and December 2021 were enrolled. Subjects with central corneal thickness (CCT) <500 μ, intraocular pressure (IOP) >21 mmHg, history of any systemic and ocular disease or any previous ocular surgery, high astigmatism, corneal disease such as keratoconus were excluded. Subjects with missing data or having poor quality scan were excluded. Corneal biomechanical properties and corneal SSI were assessed using Corvis ST. For statistical purposes, eyes were divided into four different groups and were analyzed using one-way ANOVA. RESULTS Nine hundred and sixty-six myopic eyes with mean ± standard deviation age, IOP, and CCT of 26.89 ± 4.92 years, 16.94 ± 2.00 mmHg, and 540.18 ± 25.23 microns, respectively, were included. There were 311, 388, 172, and 95 eyes that were low, moderate, severe, and extreme myopic. Deformation amplitude ratio at 1 mm and 2 mm were similar across different myopic groups. A significant increase in max inverse radius, ambrosia relational thickness, biomechanically corrected IOP, integrated radius was noted with an increase in myopic refractive error. Corvis biomechanical index, corneal SSI was found to be decreased significantly with an increase in myopic refractive error. We noted a significant positive association between myopic refractive error and SSI (P < 0.001). CONCLUSION Corneal SSI was found to be reduced in extreme myopic eyes.
Collapse
Affiliation(s)
- Vaishal P. Kenia
- Department of Cataract and Refractive Surgery, Kenia Eye Hospital, Mumbai, Maharashtra, India
| | - Raj V. Kenia
- Department of Ophthalmology, Kenia Foundation, Mumbai, Maharashtra, India
| | - Pradnya Bendre
- Department of Cataract and Refractive Surgery, Kenia Eye Hospital, Mumbai, Maharashtra, India
| | | |
Collapse
|
12
|
Peyman A, Sepahvand F, Pourazizi M, Noorshargh P, Forouhari A. Corneal biomechanics in normal and subclinical keratoconus eyes. BMC Ophthalmol 2023; 23:459. [PMID: 37968616 PMCID: PMC10647094 DOI: 10.1186/s12886-023-03215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND The diagnosis of keratoconus, as the most prevalent corneal ectatic disorder, at the subclinical stage gained great attention due to the increased acceptance of refractive surgeries. This study aimed to assess the pattern of the corneal biomechanical properties derived from Corneal Visualization Scheimpflug Technology (Corvis ST) and evaluate the diagnostic value of these parameters in distinguishing subclinical keratoconus (SKC) from normal eyes. METHODS This prospective study was conducted on 73 SKC and 69 normal eyes. Subclinical keratoconus eyes were defined as corneas with no clinical evidence of keratoconus and suspicious topographic and tomographic features. Following a complete ophthalmic examination, topographic and tomographic corneal assessment via Pentacam HR, and corneal biomechanical evaluation utilizing Corvis ST were done. RESULTS Subclinical keratoconus eyes presented significantly higher Deformation Amplitude (DA) ratio, Tomographic Biomechanical Index (TBI), and Corvis Biomechanical Index (CBI) rates than the control group. Conversely, Ambrósio Relational Thickness to the Horizontal profile (ARTh), and Stiffness Parameter at the first Applanation (SPA1) showed significantly lower rates in SKC eyes. In diagnosing SKC from normal eyes, TBI (AUC: 0.858, Cut-off value: > 0.33, Youden index: 0.55), ARTh (AUC: 0.813, Cut-off value: ≤ 488.1, Youden index: 0.58), and CBI (AUC: 0.804, Cut-off value: > 0.47, Youden index: 0.49) appeared as good indicators. CONCLUSIONS TBI, CBI, and ARTh parameters could be valuable in distinguishing SKC eyes from normal ones.
Collapse
Affiliation(s)
- Alireza Peyman
- Isfahan Eye Research Center, Department of Ophthalmology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Sepahvand
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Pourazizi
- Isfahan Eye Research Center, Department of Ophthalmology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pegah Noorshargh
- Isfahan Eye Research Center, Department of Ophthalmology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Forouhari
- Isfahan Eye Research Center, Department of Ophthalmology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
Desouky NA, Saafan MM, Mansour MH, Maklad OM. Patient-specific air puff-induced loading using machine learning. Front Bioeng Biotechnol 2023; 11:1277970. [PMID: 38026883 PMCID: PMC10663333 DOI: 10.3389/fbioe.2023.1277970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: The air puff test is a contactless tonometry test used to measure the intraocular pressure and the cornea's biomechanical properties. Limitations that most challenge the accuracy of the estimation of the corneal material and the intraocular pressure are the strong intercorrelation between the intraocular pressure and the corneal parameters, either the material properties that can change from one person to another because of age or the geometry parameters like central corneal thickness. This influence produces inaccuracies in the corneal deformation parameters while extracting the IOP parametric equation, which can be reduced through the consideration of the patient-specific air puff pressure distribution taking into account the changes in corneal parameters. This air puff pressure loading distribution can be determined precisely from the fluid-structure interaction (FSI) coupling between the air puff and the eye model. However, the computational fluid dynamics simulation of the air puff in the coupling algorithm is a time-consuming model that is impractical to use in clinical practice and large parametric studies. Methods: By using a supervised machine learning algorithm, we predict the time-dependent air puff pressure distribution for different corneal parameters via a parametric study of the corneal deformations and the gradient boosting algorithm. Results: The results confirmed that the algorithm gives the time-dependent air puff pressure distribution with an MAE of 0.0258, an RMSE of 0.0673, and an execution time of 93 s, which is then applied to the finite element model of the eye generating the corresponding corneal deformations taking into account the FSI influence. Using corneal deformations, the response parameters can be extracted and used to produce more accurate algorithms of the intraocular pressure and corneal material stress-strain index (SSI). Discussion: Estimating the distribution of air pressure on the cornea is essential to increase the accuracy of intraocular pressure (IOP) measurements, which serve as valuable indicator of corneal disease. We find that the air puff pressure loading is largely influenced by complex changes in corneal parameters unique to each patient case. With our innovative algorithm, we can preserve the same accuracy developed by the CFD-based FSI model, while reducing the computational time from approximately 101000 s (28 h) to 720 s (12 min), which is about 99.2% reduction in time. This huge improvement in computational cost will lead to significant improvement in the parametric equations for IOP and the Stress-Strain Index (SSI).
Collapse
Affiliation(s)
- Nada A. Desouky
- Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Mahmoud M. Saafan
- Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Mohamed H. Mansour
- Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Osama M. Maklad
- Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
- School of Engineering, Centre for Advanced Manufacturing and Materials, University of Greenwich, London, United Kingdom
| |
Collapse
|
14
|
Zhang Y, Zhang XJ, Yuan N, Wang YM, Ip P, Chen LJ, Tham CC, Pang CP, Yam JC. Secondhand smoke exposure and ocular health: A systematic review. Surv Ophthalmol 2023; 68:1166-1207. [PMID: 37479063 DOI: 10.1016/j.survophthal.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
The toxicology of secondhand smoke (SHS), along with the harm of its exposure to human health, has been generally acknowledged; however, specific evidence is lacking on the association between SHS exposure and ocular health. In this systematic review (PROSPERO registration number: CRD42022247992), we included 55 original articles published by 12 May 2023, which dealt with SHS exposure and ocular disorders, such as eye irritation, conjunctivitis, dry eye diseases, uveitis, myopia, astigmatism, contact lens discomfort, age-related macular degeneration, glaucoma, and thyroid eye disease that addressed the ocular neurovascular structures of the macular, retinal nerve fiber layer, choroid, and corneal biomechanical parameters. We found compelling correlational evidence for eye irritation, conjunctivitis, and dry eye symptoms-supporting that SHS exposure was positively associated with inflammatory and allergic changes in the eyes. Yet, evidence about the associations between SHS exposure and other ocular disorders, structures, and parameters is still limited or controversial. Given the limitations of existing literature, more investigations with high quality and rigorous design are warranted to elucidate the potentially harmful effects of SHS exposure on ocular health.
Collapse
Affiliation(s)
- Youjuan Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiu Juan Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Shantou International Eye Center, Shantou University, Shantou, China
| | - Nan Yuan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Kunming Bright Eye Hospital, Kunming, China
| | - Yu Meng Wang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Patrick Ip
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Shantou International Eye Center, Shantou University, Shantou, China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong SAR, China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Shantou International Eye Center, Shantou University, Shantou, China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong SAR, China; Hong Kong Eye Hospital, Hong Kong SAR, China; Department of Ophthalmology, Hong Kong Children's Hospital, Hong Kong SAR, China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Shantou International Eye Center, Shantou University, Shantou, China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Shantou International Eye Center, Shantou University, Shantou, China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong SAR, China; Hong Kong Eye Hospital, Hong Kong SAR, China; Department of Ophthalmology, Hong Kong Children's Hospital, Hong Kong SAR, China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
15
|
Shirzadi K, Makateb A, Asadigandomani H, Irannejad M. Assessment of Corneal Biomechanical Properties using Scheimpflug Camera-Based Imaging in Night Shift Medical Staff. J Curr Ophthalmol 2023; 35:345-349. [PMID: 39281389 PMCID: PMC11392290 DOI: 10.4103/joco.joco_196_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 12/25/2023] [Indexed: 09/18/2024] Open
Abstract
Purpose To evaluate the effect of night shifts on the biomechanical properties of the cornea using Scheimpflug camera-based imaging (Corvis and Pentacam). Methods Thirty-four participants from the medical staff who had at least six night shifts per month as a case group and fifty-two participants as a control group participated in the study. The biomechanical characteristics of the cornea using the Corvis device and the topographical characteristics of the cornea using the Pentacam device were investigated in the participants. Results The main indices of corneal biomechanics including Corvis Biomechanical Index (0.17 ± 0.18 vs. 0.15 ± 0.14; P = 0.66 [adjusted] and 0.66 [unadjusted]) and Tomographic and Biomechanical Index (0.16 ± 0.19 vs. 0.14 ± 0.19; P = 0.78 [adjusted] and 0.63 [unadjusted]) were not significantly different between case and control groups. Conclusion Our study showed that night shifts do not independently affect corneal biomechanical indices.
Collapse
Affiliation(s)
- Keyvan Shirzadi
- Department of Ophthalmology, Imam Reza Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - Ali Makateb
- Department of Ophthalmology, Imam Reza Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - Hassan Asadigandomani
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziyar Irannejad
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Liu MX, Li DL, Yin ZJ, Li YZ, Zheng YJ, Qin Y, Liang G, Pan CW. Smoking, alcohol consumption and corneal biomechanical parameters among Chinese university students. Eye (Lond) 2023; 37:2723-2729. [PMID: 36697900 PMCID: PMC10482929 DOI: 10.1038/s41433-023-02405-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND/OBJECTIVES Smoking and alcohol consumption are important risk factors for several ocular disorders, but their effects on corneal biomechanics remain unclear. Our study aims to explore the association between smoking and alcohol consumption with corneal biomechanical parameters measured by Corvis-ST (CST) among university students. SUBJECTS/METHODS A total of 1645 healthy university students from a university-based study were included, and all participants underwent corneal biomechanical parameters measurement by CST. We selected 10 reliable parameters that can reflect the corneal deformation response. All participants had a standardised interview to determine their smoking and alcohol consumption status. RESULTS The mean age of the participants was 19.0 ± 0.9 years, and 1132 (68.8%) were women. Smoking was significantly associated with stiffer corneas. Smokers showed significantly slower second applanation velocity (A2v) (β = 0.007 m/s, 95% confidence interval 0.001 to 0.014, P = 0.032) and lower integrated radius (IR) (β = -0.214 mm-1, 95% confidence interval -0.420 to -0.007, P = 0.043) than non-smokers after adjusting for age, gender, eye-rubbing, myopia, and body mass index (BMI). Smokers with BMI no less than 24.0 showed slower A2v and lower IR. Alcohol consumption and passive smoking were found no significant association with corneal biomechanics. CONCLUSION Smokers had less deformable corneas, especially those with BMI no less than 24.0. Our findings provide new evidence for the association between smoking and ocular disorders associated with corneal biomechanics like glaucoma.
Collapse
Affiliation(s)
- Min-Xin Liu
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Dan-Lin Li
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Zhi-Jian Yin
- Department of Ophthalmology, The First Affiliated Hospital of Dali University, Dali, China
| | - Yue-Zu Li
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, China
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Ya-Jie Zheng
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, China
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Yu Qin
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, China
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Gang Liang
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, China.
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Kunming, China.
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
17
|
Assessment of the corneal biomechanical features of granular corneal dystrophy type 2 using dynamic ultra-high-speed Scheimpflug imaging. Graefes Arch Clin Exp Ophthalmol 2023; 261:761-767. [PMID: 36178505 DOI: 10.1007/s00417-022-05847-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022] Open
Abstract
PURPOSE To evaluate the corneal biomechanical features of eyes with granular corneal dystrophy type 2 (GCD2) by analyzing corneal biomechanical indices obtained using a Corvis ST (CST) dynamic ultra-high-speed Scheimpflug imaging device. METHODS In this retrospective case-control study, 35 CST parameters were compared in normal eyes (control) and eyes of patients with GCD2 treated at Osaka University Hospital, Osaka, Japan. The parameters included the Corvis Biomechanical Index (CBI), which is important in differentiating eyes with keratoconus from normal eyes. We measured the deposition rates of lesions in the central 7-mm region of the eye and assessed the correlation between the deposition rate and the CBI. RESULTS Twenty-one eyes with GCD2 and 23 control eyes were analyzed. Eyes with GCD2 showed significantly less corneal stiffness in 15 CST parameters than did control eyes. In particular, the CBI was remarkably higher in eyes with GCD2 than in control eyes (P = 0.000006). Additionally, the deposition rate and the CBI were positively correlated. CONCLUSIONS GCD2 eyes had softer corneas than did control eyes in most biomechanical CST parameters, and one of the parameters (the CBI) was linked to the rate of deposited lesions. Since IOP may be underestimated in GCD2 eyes, management should be especially careful in GCD2 cases complicated by glaucoma.
Collapse
|
18
|
Bao F, Lopes BT, Zheng X, Ji Y, Wang J, Elsheikh A. Corneal Biomechanics Losses Caused by Refractive Surgery. Curr Eye Res 2023; 48:137-143. [PMID: 36001080 DOI: 10.1080/02713683.2022.2103569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent advances, specifically in the understanding of the biomechanical properties of the cornea and its response to diseases and surgical interventions, have significantly improved the safety and surgical outcomes of corneal refractive surgery, whose popularity and demand continue to grow worldwide. However, iatrogenic keratectasia resulting from the deterioration in corneal biomechanics caused by surgical interventions, although rare, remains a global concern. On one hand, in vivo biomechanical evaluation, enabled by clinical imaging systems such as the ORA and the Corvis ST, has significantly improved the risk profiling of patients for iatrogenic keratectasia. That is despite the fact the biomechanical metrics provided by these systems are considered indicators of the cornea's overall stiffness rather than its intrinsic material properties. On the other hand, new surgical modalities including SMILE were introduced to offer superior biomechanical performance to LASIK, but this superiority could not be proven clinically, creating more myths than answers. The literature also includes sound evidence that tPRK provided the highest preservation of corneal biomechanics when compared to both LASIK and SMILE. The aim of this review is twofold; to discuss the importance of corneal biomechanical evaluation prior to refractive surgery, and to assess the current understanding of cornea's biomechanical deterioration caused by mainstream corneal refractive surgeries. The review has led to an observation that new imaging techniques, parameters and evaluation systems may be needed to reflect the true advantages of specific refractive techniques and when these advantages are significant enough to offer better protection against post-surgery complications.
Collapse
Affiliation(s)
- FangJun Bao
- Eye Hospital, Wenzhou Medical University, Wenzhou, China.,The Institute of Ocular Biomechanics, Wenzhou Medical University, Wenzhou, China
| | - Bernardo T Lopes
- School of Engineering, University of Liverpool, Liverpool, UK.,Department of Ophthalmology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - XiaoBo Zheng
- Eye Hospital, Wenzhou Medical University, Wenzhou, China.,The Institute of Ocular Biomechanics, Wenzhou Medical University, Wenzhou, China
| | - YuXin Ji
- Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - JunJie Wang
- Eye Hospital, Wenzhou Medical University, Wenzhou, China.,The Institute of Ocular Biomechanics, Wenzhou Medical University, Wenzhou, China
| | - Ahmed Elsheikh
- School of Engineering, University of Liverpool, Liverpool, UK.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China.,National Institute for Health Research (NIHR) Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
19
|
Esporcatte LPG, Salomão MQ, Lopes BT, Sena N, Ferreira É, Filho JBRF, Machado AP, Ambrósio R. Biomechanics in Keratoconus Diagnosis. Curr Eye Res 2023; 48:130-136. [PMID: 35184637 DOI: 10.1080/02713683.2022.2041042] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose: To prospectively review the importance of biomechanical assessment in the screening, diagnosis, prognosis, individualized planning, and clinical follow-up for ectatic corneal diseases.Methods: We demonstrate two commercially available devices to assess the corneal biomechanics in vivo, the Ocular Response Analyzer (ORA, Reichester, NY, USA) and the Corvis ST (Oculus, Wetzlar, Germany). Novel devices have been demonstrated to provide in vivo biomechanical measurements, including Brillouin optical microscopy and OCT elastography. Conclusion: The integration of biomechanical data and other data from multimodal refractive imaging using artificial intelligence demonstrated the ability to enhance accuracy in diagnosing ectatic corneal diseases.
Collapse
Affiliation(s)
- Louise Pellegrino G Esporcatte
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rio de Janeiro, Brazil.,Instituto de Olhos Renato Ambrósio, Rio de Janeiro, Brazil.,Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Marcella Q Salomão
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rio de Janeiro, Brazil.,Instituto de Olhos Renato Ambrósio, Rio de Janeiro, Brazil.,Brazilian Artificial Intelligence Networking in Medicine - BrAIN, Rio de Janeiro and Maceió, Brazil.,Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil.,Instituto Benjamin Constant, Rio de Janeiro, Brazil
| | - Bernardo T Lopes
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rio de Janeiro, Brazil.,School of Engineering, University of Liverpool, Liverpool, UK
| | - Nelson Sena
- Department of Ophthalmology, Federal University the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Érica Ferreira
- Department of Ophthalmology, Federal University the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Joao Batista R F Filho
- Department of Ophthalmology, Federal University the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Aydano P Machado
- Brazilian Artificial Intelligence Networking in Medicine - BrAIN, Rio de Janeiro and Maceió, Brazil.,Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil.,Computing Institute, Federal University of Alagoas, Maceió, Brazil
| | - Renato Ambrósio
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rio de Janeiro, Brazil.,Instituto de Olhos Renato Ambrósio, Rio de Janeiro, Brazil.,Brazilian Artificial Intelligence Networking in Medicine - BrAIN, Rio de Janeiro and Maceió, Brazil.,Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil.,Department of Ophthalmology, Federal University the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Esporcatte LPG, Salomão MQ, Neto ABDC, Machado AP, Lopes BT, Ambrósio R. Enhanced Diagnostics for Corneal Ectatic Diseases: The Whats, the Whys, and the Hows. Diagnostics (Basel) 2022; 12:3027. [PMID: 36553038 PMCID: PMC9776904 DOI: 10.3390/diagnostics12123027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
There are different fundamental diagnostic strategies for patients with ectatic corneal diseases (ECDs): screening, confirmation of the diagnosis, classification of the type of ECD, severity staging, prognostic assessment, and clinical follow-up. The conscious application of such strategies enables individualized treatments. The need for improved diagnostics of ECD is related to the advent of therapeutic refractive procedures that are considered prior to keratoplasty. Among such less invasive procedures, we include corneal crosslinking, customized ablations, and intracorneal ring segment implantation. Besides the paradigm shift in managing patients with ECD, enhancing the sensitivity to detect very mild forms of disease, and characterizing the inherent susceptibility for ectasia progression, became relevant for identifying patients at higher risk for progressive iatrogenic ectasia after laser vision correction (LVC). Moreover, the hypothesis that mild keratoconus is a risk factor for delivering a baby with Down's syndrome potentially augments the relevance of the diagnostics of ECD. Multimodal refractive imaging involves different technologies, including Placido-disk corneal topography, Scheimpflug 3-D tomography, segmental or layered tomography with layered epithelial thickness using OCT (optical coherence tomography), and digital very high-frequency ultrasound (VHF-US), and ocular wavefront. Corneal biomechanical assessments and genetic and molecular biology tests have translated to clinical measurements. Artificial intelligence allows for the integration of a plethora of clinical data and has proven its relevance in facilitating clinical decisions, allowing personalized or individualized treatments.
Collapse
Affiliation(s)
- Louise Pellegrino Gomes Esporcatte
- Department of Ophthalmology, Federal University of São Paulo, São Paulo 04023, Brazil
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rio de Janeiro 20520-050, Brazil
- Instituto de Olhos Renato Ambrósio, Rio de Janeiro 20520-050, Brazil
- Brazilian Artificial Intelligence Networking in Medicine-BrAIN, Rio de Janeiro 20520-050, Brazil
| | - Marcella Q. Salomão
- Department of Ophthalmology, Federal University of São Paulo, São Paulo 04023, Brazil
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rio de Janeiro 20520-050, Brazil
- Instituto de Olhos Renato Ambrósio, Rio de Janeiro 20520-050, Brazil
- Brazilian Artificial Intelligence Networking in Medicine-BrAIN, Rio de Janeiro 20520-050, Brazil
- Instituto Benjamin Constant, Rio de Janeiro 22290-255, Brazil
| | | | - Aydano P. Machado
- Department of Ophthalmology, Federal University of São Paulo, São Paulo 04023, Brazil
- Brazilian Artificial Intelligence Networking in Medicine-BrAIN, Rio de Janeiro 20520-050, Brazil
- Computing Institute, Federal University of Alagoas, Maceió 57072-900, Brazil
| | - Bernardo T. Lopes
- Department of Ophthalmology, Federal University of São Paulo, São Paulo 04023, Brazil
- School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
| | - Renato Ambrósio
- Department of Ophthalmology, Federal University of São Paulo, São Paulo 04023, Brazil
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rio de Janeiro 20520-050, Brazil
- Instituto de Olhos Renato Ambrósio, Rio de Janeiro 20520-050, Brazil
- Brazilian Artificial Intelligence Networking in Medicine-BrAIN, Rio de Janeiro 20520-050, Brazil
- Department of Ophthalmology, Federal University the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-240, Brazil
| |
Collapse
|
21
|
Nair A, Ambekar YS, Zevallos-Delgado C, Mekonnen T, Sun M, Zvietcovich F, Singh M, Aglyamov S, Koch M, Scarcelli G, Espana EM, Larin KV. Multiple Optical Elastography Techniques Reveal the Regulation of Corneal Stiffness by Collagen XII. Invest Ophthalmol Vis Sci 2022; 63:24. [PMID: 36383352 PMCID: PMC9680591 DOI: 10.1167/iovs.63.12.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Collagen XII plays a role in regulating the structure and mechanical properties of the cornea. In this work, several optical elastography techniques were used to investigate the effect of collagen XII deficiency on the stiffness of the murine cornea. Methods A three-prong optical elastography approach was used to investigate the mechanical properties of the cornea. Brillouin microscopy, air-coupled ultrasonic optical coherence elastography (OCE) and heartbeat OCE were used to assess the mechanical properties of wild type (WT) and collagen XII-deficient (Col12a1-/-) murine corneas. The Brillouin frequency shift, elastic wave speed, and compressive strain were all measured as a function of intraocular pressure (IOP). Results All three optical elastography modalities measured a significantly decreased stiffness in the Col12a1-/- compared to the WT (P < 0.01 for all three modalities). The optical coherence elastography techniques showed that mean stiffness increased as a function of IOP; however, Brillouin microscopy showed no discernable trend in Brillouin frequency shift as a function of IOP. Conclusions Our approach suggests that the absence of collagen XII significantly softens the cornea. Although both optical coherence elastography techniques showed an expected increase in corneal stiffness as a function of IOP, Brillouin microscopy did not show such a relationship, suggesting that the Brillouin longitudinal modulus may not be affected by changes in IOP. Future work will focus on multimodal biomechanical models, evaluating the effects of other collagen types on corneal stiffness, and in vivo measurements.
Collapse
Affiliation(s)
- Achuth Nair
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Yogeshwari S. Ambekar
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | | | - Taye Mekonnen
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Mei Sun
- Cornea and External Disease, Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Fernando Zvietcovich
- Department of Engineering, Pontificia Universidad Catolica del Peru, San Miguel, Lima, Peru
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Salavat Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX, United States
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Molecular Medicine Cologne, and Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Edgar M. Espana
- Cornea and External Disease, Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
22
|
Esporcatte LPG, Salomão MQ, Junior NS, Machado AP, Ferreira É, Loureiro T, Junior RA. Corneal biomechanics for corneal ectasia: Update. Saudi J Ophthalmol 2022; 36:17-24. [PMID: 35971484 PMCID: PMC9375464 DOI: 10.4103/sjopt.sjopt_192_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/23/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022] Open
Abstract
Knowledge of biomechanical principles has been applied in several clinical conditions, including correcting intraocular pressure measurements, planning and following corneal treatments, and even allowing an enhanced ectasia risk evaluation in refractive procedures. The investigation of corneal biomechanics in keratoconus (KC) and other ectatic diseases takes place in several steps, including screening ectasia susceptibility, the diagnostic confirmation and staging of the disease, and also clinical characterization. More recently, investigators have found that the integration of biomechanical and tomographic data through artificial intelligence algorithms helps to elucidate the etiology of KC and ectatic corneal diseases, which may open the door for individualized or personalized medical treatments in the near future. The aim of this article is to provide an update on corneal biomechanics in the screening, diagnosis, staging, prognosis, and treatment of KC.
Collapse
Affiliation(s)
- Louise P. G. Esporcatte
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Brazil,Renato Ambrosio Eye Institute, Rio de Janeiro, Brazil,Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Marcella Q. Salomão
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Brazil,Renato Ambrosio Eye Institute, Rio de Janeiro, Brazil,Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil,Brazilian Study Group of Artificial Intelligence and Corneal Analysis - BrAIN, Rio de Janeiro and Maceió, Brazil,Benjamin Constant Institute, Rio de Janeiro, Brazil
| | - Nelson S. Junior
- Department of Ophthalmology, Federal University the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Aydano P. Machado
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil,Brazilian Study Group of Artificial Intelligence and Corneal Analysis - BrAIN, Rio de Janeiro and Maceió, Brazil,Department of Computer Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Érica Ferreira
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Brazil,Department of Ophthalmology, Federal University the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Tomás Loureiro
- Department of Ophthalmology, Garcia de Orta Hospital, Almada, Portugal
| | - Renato A. Junior
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Brazil,Renato Ambrosio Eye Institute, Rio de Janeiro, Brazil,Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil,Brazilian Study Group of Artificial Intelligence and Corneal Analysis - BrAIN, Rio de Janeiro and Maceió, Brazil,Department of Ophthalmology, Federal University the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil,Address for correspondence: Dr. Renato A. Junior, Rua Conde de Bonfim, 211/712, 20520-050, Rio de Janeiro, RJ, Brazil. E-mail:
| |
Collapse
|
23
|
Zhao Y, Yang H, Li Y, Wang Y, Han X, Zhu Y, Zhang Y, Huang G. Quantitative Assessment of Biomechanical Properties of the Human Keratoconus Cornea Using Acoustic Radiation Force Optical Coherence Elastography. Transl Vis Sci Technol 2022; 11:4. [PMID: 35666497 PMCID: PMC9185997 DOI: 10.1167/tvst.11.6.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Quantification of biomechanical properties of keratoconus (KC) corneas has great significance for early diagnosis and treatment of KC, but the corresponding clinical measurement remains challenging. Here, we developed an acoustic radiation force (ARF) optical coherence elastography technique and explored its potential for evaluating biomechanical properties of KC corneas. Methods An ARF system was used to induce the tissue deformation, which was detected by an optical coherence tomography system, and thus the localized point-by-point Young's modulus measurements were achieved. Then, two healthy rabbit eyes were imaged to test the system, after which the human keratoconus cornea was evaluated by using the same method. Three regions were selected for biomechanics analysis: the conical region, the transitional region, and the peripheral region. Results Young's moduli of transitional region ranged from 53.3 to 58.5 kPa. The corresponding values for the peripheral region were determined to be 58.6 kPa and 63.2 kPa, respectively. Young's moduli of the conical region were gradually increased by 18.3% from the center to the periphery, resulting in the minimum and maximum values of 44.9 kPa and 53.1 kPa, respectively. Furthermore, Young's moduli of the anterior and posterior of the center were determined to be 44.9 kPa and 50.7 kPa, respectively. Conclusions Differences in biomechanical properties between the three regions and slight variations within the conical region were clearly distinguished. Biomechanical weakening of the keratoconus cornea was mainly localized in the conical region, especially in the vertex position. Translational Relevance The system may provide a promising clinical tool for the noninvasive evaluation of local corneal biomechanics and thus may have potential applications in early keratoconus detection with further optimization.
Collapse
Affiliation(s)
- Yanzhi Zhao
- Nanchang University, Nanchang, P. R. China.,Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Hongwei Yang
- Nanchang University, Nanchang, P. R. China.,Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Yingjie Li
- Nanchang University, Nanchang, P. R. China.,Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Yongbo Wang
- Nanchang University, Nanchang, P. R. China.,Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Xiao Han
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, P. R. China
| | - Yirui Zhu
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, P. R. China
| | - Yubao Zhang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, P. R. China
| | - Guofu Huang
- Nanchang University, Nanchang, P. R. China.,Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| |
Collapse
|
24
|
Li Y, Tian L, Guo LL, Hao Y, Jie Y. In Vivo Corneal Biomechanical Properties in a Selected Chinese Population, Measured Using the Corneal Visualization Scheimpflug Technology. Front Bioeng Biotechnol 2022; 10:863240. [PMID: 35497328 PMCID: PMC9043322 DOI: 10.3389/fbioe.2022.863240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose: To evaluate the repeatability and reproducibility of recalculated dynamic corneal response (DCR) parameters and the biomechanical-compensated intraocular pressure (bIOP) derived from the Corneal Visualization Scheimpflug Technology (Corvis ST), as well as to study the variations of DCR parameters and their relationship with demographic, and ocular characteristics. Methods: A total of 544 healthy subjects were recruited in this study and a series of ophthalmological examinations were performed on their right eyes. Three repeated measurements were obtained at 3-min intervals for 291 of the participants to ensure repeatability. A sum of 100 participants was examined twice within 2-h intervals using two different Corvis ST in the reproducibility study. The repeatability and reproducibility of 37 parameters, including 36 DCR parameters and bIOP, were assessed by the coefficient of repeatability (CR), coefficient of variation (CV), intraclass correlation coefficient (ICC), and within-subject standard deviation (sw). Pearson’s correlation coefficients and stepwise multivariate linear regression models were performed to investigate whether the DCR parameters were related to demographic and ocular characteristics. Results: Of all the 37 parameters, 34 showed excellent (ICC ≥0.90) or good (ICC ≥0.75) repeatability while 27 of the 37 parameters showed excellent (ICC ≥0.90) or good (ICC ≥0.75) reproducibility. In particular, a CV of less than 20% was found for all DCR parameters and bIOP. A fraction of 14 out of 36 DCR parameters was selected for correlation analysis, based on measurement reliability and clinical relevance in referring to previous literature. Age was negatively associated with the Highest concavity delta arc length (HCdArcL) and peak distance (PD) but it positively correlated with the Whole Eye Movement Max Length (WEMML). Intraocular pressure (IOP) and central corneal thickness (CCT) were negatively associated with the deformation amplitude ratio (DARM) [1 mm], A1 Velocity (A1V), and PD, while positively related to the stiffness parameter at applanation 1 (SP-A1). The bIOP was negatively associated with A1V but positively associated with A2 Velocity (A2V). The anterior chamber volume (ACV) was negatively associated with the pachy slope (PS), WEMML, and SP-A1. Conclusion. The Corvis ST showed good precision for the repeatability and reproducibility of 36 DCR parameters and bIOP parameters in healthy eyes. The IOP, CCT, bIOP, Km, and ACV significantly influenced the DCR parameters of the eyes.
Collapse
Affiliation(s)
- Yuxin Li
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lei Tian
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Capital Medical University, Beijing, China
- *Correspondence: Lei Tian, ; Ying Jie,
| | - Li-Li, Guo
- The First People’s Hospital of Xuzhou, Xuzhou, China
| | - Yiran Hao
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Ying Jie
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- *Correspondence: Lei Tian, ; Ying Jie,
| |
Collapse
|
25
|
Lan G, Shi Q, Wang Y, Ma G, Cai J, Feng J, Huang Y, Gu B, An L, Xu J, Qin J, Twa MD. Spatial Assessment of Heterogeneous Tissue Natural Frequency Using Micro-Force Optical Coherence Elastography. Front Bioeng Biotechnol 2022; 10:851094. [PMID: 35360399 PMCID: PMC8962667 DOI: 10.3389/fbioe.2022.851094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
Analysis of corneal tissue natural frequency was recently proposed as a biomarker for corneal biomechanics and has been performed using high-resolution optical coherence tomography (OCT)-based elastography (OCE). However, it remains unknown whether natural frequency analysis can resolve local variations in tissue structure. We measured heterogeneous samples to evaluate the correspondence between natural frequency distributions and regional structural variations. Sub-micrometer sample oscillations were induced point-wise by microliter air pulses (60–85 Pa, 3 ms) and detected correspondingly at each point using a 1,300 nm spectral domain common path OCT system with 0.44 nm phase detection sensitivity. The resulting oscillation frequency features were analyzed via fast Fourier transform and natural frequency was characterized using a single degree of freedom (SDOF) model. Oscillation features at each measurement point showed a complex frequency response with multiple frequency components that corresponded with global structural features; while the variation of frequency magnitude at each location reflected the local sample features. Silicone blocks (255.1 ± 11.0 Hz and 249.0 ± 4.6 Hz) embedded in an agar base (355.6 ± 0.8 Hz and 361.3 ± 5.5 Hz) were clearly distinguishable by natural frequency. In a beef shank sample, central fat and connective tissues had lower natural frequencies (91.7 ± 58.2 Hz) than muscle tissue (left side: 252.6 ± 52.3 Hz; right side: 161.5 ± 35.8 Hz). As a first step, we have shown the possibility of natural frequency OCE methods to characterize global and local features of heterogeneous samples. This method can provide additional information on corneal properties, complementary to current clinical biomechanical assessments, and could become a useful tool for clinical detection of ocular disease and evaluation of medical or surgical treatment outcomes.
Collapse
Affiliation(s)
- Gongpu Lan
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China
- *Correspondence: Gongpu Lan, ; Michael D. Twa,
| | - Qun Shi
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Yicheng Wang
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Guoqin Ma
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Jing Cai
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China
| | - Jinping Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, China
| | - Yanping Huang
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China
| | - Boyu Gu
- School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin, China
| | - Lin An
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
| | - Jingjiang Xu
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China
| | - Jia Qin
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX, United States
- *Correspondence: Gongpu Lan, ; Michael D. Twa,
| |
Collapse
|
26
|
Lin Q, Shen Z. Effect of white-to-white corneal diameter on biomechanical indices assessed by Pentacam Scheimpflug corneal tomography and corneal visualization Scheimpflug technology. Int Ophthalmol 2022; 42:1537-1543. [PMID: 34988748 DOI: 10.1007/s10792-021-02144-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE To provide evidence for more accurate evaluation of refractive surgery candidates in clinics, this retrospective study investigated the effect of corneal diameter on the biomechanical indices assessed by Pentacam Scheimpflug cornea tomography (Pentacam) and corneal visualization Scheimpflug technology (Corvis ST). METHODS The relevant data were collected of 132 eyes from 132 participants with moderate myopia who were candidates for refractive surgery. Eligible participants were apportioned to 2 groups based on the white-to-white (WTW) corneal diameter: Group A, ≤ 11.5 mm, and Group B, ≥ 11.6 mm. A single clinician performed Pentacam and Corvis ST imaging on each subject for 3 consecutive measurements, and the means were used for statistical analyses. RESULTS Each group comprised 66 eyes. As measured by Pentacam, the 2 groups were comparable regarding Df and Da. For other measurements, Group A had significantly higher K1, K2, Db, Dp, Dt, Do, PPImin, PPImax, PPIavg, while Group B had significantly higher CCT, BFSf, BFSb, and ARTmax. Corvis ST data included DA ratio, SPA1, CBI, TBI, and ARTh. Only the latter showed a significant difference, with ARTh of group A (437.04 ± 76.60) larger than group B (470.46 ± 103.36, p = 0.04). CONCLUSION In a Chinese population, WTW corneal diameter showed effect on biomechanical indices assessed by Pentacam and Corvis ST. Personalized evaluation of these measurements based on corneal diameter should improve the sensitivity and specificity for screening of keratoconus by these devices.
Collapse
Affiliation(s)
- Qinghong Lin
- Department of Refractive Surgery, Hefei Bright Eye Hospital, No. 299 Feixi Road, Hefei, 230000, China
| | - Zhengwei Shen
- Department of Refractive Surgery, Hefei Bright Eye Hospital, No. 299 Feixi Road, Hefei, 230000, China.
| |
Collapse
|
27
|
Tian L, Zhang D, Guo L, Qin X, Zhang H, Zhang H, Jie Y, Li L. Comparisons of corneal biomechanical and tomographic parameters among thin normal cornea, forme fruste keratoconus, and mild keratoconus. EYE AND VISION 2021; 8:44. [PMID: 34784958 PMCID: PMC8596950 DOI: 10.1186/s40662-021-00266-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/23/2021] [Indexed: 12/27/2022]
Abstract
Background To compare the dynamic corneal response (DCR) and tomographic parameters of thin normal cornea (TNC) with thinnest corneal thickness (TCT) (≤ 500 µm), forme fruste keratoconus (FFKC) and mild keratoconus (MKC) had their central corneal thickness (CCT) matched by Scheimpflug imaging (Pentacam) and corneal visualization Scheimpflug technology (Corvis ST). Methods CCT were matched in 50 eyes with FFKC, 50 eyes with MKC, and 53 TNC eyes with TCT ≤ 500 µm. The differences in DCR and tomographic parameters among the three groups were compared. The receiver operating characteristic (ROC) curve was used to analyze the diagnostic significance of these parameters. Back propagation (BP) neural network was used to establish the keratoconus diagnosis model. Results Fifty CCT-matched FFKC eyes, 50 MKC eyes and 50 TNC eyes were included. The age and biomechanically corrected intraocular pressure (bIOP) did not differ significantly among the three groups (all P > 0.05). The index of height asymmetry (IHA) and height decentration (IHD) differed significantly among the three groups (all P < 0.05). IHD also had sufficient strength (area under the ROC curves (AUC) > 0.80) to differentiate FFKC and MKC from TNC eyes. Partial DCR parameters showed significant differences between the MKC and TNC groups, and the deflection amplitude of the first applanation (A1DA) showed a good potential to differentiate (AUC > 0.70) FFKC and MKC from TNC eyes. Diagnosis model by BP neural network showed an accurate diagnostic efficiency of about 91%. Conclusions The majority of the tomographic and DCR parameters differed among the three groups. The IHD and partial DCR parameters assessed by Corvis ST distinguished FFKC and MKC from TNC when controlled for CCT.
Collapse
Affiliation(s)
- Lei Tian
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing, 100730, China
| | - Di Zhang
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China.,School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Lili Guo
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xiao Qin
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China.,School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Hui Zhang
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China.,School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Haixia Zhang
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China.,School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Lin Li
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China. .,School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
28
|
Sun X, Gao X, Mu BK, Wang Y. Understanding the role of corneal biomechanics-associated genetic variants by bioinformatic analyses. Int Ophthalmol 2021; 42:981-988. [PMID: 34642840 DOI: 10.1007/s10792-021-02081-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE To analyze functions of corneal biomechanical properties (CBP)-related variants as corneal resistance factor (CRF) and corneal hysteresis (CH). METHODS Related single nucleotide polymorphisms (SNPs) and genes were identified from NHGRI-EBI GWAS catalog, GWASdb v2 and possible data in published studies. HaploReg v4.1 was used to find linkage SNPs. Functional annotations were performed by GWAVA, CADD and RegulomeDB. GTEx Portal database was used to find out expression quantitative trait locus (eQTL) association. Enrichr was used to annotate the function of GWAS gene and the associated signal pathway. STING (v11.0) database was utilized for protein interaction and network construction. RESULTS The integration of 302 CH-associated and 420 CRF-associated lead SNPs has produced 531 CBP-associated lead SNPs. A total of 5,324 proxy variants identified using the HaploReg v4.1 and lead SNPs were functionally annotated. Based on the threshold (CADD ≥ 10, GWAVA ≥ 0.4 and RegulomeDB < rank 3), 23 prioritized putative regulatory SNPs were identified. Eight prioritized eQTL variants (rs75203695, rs34861673, rs846766, rs11024102, rs1377416, rs3829492, rs9934438 and rs197912) were found with strong potential of CBP regulation. It was indicated that CBP-associated genes were significantly enriched in extracellular matrix receptor interaction pathway, closely related to the phenotype of corneal dystrophy and keratoconus. COL1A1, SMAD3, BMP4 and RUNX2 occupied the core position in the co-expression network. CONCLUSIONS Data integrative analysis can evaluate CBP variations and explore collagen and extracellular matrix pathways in CBP regulation, which is a promising tool to investigate biological process of corneal diseases.
Collapse
Affiliation(s)
- Xiao Sun
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiang Gao
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Bo-Kun Mu
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300070, China
| | - Yan Wang
- School of Medicine, Nankai University, Tianjin, 300071, China. .,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300070, China. .,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, 300020, China.
| |
Collapse
|
29
|
Abstract
Keratoconus is morphologically associated with increasing deformation, thinning and scarring of the cornea. This functionally leads to refractive changes and visual deterioration. In the early stages there are often no clear clinical signs in the slit-lamp examination; however, confirming the diagnosis as early as possible is important in order to provide patients with an appropriate treatment. For the early diagnosis of keratoconus, various diagnostic devices have been introduced in recent years and decades. These include keratometry with reflection-based or elevation-based systems and optical coherence tomography. High-frequency ultrasound microscopy and corneal biomechanics can also be used to establish the diagnosis of keratoconus by the measurement of other parameters. The necessity and the available possibilities for early diagnosis of keratoconus are presented in more detail in this article.
Collapse
|
30
|
Baptista PM, Ambrosio R, Oliveira L, Meneres P, Beirao JM. Corneal Biomechanical Assessment with Ultra-High-Speed Scheimpflug Imaging During Non-Contact Tonometry: A Prospective Review. Clin Ophthalmol 2021; 15:1409-1423. [PMID: 33854295 PMCID: PMC8039844 DOI: 10.2147/opth.s301179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/05/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In recent years, increasing interest has arisen in the application of data from corneal biomechanics in many areas of ophthalmology, particularly to assist in the detection of early corneal ectasia or ectasia susceptibility, to predict corneal response to surgical or therapeutic interventions and in glaucoma management. Technology has evolved and, recently, the Scheimpflug principle was associated with a non-contact air-puff tonometer, allowing a thorough analysis of corneal biomechanics and a biomechanically corrected intraocular pressure assessment, opening up new perspectives both in ophthalmology and in other medical areas. Data from corneal biomechanics assessment are being integrated in artificial intelligence models in order to increase its value in clinical practice. OBJECTIVE To review the state of the art in the field of corneal biomechanics assessment with special emphasis to the technology based on ultra-high-speed Scheimpflug imaging during non-contact tonometry. SUMMARY A meticulous literature review was performed until the present day. We used 136 published manuscripts as our references. Both information from healthy individuals and descriptions of possible associations with systemic diseases are described. Additionally, it exposed information regarding several fields of ocular pathology, from cornea and ocular surface through areas of refractive surgery and glaucoma until vascular and structural diseases of the chorioretinal unit.
Collapse
Affiliation(s)
- Pedro Manuel Baptista
- Ophthalmology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Porto, Portugal
| | - Renato Ambrosio
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rio de Janeiro, RJ, Brazil
- Department of Cornea and Refractive Surgery, Instituto de Olhos Renato Ambrósio, Rio de Janeiro, Brazil
- Department of Opthalmology, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Brazilian Study Group of Artificial Intelligence and Corneal Analysis - BrAIN, Rio de Janeiro & Maceió, Brazil
| | - Luis Oliveira
- Ophthalmology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Pedro Meneres
- Ophthalmology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Porto, Portugal
| | - Joao Melo Beirao
- Ophthalmology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Porto, Portugal
| |
Collapse
|
31
|
Kenia VP, Kenia RV, Pirdankar OH. Age-related variation in corneal biomechanical parameters in healthy Indians. Indian J Ophthalmol 2020; 68:2921-2929. [PMID: 33229671 PMCID: PMC7856994 DOI: 10.4103/ijo.ijo_2127_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose: To report age-related variations in corneal biomechanical parameters in healthy Indians. Methods: A retrospective study where healthy Indian individuals aged between 5 and 70 years having undergone corneal biomechanics assessment using Corvis ST between January 2017 and December 2018 and having best corrected visual acuity of 20/20 were enrolled. Subjects with central corneal thickness <500 microns, intra-ocular pressure (IOP) ≥ 22 mmHg, refractive error ≥ 6.00D, history of any systemic and ocular disease, previous ocular surgery, poor scans quality, and subjects with any missing data were also excluded. Corneal biomechanical parameters were noted and compared across different age groups. Results: Total of 3125 eyes had undergone the Corvis ST analysis. After applying exclusion criteria, 718 right eyes of 718 patients were included for the analysis and were further divided into different age groups as per each decade (sample size), such as 5-10 (37), 11-20 (113), 21-30 (396), 31-40 (116), 41-50 (39), 50 and above (17). All the subjects were matched for IOP and central corneal thickness (p > 0.05). A total of 19 out of 26 corneal biomechanical parameters were significantly different across age groups (p < 0.05). Vinciguerra screening parameters, such as deformation amplitude ratio max, biomechanically corrected IOP, and stiffness parameter A1 were significantly different across different age groups (p < 0.05). Conclusion: Corneal biomechanical parameters are affected by age as cornea becomes progressively stiffer. The information reported here would serve as a reference for future corneal biomechanical researches and would help in differentiating the abnormal eyes from normal healthy eyes.
Collapse
Affiliation(s)
| | - Raj V Kenia
- Kenia Foundation, Mumbai, Maharashtra, India
| | | |
Collapse
|
32
|
Effects of caffeine intake on the biomechanical properties of the cornea: a placebo-controlled, double-blind, crossover pilot study in low caffeine consumers. Graefes Arch Clin Exp Ophthalmol 2020; 258:2449-2458. [DOI: 10.1007/s00417-020-04835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022] Open
|
33
|
Masiwa LE, Moodley V. A review of corneal imaging methods for the early diagnosis of pre-clinical Keratoconus. JOURNAL OF OPTOMETRY 2020; 13:269-275. [PMID: 31917136 PMCID: PMC7520528 DOI: 10.1016/j.optom.2019.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/22/2019] [Accepted: 11/09/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Keratoconus (KC) is a corneal ectasia characterised by steepening corneal curvature, changes in refractive error and corneal thickness that result in visual impairment. Early signs of KC include displacement of the thinnest part of the cornea from the central position, changes in the corneal epithelial layer cell distribution, variations in the anterior corneal astigmatism/posterior corneal astigmatism relationship and a variation in corneal thickness. It is important that we review the corneal imaging methods for the diagnosis of preclinical KC. METHOD An online literature search was carried out on PubMed. Only publications detailing corneal assessment procedures were considered for this review and any publication on instruments that did not generate KC predictability indices were also excluded from the review. The 308 publications were reviewed. DISCUSSION Corneal assessment techniques, with the ability to characterise both the anterior and posterior corneal surfaces, are invaluable in the diagnosis of pre-clinical KC. Reflection based and elevation based corneal imaging systems should be used in conjunction with other assessments such as higher order aberration measuring systems to improve sensitivity and reliability in the diagnosis of pre-clinical KC. Ultra high resolution ultrasound can detect pre-clinical KC. The ability to asses both the epithelium and endothelium makes anterior surface optical coherence tomography a superior technique for pre-clinical KC diagnosis. There is a positive correlation between central corneal thickness and corneal hysteresis. Corneal biomechanics should be considered in conjunction with other corneal assessments in the diagnosis of pre-clinical KC.
Collapse
Affiliation(s)
- Lynett Erita Masiwa
- Department of Ophthalmology, University of Zimbabwe, College of Health Sciences, P. O. Box A178, Avondale, Harare, Zimbabwe.
| | - Vanessa Moodley
- School of Health Sciences, Department of Optometry, University of Kwazulu Natal, Durban, South Africa
| |
Collapse
|
34
|
Maklad O, Eliasy A, Chen KJ, Wang J, Abass A, Lopes BT, Theofilis V, Elsheikh A. Fluid-Structure Interaction Based Algorithms for IOP and Corneal Material Behavior. Front Bioeng Biotechnol 2020; 8:970. [PMID: 32984273 PMCID: PMC7483485 DOI: 10.3389/fbioe.2020.00970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/27/2020] [Indexed: 01/31/2023] Open
Abstract
Purpose: This paper presents and clinically validates two algorithms for estimating intraocular pressure (IOP) and corneal material behavior using numerical models that consider the fluid-structure interaction between the cornea and the air-puff used in non-contact tonometry. Methods: A novel multi-physics fluid-structure interaction model of the air-puff test was employed in a parametric numerical study simulating human eyes under air-puff pressure with a wide range of central corneal thickness (CCT = 445-645 μm), curvature (R = 7.4-8.4 mm), material stiffness and IOP (10-25 mmHg). Models were internally loaded with IOP using a fluid cavity, then externally with air-puff loading simulated using a turbulent computational fluid dynamics model. Corneal dynamic response parameters were extracted and used in development of two algorithms for IOP and corneal material behavior; fIOP and fSSI, respectively. The two algorithms were validated against clinical corneal dynamic response parameters for 476 healthy participants. The predictions of IOP and corneal material behavior were tested on how they varied with CCT, R, and age. Results: The present study produced a biomechanically corrected estimation of intraocular pressure (fIOP) and a corneal material stiffness parameter or Stress-Strain Index (fSSI), both of which showed no significant correlation with R (p > 0.05) and CCT (p > 0.05). Further, fIOP had no significant correlation with age (p > 0.05), while fSSI was significantly correlated with age (p = 0.001), which was found earlier to be strongly correlated with material stiffness. Conclusion: The present study introduced two novel algorithms for estimating IOP and biomechanical material behavior of healthy corneas in-vivo. Consideration of the fluid structure interaction between the cornea and the air puff of non-contact tonometry in developing these algorithms led to improvements in performance compared with bIOP and SSI.
Collapse
Affiliation(s)
- Osama Maklad
- School of Engineering, University of Liverpool, Liverpool, United Kingdom
| | - Ashkan Eliasy
- School of Engineering, University of Liverpool, Liverpool, United Kingdom
| | - Kai-Jung Chen
- School of Engineering, University of Liverpool, Liverpool, United Kingdom
| | - JunJie Wang
- Eye Hospital and The Institution of Ocular Biomechanics, Wenzhou Medical University, Wenzhou, China
| | - Ahmed Abass
- School of Engineering, University of Liverpool, Liverpool, United Kingdom
| | | | - Vassilis Theofilis
- School of Engineering, University of Liverpool, Liverpool, United Kingdom
| | - Ahmed Elsheikh
- School of Engineering, University of Liverpool, Liverpool, United Kingdom
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
35
|
Cunha AM, Sardinha T, Torrão L, Moreira R, Falcão-Reis F, Pinheiro-Costa J. Transepithelial Accelerated Corneal Collagen Cross-Linking: Two-Year Results. Clin Ophthalmol 2020; 14:2329-2337. [PMID: 32884233 PMCID: PMC7434572 DOI: 10.2147/opth.s252940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/30/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To report 2-year outcomes of trans-epithelial accelerated corneal collagen crosslinking (TE-ACXL) procedure in the treatment of progressive keratoconus patients. PATIENTS AND METHODS Twenty-four eyes from 24 patients who underwent TE-ACXL (6mW/cm2 for 15 minutes) were included in this retrospective interventional study. Best-corrected visual acuity (BCVA), keratometry values, thinnest corneal thickness (PachyMin) and topometric indexes were analysed preoperatively and at 6-month, 12-month, 18-month and 24-month postoperative. Progression was assessed by increase ≥1.00D in maximum keratometry (Kmax); increase ≥1.00D in corneal astigmatism; decrease ≥2% in PachyMin; increase ≥0.42 in D-index. RESULTS There were no complications during or after TE-ACXL. No significant differences (Δ) were observed between baseline and 12-month or 24-month postoperative: ∆BCVA (-0.08 ± 0.25, p=0.190; -0.04 ± 0.17, p=0.588), ∆Kmax (-0.08 ± 1.32, p=0.792; -1.04 ± 1.89, p=0.135), ∆Astigmatism (-0.15 ± 0.89, p=0.485; -0.24 ± 1.38, p=0.609), ∆PachyMin (-0.56 ± 15.70, p=0.882; 0.56 ± 18.74, p=0.931), ∆Index Surface Variation (∆ISV) (-2.11 ± 10.27, p=0.395; -4.67 ± 17.32, p=0.442), ∆Index Vertical Asymmetry (∆IVA) (-0.05 ± 0.17, p=0.208; -0.08 ± 0.26, p=0.397), ∆Index Height Decentration (∆IHD) (0.00 ± 0.02, p=0.368; -0.01 ± 0.04, p=0.484), ∆KI (0.00 ± 0.05, p=0.851; 0.01 ± 0.06, p=0.877) and ∆D-index (0.15 ± 1.14, p=0.572; 0.06 ± 1.36, p=0.892). Eleven to 33% of patients had disease progression at 24-month postoperative according to the parameters used to determine progression. CONCLUSION Although some patients maintain disease progression, TE-ACXL seems to be a safe and effective treatment for keratoconus over the 2-year follow-up period. Studies with longer follow-up periods and larger patient cohorts are recommended.
Collapse
Affiliation(s)
- Ana Maria Cunha
- Department of Ophthalmology, Centro Hospitalar De São João, Porto, Portugal
| | - Tiago Sardinha
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Luís Torrão
- Department of Ophthalmology, Centro Hospitalar De São João, Porto, Portugal
| | - Raúl Moreira
- Department of Ophthalmology, Centro Hospitalar De São João, Porto, Portugal
| | - Fernando Falcão-Reis
- Department of Ophthalmology, Centro Hospitalar De São João, Porto, Portugal
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Pinheiro-Costa
- Department of Ophthalmology, Centro Hospitalar De São João, Porto, Portugal
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
36
|
Smart diagnostics devices through artificial intelligence and mechanobiological approaches. 3 Biotech 2020; 10:351. [PMID: 32728518 DOI: 10.1007/s13205-020-02342-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/15/2020] [Indexed: 10/23/2022] Open
Abstract
The present work illustrates the promising intervention of smart diagnostics devices through artificial intelligence (AI) and mechanobiological approaches in health care practices. The artificial intelligence and mechanobiological approaches in diagnostics widen the scope for point of care techniques for the timely revealing of diseases by understanding the biomechanical properties of the tissue of interest. Smart diagnostic device senses the physical parameters due to change in mechanical, biological, and luidic properties of the cells and to control these changes, supply the necessary drugs immediately using AI techniques. The latest techniques like sweat diagnostics to measure the overall health, Photoplethysmography (PPG) for real-time monitoring of pulse waveform by capturing the reflected signal due to blood pulsation), Micro-electromechanical systems (MEMS) and Nano-electromechanical systems (NEMS) smart devices to detect disease at its early stage, lab-on-chip and organ-on-chip technologies, Ambulatory Circadian Monitoring device (ACM), a wrist-worn device for Parkinson's disease have been discussed. The recent and futuristic smart diagnostics tool/techniques like emotion recognition by applying machine learning algorithms, atomic force microscopy that measures the fibrinogen and erythrocytes binding force, smartphone-based retinal image analyser system, image-based computational modeling for various neurological disorders, cardiovascular diseases, tuberculosis, predicting and preventing of Zika virus, optimal drugs and doses for HIV using AI, etc. have been reviewed. The objective of this review is to examine smart diagnostics devices based on artificial intelligence and mechanobiological approaches, with their medical applications in healthcare. This review determines that smart diagnostics devices have potential applications in healthcare, but more research work will be essential for prospective accomplishments of this technology.
Collapse
|
37
|
Levels of lactoferrin, lysozyme and albumin in the tear film of keratoconus patients and their correlations with important parameters of the disease. REV ROMANA MED LAB 2020. [DOI: 10.2478/rrlm-2020-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Background: Despite the fact that keratoconus has been tipically defined as a noninflammatory condition, recent research has promoted the role of inflammatory factors and protein changes of tear film in disease progression.
Aims: to determine the level of serum albumin, lactoferrin and lyzozyme in tears of keratoconic patients and their correlations with corneal biomechanical properties.
Subjects and methods: 16 eyes of keratoconus patients and 14 eyes of control cases were enrolled in an observational prospective study. We performed a complete ophthalmological examination on all participants. In order to determine the concentration of tear film proteins, a minimum of 20 microlitres of tears from the lower conjunctival fornix were collected from each subject and measured by enzyme-linked immunosorbent assay (ELISA) analysis.
Results: The level of lactoferrin measured in the tear film was significantly decreased in the keratoconus group compared to the normal subjects in all cases (p<0.05). We also found an increased level of lyzozyme and albumin in the keratoconus patients when compared to the controls, only the lyzozyme beeing statistically significant. In the keratoconus group, the correlations between proteins and important parameters such as keratometry, pachymetry and corneal biomechanics were statistically relevant in our study.
Conclusions: We can state that the protein composition of tears is modified in keratoconus by increased levels of protein with inflammatory properties such as albumin or by decreased levels of protein with anti-inflammatory properties such as lactoferrin.
Collapse
|
38
|
Esporcatte LPG, Salomão MQ, Lopes BT, Vinciguerra P, Vinciguerra R, Roberts C, Elsheikh A, Dawson DG, Ambrósio R. Biomechanical diagnostics of the cornea. EYE AND VISION 2020; 7:9. [PMID: 32042837 PMCID: PMC7001259 DOI: 10.1186/s40662-020-0174-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
Corneal biomechanics has been a hot topic for research in contemporary ophthalmology due to its prospective applications in diagnosis, management, and treatment of several clinical conditions, including glaucoma, elective keratorefractive surgery, and different corneal diseases. The clinical biomechanical investigation has become of great importance in the setting of refractive surgery to identify patients at higher risk of developing iatrogenic ectasia after laser vision correction. This review discusses the latest developments in the detection of corneal ectatic diseases. These developments should be considered in conjunction with multimodal corneal and refractive imaging, including Placido-disk based corneal topography, Scheimpflug corneal tomography, anterior segment tomography, spectral-domain optical coherence tomography (SD-OCT), very-high-frequency ultrasound (VHF-US), ocular biometry, and ocular wavefront measurements. The ocular response analyzer (ORA) and the Corvis ST are non-contact tonometry systems that provide a clinical corneal biomechanical assessment. More recently, Brillouin optical microscopy has been demonstrated to provide in vivo biomechanical measurements. The integration of tomographic and biomechanical data into artificial intelligence techniques has demonstrated the ability to increase the accuracy to detect ectatic disease and characterize the inherent susceptibility for biomechanical failure and ectasia progression, which is a severe complication after laser vision correction.
Collapse
Affiliation(s)
- Louise Pellegrino Gomes Esporcatte
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rio de Janeiro, Brazil.,Instituto de Olhos Renato Ambrósio, Rua Conde de Bonfim 211 / 712, Rio de Janeiro, RJ 20520-050 Brazil.,3Department of Ophthalmology, Hospital São Vicente de Paulo, Rio de Janeiro, Brazil
| | - Marcella Q Salomão
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rio de Janeiro, Brazil.,Instituto de Olhos Renato Ambrósio, Rua Conde de Bonfim 211 / 712, Rio de Janeiro, RJ 20520-050 Brazil.,Brazilian Study Group of Artificial Intelligence and Corneal Analysis - BrAIN, Rio de Janeiro & Maceió, Brazil.,5Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil.,Instituto Benjamin Constant, Rio de Janeiro, Brazil
| | - Bernardo T Lopes
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rio de Janeiro, Brazil.,7School of Engineering, University of Liverpool, Liverpool, L69 3GH UK
| | - Paolo Vinciguerra
- 8Department of Biomedical Science, Humanitas University, Rozzano, Italy.,9Eye Center, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Riccardo Vinciguerra
- 7School of Engineering, University of Liverpool, Liverpool, L69 3GH UK.,Department of Ophthalmology, Humanitas San Pio X Hospital, Milan, Italy
| | - Cynthia Roberts
- 11Department of Ophthalmology and Visual Science, Department of Biomedical Engineering, The Ohio State University, Columbus, OH USA
| | - Ahmed Elsheikh
- 7School of Engineering, University of Liverpool, Liverpool, L69 3GH UK.,12School of Biological Science and Biomedical Engineering, Beihang University, Beijing, China.,13NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Daniel G Dawson
- 14The University of Florida Department of Ophthalmology, Gainesville, FL USA
| | - Renato Ambrósio
- Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rio de Janeiro, Brazil.,Instituto de Olhos Renato Ambrósio, Rua Conde de Bonfim 211 / 712, Rio de Janeiro, RJ 20520-050 Brazil.,Brazilian Study Group of Artificial Intelligence and Corneal Analysis - BrAIN, Rio de Janeiro & Maceió, Brazil.,5Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil.,15Department of Ophthalmology, Federal University the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Maklad O, Eliasy A, Chen KJ, Theofilis V, Elsheikh A. Simulation of Air Puff Tonometry Test Using Arbitrary Lagrangian-Eulerian (ALE) Deforming Mesh for Corneal Material Characterisation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:E54. [PMID: 31861736 PMCID: PMC6982245 DOI: 10.3390/ijerph17010054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 01/23/2023]
Abstract
: Purpose: To improve numerical simulation of the non-contact tonometry test by using arbitrary Lagrangian-Eulerian deforming mesh in the coupling between computational fluid dynamics model of an air jet and finite element model of the human eye. METHODS Computational fluid dynamics model simulated impingement of the air puff and employed Spallart-Allmaras model to capture turbulence of the air jet. The time span of the jet was 30 ms and maximum Reynolds number was Re=2.3×104, with jet orifice diameter 2.4 mm and impinging distance 11 mm. The model of the human eye was analysed using finite element method with regional hyperelastic material variation and corneal patient-specific topography starting from stress-free configuration. The cornea was free to deform as a response to the air puff using an adaptive deforming mesh at every time step of the solution. Aqueous and vitreous humours were simulated as a fluid cavity filled with incompressible fluid with a density of 1000 kg/m3. RESULTS Using the adaptive deforming mesh in numerical simulation of the air puff test improved the traditional understanding of how pressure distribution on cornea changes with time of the test. There was a mean decrease in maximum pressure (at corneal apex) of 6.29 ± 2.2% and a development of negative pressure on a peripheral corneal region 2-4 mm away from cornea centre. CONCLUSIONS The study presented an improvement of numerical simulation of the air puff test, which will lead to more accurate intraocular pressure (IOP) and corneal material behaviour estimation. The parametric study showed that pressure of the air puff is different from one model to another, value-wise and distribution-wise, based on cornea biomechanical parameters.
Collapse
Affiliation(s)
- Osama Maklad
- School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
| | - Ashkan Eliasy
- School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
| | - Kai-Jung Chen
- School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
| | | | - Ahmed Elsheikh
- School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK
- School of Biological Science and Biomedical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
40
|
Kirby MA, Zhou K, Pitre JJ, Gao L, Li D, Pelivanov I, Song S, Li C, Huang Z, Shen T, Wang R, O’Donnell M. Spatial resolution in dynamic optical coherence elastography. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-16. [PMID: 31535538 PMCID: PMC6749618 DOI: 10.1117/1.jbo.24.9.096006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/26/2019] [Indexed: 05/03/2023]
Abstract
Dynamic optical coherence elastography (OCE) tracks elastic wave propagation speed within tissue, enabling quantitative three-dimensional imaging of the elastic modulus. We show that propagating mechanical waves are mode converted at interfaces, creating a finite region on the order of an acoustic wavelength where there is not a simple one-to-one correspondence between wave speed and elastic modulus. Depending on the details of a boundary’s geometry and elasticity contrast, highly complex propagating fields produced near the boundary can substantially affect both the spatial resolution and contrast of the elasticity image. We demonstrate boundary effects on Rayleigh waves incident on a vertical boundary between media of different shear moduli. Lateral resolution is defined by the width of the transition zone between two media and is the limit at which a physical inclusion can be detected with full contrast. We experimentally demonstrate results using a spectral-domain OCT system on tissue-mimicking phantoms, which are replicated using numerical simulations. It is shown that the spatial resolution in dynamic OCE is determined by the temporal and spatial characteristics (i.e., bandwidth and spatial pulse width) of the propagating mechanical wave. Thus, mechanical resolution in dynamic OCE inherently differs from the optical resolution of the OCT imaging system.
Collapse
Affiliation(s)
- Mitchell A. Kirby
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Kanheng Zhou
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Dundee, School of Science and Engineering, Dundee, United Kingdom
| | - John J. Pitre
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Liang Gao
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - David Li
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Chemical Engineering, Seattle, Washington, United States
| | - Ivan Pelivanov
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- Address all correspondence to Ivan Pelivanov, E-mail:
| | - Shaozhen Song
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Chunhui Li
- University of Dundee, School of Science and Engineering, Dundee, United Kingdom
| | - Zhihong Huang
- University of Dundee, School of Science and Engineering, Dundee, United Kingdom
| | - Tueng Shen
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| | - Ruikang Wang
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| | - Matthew O’Donnell
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| |
Collapse
|
41
|
Guo H, Hosseini-Moghaddam SM, Hodge W. Corneal biomechanical properties after SMILE versus FLEX, LASIK, LASEK, or PRK: a systematic review and meta-analysis. BMC Ophthalmol 2019; 19:167. [PMID: 31370817 PMCID: PMC6676534 DOI: 10.1186/s12886-019-1165-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/12/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to compare the postoperative corneal biomechanical properties between small incision lenticule extraction (SMILE) and other corneal refractive surgeries. METHODS A systematic review and meta-analysis were conducted. Articles from January 2005, to April 2019, were identified searching PubMed, EMBASE, Web of Science, and International Clinical Trials Registry Platform. Studies that compared SMILE with other corneal refractive surgeries on adult myopia patients and evaluated corneal biomechanics were included. Multiple effect sizes in each study were combined. Random-effects model was conducted in the meta-analysis. RESULTS Twenty-two studies were included: 5 randomized controlled trials (RCTs), 9 prospective and 6 retrospective cohort studies, and 2 cross-sectional studies. Using the combined effect of corneal hysteresis (CH) and corneal resistance factor (CRF), which were obtained from ocular response analyzer (ORA), the pooled Hedges' g of SMILE versus femtosecond laser-assisted in situ keratomileusis (FS-LASIK) was 0.41 (95% CI, 0.00 to 0.81; p = 0.049; I2 = 78%), versus LASIK was 1.31 (95% CI, 0.54 to 2.08; p < 0.001; I2 = 77%), versus femtosecond lenticule extraction (FLEX) was - 0.01 (95% CI, - 0.31 to 0.30; p = 0.972; I2 = 20%), and versus the group of photorefractive keratectomy (PRK) and laser-assisted sub-epithelial keratectomy (LASEK) was - 0.26 (95% CI, - 0.67 to 0.16; p = 0.230; I2 = 54%). The summary score of Corvis ST (CST) after SMILE was comparable to FS-LASIK/LASIK with the pooled Hedges' g = - 0.05 (95% CI, - 0.24 to 0.14; p = 0.612, I2 = 55%). CONCLUSIONS In terms of preserving corneal biomechanical strength after surgeries, SMILE was superior to either FS-LASIK or LASIK, while comparable to FLEX or PRK/LASEK group based on the results from ORA. More studies are needed to apply CST on evaluating corneal biomechanics after refractive surgeries.
Collapse
Affiliation(s)
- Hui Guo
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - William Hodge
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Department of Ophthalmology, Ivey Eye Institute, St. Joseph's Health Care London, 268 Grosvenor St., London, ON, Canada.
| |
Collapse
|
42
|
Affiliation(s)
- Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Leopold Schmetterer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Visual Science Academic Clinical Programme, Duke-NUS, Singapore
| |
Collapse
|
43
|
The Role of Ocular Response Analyzer in Differentiation of Forme Fruste Keratoconus From Corneal Astigmatism. Eye Contact Lens 2019; 45:83-87. [PMID: 30265255 DOI: 10.1097/icl.0000000000000541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To determine the diagnostic accuracy of corneal biomechanical factors in differentiating patients with forme fruste keratoconus (FFKC) from astigmatic and normal cases. METHODS A total of 50 eyes with FFKC, 50 with astigmatism and 50 normal eyes, were included in this study. All patients had a detailed ophthalmologic examination including slit-lamp evaluation, Goldmann tonometry, indirect fundoscopy, topography by Scheimpflug imaging biomicroscopic anterior and posterior segment examination, and corneal biomechanical and intraocular pressure evaluation with ocular response analyzer (ORA). RESULTS All topographic findings were statistically significant among the three groups (P>0.05). Although there was no statistically significant difference in the corneal-compensated intraocular pressure (IOPcc) among the three groups, the Goldmann-correlated intraocular pressure (IOPg), corneal hysteresis (CH), and corneal resistance factor (CRF) were statistically significantly lower in the FFKC group, compared with the other groups (P<0.001). There were no statistically significant difference in the IOPg, CH, and CRF between astigmatism and control groups (P=0.99, 0.79, and 0.86, respectively). The area under the receiver operating characteristic (AUROC) curve was greater than 0.85 for IOPg (0.80), CH (0.85), and CRF (0.90) for discriminating between FFKC and controls; whereas the AUROC was greater than 0.85 for IOPg (0.80), CH (0.79), and CRF (0.85) for discriminating between FFKC and astigmatism groups. CONCLUSION Based on our study results, in differentiation of patients with FFKC from normal control cases or astigmatic patients, corneal biomechanical parameters play a role particularly in patients with suspicious results. We suggest using ORA in combination with corneal topography for better and more accurate diagnosis of FFKC.
Collapse
|
44
|
Sedaghat MR, Momeni-Moghaddam H, Ambrósio R, Roberts CJ, Yekta AA, Danesh Z, Reisdorf S, Khabazkhoob M, Heidari HR, Sadeghi J. Long-term Evaluation of Corneal Biomechanical Properties After Corneal Cross-linking for Keratoconus: A 4-Year Longitudinal Study. J Refract Surg 2019; 34:849-856. [PMID: 30540368 DOI: 10.3928/1081597x-20181012-02] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 10/10/2018] [Indexed: 11/20/2022]
Abstract
PURPOSE To compare the long-term changes in corneal biomechanics, topography, and tomography before and 4 years after corneal cross-linking (CXL) with the Dresden protocol and correlate these changes with visual acuity. METHODS In this longitudinal study, 18 eyes of 18 patients with progressive keratoconus who were treated with CXL were included. All patients received a standard ophthalmological examination and were examined by Placido disc-based topography, Scheimpflug tomography, and biomechanical assessments with the Corvis ST (OCULUS Optikgeräte GmbH, Wetzlar, Germany) and Ocular Response Analyzer (ORA; Reichert Ophthalmic Instruments, Buffalo, NY) before and 4 years after CXL. The main outcome measures were dynamic corneal response (DCR) parameters obtained from the Corvis ST, corneal hysteresis (CH), corneal resistance factor (CRF), visual acuity, refraction, corneal curvature, and corneal thickness. RESULTS There were no significant differences in mean visual acuity, refraction, intraocular pressure, corneal topography, corneal astigmatism in both corneal surfaces, maximum keratometry, corneal thickness at apical and thinnest points, thickness profile indices, corneal volume, and specular microscopy before and 4 years after CXL (P > .05). Significant changes were observed in many DCR parameters, including radius at highest concavity and integrated inverse radius, both of which were consistent with stiffening. The CH and CRF values after CXL were not statistically significant. The new parameters using the Corvis ST include integrated inverse concave radius, which showed a significant decrease 1.07 ± 0.93 mm-1, consistent with stiffening. The corneal stiffness parameter at the first applanation, Ambrósio's Relational Thickness to the horizontal profile, deformation amplitude ratio, and Corvis Biomechanical Index as a combined biomechanical screening parameter did not show significant changes. CONCLUSIONS CXL is a minimally invasive treatment option to prevent keratoconus progression over 4 years. Pressure-derived biomechanical parameters obtained from the ORA did not show any change following CXL at 4 years of follow-up, whereas the Corvis ST DCR parameters detected changes in corneal biomechanical properties. [J Refract Surg. 2018;34(12):849-856.].
Collapse
|
45
|
Two-year topographic and densitometric outcomes of accelerated (45 mW/cm 2) transepithelial corneal cross-linking for keratoconus: a case-control study. BMC Ophthalmol 2018; 18:337. [PMID: 30587181 PMCID: PMC6307285 DOI: 10.1186/s12886-018-0999-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022] Open
Abstract
Background Conventional corneal cross-linking is effective for retarding the progression of keratoconus. However the long-term efficacy and safety of accelerated (45 mW/cm2) transepithelial corneal cross-linking (ATE-CXL) on progressive keratoconus (KC) treatment is not fully understood. The purpose of this study is to evaluate the 2-year changes in corneal topographic parameters and densitometry values after ATE-CXL for KC. Methods Twenty-five progressive eyes of 25 KC patients (KC group) and 25 eyes of 25 myopes without KC (control group) were enrolled. Corneal topography and densitometry values were evaluated pre-operatively and at 6, 12 and 24 months post-operatively in the KC group. Results The mean values of flat keratometry (K1), steep keratometry (K2), mean keratometry (Km), corneal astigmatism (CA), maximum keratometry (Kmax), central corneal thickness (CCT), thinnest corneal thickness (TCT), anterior corneal elevation (ACE) and posterior corneal elevation (PCE) all remained unchanged over time (all P values > 0.05). The densitometry values of the anterior, central, posterior and total layers over the annular diameters 0 mm to 2 mm (Φ0-2 mm) and Φ2–6 mm all decreased significantly (all P values < 0.05). At post-operative month 24, except for the densitometry value of the posterior layer (Φ0-2 mm), which was significantly lower than that of the control group (post hoc P = 0.010), all densitometry values obtained from the remaining locations of the KC eyes were equal to those of the control group (All post hoc P values > 0.05). Subgroups with Km ≥ 50.30D or ACE ≥35.3 μm progressed significantly when compared with those with Km < 50.30D (F = 8.167, P = 0.004) or ACE< 35.3 μm (F = 5.207, P = 0.022). Conclusions K1, K2, Km, CA, Kmax, CCT, TCT, ACE, and PCE values may remain stable but severer KC patients tend to have poorer long-term outcomes. The densitometry values of the full corneal thickness (total layer over Φ0-2 mm and Φ2–6 mm) may decrease to normal levels at 2 years after ATE-CXL for KC.
Collapse
|
46
|
Overexpression of Tear Inflammatory Cytokines as Additional Finding in Keratoconus Patients and Their First Degree Family Members. Mediators Inflamm 2018; 2018:4285268. [PMID: 30245588 PMCID: PMC6139184 DOI: 10.1155/2018/4285268] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/28/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022] Open
Abstract
Keratoconus is a progressive corneal ectasia that may lead to severe visual impairment due to the irregular astigmatism caused by corneal thinning. In addition to its association with atopy, eye rubbing, or genetic component, late reports suggest the involvement of inflammation in the pathogenesis of the disease. Our aim was to determine the concentration of IL-4, IL-6, IL-10, RANTES, IFN gamma, and TNF alpha in the tear film of patients with keratoconus and their first degree family members. We analyzed forty-eight participants in an observational cross-sectional study. The diagnosis of keratoconus had to be confirmed in addition to a minimum of 47 D corneal refractive power by corneal topography readings provided by a Placido-based topography system and analysis of the pattern: irregular astigmatism with an asymmetric “bow-tie.” As for the other groups, the most important diagnosis criteria were a normal topographic pattern with a regular astigmatism. 17 keratoconus patients, 16 relatives, and 15 controls were recruited after clinical assessment as part of the research. The cytokine's mean values were similar in the keratoconus group and the relatives' samples but significantly higher compared to the controls. Important differences were found in IL-4 levels between keratoconus patients and relatives and between relatives and controls (mean difference of 302.42, p < 0.0016 and 219.16, p < 0.033, Tukey's HSD procedure). In the keratoconus group, using the CORR procedure, we found statistically strong correlations of IL-6 lacrimal concentrations with the disease stage (r = 0.56, p < 0.01), keratometry (r = 0.55, p < 0.02), pachymetry (r = −0.64, p < 0.048), and corneal hysteresis (r = −0.53, p < 0.02). Cytokine overexpression may be relevant for the inflammatory etiology of keratoconus. In conclusion, in the case of some first degree family members, the elevated tear biomarkers may represent a supplementary risk factor.
Collapse
|
47
|
Template-based methodology for the simulation of intracorneal segment ring implantation in human corneas. Biomech Model Mechanobiol 2018; 17:923-938. [PMID: 29564655 DOI: 10.1007/s10237-018-1013-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Keratoconus is an idiopathic, non-inflammatory and degenerative corneal disease characterised by a loss of the organisation in the corneal collagen fibrils. As a result, keratoconic corneas present a localised thinning and conical protrusion with irregular astigmatism and high myopia that worsen visual acuity. Intracorneal ring segments (ICRSs) are used in clinic to regularise the corneal surface and to prevent the disease from progressing. Unfortunately, the post-surgical effect of the ICRS is not explicitly accounted beforehand. Traditional treatments rely on population-based nomograms and the experience of the surgeon. In this vein, in silico models could be a clinical aid tool for clinicians to plan the intervention, or to test the post-surgical impact of different clinical scenarios. A semi-automatic computational methodology is presented in order to simulate the ICRS surgical operation and to predict the post-surgical optical outcomes. For the sake of simplicity, circular cross section rings, average corneas and an isotropic hyperelastic material are used. To determine whether the model behaves physiologically and to carry out a sensitivity analysis, a [Formula: see text] full-factorial analysis is carried out. In particular, how the stromal depth insertion, horizontal distance of ring insertion (hDRI) and diameter of the ring's cross section ([Formula: see text]) are impacting in the spherical and cylindrical power of the cornea is analysed. Afterwards, the kinematics, mechanics and optics of keratoconic corneas after the ICRS insertion are analysed. Based on the parametric study, we can conclude that our model follows clinical trends previously reported. In particular and although there is an improvement in defocus, all corneas presented a change in their optical aberrations. The stromal depth insertion is the parameter that affects the corneal optics the most, whereas hDRI and [Formula: see text] are less important. Not only that, but it is almost impossible to achieve an optimal trade-off between spherical and cylindrical correction. Regarding the mechanical behaviour, inserting the rings at 65% depth or above will cause the cornea to slightly bend. This abnormal stress distribution greatly distorts the corneal optics and, more importantly, could be the cause of clinical problems such as corneal extrusion. Not only that, but our model also supports that rings are acting as restraint elements which relax the stresses of the corneal stroma in the cone of the disease. However, depending on the exact spatial location of the keratoconus, the insertion of rings could promote its evolution instead of preventing it. ICRS inserted deeper will prevent keratoconus in the posterior stroma from growing (relaxation of posterior surface), but will promote its growing if they are located in the anterior surface (increment of stress). In conclusion, the methodology proposed is suitable for simulating long-term mechanical and optical effects of ICRS insertion.
Collapse
|