1
|
Van Wyk CL, Mtshali S, Ramatla T, Lekota KE, Xuan X, Thekisoe O. Distribution of Rhipicephalus sanguineus and Heamaphysalis elliptica dog ticks and pathogens they are carrying: A systematic review. Vet Parasitol Reg Stud Reports 2024; 47:100969. [PMID: 38199685 DOI: 10.1016/j.vprsr.2023.100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
The role of ixodid ticks especially Rhipicephalus sanguineus and Heamaphysalis elliptica in the epidemiology of several diseases of veterinary and public health importance have been documented. This study conducted a systematic review focusing on the distribution of R. sanguineus and H. elliptica, as well as the common tick-borne pathogens they harbour. The Scopus, ScienceDirect, PubMed, and Web of Science databases were used to search for English journal articles published between January 1990 and June 2021. The articles were assessed by following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. This systematic review was registered on PROSPERO [(ID no: CRD42022327372). Of the studies included in the systematic review, 247 and 19 articles had identified R. sanguineus and H. elliptica respectively, whereas 15 articles had identified both tick species. There is a reported worldwide distribution of R. sanguineus from 64 countries, whereas H. elliptica was only reported in the African continent from 6 countries. In total, 120 articles that were included in this systematic review reported detection of tick-borne pathogens from R. sanguineus (n = 118 articles) and/or H. elliptica (n = 2 articles) ticks. According to the studies tick-borne pathogens harboured by R. sanguineus included protozoa such as Babesia spp., Hepatozoon spp., Leishmania spp., and Theileria spp., as well as bacteria such as Acinetobacter spp. Anaplasma spp., Bacillus spp., Borrelia spp., Brucella spp., Coxiella spp., and Staphylococcus spp. The H. elliptica was reported to be harbouring Babesia spp., Ehrlichia spp. and Rickettsia spp. Most of the studies (50%) used the conventional polymerase chain reaction (PCR) technique for the detection of tick-borne pathogens, followed by real-time PCR (qPCR) (n = 26), and nested PCR (n = 22). This systematic review has shed light on the distribution of two common dog ticks as well as the tick-borne pathogens of veterinary and zoonotic importance they are harbouring. This data will enable surveillance studies that can report whether the distribution of these ticks and their associated tick-borne pathogens is expanding or shrinking or is stable.
Collapse
Affiliation(s)
- Clara-Lee Van Wyk
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Senzo Mtshali
- National Institute of Communicable Diseases, Sandringham 2131, South Africa
| | - Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa.
| | - Kgaugelo E Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
2
|
Sharma S, Bakht A, Jahanzaib M, Kim M, Lee H, Park C, Park D. Characterization of bacterial species and antibiotic resistance observed in Seoul, South Korea's popular Gangnam-gu area. Heliyon 2023; 9:e21751. [PMID: 38053859 PMCID: PMC10694155 DOI: 10.1016/j.heliyon.2023.e21751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023] Open
Abstract
Public transportation facilities, especially road crossings, which raise the pathogenic potential of urban environments, are the most conducive places for the transfer of germs between people and the environment. It is necessary to study the variety of the microbiome and describe its unique characteristics to comprehend these relationships. In this investigation, we used 16 S rRNA gene sample sequencing to examine the biological constituents and inhalable, thoracic, and alveolar particles in aerosol samples collected from busy areas in the Gangnam-gu district of the Seoul metropolitan area using a mobile vehicle. We also conducted a comparison analysis of these findings with the previously published data and tested for antibiotic resistance to determine the distribution of bacteria related to the human microbiome and the environment. Actinobacteria, Cyanobacteria, Bacteriodetes, Proteobacteria, and Firmicutes were the top five phyla in the bacterial 16 S rRNA libraries, accounting for >90 % of all readings across all examined locations. The most prevalent classes among the 12 found bacterial classes were Bacilli (45.812 %), Gammaproteobacteria (25.238 %), Tissierellia (13.078 %), Clostridia (5.697 %), and Alphaproteobacteria (5.142 %). The data acquired offer useful information on the variety of bacterial communities and their resistance to antibiotic drugs on the streets of Gangnam-gu, one of the most significant social centers in the Seoul metropolitan area. This work emphasizes the relevance of biological particles and particulate matter in the air, and it suggests more research is needed to perform biological characterization of the ambient particulate matter.
Collapse
Affiliation(s)
- Shambhavi Sharma
- Transportation Environmental Research Division, Korea Railroad Research Institute (KRRI), Chleodobangmulgwan-ro, Uiwang-si, 16105, Republic of Korea
- Transportation System Engineering, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Ahtesham Bakht
- Kumoh National Institute of Technology (KIT), 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do, 39177, Republic of Korea
| | - Muhammad Jahanzaib
- Transportation Environmental Research Division, Korea Railroad Research Institute (KRRI), Chleodobangmulgwan-ro, Uiwang-si, 16105, Republic of Korea
- Transportation System Engineering, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Minkyeong Kim
- Transportation Environmental Research Division, Korea Railroad Research Institute (KRRI), Chleodobangmulgwan-ro, Uiwang-si, 16105, Republic of Korea
| | - Hyunsoo Lee
- Kumoh National Institute of Technology (KIT), 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do, 39177, Republic of Korea
| | - Choonsoo Park
- Transportation Environmental Research Division, Korea Railroad Research Institute (KRRI), Chleodobangmulgwan-ro, Uiwang-si, 16105, Republic of Korea
| | - Duckshin Park
- Transportation Environmental Research Division, Korea Railroad Research Institute (KRRI), Chleodobangmulgwan-ro, Uiwang-si, 16105, Republic of Korea
- Transportation System Engineering, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| |
Collapse
|
3
|
Tian F, Li J, Li L, Li F, Tong Y. Molecular dissection of the first Staphylococcus cohnii temperate phage IME1354_01. Virus Res 2022; 318:198812. [DOI: 10.1016/j.virusres.2022.198812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
|
4
|
Kwon H, Park SY, Kim MS, Kim SG, Park SC, Kim JH. Characterization of a Lytic Bacteriophage vB_SurP-PSU3 Infecting Staphylococcus ureilyticus and Its Efficacy Against Biofilm. Front Microbiol 2022; 13:925866. [PMID: 35923398 PMCID: PMC9340203 DOI: 10.3389/fmicb.2022.925866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 01/09/2023] Open
Abstract
In response to the increasing nosocomial infections caused by antimicrobial-resistant coagulase-negative staphylococci (CoNS), bacteriophages (phages) have emerged as an alternative to antibiotics. Staphylococcus ureilyticus, one of the representative species of the CoNS, is now considered a notable pathogen that causes nosocomial bloodstream infections, and its biofilm-forming ability increases pathogenicity and resistance to antimicrobial agents. In this study, a lytic phage infecting S. ureilyticus was newly isolated from wastewater collected from a sewage treatment plant and its biological and antimicrobial characteristics are described. The isolated phage, named vB_SurP-PSU3, was morphologically similar to Podoviridae and could simultaneously lyse some S. warneri strains used in this study. The sequenced genome of the phage consisted of linear dsDNA with 18,146 bp and genome-based phylogeny revealed that vB_SurP-PSU3 belonged to the genus Andhravirus. Although its overall genomic arrangement and contents were similar to those of other members of the Andhravirus, the predicted endolysin of vB_SurP-PSU3 distinctly differed from the other members of the genus. The bacteriolytic activity of vB_SurP-PSU3 was evaluated using S. ureilyticus ATCC 49330, and the phage could efficiently inhibit the planktonic growth of the bacteria. Moreover, the anti-biofilm analysis showed that vB_SurP-PSU3 could prevent the formation of bacterial biofilm and degrade the mature biofilm in vitro. In an additional cytotoxicity assay of vB_SurP-PSU3, no significant adverse effects were observed on the tested cell. Based on these findings, the newly isolated phage vB_SurP-PSU3 could be classified as a new member of Andhravirus and could be considered an alternative potential biocontrol agent against S. ureilyticus infections and its biofilm.
Collapse
Affiliation(s)
- Hyemin Kwon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Seon Young Park
- Division of Animal and Dairy Sciences, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Min-Soo Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, South Korea
| |
Collapse
|
5
|
Lienen T, Schnitt A, Hammerl JA, Marino SF, Maurischat S, Tenhagen BA. Multidrug-resistant Staphylococcus cohnii and Staphylococcus urealyticus isolates from German dairy farms exhibit resistance to beta-lactam antibiotics and divergent penicillin-binding proteins. Sci Rep 2021; 11:6075. [PMID: 33727647 PMCID: PMC7966787 DOI: 10.1038/s41598-021-85461-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/24/2021] [Indexed: 11/09/2022] Open
Abstract
Non-aureus staphylococci are commonly found on dairy farms. Two rarely investigated species are Staphylococcus (S.) cohnii and S. urealyticus. Since multidrug-resistant S. cohnii and S. urealyticus are known, they may serve as an antimicrobial resistance (AMR) gene reservoir for harmful staphylococcal species. In our study, nine S. cohnii and six S. urealyticus isolates from German dairy farms were analyzed by whole-genome sequencing and AMR testing. The isolates harbored various AMR genes (aadD1, str, mecA, dfrC/K, tetK/L, ermC, lnuA, fexA, fusF, fosB6, qacG/H) and exhibited non-wildtype phenotypes (resistances) against chloramphenicol, clindamycin, erythromycin, fusidic acid, rifampicin, streptomycin, tetracycline, tiamulin and trimethoprim. Although 14/15 isolates lacked the blaZ, mecA and mecC genes, they showed reduced susceptibility to a number of beta-lactam antibiotics including cefoxitin (MIC 4-8 mg/L) and penicillin (MIC 0.25-0.5 mg/L). The specificity of cefoxitin susceptibility testing for mecA or mecC gene prediction in S. cohnii and S. urealyticus seems to be low. A comparison with penicillin-binding protein (PBP) amino acid sequences of S. aureus showed identities of only 70-80% with regard to PBP1, PBP2 and PBP3. In conclusion, S. cohnii and S. urealyticus from selected German dairy farms show multiple resistances to antimicrobial substances and may carry unknown antimicrobial resistance determinants.
Collapse
Affiliation(s)
- Tobias Lienen
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany.
| | - Arne Schnitt
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Jens Andre Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Stephen F Marino
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Sven Maurischat
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Bernd-Alois Tenhagen
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany.
| |
Collapse
|
6
|
Lavecchia A, Chiara M, De Virgilio C, Manzari C, Pazzani C, Horner D, Pesole G, Placido A. Comparative Genomics Suggests a Taxonomic Revision of the Staphylococcus cohnii Species Complex. Genome Biol Evol 2021; 13:6134082. [PMID: 33576800 PMCID: PMC8086632 DOI: 10.1093/gbe/evab020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus cohnii (SC), a coagulase-negative bacterium, was first isolated in 1975 from human skin. Early phenotypic analyses led to the delineation of two subspecies (subsp.), Staphylococcus cohnii subsp. cohnii (SCC) and Staphylococcus cohnii subsp. urealyticus (SCU). SCC was considered to be specific to humans, whereas SCU apparently demonstrated a wider host range, from lower primates to humans. The type strains ATCC 29974 and ATCC 49330 have been designated for SCC and SCU, respectively. Comparative analysis of 66 complete genome sequences-including a novel SC isolate-revealed unexpected patterns within the SC complex, both in terms of genomic sequence identity and gene content, highlighting the presence of 3 phylogenetically distinct groups. Based on our observations, and on the current guidelines for taxonomic classification for bacterial species, we propose a revision of the SC species complex. We suggest that SCC and SCU should be regarded as two distinct species: SC and SU (Staphylococcus urealyticus), and that two distinct subspecies, SCC and SCB (SC subsp. barensis, represented by the novel strain isolated in Bari) should be recognized within SC. Furthermore, since large-scale comparative genomics studies recurrently suggest inconsistencies or conflicts in taxonomic assignments of bacterial species, we believe that the approach proposed here might be considered for more general application.
Collapse
Affiliation(s)
- Anna Lavecchia
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Matteo Chiara
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, University of Milan, Milan, Italy
| | - Caterina De Virgilio
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Caterina Manzari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Carlo Pazzani
- Department of Biology, University of Bari Aldo Moro, Bari, Italy
| | - David Horner
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, University of Milan, Milan, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy.,Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Antonio Placido
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| |
Collapse
|
7
|
Medkour H, Laidoudi Y, Dahmana H, Salvi B, Lepidi H, Mediannikov O, Davoust B. Severe pneumonia in a street rat ( Rattus norvegicus) caused by Rodentibacter rarus strain RMC2. Open Vet J 2021; 11:165-173. [PMID: 33898299 PMCID: PMC8057205 DOI: 10.4314/ovj.v11i1.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background Rodents are one of the most dangerous reservoirs and carriers of infectious diseases. Gradually, rats have become predominant in cities, sometimes staying in close vicinity to humans, pets, and other animals. Consequently, they tend to increase the transmission risk of pathogens. Case Description Here, we report an original case of bacterial pneumonia in a street rat (Rattus norvegicus). The rat was found dead on a street in the chief town of Marseille (France) after being run over by a car. The necropsy of the corpse revealed generalized granulomatous pneumonia in almost all the pulmonary lobes. Lung lesions and predominantly multiple fibro-inflammatory areas are presumably the witness of an infectious etiology. Bacterial isolation was carried out from lung tissues. Colonies were identified by MALDI-TOF MS and confirmed by 16S rRNA sequencing. The following bacteria were identified: Staphylococcus cohnii, Bordetella bronchiseptica, Bordetella parapertussi, Corynebacterium glucuronolyticum, Pelistega suis and Rodentibacter rarus. Based on the histopathological diagnosis and the avoidance approach, the most likely etiological agent of pneumonia is therefore R. rarus, a little-known Pasteurellales bacterium that is closely related to Rodentibacter pneumotropicus. Conclusion These data emphasize the severity of R. rarus infection in rodents. Thus, pointing out a potential risk for other animals (dogs, cats, and birds), as well as humans. The health monitoring program for rodents and rabbits pasteurellosis should now include R. rarus. Therefore, the pathological effect of the Rodentibacterspecies and/or strains needs to be better explored.
Collapse
Affiliation(s)
- Hacène Medkour
- IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- These authors contributed equally
| | - Younes Laidoudi
- IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- These authors contributed equally
| | - Handi Dahmana
- IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | | | - Hubert Lepidi
- IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Laboratoire d’anatomo-pathologie, CHU La Timone, Assistance Publique – Hôpitaux de, Marseille, France
| | - Oleg Mediannikov
- IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Bernard Davoust
- IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
8
|
Morgado-Gamero WB, Mendoza Hernandez M, Castillo Ramirez M, Medina-Altahona J, De La Hoz S, Posso Mendoza H, Parody A, Teixeira EC, Agudelo-Castañeda DM. Antibiotic Resistance of Airborne Viable Bacteria and Size Distribution in Neonatal Intensive Care Units. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3340. [PMID: 31510047 PMCID: PMC6765827 DOI: 10.3390/ijerph16183340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022]
Abstract
Despite their significant impact on public health, antibiotic resistance and size distributions of airborne viable bacteria in indoor environments in neonatal intensive care units (NICU) remain understudied. Therefore, the objective of this study was to assess the antibiotic resistance of airborne viable bacteria for different sizes (0.65-7 µm) in private-style and public-style neonatal intensive care units (NICU). Airborne bacteria concentrations were assessed by a six-stage Andersen impactor, operating at 28.3 L/min. Public-style NICU revealed higher concentrations of airborne viable bacteria (53.00 to 214.37 CFU/m3) than private-style NICU (151.94-466.43), indicating a possible threat to health. In the public-style NICU, Staphylococcus was the highest bacterial genera identified in the present study, were Staphylococcus saprophyticus and Staphylococcus epidermidis predominated, especially in the second bronchi and alveoli size ranges. Alloiococcus otitidis, Bacillus subtiles, Bacillus thuringiensis, Kocuria rosea, and Pseudomonas pseudoalcaligene, were identified in the alveoli size range. In NICU#2, eight species were identified in the alveoli size range: Bacillus cereus, Bacillus subtilis, Bacillus thuringiensis, Eikenella corrodens, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus gordoni. Multi-drug-resistant organisms (MDROs) were found in both of the NICUs. Bacillus cereus strains were resistant to Ampicillin, Cefoxitin, Ceftaroline, and Penicillin G. Staphylococcus cohnii ssp. cohnii was resistant in parallel to ampicillin and G penicillin. Staphylococcus saprophyticus strains were resistant to Ampicillin, Penicillin G, Oxaxilin, and Erythromycin. Results may indicate a potential threat to human health due to the airborne bacteria concentration and their antibiotic resistance ability. The results may provide evidence for the need of interventions to reduce indoor airborne particle concentrations and their transfer to premature infants with underdeveloped immune systems, even though protocols for visitors and cleaning are well-established.
Collapse
Affiliation(s)
- Wendy Beatriz Morgado-Gamero
- Department of Exact and Natural Sciences, Universidad de la Costa, Calle 58#55-66, Barranquilla 080002, Colombia.
| | - Martha Mendoza Hernandez
- Department of Civil and Environmental Engineering, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia.
| | | | - Jhorma Medina-Altahona
- Department of Exact and Natural Sciences, Universidad de la Costa, Calle 58#55-66, Barranquilla 080002, Colombia
| | - Stephanie De La Hoz
- Department of Exact and Natural Sciences, Universidad de la Costa, Calle 58#55-66, Barranquilla 080002, Colombia.
| | - Heidy Posso Mendoza
- Department of Bacteriology, Universidad Metropolitana, Calle 76 No. 42-78, Barranquilla 080020, Colombia.
| | - Alexander Parody
- Engineering Faculty, Universidad Libre Barranquilla, Carrera 46 No. 48-170, Barranquilla 080002, Colombia.
| | - Elba C Teixeira
- Postgraduate Program in Remote Sensing, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS 91501-970, Brazil.
| | - Dayana Milena Agudelo-Castañeda
- Department of Civil and Environmental Engineering, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia.
| |
Collapse
|