1
|
Baba T, Hirose D. Two novel Archaeorhizomyces species isolated from ericoid mycorrhizal roots and their association with ericaceous plants in vitro. Fungal Biol 2024; 128:1939-1953. [PMID: 39059849 DOI: 10.1016/j.funbio.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024]
Abstract
Archaeorhizomyces is a diverse and ubiquitous genus of the subphylum Taphrinomycotina, which contains soil-inhabiting/root-associated fungi. Although ecological importance and root-associating lifestyles of Archaeorhizomyces can be postulated, morphological aspects of fungal body and root colonization are largely unknown due to the scarcity of cultures. We obtained three unidentified Archaeorhizomyces isolates from ericoid mycorrhizal (ErM) roots of Rhododendron scabrum and Rhododendron × obtusum collected in Japan. To advance our understanding of lifestyle of the genus, we investigated their general morphology, phylogeny, and in vitro root-colonizing ability in ericoid mycorrhizal hosts, Vaccinium virgatum and Rhododendron kaempferi. Some morphological characteristics, such as slow glowing white-to-creamy-colored colonies and formation of yeast-like or chlamydospore-like cells, were shared between our strains and two described species, Archaeorhizomycesfinlayi and Archaeorhizomyces borealis, but they were phylogenetically distant. Our strains were clearly distinguished as two undescribed species based on morphology and phylogenetic relationship. As seen in typical ErM fungi, both species frequently formed hyphal coils within vital rhizodermal cells of ErM plants in vitro. The morphology of hyphal coils was also different between species. Consequently, two novel species, Archaeorhizomyces notokirishimae sp. nov. and Archaeorhizomyces ryukyuensis sp. nov., were described.
Collapse
Affiliation(s)
- Takashi Baba
- Division of Fruit Tree Production Research, Institute of Fruit Tree and Tea Science, NARO, 92-24 Shimokuriyagawa, Morioka, Iwate 020-0123, Japan
| | - Dai Hirose
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan.
| |
Collapse
|
2
|
Guillen-Otero T, Hertel D, Quintanilla LG, Lehnert M, Schmid M, Kharazishvili D, Fawcett S, Kessler M. Comparative analysis of mycorrhizal communities associated with Struthiopteris spicant (L.) Weiss across Europe and North America. FRONTIERS IN PLANT SCIENCE 2024; 15:1402946. [PMID: 38899157 PMCID: PMC11186384 DOI: 10.3389/fpls.2024.1402946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Introduction Ferns constitute the second largest group of vascular plants. Previous studies have shown that the diversity and composition of fern communities are influenced by resource availability and water stress, among other factors. However, little is known about the influence of these environmental factors on their biotic interactions, especially regarding the relationship between mycorrhizal fungi and ferns. The present study compares the mycorrhizal communities associated with 36 populations of Struthiopteris spicant L. Weiss across Europe and North America. This species exhibits a great tolerance to variations in light, nutrient, and pH conditions, and it can survive with and without mycorrhizae. Methods With the aim of determining which environmental factors impact the composition and abundance of the root-associated fungal communities in this species, we used an ITS-focused metabarcoding approach to identify the mycorrhizal fungi present and analyzed the influence of climatic and edaphic variables at global and regional scales. Results and discussion We encountered striking differences in the relative abundance of arbuscular mycorrhizal fungi (AMF) between S. spicant populations at both spatial levels. We recorded a total of 902 fungal ASVs, but only 2- 4% of the total fungal diversity was observed in each individual, revealing that each fern had a unique fungal community. Light availability and the interactive action of pH and soil nitrogen concentration showed a positive influence on AMF relative abundance, explaining 89% of the variance. However, environmental factors could only explain 4- 8% of the variability in AMF community composition, indicating that it might be determined by stochastic processes. These results support the hypothesis that ferns may be more independent of mycorrhization than other plant groups and interact with fungi in a more opportunistic manner.
Collapse
Affiliation(s)
- Thais Guillen-Otero
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Dietrich Hertel
- Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Luis G. Quintanilla
- School of Environmental Sciences and Technology, University Rey Juan Carlos, Móstoles, Spain
| | - Marcus Lehnert
- Geobotany and Botanical Garden Area, Herbarium, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Mattia Schmid
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Davit Kharazishvili
- Deputy Director of Research management of the Batumi Botanical Garden, Batumi, Georgia
| | - Susan Fawcett
- University and Jepson Herbaria, University of California, Berkeley, Berkeley, United States
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Laurent‐Webb L, Maurice K, Perez‐Lamarque B, Bourceret A, Ducousso M, Selosse M. Seed or soil: Tracing back the plant mycobiota primary sources. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13301. [PMID: 38924368 PMCID: PMC11194045 DOI: 10.1111/1758-2229.13301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
Plants host diverse communities of fungi (the mycobiota), playing crucial roles in their development. The assembly processes of the mycobiota, however, remain poorly understood, in particular, whether it is transmitted by parents through the seeds (vertical transmission) or recruited in the environment (horizontal transmission). Here we attempt to quantify the relative contributions of horizontal and vertical transmission in the mycobiota assembly of a desert shrub, Haloxylon salicornicum, by comparing the mycobiota of in situ bulk soil and seeds to that of (i) in situ adult individuals and (ii) in vitro-germinated seedlings in soil collected in situ. We show that the mycobiota are partially vertically transmitted through the seeds to seedlings, whereas bulk soil has a limited contribution to the seedling's mycobiota. In adults, root and bulk soil mycobiota tend to resemble each other, suggesting a compositional turnover in plant mycobiota during plant development due to horizontal transmission. Thus, the mycobiota are transmitted both horizontally and vertically depending on the plant tissue and developmental stage. Understanding the respective contribution of these transmission pathways to the plant mycobiota is fundamental to deciphering potential coevolutionary processes between plants and fungi. Our findings particularly emphasize the importance of vertical transmission in desert ecosystems.
Collapse
Affiliation(s)
- Liam Laurent‐Webb
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
| | | | - Benoît Perez‐Lamarque
- Institut de Biologie de l'École Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| | - Amélia Bourceret
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
| | | | - Marc‐André Selosse
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
- Faculty of BiologyUniversity of GdanskGdanskPoland
- Institut Universitaire de FranceParisFrance
| |
Collapse
|
4
|
Prout JN, Williams A, Wanke A, Schornack S, Ton J, Field KJ. Mucoromycotina 'fine root endophytes': a new molecular model for plant-fungal mutualisms? TRENDS IN PLANT SCIENCE 2024; 29:650-661. [PMID: 38102045 DOI: 10.1016/j.tplants.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
The most studied plant-fungal symbioses to date are the interactions between plants and arbuscular mycorrhizal (AM) fungi of the Glomeromycotina clade. Advancements in phylogenetics and microbial community profiling have distinguished a group of symbiosis-forming fungi that resemble AM fungi as belonging instead to the Mucoromycotina. These enigmatic fungi are now known as Mucoromycotina 'fine root endophytes' and could provide a means to understand the origins of plant-fungal symbioses. Most of our knowledge of the mechanisms of fungal symbiosis comes from investigations using AM fungi. Here, we argue that inclusion of Mucoromycotina fine root endophytes in future studies will expand our understanding of the mechanisms, evolution, and ecology of plant-fungal symbioses.
Collapse
Affiliation(s)
- James N Prout
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Alex Williams
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Alan Wanke
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | | | - Jurriaan Ton
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Katie J Field
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
5
|
Baba T, Hirose D. A cryptic root isolate belonging to Geoglossales from potted Rhododendron: its molecular phylogeny and ability to colonize an ericoid mycorrhizal host in vitro. MYCORRHIZA 2023; 33:449-456. [PMID: 37882855 DOI: 10.1007/s00572-023-01130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Although the lifestyle of Geoglossales remains largely unknown, recent advancements have established a hypothesis regarding the ericoid mycorrhizal lifestyle of geoglossoid fungi. In this study, we focused on one isolate of Geoglossales sp. obtained from surface-sterilized roots of potted Rhododendron transiens. We aimed to reveal the phylogenetic position and in vitro colonizing ability of this species in the hair roots of ericoid mycorrhizal plants. Based on our multigene phylogenetic tree, this species is a sister of the genus Sarcoleotia which has not been reported from either other studies or field environment. Its ascocarps could not be obtained, and conspecific sequences were not found in the databases and repositories examined. The Geoglossales sp. colonized the vital rhizodermal cells of blueberries in vitro with hyphal coils. There were relatively large morphological variations of coils consistent with extraradical hyphae; however, overall, the colonization morphologically resembled those by Sarcoleotia globosa and representative ericoid mycorrhizal fungi. The taxonomy and ecological significance of the species remain to be resolved; nevertheless, our results suggest that the ericoid mycorrhizal lifestyle may be widespread within Geoglossales.
Collapse
Affiliation(s)
- Takashi Baba
- Division of Fruit Tree Production Research, Institute of Fruit Tree and Tea Science, NARO, 92-24 , Shimokuriyagawa, Morioka, Iwate, Japan
| | - Dai Hirose
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan.
| |
Collapse
|
6
|
Hawkins HJ, Cargill RIM, Van Nuland ME, Hagen SC, Field KJ, Sheldrake M, Soudzilovskaia NA, Kiers ET. Mycorrhizal mycelium as a global carbon pool. Curr Biol 2023; 33:R560-R573. [PMID: 37279689 DOI: 10.1016/j.cub.2023.02.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
For more than 400 million years, mycorrhizal fungi and plants have formed partnerships that are crucial to the emergence and functioning of global ecosystems. The importance of these symbiotic fungi for plant nutrition is well established. However, the role of mycorrhizal fungi in transporting carbon into soil systems on a global scale remains under-explored. This is surprising given that ∼75% of terrestrial carbon is stored belowground and mycorrhizal fungi are stationed at a key entry point of carbon into soil food webs. Here, we analyze nearly 200 datasets to provide the first global quantitative estimates of carbon allocation from plants to the mycelium of mycorrhizal fungi. We estimate that global plant communities allocate 3.93 Gt CO2e per year to arbuscular mycorrhizal fungi, 9.07 Gt CO2e per year to ectomycorrhizal fungi, and 0.12 Gt CO2e per year to ericoid mycorrhizal fungi. Based on this estimate, 13.12 Gt of CO2e fixed by terrestrial plants is, at least temporarily, allocated to the underground mycelium of mycorrhizal fungi per year, equating to ∼36% of current annual CO2 emissions from fossil fuels. We explore the mechanisms by which mycorrhizal fungi affect soil carbon pools and identify approaches to increase our understanding of global carbon fluxes via plant-fungal pathways. Our estimates, although based on the best available evidence, are imperfect and should be interpreted with caution. Nonetheless, our estimations are conservative, and we argue that this work confirms the significant contribution made by mycorrhizal associations to global carbon dynamics. Our findings should motivate their inclusion both within global climate and carbon cycling models, and within conservation policy and practice.
Collapse
Affiliation(s)
- Heidi-Jayne Hawkins
- Department of Biological Sciences, University of Cape Town, Cape Town 7701, South Africa; Conservation International, Forrest House, Belmont Park, Cape Town 7700, South Africa.
| | - Rachael I M Cargill
- Amsterdam Institute for Life and Environment, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands; AMOLF, Science Park 102, Amsterdam, The Netherlands
| | - Michael E Van Nuland
- Amsterdam Institute for Life and Environment, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands; Society for the Protection of Underground Networks, SPUN, 3500 South DuPont Highway, Dover, DE 19901, USA
| | | | - Katie J Field
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Merlin Sheldrake
- Amsterdam Institute for Life and Environment, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands; Society for the Protection of Underground Networks, SPUN, 3500 South DuPont Highway, Dover, DE 19901, USA
| | | | - E Toby Kiers
- Amsterdam Institute for Life and Environment, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands; Society for the Protection of Underground Networks, SPUN, 3500 South DuPont Highway, Dover, DE 19901, USA
| |
Collapse
|
7
|
Guillen‐Otero T, Lee S, Chen C, Szoevenyi P, Kessler M. A metabarcoding protocol targeting two DNA regions to analyze root-associated fungal communities in ferns and lycophytes. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11523. [PMID: 37342167 PMCID: PMC10278937 DOI: 10.1002/aps3.11523] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 06/22/2023]
Abstract
Premise Detailed studies of the fungi associated with lycophytes and ferns provide crucial insights into the early evolution of land plants. However, most investigations to date have assessed fern-fungus interactions based only on visual root inspection. In the present research, we establish and evaluate a metabarcoding protocol to analyze the fungal communities associated with fern and lycophyte roots. Methods We used two primer pairs focused on the ITS rRNA region to screen the general fungal communities, and the 18S rRNA to target Glomeromycota fungi (i.e., arbuscular mycorrhizal fungi). To test these approaches, we collected and processed roots from 12 phylogenetically distant fern and lycophyte species. Results We found marked compositional differences between the ITS and 18S data sets. While the ITS data set demonstrated the dominance of orders Glomerales (phylum Glomeromycota), Pleosporales, and Helotiales (both in phylum Ascomycota), the 18S data set revealed the greatest diversity of Glomeromycota. Non-metric multidimensional scaling (NMDS) ordination suggested an important geographical effect in sample similarities. Discussion The ITS-based approach is a reliable and effective method to analyze the fungal communities associated with fern and lycophyte roots. The 18S approach is more appropriate for studies focused on the detailed screening of arbuscular mycorrhizal fungi.
Collapse
Affiliation(s)
- Thais Guillen‐Otero
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Soon‐Jae Lee
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Cheng‐Wei Chen
- Biodiversity Program, Taiwan International Graduate ProgramAcademia Sinica and National Taiwan Normal UniversityTaipei115Taiwan
| | - Peter Szoevenyi
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Michael Kessler
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
8
|
Perez‐Lamarque B, Laurent‐Webb L, Bourceret A, Maillet L, Bik F, Cartier D, Labolle F, Holveck P, Epp D, Selosse M. Fungal microbiomes associated with Lycopodiaceae during ecological succession. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:109-118. [PMID: 36216403 PMCID: PMC10103886 DOI: 10.1111/1758-2229.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/27/2022] [Indexed: 05/20/2023]
Abstract
Lycopodiaceae species form an early-diverging plant family, characterized by achlorophyllous and subterranean gametophytes that rely on mycorrhizal fungi for their nutrition. Lycopodiaceae often emerge after a disturbance, like in the Hochfeld reserve (Alsace, France) where seven lycopod species appeared on new ski trails following a forest cut. Here, to better understand their ecological dynamic, we conducted a germination experiment of lycopod spores following an anthropogenic disturbance and examined their associated fungi. Only 12% of the samples germinated, and all gametophytes were abundantly colonized by a specific clade of Densosporaceae (Endogonales, Mucoromycotina), which were also present in the roots of lycopod sporophytes, but absent from the ungerminated spores and the roots of surrounding herbaceous plants, suggesting high mycorrhizal specificity in Lycopodiaceae. In addition, ungerminated spores were profusely parasitized by chytrid fungi, also present in the surrounding lycopod gametophytes and sporophytes, which might explain the low spore germination rate. Altogether, the requirement of specific mycorrhizal Mucoromycotina fungi and the high prevalence of parasites may explain why Lycopodiaceae are often rare pioneer species in temperate regions, limited to the first stages of ecological succession. This illustrates the primordial roles that belowground microbes play in aboveground plant dynamics.
Collapse
Affiliation(s)
- Benoît Perez‐Lamarque
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39ParisFrance
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Liam Laurent‐Webb
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39ParisFrance
| | - Amélia Bourceret
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39ParisFrance
| | - Louis Maillet
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39ParisFrance
| | | | - Denis Cartier
- Pôle Lorrain du Futur Conservatoire Botanique National Nord‐Est, Jardin botanique Jean‐Marie PeltVillers‐lès‐NancyFrance
| | - François Labolle
- Université de Strasbourg, Faculté des Sciences de la Vie, Institut de BotaniqueStrasbourgFrance
| | - Pascal Holveck
- Réseau National Habitats‐Flore, Office National des Forêts (ONF)ParisFrance
| | - Didier Epp
- Office National des Forêts (ONF), Service environnement et planification forestièreSchirmeckFrance
| | - Marc‐André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39ParisFrance
- Department of Plant Taxonomy and Nature ConservationUniversity of GdanskGdanskPoland
- Institut universitaire de France (IUF)ParisFrance
| |
Collapse
|
9
|
Mellado-Mansilla D, Testo W, Sundue MA, Zotz G, Kreft H, Coiro M, Kessler M. The relationship between chlorophyllous spores and mycorrhizal associations in ferns: evidence from an evolutionary approach. AMERICAN JOURNAL OF BOTANY 2022; 109:2068-2081. [PMID: 36310350 DOI: 10.1002/ajb2.16094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Approximately 14% of all fern species have physiologically active chlorophyllous spores that are much more short-lived than the more common and dormant achlorophyllous spores. Most chlorophyllous-spored species (70%) are epiphytes and account for almost 37% of all epiphytic ferns. Chlorophyllous-spored ferns are also overrepresented among fern species in habitats with waterlogged soils, of which nearly 60% have chlorophyllous spores. Ferns in these disparate habitat types also have a low incidence of mycorrhizal associations. We therefore hypothesized that autotrophic chlorophyllous spores represent an adaptation of ferns to habitats with scarce mycorrhizal associations. METHODS We evaluated the coevolution of chlorophyllous spores and mycorrhizal associations in ferns and their relation to habitat type using phylogenetic comparative methods. RESULTS Although we did not find support for the coevolution of spore type and mycorrhizal associations, we did find that chlorophyllous spores and the absence of mycorrhizal associations have coevolved with epiphytic and waterlogged habitats. Transition rates to epiphytic and waterlogged habitats were significantly higher in species with chlorophyllous spores compared to achlorophyllous lineages. CONCLUSIONS Spore type and mycorrhizal associations appear to play important roles in the radiation of ferns into different habitat types. Future work should focus on clarifying the functional significance of these associations.
Collapse
Affiliation(s)
- Daniela Mellado-Mansilla
- Department of Biodiversity, Macroecology and Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
- Institute for Biology and Environmental Sciences, AG Functional Ecology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Weston Testo
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
| | - Michael A Sundue
- The Pringle Herbarium, Department of Plant Biology, University of Vermont, Burlington, VT, USA
| | - Gerhard Zotz
- Institute for Biology and Environmental Sciences, AG Functional Ecology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Smithsonian Tropical Research Institute, Panama
| | - Holger Kreft
- Department of Biodiversity, Macroecology and Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
| | - Mario Coiro
- Department of Paleontology, University of Vienna, Vienna, Austria
- Ronin Institute for Independent Scholarship, Montclair, NJ, USA
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
| |
Collapse
|