1
|
Albrahim T, Alangry R, Alotaibi R, Almandil L, Alburikan S. Effects of Regular Exercise and Intermittent Fasting on Neurotransmitters, Inflammation, Oxidative Stress, and Brain-Derived Neurotrophic Factor in Cortex of Ovariectomized Rats. Nutrients 2023; 15:4270. [PMID: 37836554 PMCID: PMC10574130 DOI: 10.3390/nu15194270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
A collection of metabolic disorders and neurodegenerative diseases linked to oxidative stress and neuroinflammation frequently affect postmenopausal women or estrogen deprivation. Recent research has focused on alternative therapies that can enhance these women's quality of life. This study set out to investigate the effects of physical exercise (EX) and intermittent fasting (IF) on oxidants/antioxidants, inflammatory cytokines, neurotransmitters, and brain-derived neurotrophic factor (BDNF) in the cortex of rats. Additionally, it sought to assess the response to oxidative stress and neuroinflammation in the brains of rats following ovariectomy (OVX) and the potential mechanisms of these interventions. Fifty female rats were divided into one of the following groups 30 days after bilateral OVX: Control, OVX, OVX + EX, OVX + IF, and OVX + EX + IF groups. The rats in the Control and OVX groups continued their normal activities and had unrestricted access to food and water, but the rats in the OVX + EX and OVX + EX + IF groups had a 4-week treadmill training program, and the rats in the OXV + IF and OVX + EX + IF groups fasted for 13 h each day. The rats were killed, the cerebral cortex was taken, tissue homogenates were created, and various parameters were estimated using these homogenates. The results show that ovariectomized rats had decreased levels of neurotransmitters (DA, NE, and SE), acetylcholinesterase, brain GSH (glutathione), SOD (superoxide dismutase), catalase, GPx (glutathione peroxidase), and TAC (total antioxidant capacity), as well as elevated levels of proinflammatory cytokines and mediators (TNF-α, IL-1β, Cox-2). While ovariectomy-induced declines in neurotransmitters, enzymatic and nonenzymatic molecules, neuroinflammation, and oxidative brain damage were considerably mitigated and prevented by treadmill exercise and intermittent fasting, BDNF was significantly increased. These results suggest that ovariectomy can impair rat neuronal function and regular treadmill exercise and intermittent fasting seem to protect against ovariectomy-induced neuronal impairment through the inhibition of oxidative stress and neuroinflammation and increased BDNF levels in the brain cortex. However, combining regular exercise and intermittent fasting did not provide additional benefits compared to either treatment alone.
Collapse
Affiliation(s)
- Tarfa Albrahim
- Department of Health Sciences, Clinical Nutrition, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (R.A.); (R.A.); (L.A.); (S.A.)
| | | | | | | | | |
Collapse
|
2
|
Corral-Pérez J, Alcala M, Velázquez-Díaz D, Perez-Bey A, Vázquez-Sánchez MÁ, Calderon-Dominguez M, Casals C, Ponce-González JG. Sex-Specific Relationships of Physical Activity and Sedentary Behaviour with Oxidative Stress and Inflammatory Markers in Young Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:899. [PMID: 36673654 PMCID: PMC9859474 DOI: 10.3390/ijerph20020899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
This study aims to analyse sex-specific associations of physical activity and sedentary behaviour with oxidative stress and inflammatory markers in a young-adult population. Sixty participants (21 women, 22.63 ± 4.62 years old) wore a hip accelerometer for 7 consecutive days to estimate their physical activity and sedentarism. Oxidative stress (catalase, superoxide dismutase, glutathione peroxidase, glutathione, malondialdehyde, and advanced oxidation protein products) and inflammatory (tumour necrosis factor-alpha and interleukin-6) markers were measured. Student t-tests and single linear regressions were applied. The women presented higher catalase activity and glutathione concentrations, and lower levels of advanced protein-oxidation products, tumour necrosis factor-alpha, and interleukin-6 than the men (p < 0.05). In the men, longer sedentary time was associated with lower catalase activity (β = −0.315, p = 0.04), and longer sedentary breaks and higher physical-activity expenditures were associated with malondialdehyde (β = −0.308, p = 0.04). Vigorous physical activity was related to inflammatory markers in the women (tumour necrosis factor-alpha, β = 0.437, p = 0.02) and men (interleukin−6, β = 0.528, p < 0.01). In conclusion, the women presented a better redox and inflammatory status than the men; however, oxidative-stress markers were associated with physical activity and sedentary behaviours only in the men. In light of this, women could have better protection against the deleterious effect of sedentarism but a worse adaptation to daily physical activity.
Collapse
Affiliation(s)
- Juan Corral-Pérez
- ExPhy Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, 11519 Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | - Martin Alcala
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28003 Madrid, Spain
| | - Daniel Velázquez-Díaz
- ExPhy Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, 11519 Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Advent Health Research Institute, Neuroscience Institute, Orlando, FL 32803, USA
| | - Alejandro Perez-Bey
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- GALENO Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, 11519 Cadiz, Spain
| | - María Á. Vázquez-Sánchez
- Department of Nursing, Faculty of Health Sciences, PASOS Research Group and UMA REDIAS Network of Law and Artificial Intelligence applied to Health and Biotechnology, University of Malaga, 29071 Malaga, Spain
| | - Maria Calderon-Dominguez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, 11002 Cadiz, Spain
| | - Cristina Casals
- ExPhy Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, 11519 Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | - Jesús G. Ponce-González
- ExPhy Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, 11519 Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
| |
Collapse
|
3
|
Aldahr MHS, Abd El-Kader SM. Impact of exercise on renal function, oxidative stress, and systemic inflammation among patients with type 2 diabetic nephropathy. Afr Health Sci 2022; 22:286-295. [PMID: 36910380 PMCID: PMC9993259 DOI: 10.4314/ahs.v22i3.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a prevalent microvascular diabetic complication all over the world. Objective This study was designed to measure oxidative stress, systemic inflammation and kidney function response to exercise training in patients with type 2 diabetic (T2DM) nephropathy. Material and Methods Eighty obese T2DM patients (50 males and 30 females), their body mass index (BMI) mean was 33.85±3.43 Kg/m2 and the mean of diabetes chronicity was 12.53±2.64 year participated in the present study and enrolled two groups; group I: received aerobic exercise training and group II: received no training intervention. Results The mean values of creatinine, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and malondialdehyde (MDA) were significantly decreased, while the mean values of interleukin-10 (IL-10), glutathione peroxidase (GPx) and glutathione (GSH) were significantly increased in group (A) after the aerobic exercise training, however the results of the control group were not significant. In addition, there were significant differences between both groups at the end of the study (P<0.05). Conclusion There is evidence that aerobic exercise training modulated oxidative stress and inflammatory cytokines and improved renal function among patients with diabetic nephropathy.
Collapse
Affiliation(s)
- Mohamed H Saiem Aldahr
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shehab M Abd El-Kader
- Department of Physical Therapy, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Mousavi SR, Jafari M, Rezaei S, Agha-alinejad H, Sobhani V. Evaluation of the effects of different intensities of forced running wheel exercise on oxidative stress biomarkers in muscle, liver and serum of untrained rats. Lab Anim (NY) 2020; 49:119-125. [DOI: 10.1038/s41684-020-0503-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
|
5
|
Nogueira JE, Passaglia P, Mota CMD, Santos BM, Batalhão ME, Carnio EC, Branco LGS. Molecular hydrogen reduces acute exercise-induced inflammatory and oxidative stress status. Free Radic Biol Med 2018; 129:186-193. [PMID: 30243702 DOI: 10.1016/j.freeradbiomed.2018.09.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Physical exercise induces inflammatory and oxidative markers production in the skeletal muscle and this process is under the control of both endogenous and exogenous modulators. Recently, molecular hydrogen (H2) has been described as a therapeutic gas able to reduced oxidative stress in a number of conditions. However, nothing is known about its putative role in the inflammatory and oxidative status during a session of acute physical exercise in sedentary rats. Therefore, we tested the hypothesis that H2 attenuates both inflammation and oxidative stress induced by acute physical exercise. Rats ran at 80% of their maximum running velocity on a closed treadmill inhaling either the H2 gas (2% H2, 21% O2, balanced with N2) or the control gas (0% H2, 21% O2, balanced with N2) and were euthanized immediately or 3 h after exercise. We assessed plasma levels of inflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6] and oxidative markers [superoxide dismutase (SOD), thiobarbituric acid reactive species (TBARS) and nitrite/nitrate (NOx)]. In addition, we evaluated the phosphorylation status of intracellular signaling proteins [glycogen synthase kinase type 3 (GSK3α/β) and the cAMP responsive element binding protein (CREB)] that modulate several processes in the skeletal muscle during exercise, including changes in exercise-induced reactive oxygen species (ROS) production. As expected, physical exercise increased virtually all the analyzed parameters. In the running rats, H2 blunted exercise-induced plasma inflammatory cytokines (TNF-α and IL-6) surges. Regarding the oxidative stress markers, H2 caused further increases in exercise-induced SOD activity and attenuated the exercise-induced increases in TBARS 3 h after exercise. Moreover, GSK3α/β phosphorylation was not affected by exercise or H2 inhalation. Otherwise, exercise caused an increased CREB phosphorylation which was attenuated by H2. These data are consistent with the notion that H2 plays a key role in decreasing exercise-induced inflammation, oxidative stress, and cellular stress.
Collapse
Affiliation(s)
- Jonatas E Nogueira
- Postgraduate Program in Rehabilitation and Functional Performance, University of São Paulo, Ribeirão Preto, SP, Brazil; School of Physical Education and Sports of Ribeirao Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Patricia Passaglia
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Clarissa M D Mota
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Bruna M Santos
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcelo E Batalhão
- Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Evelin C Carnio
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G S Branco
- Postgraduate Program in Rehabilitation and Functional Performance, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Morphology, Physiology, and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Marmett B, Nunes RB, de Souza KS, Lago PD, Rhoden CR. Aerobic training reduces oxidative stress in skeletal muscle of rats exposed to air pollution and supplemented with chromium picolinate. Redox Rep 2018; 23:146-152. [PMID: 29776315 PMCID: PMC6748694 DOI: 10.1080/13510002.2018.1475993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objective: The purpose of this study was to investigate the effects
of chromium picolinate (CrPic) supplementation associated with aerobic exercise
using measures of oxidative stress in rats exposed to air pollution. Methods: Sixty-one male Wistar rats were divided into eight groups:
residual oil fly ash (ROFA) exposure and sedentary (ROFA-SED); ROFA exposure,
sedentary and supplemented (ROFA-SED-CrPic); ROFA exposure and trained
(ROFA-AT); ROFA exposure, supplemented and trained (ROFA-AT-CrPic); sedentary
(Sal-SED); sedentary and supplemented (Sal-SED-CrPic); trained (Sal-AT); and
supplemented and trained (Sal-AT-CrPic). Rats exposed to ROFA (air pollution)
received 50 µg of ROFA daily via intranasal instillation.
Supplemented rats received CrPic (1 mg/kg/day) daily by oral gavage.
Exercise training was performed on a rat treadmill (5×/week). Oxidative
parameters were evaluated at the end of protocols. Results: Trained groups demonstrated lower gain of body mass
(P < .001) and increased exercise
tolerance (P < .0001). In the gastrocnemius,
trained groups demonstrated increased SOD activity
(P < .0001) and decrease levels of TBARS
(P = .0014), although CAT activity did
not differ among groups (P = .4487). Conclusion: Air pollution exposure did not lead to alterations in
oxidative markers in lungs and heart, and exercise training was responsible for
decreasing oxidative stress of the gastrocnemius.
Collapse
Affiliation(s)
- Bruna Marmett
- a Laboratory of Atmospheric Pollution, Graduate Program in Health Science , Federal University of Health Sciences of Porto Alegre (UFCSPA) , Porto Alegre , Brazil
| | - Ramiro Barcos Nunes
- b Research Department , Sul-Rio-Grandense Federal Institute of Education, Science and Technology , Gravataí , Brazil.,c Laboratory of Experimental Physiology , Federal University of Health Sciences of Porto Alegre (UFCSPA) , Porto Alegre , Brazil
| | - Kellen Sábio de Souza
- a Laboratory of Atmospheric Pollution, Graduate Program in Health Science , Federal University of Health Sciences of Porto Alegre (UFCSPA) , Porto Alegre , Brazil
| | - Pedro Dal Lago
- c Laboratory of Experimental Physiology , Federal University of Health Sciences of Porto Alegre (UFCSPA) , Porto Alegre , Brazil
| | - Cláudia Ramos Rhoden
- a Laboratory of Atmospheric Pollution, Graduate Program in Health Science , Federal University of Health Sciences of Porto Alegre (UFCSPA) , Porto Alegre , Brazil
| |
Collapse
|
7
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018; 94:199-212. [PMID: 29164625 PMCID: PMC5844808 DOI: 10.1111/php.12864] [Citation(s) in RCA: 389] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/31/2017] [Indexed: 12/23/2022]
Abstract
Photobiomodulation (PBM) involves the use of red or near-infrared light at low power densities to produce a beneficial effect on cells or tissues. PBM therapy is used to reduce pain, inflammation, edema, and to regenerate damaged tissues such as wounds, bones, and tendons. The primary site of light absorption in mammalian cells has been identified as the mitochondria and, more specifically, cytochrome c oxidase (CCO). It is hypothesized that inhibitory nitric oxide can be dissociated from CCO, thus restoring electron transport and increasing mitochondrial membrane potential. Another mechanism involves activation of light or heat-gated ion channels. This review will cover the redox signaling that occurs in PBM and examine the difference between healthy and stressed cells, where PBM can have apparently opposite effects. PBM has a marked effect on stem cells, and this is proposed to operate via mitochondrial redox signaling. PBM can act as a preconditioning regimen and can interact with exercise on muscles.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
- Department of Dermatology, Harvard Medical School, Boston, MA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
8
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or not 3194=3194# dgnj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
9
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and (select (case when (5719=8223) then null else ctxsys.drithsx.sn(1,5719) end) from dual) is null] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
10
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
11
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
12
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
13
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
14
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and make_set(2234=2234,4853)-- tppa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
15
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or updatexml(4295,concat(0x2e,0x717a717671,(select (elt(4295=4295,1))),0x71706a6271),3985)-- bssu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
16
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
17
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
18
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
19
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
20
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or not 5169=2257-- ejdi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
21
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and 2019=2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
22
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and 1705=('qzqvq'||(select case 1705 when 1705 then 1 else 0 end from rdb$database)||'qpjbq')-- qsrj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
23
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and extractvalue(6022,concat(0x5c,0x717a717671,(select (elt(6022=6022,1))),0x71706a6271))# igpm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
24
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
25
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or not 8779=2113# mdth] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
26
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and 2341=9012# mbxq] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
27
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
28
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or not 9689=3416#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
29
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
30
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
31
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
32
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or updatexml(4295,concat(0x2e,0x717a717671,(select (elt(4295=4295,1))),0x71706a6271),3985)# pcqv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
33
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
34
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
35
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
36
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
37
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and 1705=('qzqvq'||(select case 1705 when 1705 then 1 else 0 end from rdb$database)||'qpjbq')# flsh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
38
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
39
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 rlike (select (case when (3831=3831) then 0x31302e313131312f7068702e3132383634 else 0x28 end))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
40
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and 1321=4667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
41
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
42
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
43
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
44
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and extractvalue(6022,concat(0x5c,0x717a717671,(select (elt(6022=6022,1))),0x71706a6271))-- wonu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
45
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
46
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 order by 1-- yuto] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
47
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
48
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
49
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or not 3194=3194-- bupj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
50
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 order by 1#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|