1
|
Yan S, Luo Y, Zhan N, Xu H, Yao Y, Liu X, Dong X, Kang L, Zhang G, Liu P. Intranasal delivery of a recombinant adenovirus vaccine encoding the PEDV COE elicits potent mucosal and systemic antibody responses in mice. Microbiol Spectr 2024; 12:e0069224. [PMID: 39145626 PMCID: PMC11448059 DOI: 10.1128/spectrum.00692-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/15/2024] [Indexed: 08/16/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteropathogenic coronavirus that causes substantial economic loss to the global pig industry. The emergence of PEDV variants has increased the need for new vaccines, as commercial vaccines confer inferior protection against currently circulating strains. It is well established that the induction of mucosal immunity is crucial for PEDV vaccines to provide better protection against PEDV infection. In this study, we constructed a recombinant adenovirus expressing the core neutralization epitope (COE) of G2b PEDV based on human adenovirus serotype 5 (Ad5). We evaluated the effects of different administration routes and doses of vaccine immunogenicity in Balb/c mice. Both intramuscular (IM) and intranasal (IN) administration elicited significant humoral responses, including COE-specific IgG in serum and mucosal secretions, along with serum-neutralizing antibodies. Moreover, IN delivery was more potent than IM in stimulating IgA in serum and mucosal samples and in dampening the immune response to the Ad5 vector. The immune response was stronger after high versus low dose IM injection, whereas no significant difference was observed between high and low IN doses. In summary, our findings provide important insights for developing novel PEDV vaccines.IMPORTANCEPorcine epidemic diarrhea (PED) is a highly contagious disease that has severe economic implications for the pork industry. Developing an effective vaccine against PEDV remains a necessity. Here, we generated a recombinant adenovirus vaccine based on Ad5 to express the COE protein of PEDV (rAd5-PEDV-COE) and systematically evaluated the immunogenicity of the adenovirus-vectored vaccine using different administration routes (intramuscular and intranasal) and doses in a mouse model. Our results show that rAd5-PEDV-COE induced potent systemic humoral response regardless of the dose or immunization route. Notably, intranasal delivery was superior to induce peripheral and mucosal IgA antibodies compared with intramuscular injection. Our data provide valuable insights into designing novel PEDV vaccines.
Collapse
MESH Headings
- Animals
- Mice
- Porcine epidemic diarrhea virus/immunology
- Porcine epidemic diarrhea virus/genetics
- Mice, Inbred BALB C
- Administration, Intranasal
- Immunity, Mucosal
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Swine
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Female
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Coronavirus Infections/prevention & control
- Coronavirus Infections/immunology
- Coronavirus Infections/veterinary
- Adenoviridae/genetics
- Adenoviridae/immunology
- Humans
- Swine Diseases/prevention & control
- Swine Diseases/immunology
- Swine Diseases/virology
- Antibody Formation/immunology
- Immunoglobulin A
- Genetic Vectors/genetics
Collapse
Affiliation(s)
- Shijie Yan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yi Luo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ningjia Zhan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haoran Xu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yao Yao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiang Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoqing Dong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Li Kang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pinghuang Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Li X, Yan Z, Ma J, Li G, Liu X, Peng Z, Zhang Y, Huang S, Luo J, Guo X. TRIM28 promotes porcine epidemic diarrhea virus replication by mitophagy-mediated inhibition of the JAK-STAT1 pathway. Int J Biol Macromol 2024; 254:127722. [PMID: 37907173 DOI: 10.1016/j.ijbiomac.2023.127722] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes immunosuppression and clinical symptoms such as vomiting, watery diarrhea, dehydration, and even death in piglets. TRIM28, an E3 ubiquitin ligase, is involved in the regulation of autophagy. However, the role of TRIM28 in PEDV infection is unknown. This study aimed to determine whether TRIM28 acts as a host factor for PEDV immune escape. We found that depletion of TRIM28 inhibited PEDV replication, whereas overexpression of TRIM28 promoted the viral replication in host cells. Furthermore, knockdown of TRIM28 reversed PEDV-induced downregulation of the JAK/STAT1 pathway. Treatment with the mitophagic activator carbonyl cyanide 3-chlorophenylhydrazone (CCCP) attenuated the activating effect of TRIM28 depletion on the expression of the STAT1 pathway-related proteins. Treatment with CCCP also reduced the nuclear translocation of pSTAT1. Moreover, TRIM28, via its RING domain, interacted with PEDV N. Overexpression of TRIM28 induced mitophagy, which could be enhanced by co-expression with PEDV N. The results indicate that PEDV infection upregulates the expression of TRIM28, which induces mitophagy, leading to inhibition of the JAK-STAT1 pathway. This research unveils a new mechanism by which PEDV can hijack host cellular TRIM28 to promote its own replication.
Collapse
Affiliation(s)
- Xin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Zhibin Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Jiaojie Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Gen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xinhui Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoen Peng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA; Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA.
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China.
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China.
| |
Collapse
|
3
|
García-González E, Cerriteño-Sánchez JL, Cuevas-Romero JS, García-Cambrón JB, Castañeda-Montes FJ, Villaseñor-Ortega F. Seroepidemiology Study of Porcine Epidemic Diarrhea Virus in Mexico by Indirect Enzyme-Linked Immunosorbent Assay Based on a Recombinant Fragment of N-Terminus Domain Spike Protein. Microorganisms 2023; 11:1843. [PMID: 37513015 PMCID: PMC10385564 DOI: 10.3390/microorganisms11071843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is an intestinal disease caused by the porcine epidemic diarrhea virus (PEDV) and affects Mexico's swine industry. Despite the disease initially being described in Mexico in 2013, there has been no research into the virus's seroepidemiology carried out in Mexico. Thus, the goal of this study was to develop an indirect ELISA (iELISA) based on a recombinant N-terminal domain truncated spike (S) protein (rNTD-S) of PEDV to evaluate serum obtained from different pig-producing states in Mexico. A total of 1054 sera were collected from pig farms, slaughterhouses, and backyard production in the states of Aguascalientes, Guanajuato, Hidalgo, Jalisco, Morelos, Queretaro, Sinaloa, and Veracruz between 2019 and 2021. The rNTD-S protein was expressed in E. coli BL21 (DE3) cells. Negative and positive serum samples used in the iELISA were previously tested by Western blot. According to our findings, 61.66% of the serum samples (650/1054) were positive, with Jalisco having the highest percentage of positive samples, at a rate of 21.44% (226/1054). This is the first seroepidemiology study of PEDV carried out in Mexico, revealing that the virus is still circulating since the initial outbreak; furthermore, it provides an overview of PEDV's spread and high level of persistence across the country's key swine-producing states.
Collapse
Affiliation(s)
- Eduardo García-González
- Programa de Doctorado en Ciencias de la Ingeniería, Tecnológico Nacional de México en Celaya, Celaya 38010, Guanajuato, Mexico
| | - José Luis Cerriteño-Sánchez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, INIFAP, Mexico City 05110, Mexico
| | | | - José Bryan García-Cambrón
- Programa de Maestría en Biología Experimental, Universidad Autónoma Metropolitana Iztapalapa, Mexico City 09340, Mexico
| | - Francisco Jesus Castañeda-Montes
- Programa de Estancias Posdoctorales por México para la Formación y Consolidación de las y los Investigadores por México, CONAHCYT, Mexico City 03940, Mexico
| | - Francisco Villaseñor-Ortega
- Programa de Doctorado en Ciencias de la Ingeniería, Tecnológico Nacional de México en Celaya, Celaya 38010, Guanajuato, Mexico
- Tecnológico Nacional de México en Celaya, Departamento de Ingeniería Bioquímica, Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico
| |
Collapse
|
4
|
Puente H, Arguello H, Cortey M, Gómez-García M, Mencía-Ares O, Pérez-Perez L, Díaz I, Carvajal A. Detection and genetic characterization of enteric viruses in diarrhoea outbreaks from swine farms in Spain. Porcine Health Manag 2023; 9:29. [PMID: 37349807 DOI: 10.1186/s40813-023-00326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND The aim of this work was to study the prevalence and distribution of Porcine astrovirus (PAstV), Porcine kobuvirus (PKoV), Porcine torovirus (PToV), Mammalian orthoreovirus (MRV) and Porcine mastadenovirus (PAdV) as well as their association with widely recognized virus that cause diarrhoea in swine such as coronavirus (CoVs) and rotavirus (RVs) in diarrhoea outbreaks from Spanish swine farms. Furthermore, a selection of the viral strains was genetically characterized. RESULTS PAstV, PKoV, PToV, MRV and PAdV were frequently detected. Particularly, PAstV and PKoV were detected in almost 50% and 30% of the investigated farms, respectively, with an age-dependent distribution; PAstV was mainly detected in postweaning and fattening pigs, while PKoV was more frequent in sucking piglets. Viral co-infections were detected in almost half of the outbreaks, combining CoVs, RVs and the viruses studied, with a maximum of 5 different viral species reported in three investigated farms. Using a next generation sequencing approach, we obtained a total of 24 ARN viral genomes (> 90% genome sequence), characterizing for first time the full genome of circulating strains of PAstV2, PAstV4, PAstV5 and PToV on Spanish farms. Phylogenetic analyses showed that PAstV, PKoV and PToV from Spanish swine farms clustered together with isolates of the same viral species from neighboring pig producing countries. CONCLUSIONS Although further studies to evaluate the role of these enteric viruses in diarrhoea outbreaks are required, their wide distribution and frequent association in co-infections cannot be disregard. Hence, their inclusion into routine diagnostic panels for diarrhoea in swine should be considered.
Collapse
Affiliation(s)
- Héctor Puente
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain.
| | - Héctor Arguello
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- INDEGSAL, Universidad de León, León, Spain
| | - Martí Cortey
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Manuel Gómez-García
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Oscar Mencía-Ares
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Lucía Pérez-Perez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Ivan Díaz
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Bellaterra, Spain
| | - Ana Carvajal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- INDEGSAL, Universidad de León, León, Spain
| |
Collapse
|
5
|
Wang H, Hui P, Uemoto Y, Ding Y, Yin Z, Bao W. Metabolomic and Proteomic Profiling of Porcine Intestinal Epithelial Cells Infected with Porcine Epidemic Diarrhea Virus. Int J Mol Sci 2023; 24:ijms24065071. [PMID: 36982147 PMCID: PMC10049511 DOI: 10.3390/ijms24065071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection results in severe epidemic diarrhea and the death of suckling pigs. Although new knowledge about the pathogenesis of PEDV has been improved, alterations in metabolic processes and the functional regulators involved in PEDV infection with host cells remain largely unknow. To identify cellular metabolites and proteins related to PEDV pathogenesis, we synergistically investigated the metabolome and proteome profiles of PEDV-infected porcine intestinal epithelial cells by liquid chromatography tandem mass spectrometry and isobaric tags for relative and absolute quantification techniques. We identified 522 differential metabolites in positive and negative ion modes and 295 differentially expressed proteins after PEDV infection. Pathways of cysteine and methionine metabolism, glycine, serine and threonine metabolism, and mineral absorption were significantly enriched by differential metabolites and differentially expressed proteins. The betaine-homocysteine S-methyltransferase (BHMT) was indicated as a potential regulator involved in these metabolic processes. We then knocked down the BHMT gene and observed that down-expression of BHMT obviously decreased copy numbers of PEDV and virus titers (p < 0.01). Our findings provide new insights into the metabolic and proteomic profiles in PEDV-infected host cells and contribute to our further understanding of PEDV pathogenesis.
Collapse
Affiliation(s)
- Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Peng Hui
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yoshinobu Uemoto
- Animal Breeding and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yueyun Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (Z.Y.); (W.B.)
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.Y.); (W.B.)
| |
Collapse
|
6
|
Ho TT, Trinh VT, Tran HX, Le PTT, Nguyen TT, Hoang HTT, Pham MD, Conrad U, Pham NB, Chu HH. The immunogenicity of plant-based COE-GCN4pII protein in pigs against the highly virulent porcine epidemic diarrhea virus strain from genotype 2. Front Vet Sci 2022; 9:940395. [PMID: 35967993 PMCID: PMC9366249 DOI: 10.3389/fvets.2022.940395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a serious infectious causative agent in swine, especially in neonatal piglets. PEDV genotype 2 (G2) strains, particularly G2a, were the primary causes of porcine epidemic diarrhea (PED) outbreaks in Vietnam. Here, we produced a plant-based CO-26K-equivalent epitope (COE) variant from a Vietnamese highly virulent PEDV strain belonging to genotype 2a (COE/G2a) and evaluated the protective efficacy of COE/G2a-GCN4pII protein (COE/G2a-pII) in piglets against the highly virulent PEDV G2a strain following passive immunity. The 5-day-old piglets had high levels of PEDV-specific IgG antibodies, COE-IgA specific antibodies, neutralizing antibodies, and IFN-γ responses. After virulent challenge experiments, all of these piglets survived and had normal clinical symptoms, no watery diarrhea in feces, and an increase in their body weight, while all of the negative control piglets died. These results suggest that the COE/G2a-pII protein produced in plants can be developed as a promising vaccine candidate to protect piglets against PEDV G2a infection in Vietnam.
Collapse
Affiliation(s)
- Thuong Thi Ho
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Vy Thai Trinh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | | | | - Tra Thi Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hang Thu Thi Hoang
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Minh Dinh Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Udo Conrad
- Department Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ngoc Bich Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Ngoc Bich Pham
| | - Ha Hoang Chu
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- *Correspondence: Ha Hoang Chu
| |
Collapse
|
7
|
Wang H, Bi Z, Dai K, Li P, Huang R, Wu S, Bao W. A Functional Variant in the Aquaporin-3 Promoter Modulates Its Expression and Correlates With Resistance to Porcine Epidemic Virus Infection in Porcine Intestinal Epithelial Cells. Front Microbiol 2022; 13:877644. [PMID: 35770166 PMCID: PMC9234456 DOI: 10.3389/fmicb.2022.877644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes a highly contagious intestinal disease in neonatal pigs. Aquaporin-3 (AQP3) plays important roles in maintenance of intestinal barrier function and regulation of immune responses. However, the roles of AQP3 in mediating PEDV infection to host cells and the regulatory mechanisms of AQP3 expression remain poorly understood. Here, we identified one 16 bp (GGGCGGGGTTGCGGGC) insertion mutation in the AQP3 gene promoter in Large White pigs, with the frequencies of 49.3% of heterozygotes and 31.3% of mutant homozygotes. Functional analysis by luciferase activity assay indicated that the insertion mutation results in significant enhancement in AQP3 transcriptional activity (P < 0.01). Mechanistic analysis showed that the inserted sequence adds binding sites for transcription factor CEBPA, which promotes the expression of AQP3. Downregulation of AQP3 by shRNA silencing in porcine intestinal epithelial cells revealed obvious increases in genome copies and viral titers of PEDV. Expression of proinflammatory cytokines (IL-6, IL-8, and IL-18) and interferons (IFN-α and IFN-β) were significantly reduced (P < 0.01) in AQP3 knockdown cells upon PEDV infection. Furthermore, decreased level of ZO-1 protein was also detected in AQP3 knockdown cells in response to PEDV infection. Our findings suggested a previously unknown mechanism linking the effects of promoter genetic variants on the expression of AQP3, revealed the roles of AQP3 in response to PEDV pathogenesis, and indicated the potential associations of the 16 bp insertion mutation with resistance to PEDV infection in porcine intestinal epithelial cells.
Collapse
Affiliation(s)
- Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhenbin Bi
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaiyu Dai
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Pinghua Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Ruihua Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Shenglong Wu,
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- *Correspondence: Wenbin Bao,
| |
Collapse
|
8
|
Shamsi TN, Yin J, James ME, James MN. Porcine Epidemic Diarrhea: Causative Agent, Epidemiology, Clinical
Characteristics, and Treatment Strategy Targeting Main Protease. Protein Pept Lett 2022; 29:392-407. [DOI: 10.2174/0929866529666220316145149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022]
Abstract
Aims:
This aimed to study the causative agent, epidemiology, clinical characteristics, and
treatment strategy targeting the main protease in porcine epidemic diarrhea.
Background:
Porcine epidemic diarrhea (PED) is a contagious intestinal viral infection causing
severe diarrhea, vomiting, and dehydration in pigs. High rates of mortalities and severe morbidities,
approaching 100%, are reported in piglets infected with PEDV. In recent years, PED has been
observed to influence the swine-farming nations in Europe, Asia, the USA, South Korea, and
Canada. The PED virus (PEDV) transmission takes place through a faecal-oral route.
Objective:
The objective is to review the characteristics of PEDV and its role in the disease. In
addition, we aim to outline some possible methods to combat PED infection, including targeting the
main protease of coronavirus and their future perspectives.
Method:
This study is a review of literature on the PED virus.
Results:
Apart from symptomatic treatment and supportive care, there is no available specific
treatment for PEDV. Appropriate disinfectants and cleaning are pivotal for the control of PEDV. To
date, apart from anti-PEDV inhibitors, there are no specific drugs available commercially to treat
the disease. Therefore, 3C-like protease (3CLpro) in PEDV that has highly conserved structure and
catalytic mechanism serves as an alluring drug as it plays a vital role during viral polyprotein
processing at the time of infection.
Conclusion:
A well synchronized and collective effort of scientists, swine veterinarians, pork
industry experts, and associated authorities is essential for the accomplishment of proper execution
of these required measures.
Collapse
Affiliation(s)
- Tooba N. Shamsi
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7,
Canada
| | - Jiang Yin
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7,
Canada
| | - Michelle E. James
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7,
Canada
| | - Michael N.G. James
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7,
Canada
| |
Collapse
|
9
|
Monteagudo LV, Benito AA, Lázaro-Gaspar S, Arnal JL, Martin-Jurado D, Menjon R, Quílez J. Occurrence of Rotavirus A Genotypes and Other Enteric Pathogens in Diarrheic Suckling Piglets from Spanish Swine Farms. Animals (Basel) 2022; 12:ani12030251. [PMID: 35158575 PMCID: PMC8833434 DOI: 10.3390/ani12030251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Neonatal diarrhea is a major cause of economic losses in the swine industry worldwide and has significant impact in Spain, which is one of the biggest pork producers globally. Multiple infectious agents can contribute to this condition, with some viruses such as species A rotavirus (RVA) playing a major role. Studies on their occurrence and genetic diversity are essential for development of RVA vaccines. In this study, fecal samples from diarrheic suckling piglets originating from farms distributed throughout Spain were analyzed for RVA and four other common enteric pathogens using molecular methods. The individual prevalence was 89.4%, 64.4%, 44.9%, 33.7% and 4.4% for Clostridiumperfringens, Clostridioides (formerly Clostridium) difficile, species A rotavirus, species C rotavirus and porcine epidemic diarrhea virus, respectively. Most specimens (96.9%) were positive for at least one of the target pathogens and concurrent infections were common. The molecular characterization of RVA positive specimens of specific genes used for genotyping revealed the extensive genetic diversity of RVA strains circulating in swine herds in Spain. Comparison with genotypes contained in the commercial vaccine available in Spain showed differences in the identity of the predominant RVA genotypes from diarrheic piglets in the sampled pig farms. These findings contribute to the surveillance of RVA strains circulating in swine herds in Spain and may help optimize target vaccine design. Abstract Species A rotavirus (RVA) is a major viral pathogen causing diarrhea in suckling piglets. Studies on its genetic heterogeneity have implications for vaccine efficacy in the field. In this study, fecal samples (n = 866) from diarrheic piglets younger than 28 days were analyzed over a two-year period (2018–2019). Samples were submitted from 426 farms located in 36 provinces throughout Spain and were tested using real-time PCR (qPCR) and reverse transcription real-time PCR (RT-qPCR) for five enteric pathogens. The individual prevalence was 89.4%, 64.4%, 44.9%, 33.7% and 4.4% for Clostridiumperfringens, Clostridioides (formerly Clostridium) difficile, species A rotavirus, species C rotavirus and porcine epidemic diarrhea virus, respectively. Most specimens (96.9%) were positive for at least one of the target pathogens, and more than 80% of samples harbored mixed infections. Nucleotide sequencing of 70 specimens positive for RVA revealed the presence of the VP7 genotypes G4, G9, G3, G5, G11 and the VP4 genotypes P7, P23, P6 and P13, with the combinations G4P7 and G9P23 being the most prevalent, and especially in the areas with the highest pig population. The study shows the extensive genetic diversity of RVA strains as well as discrepancies with the genotypes contained in the vaccine available in Spain, and multiple amino acid differences in antigenic epitopes of different G- and P- genotypes with the vaccine strains. Further investigations are needed to determine the efficacy of the vaccine to confer clinical protection against heterologous strains.
Collapse
Affiliation(s)
- Luis V. Monteagudo
- Department of Anatomy, Embryology and Genetics, Faculty of Veterinary Sciences, University of Zaragoza, 50013 Zaragoza, Spain;
- Agrifood Institute of Aragón (IA2), University of Zaragoza-CITA, 50013 Zaragoza, Spain
| | - Alfredo A. Benito
- EXOPOL S.L, Pol Rio Gállego D/14, San Mateo del Gállego, 50840 Zaragoza, Spain; (A.A.B.); (S.L.-G.); (J.L.A.); (D.M.-J.)
| | - Sofía Lázaro-Gaspar
- EXOPOL S.L, Pol Rio Gállego D/14, San Mateo del Gállego, 50840 Zaragoza, Spain; (A.A.B.); (S.L.-G.); (J.L.A.); (D.M.-J.)
| | - José L. Arnal
- EXOPOL S.L, Pol Rio Gállego D/14, San Mateo del Gállego, 50840 Zaragoza, Spain; (A.A.B.); (S.L.-G.); (J.L.A.); (D.M.-J.)
| | - Desirée Martin-Jurado
- EXOPOL S.L, Pol Rio Gállego D/14, San Mateo del Gállego, 50840 Zaragoza, Spain; (A.A.B.); (S.L.-G.); (J.L.A.); (D.M.-J.)
| | - Rut Menjon
- MSD Animal Health España, Carbajosa de la Sagrada, 37188 Salamanca, Spain;
| | - Joaquín Quílez
- Agrifood Institute of Aragón (IA2), University of Zaragoza-CITA, 50013 Zaragoza, Spain
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Zaragoza, 50013 Zaragoza, Spain
- Correspondence: ; Tel.: +34-976-762150
| |
Collapse
|
10
|
Myint O, Hoa NT, Fuke N, Pornthummawat A, Lan NT, Hirai T, Yoshida A, Yamaguchi R. A persistent epidemic of porcine epidemic diarrhoea virus infection by serological survey of commercial pig farms in northern Vietnam. BMC Vet Res 2021; 17:235. [PMID: 34225697 PMCID: PMC8256535 DOI: 10.1186/s12917-021-02941-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 06/15/2021] [Indexed: 01/09/2023] Open
Abstract
Background Porcine epidemic diarrhoea (PED) is a highly contagious infectious disease with negative economic impacts on the swine industry. PED outbreaks were reported from 2009 to 2015, but sporadic infection has been observed until now in Vietnam. However, the seroprevalence of PEDV infection has not yet been reported for commercial pig farms in Vietnam. The aim of this study was to assess the seroprevalence of PEDV infection in Vietnamese pig farms to reveal the endemic status of PEDV in northern Vietnam. Results A serological survey of PEDV infection was carried out using indirect ELISA in commercial pig farms in Hai Duong, Hung Yen and Thai Binh provinces in northern Vietnam in 2019. Twenty sera were randomly collected from each of 10 commercial pig farms, from each province; none of the farms had vaccinated for PEDV. Serological evidence of natural PEDV infection, expressed as a high antibody titre, was observed in the pig farms in all 3 provinces. The OD values were significantly higher (p < 0.001) for pig sera from Thai Binh than from Hai Duong and Hung Yen. No significant differences (p > 0.05) were detected for seropositivity to PEDV based on locality, age, pig breed and farm size. Conclusions This study indicates serological evidence of natural PEDV infection with high antibody titre in commercial pig farms. PEDV infection was widespread among the pig population in these 3 provinces and that good management and strict biosecurity are needed at these pig farms.
Collapse
Affiliation(s)
- Ohnmar Myint
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, 889-2192, Miyazaki, Japan
| | - Nguyen Thi Hoa
- Vietnam National University of Agriculture, Gia Lam, Hanoi, Vietnam
| | - Naoyuki Fuke
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, 889-2192, Miyazaki, Japan
| | - Apisit Pornthummawat
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, 889-2192, Miyazaki, Japan
| | - Nguyen Thi Lan
- Vietnam National University of Agriculture, Gia Lam, Hanoi, Vietnam
| | - Takuya Hirai
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, 889-2192, Miyazaki, Japan
| | - Ayako Yoshida
- Department of Veterinary Parasitic Diseases, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Ryoji Yamaguchi
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, 889-2192, Miyazaki, Japan.
| |
Collapse
|
11
|
In vitro antiviral activities of ethanol and aqueous extracts of Vietnamese traditional medicinal plants against Porcine Epidemic Diarrhea virus: a coronavirus family member. Virusdisease 2021; 32:797-803. [PMID: 34189185 PMCID: PMC8221279 DOI: 10.1007/s13337-021-00709-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/11/2021] [Indexed: 01/01/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes diarrhea in pigs leading to severe illnesses and high mortality rates. The development of medicinal agents to treat PEDV infection is therefore crucial. In this study, antiviral activities against PEDV of ethanol and aqueous extracts of 17 Vietnamese traditional medicinal plants were evaluated using the cytopathic effect-based assay. The results showed that 14 out of 17 medicinal plants could inhibit the cytopathic effect of PEDV. The ethanol extract of Stixis scandens was identified as the most active extract with its MIC (minimum inhibitory concentration) being 0.15 μg/mL. Other plant extracts also displayed strong antiviral activity against PEDV, including Anisomeles indica, Pericampylus glaucus and Croton kongensis. The results demonstrate that certain medicinal plants have a high antiviral potential and may serve as a lead to develop novel pharmaceutical agents to cure PED as well as the diseases caused by other coronaviruses.
Collapse
|
12
|
Gómez-García M, Puente H, Argüello H, Mencía-Ares Ó, Rubio P, Carvajal A. In vitro Assessment of Antiviral Effect of Natural Compounds on Porcine Epidemic Diarrhea Coronavirus. Front Vet Sci 2021; 8:652000. [PMID: 33855058 PMCID: PMC8039285 DOI: 10.3389/fvets.2021.652000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022] Open
Abstract
Organic acid and essential oils (EOs), well-known antimicrobials, could also possess antiviral activity, a characteristic which has not been completely addressed up to now. In this study, the effect of two organic acids (formic acid and sodium salt of coconut fatty acid distillates) and two single EO compounds (thymol and cinnamaldehye) was evaluated against porcine epidemic diarrhea virus (PEDV). The concentration used for each compound was established by cytotoxicity assays in Vero cells. The antiviral activity was then evaluated at three multiplicities of infection (MOIs) through visual cytopathic effect (CPE) evaluation and an alamarBlue assay as well as real-time reverse-transcription PCR (RT-qPCR) and viral titration of cell supernatants. Formic acid at at a dose of 1,200 ppm was the only compound which showed antiviral activity, with a weak reduction of CPE caused by PEDV. Through the alamarBlue fluorescence assay, we showed a significant anti-CPE effect of formic acid which could not be observed by using an inverted optical microscope. RT-qPCR and infectivity analysis also showed that formic acid significantly reduced viral RNA and viral titers in a PEDV MOI-dependent manner. Our results suggest that the antiviral activity of formic acid could be associated to its inhibitory effect on viral replication. Further studies are required to explore the anti-PEDV activity of formic acid under field conditions alone or together with other antiviral agents.
Collapse
Affiliation(s)
- Manuel Gómez-García
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Héctor Puente
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Héctor Argüello
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Óscar Mencía-Ares
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Pedro Rubio
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Ana Carvajal
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| |
Collapse
|
13
|
Trevisan G, Linhares LCM, Schwartz KJ, Burrough ER, Magalhães EDS, Crim B, Dubey P, Main RG, Gauger P, Thurn M, Lages PTF, Corzo CA, Torrison J, Henningson J, Herrman E, McGaughey R, Cino G, Greseth J, Clement T, Christopher-Hennings J, Linhares DCL. Data standardization implementation and applications within and among diagnostic laboratories: integrating and monitoring enteric coronaviruses. J Vet Diagn Invest 2021; 33:457-468. [PMID: 33739188 DOI: 10.1177/10406387211002163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Every day, thousands of samples from diverse populations of animals are submitted to veterinary diagnostic laboratories (VDLs) for testing. Each VDL has its own laboratory information management system (LIMS), with processes and procedures to capture submission information, perform laboratory tests, define the boundaries of test results (i.e., positive or negative), and report results, in addition to internal business and accounting applications. Enormous quantities of data are accumulated and stored within VDL LIMSs. There is a need for platforms that allow VDLs to exchange and share portions of laboratory data using standardized, reliable, and sustainable information technology processes. Here we report concepts and applications for standardization and aggregation of data from swine submissions to multiple VDLs to detect and monitor porcine enteric coronaviruses by RT-PCR. Oral fluids, feces, and fecal swabs were the specimens submitted most frequently for enteric coronavirus testing. Statistical algorithms were used successfully to scan and monitor the overall and state-specific percentage of positive submissions. Major findings revealed a consistently recurrent seasonal pattern, with the highest percentage of positive submissions detected during December-February for porcine epidemic diarrhea virus, porcine deltacoronavirus, and transmissible gastroenteritis virus (TGEV). After 2014, very few submissions tested positive for TGEV. Monitoring VDL data proactively has the potential to signal and alert stakeholders early of significant changes from expected detection. We demonstrate the importance of, and applications for, data organized and aggregated by using LOINC and SNOMED CTs, as well as the use of customized messaging to allow inter-VDL exchange of information.
Collapse
Affiliation(s)
- Giovani Trevisan
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Leticia C M Linhares
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Kent J Schwartz
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Eric R Burrough
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Edison de S Magalhães
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Bret Crim
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Poonam Dubey
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Rodger G Main
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Phillip Gauger
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Mary Thurn
- Veterinary Population Medicine, University of Minnesota, Saint Paul, MN
| | - Paulo T F Lages
- Veterinary Population Medicine, University of Minnesota, Saint Paul, MN
| | - Cesar A Corzo
- Veterinary Population Medicine, University of Minnesota, Saint Paul, MN
| | - Jerry Torrison
- Veterinary Population Medicine, University of Minnesota, Saint Paul, MN
| | - Jamie Henningson
- College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Eric Herrman
- College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Rob McGaughey
- College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Giselle Cino
- College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Jon Greseth
- Veterinary & Biomedical Sciences Department, South Dakota State University, Brookings, SD
| | - Travis Clement
- Veterinary & Biomedical Sciences Department, South Dakota State University, Brookings, SD
| | | | - Daniel C L Linhares
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| |
Collapse
|
14
|
Díaz I, Pujols J, Cano E, Cortey M, Navarro N, Vidal A, Mateu E, Martín M. Immune response does not prevent homologous Porcine epidemic diarrhoea virus reinfection five months after the initial challenge. Transbound Emerg Dis 2021; 69:997-1009. [PMID: 33662178 DOI: 10.1111/tbed.14055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022]
Abstract
The aim of the present study was to evaluate the duration of protective immunity against Porcine epidemic diarrhoea virus (PEDV). To do so, a two phases study was performed. In the first phase, 75 four-week-old pigs (group A) were orally inoculated (0 days post-inoculation; dpi) with a European PEDV G1b strain and 14 were kept as controls (group B). The second phase started five months later (154 dpi), when animals in group A were homologous challenged and animals in group B were challenged for first time. Clinical signs, viral shedding and immune responses were evaluated after each inoculation, including the determination of antibodies (ELISA and viral neutralization test, IgA and IgG ELISPOTs using peripheral blood mononuclear cells and lymph node cells) and the frequency of interferon-gamma (IFN-γ) secreting cells. During the first phase, loose stools/liquid faeces were observed in all group A animals. Faecal shedding of PEDV occurred mostly during the first 14 days but, in some animals, persisted until 42 dpi. All inoculated animals seroconverted for specific-PEDV IgG and IgA, and for neutralizing antibodies (NA). At 154 dpi, 77% of pigs were still positive for NA. After that, the homologous challenge resulted in a booster for IgG, IgA, NA, as well as specific-PEDV IgG, IgA and IFN-γ secreting cells. In spite of that, PEDV was detected in faeces of all pigs from group A, indicating that the immune response did not prevent reinfection, although the duration of the viral shedding and the total load of virus shed were significantly lower for previously challenged pigs (p < .05). Taken together, the results indicated that, potentially, maintenance of PEDV infection within an endemic farm may occur by transmission to and from previously infected animals and also indicates that sterilizing immunity is shorter than the productive life of pigs.
Collapse
Affiliation(s)
- Ivan Díaz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Joan Pujols
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Esmeralda Cano
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Martí Cortey
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Núria Navarro
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Anna Vidal
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Enric Mateu
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Marga Martín
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
15
|
Puente H, Argüello H, Mencía-Ares Ó, Gómez-García M, Rubio P, Carvajal A. Detection and Genetic Diversity of Porcine Coronavirus Involved in Diarrhea Outbreaks in Spain. Front Vet Sci 2021; 8:651999. [PMID: 33718476 PMCID: PMC7947225 DOI: 10.3389/fvets.2021.651999] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/05/2021] [Indexed: 01/23/2023] Open
Abstract
Porcine enteric coronaviruses include some of the most relevant viral pathogens to the swine industry such as porcine epidemic diarrhea virus (PEDV) or porcine transmissible gastroenteritis virus (TGEV) as well as several recently identified virus such as swine enteric coronavirus (SeCoV), porcine deltacoronavirus (PDCoV) or swine enteric alphacoronavirus (SeACoV). The aim of this study is the identification and characterization of enteric coronaviruses on Spanish pig farms between 2017 and 2019. The study was carried out on 106 swine farms with diarrhea outbreaks where a viral etiology was suspected by using two duplex RT-PCRs developed for the detection of porcine enteric coronaviruses. PEDV was the only coronavirus detected in our research (38.7% positive outbreaks, 41 out of 106) and neither TGEV, SeCoV, PDCoV nor SeACoV were detected in any of the samples. The complete S-gene of all the PEDV isolates recovered were obtained and compared to PEDV and SeCoV sequences available in GenBank. The phylogenetic tree showed that only PEDV of the INDEL 2 or G1b genogroup has circulated in Spain between 2017 and 2019. Three different variants were detected, the recombinant PEDV-SeCoV being the most widespread. These results show that PEDV is a relevant cause of enteric disorders in pigs in Spain while new emerging coronavirus have not been detected so far. However, the monitoring of these virus is advisable to curtail their emergence and spread.
Collapse
Affiliation(s)
- Héctor Puente
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Héctor Argüello
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Óscar Mencía-Ares
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Manuel Gómez-García
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Pedro Rubio
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Ana Carvajal
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| |
Collapse
|
16
|
Díaz I, Pujols J, Cano E, Cuadrado R, Navarro N, Mateu E, Martín M. Assessment of three commercial ELISAs for the detection of antibodies against Porcine epidemic diarrhea virus at different stages of the immune response. Vet Immunol Immunopathol 2021; 234:110206. [PMID: 33601087 DOI: 10.1016/j.vetimm.2021.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/20/2020] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Three commercial ELISAs -two based on spike (E1 and E3) and one on nucleocapsid protein (E2)-were used to analyze the development and persistence of antibodies against Porcine epidemic diarrhea virus (PEDV). Seventy-five four-week-old PEDV-negative piglets were inoculated orally with a European G1b PEDV (INOC) and fourteen were kept as controls (CTRL). After the inoculation, E3 detected positive animals as soon as 7 days post inoculation (dpi), while the earliest detection with E1 and E2 was at 14 dpi. All samples were positive at 21 and 28 dpi using E1 and E3, respectively, while E2 failed to detect 23.3 % of the inoculated pigs at any time point. The percentages of positive samples were different through the study: E1 and E3 > E2 from 14 to 56 dpi; and E3 > E1 > E2 from 56 to 154 dpi (P < 0.05). Five months after the inoculation, E3 still detected 92.0 % (IC95 % = 85.1-98.8 %) of pigs as positive, while E1 and E2 detected only 27.0 % (IC95 % = 16.0-37.9 %) and 0%, respectively. The sensitivity for E2 never exceeded 0.62. Specificity was 1 for all ELISAs. These different outcomes could be related to the ELISA strategies (indirect versus competition), the antigens used, the cut-off, or to other intrinsic factors of each test. The observed differences could be of importance when assessing whether older animals, such as fatteners or gilts, had previously been in contact with PEDV.
Collapse
Affiliation(s)
- I Díaz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain.
| | - J Pujols
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - E Cano
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - R Cuadrado
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - N Navarro
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - E Mateu
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), UAB, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - M Martín
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), UAB, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
17
|
Wu T, Lyu Y, Li X, Wu M, Yu K, Li S, Ji C, Zhang Q, Zhang Y, Zhao D, Yi D, Hou Y. Impact of N-Acetylcysteine on the Gut Microbiota in the Piglets Infected With Porcine Epidemic Diarrhea Virus. Front Vet Sci 2021; 7:582338. [PMID: 33511162 PMCID: PMC7835392 DOI: 10.3389/fvets.2020.582338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/11/2020] [Indexed: 12/26/2022] Open
Abstract
This study was to investigate the impact of N-acetylcysteine (NAC) on the gut microbiota in the healthy piglets and the piglets infected with porcine epidemic diarrhea virus (PEDV). Forty seven-day-old piglets were allocated into four groups: control group, NAC group (supplemented with 50 mg/kg body weight NAC), PEDV group (inoculated with 104.5 TCID50 PEDV), and PEDV+NAC group (PEDV infection + NAC supplementation). The intestinal content was collected for DNA extraction and Illumina sequencing. The PEDV-infected piglets displayed distinct bacterial communities compared to the healthy piglets. PEDV infection decreased the abundance of Shigella and increased the abundance of Lactobacillus, Odoribacter, Anaerovibrio, Helicobacter, unclassified Lachnospiraceae, and Sutterella; affected several functions associated with metabolism, barrier, and immune. NAC supplementation decreased the abundance of unclassified Rikenellaceae and increased the abundance of Lactobacillus, Streptococcus, and Enterococcus in the healthy piglets, decreased the abundance of Oscillospira and Prevotella and increased the abundance of Lactobacillus in the PEDV-infected piglets; altered multiple functions involving in amino acid metabolism, cell signaling, cellular community, disease-related pathways, endocrine, and excretory system. In conclusion, PEDV infection caused severe dysbiosis of gut microbiome, whereas NAC supplementation played a positive role in regulating the gut microbiome during PEDV infection. Therefore, substances that can regulate gut microbiota could be ideal candidates to prevent or treat PEDV infection.
Collapse
Affiliation(s)
- Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan, China
| | - Yang Lyu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan, China
| | - Xueni Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan, China
| | - Mengjun Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan, China
| | - Kui Yu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan, China
| | - Siyuan Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan, China
| | - Changzheng Ji
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan, China
| | - Qian Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan, China
| | - Yanyan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan, China
| | - Di Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan, China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan, China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University (WPHU), Wuhan, China
| |
Collapse
|
18
|
Xu Z, Zhang Y, Cao Y. The Roles of Apoptosis in Swine Response to Viral Infection and Pathogenesis of Swine Enteropathogenic Coronaviruses. Front Vet Sci 2020; 7:572425. [PMID: 33324698 PMCID: PMC7725767 DOI: 10.3389/fvets.2020.572425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/28/2020] [Indexed: 01/18/2023] Open
Abstract
Apoptosis is a tightly regulated mechanism of cell death that plays important roles in various biological processes including biological evolution, multiple system development, anticancer, and viral infections. Swine enteropathogenic coronaviruses invade and damage villous epithelial cells of the small intestine causing severe diarrhea with high mortality rate in suckling piglets. Transmissible gastroenteritis virus (TGEV), Porcine epidemic diarrhea virus (PEDV), Porcine deltacoronavirus (PDCoV), and Swine acute diarrhea syndrome coronavirus (SADS-CoV) are on the top list of commonly-seen swine coronaviruses with a feature of diarrhea, resulting in significant economic losses to the swine industry worldwide. Apoptosis has been shown to be involved in the pathogenesis process of animal virus infectious diseases. Understanding the roles of apoptosis in host responses against swine enteropathogenic coronaviruses infection contribute to disease prevention and control. Here we summarize the recent findings that focus on the apoptosis during swine coronaviruses infection, in particular, TGEV, PEDV, PDCoV, and SADS-CoV.
Collapse
Affiliation(s)
- Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
- Higher Education Mega Center, School of Life Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Puente H, Randazzo W, Falcó I, Carvajal A, Sánchez G. Rapid Selective Detection of Potentially Infectious Porcine Epidemic Diarrhea Coronavirus Exposed to Heat Treatments Using Viability RT-qPCR. Front Microbiol 2020; 11:1911. [PMID: 32973701 PMCID: PMC7472829 DOI: 10.3389/fmicb.2020.01911] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022] Open
Abstract
Coronaviruses (CoVs) cause severe respiratory, enteric, and systemic infections in a wide range of hosts, including humans and animals. Porcine epidemic diarrhea virus (PEDV), a member of the Coronaviridae family, is the etiological agent of porcine epidemic diarrhea (PED), a highly contagious intestinal disease affecting pigs of all ages. In this study, we optimized a viability real-time reverse transcriptase polymerase chain reaction (RT-qPCR) for the selective detection of infectious and heat-inactivated PEDV. PEMAX™, EMA™, and PMAxx™ photoactivable dyes along with PtCl4 and CDDP platinum compounds were screened as viability markers using two RT-qPCR assays: firstly, on PEDV purified RNA, and secondly on infectious and thermally inactivated virus suspensions. Furthermore, PMAxx™ pretreatment matched the thermal inactivation pattern obtained by cell culture better than other viability markers. Finally, we further optimized the pretreatment by coupling viability markers with Triton X-100 in inoculated serum resulting in a better estimation of PEDV infectivity than RT-qPCR alone. Our study has provided a rapid analytical tool based on viability RT-qPCR to infer PEDV infectivity with potential application for feed and feed ingredients monitoring in swine industry. This development would allow for greater accuracy in epidemiological surveys and outbreak investigations.
Collapse
Affiliation(s)
- Héctor Puente
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Walter Randazzo
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - Ana Carvajal
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| |
Collapse
|
20
|
Wang H, Zhang L, Shang Y, Tan R, Ji M, Yue X, Wang N, Liu J, Wang C, Li Y, Zhou T. Emergence and evolution of highly pathogenic porcine epidemic diarrhea virus by natural recombination of a low pathogenic vaccine isolate and a highly pathogenic strain in the spike gene. Virus Evol 2020; 6:veaa049. [PMID: 32913664 PMCID: PMC7474927 DOI: 10.1093/ve/veaa049] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Outbreaks of a new variant of porcine epidemic diarrhea virus (PEDV) at the end of 2010 have raised interest in the mutation and recombination of PEDV. A PEDV strain (CN/Liaoning25/2018) isolated from a clinical outbreak of piglet diarrhea contained a 49-bp deletion in the ORF3 gene. This deletion is considered a genetic characteristic of low pathogenic attenuated vaccine strains. However, CN/Liaoning25/2018 was highly pathogenic. Complete genome sequencing, identity analysis, phylogenetic tree construction, and recombination analysis showed that this virus was a recombinant strain containing the Spike (S) gene from the highly pathogenic CN/GDZQ/2014 strain and the remaining genomic regions from the low pathogenic vaccine isolate SQ2014. Histopathology and immunohistochemistry results confirmed that this strain was highly pathogenic and indicated that intestinal epithelial cell vacuolation was positively correlated with the intensity and density of PEDV antigens. A new natural recombination model for PEDV was identified. Our results suggest that new highly pathogenic recombinant strains in the field may be generated by recombination between low pathogenic attenuated live PEDV vaccines and pathogenic circulating PEDV strains. Our findings also highlight that the 49-bp deletion of the ORF3 gene in low pathogenic attenuated vaccine strains will no longer be a reliable standard to differentiate the classical vaccine attenuated from the field strains.
Collapse
Affiliation(s)
- Huinan Wang
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Libo Zhang
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Yuanbin Shang
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Rongrong Tan
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingxiang Ji
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Xinliang Yue
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Nannan Wang
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Jun Liu
- Beijing Institude of Feed Conrrol, Beijing 100107, China
| | - Chunhua Wang
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Yonggang Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou 121000, China
| | - Tiezhong Zhou
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
21
|
de Nova PJG, Cortey M, Díaz I, Puente H, Rubio P, Martín M, Carvajal A. A retrospective study of porcine epidemic diarrhoea virus (PEDV) reveals the presence of swine enteric coronavirus (SeCoV) since 1993 and the recent introduction of a recombinant PEDV-SeCoV in Spain. Transbound Emerg Dis 2020; 67:2911-2922. [PMID: 32511876 DOI: 10.1111/tbed.13666] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/11/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
A retrospective evaluation of PEDV-positive samples recovered in Spain before and after the re-emergence of this coronavirus in several European countries was carried out. We described for the first time recombinant SeCoV circulating in Spain between 1993 and 2014 and its misidentification as PEDV when diagnostic assays based on the S-protein or S-gene of the PEDV were used. The complete S-gene sequence of 7 Spanish SeCoV and 30 PEDV Spanish isolates was phylogenetically analysed including the S-gene sequences of the three SeCoV and a representative selection of the PEDV strains with complete genome sequences available in the GenBank. The tree showed a common ancestor for the S-gene of the PEDV and SeCoV, but no evolution from any known PEDV clade was shown for the SeCoV strains. Moreover, complete genome sequences were obtained from 23 PEDV strains recovered in Spanish swine farms since 2014. The phylogenetic tree showed the INDEL type genogroup of these Spanish strains, supporting the lower pathogenicity of this genogroup since no significant economic losses were reported in the affected Spanish swine farms. Four subgroups were detected among PEDV strains in Spain, closely related to the recent European strains. Moreover, eight of the most recent Spanish PEDV isolates formed a subclade together with three European strains from 2015, showing a new evolution branch with a recombinant virus.
Collapse
Affiliation(s)
- Pedro J G de Nova
- Department of Animal Health, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Martí Cortey
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ivan Díaz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Héctor Puente
- Department of Animal Health, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Pedro Rubio
- Department of Animal Health, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Marga Martín
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ana Carvajal
- Department of Animal Health, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
22
|
Sawattrakool K, Stott CJ, Bandalaria-Marca RD, Srijangwad A, Palabrica DJ, Nilubol D. Field trials evaluating the efficacy of porcine epidemic diarrhea vaccine, RNA (Harrisvaccine) in the Philippines. Trop Anim Health Prod 2020; 52:2743-2747. [PMID: 32279241 DOI: 10.1007/s11250-020-02270-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/30/2020] [Indexed: 11/29/2022]
Abstract
Porcine epidemic diarrhea (PED) is a devastating enteric disease causing economic losses in many countries including the Philippines. To control PED, apart from oral administration of minced intestinal materials, there are still no effective control methods. The ability of porcine epidemic diarrhea vaccine RNA particle platform (PED-RP) to induce antibody in colostrum and milk samples was investigated in two pig herds with a differing PED status in the Philippines. Herd-A was naïve but herd-B was endemically infected with PED. Sera, colostrum, and milk samples were collected prior to and following vaccination, and assayed for the presence of antibody by viral neutralization (VN) and IgG and IgA levels by ELISA spike protein. The results from both herds, compared to the non-vaccinated control group, demonstrated significantly increased VN titers and IgG and IgA levels in colostrum and milk samples of sows at 0, 7, 14, and 21 days post parturition. Additionally, piglets from vaccinated sows had VN titers, and IgG and IgA levels are significantly higher than those from non-vaccinated sows. In conclusion, the results of the study demonstrate that PED-RP can be used to induce a satisfactory antibody response in colostrum and milk, as measured by VN titers and IgG and IgA levels.
Collapse
Affiliation(s)
- K Sawattrakool
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - C J Stott
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - R D Bandalaria-Marca
- Robina Farms Diagnostic Laboratory, Universal Corn Products Compound, Bagong Ilog, 1600, Pasig City, Metro Manila, Philippines
| | - A Srijangwad
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - D J Palabrica
- Robina Farms Diagnostic Laboratory, Universal Corn Products Compound, Bagong Ilog, 1600, Pasig City, Metro Manila, Philippines
| | - D Nilubol
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
23
|
Than VT, Choe SE, Vu TTH, Do TD, Nguyen TL, Bui TTN, Mai TN, Cha RM, Song D, An DJ, Le VP. Genetic characterization of the spike gene of porcine epidemic diarrhea viruses (PEDVs) circulating in Vietnam from 2015 to 2016. Vet Med Sci 2020; 6:535-542. [PMID: 32159913 PMCID: PMC7397879 DOI: 10.1002/vms3.256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/02/2020] [Accepted: 02/13/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Porcine epidemic diarrhea (PED) is a highly contagious swine disease caused by the PED virus (PEDV), which is a member of the family Coronaviridae. Since the first outbreaks in Belgium and the United Kingdom were reported in 1971, PED has spread throughout many countries around the world and causing significant economic loss. This study was conducted to investigate the recent distribution of PEDV strains in Vietnam during the 2015-2016 seasons. METHODS A total of 30 PED-specific PCR-positive intestinal and faecal samples were collected from unvaccinated piglets in Vietnam during the 2015-2016 seasons. The full length of the spike (S) gene of these PEDV strains were analysed to determine their phylogeny and genetic relationship with other available PEDV strains globally. RESULTS Phylogenetic analysis of the complete S gene sequences revealed that the 28 Vietnamese PEDV strains collected in the northern and central regions clustered in the G2 group (both G2a and G2b sub-groups), while the other 2 PEDV strains (HUA-PED176 and HUA-PED254) collected in the southern region were clustered in the G1/G1b group/sub-group. The nucleotide (nt) and deduced amino acid (aa) analyses based on the complete S gene sequences showed that the Vietnamese PEDV strains were closely related to each other, sharing nt and aa homology of 93.2%-99.9% and 92.6%-99.9%, respectively. The N-glycosylation patterns and mutations in the antigenic region were observed in Vietnamese PEDV strains. CONCLUSIONS This study provides, for the first time, up-to-date information on viral circulation and genetic distribution, as well as evidence to assist in the development of effective PEDV vaccines in Vietnam.
Collapse
Affiliation(s)
- Van T Than
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Se-Eun Choe
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo, Republic of Korea
| | - Thi T H Vu
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Tien D Do
- Nong Lam University, Ho Chi Minh City, Vietnam
| | - Thi L Nguyen
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Thi T N Bui
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Thi N Mai
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Ra M Cha
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Dong-Jun An
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo, Republic of Korea
| | - Van P Le
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| |
Collapse
|
24
|
Raasch S, Collineau L, Postma M, Backhans A, Sjölund M, Belloc C, Emanuelson U, Beilage EG, Stärk K, Dewulf J. Effectiveness of alternative measures to reduce antimicrobial usage in pig production in four European countries. Porcine Health Manag 2020; 6:6. [PMID: 32140242 PMCID: PMC7050127 DOI: 10.1186/s40813-020-0145-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The reduction of antimicrobial usage (AMU) is in the focus in modern pig production. The objective of this study was to assess the effectiveness of alternatives to reduce AMU at herd level. In a prospective study, 68 farrow-to-finish pig herds located in Belgium, France, Germany and Sweden were recruited on a voluntary basis to implement tailor-made intervention plans to reduce their AMU. Alternative measures included improvement of biosecurity (n = 29 herds), vaccination (n = 30), changes of feeding schemes or drinking water quality (n = 45), improved pig health and welfare care (n = 21) as well as changes in stable climate and zootechnical measures (n = 14). Herds were followed for 1 year after implementation of measures. Annual antimicrobial expenditures or treatment records, as well as disease incidence scores were collected and compared to those of the year before intervention. AMU was measured as the treatment incidence and calculated by age category, antimicrobial class and administration route. RESULTS Compliance with the intervention plans was high (median 93%). AMU was significantly reduced following the implementation of alternative measures: in the median herd of the four countries, pigs were treated before intervention 25% of their expected lifespan (200 days from birth to slaughter) and after intervention 16%. AMU of suckling and weaned pigs were significantly reduced by 37 and 54%, respectively. The usage of polymyxins and tetracyclines was significantly reduced by 69 and 49%, respectively. AMU via feed and water, as well as parenteral AMU were significantly reduced by 46 and 36%, respectively. Herds with a higher AMU level before intervention achieved a bigger reduction. The majority of disease incidence were similar before and after intervention, with a few exceptions of disorders related to the gastro-intestinal tract in suckling pigs (decreased) and in breeding pigs (increased). CONCLUSION Following tailor-made implementation of alternative measures, a substantial reduction of AMU in pig production was achievable without jeopardizing animal health. The AMU reduction in the youngest age categories (suckling and weaned pigs) and the reduction of group treatments via feed and water was in line with the recent European Guidelines on the prudent use of antimicrobials in veterinary medicine.
Collapse
Affiliation(s)
- Svenja Raasch
- University of Veterinary Medicine Hannover, Field Station for Epidemiology, Bakum, Germany
| | - Lucie Collineau
- SAFOSO, Waldeggstrasse 1, 3097 Liebefeld, Switzerland
- BIOEPAR, INRA, Oniris, BP40706, F-44307 Nantes Cedex 3, France
| | - Merel Postma
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Annette Backhans
- Department of Clinical Sciences, Swedish University of Agriculture, Uppsala, Sweden
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, Uppsala, Sweden
| | - Marie Sjölund
- Department of Clinical Sciences, Swedish University of Agriculture, Uppsala, Sweden
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, Uppsala, Sweden
| | | | - Ulf Emanuelson
- Department of Clinical Sciences, Swedish University of Agriculture, Uppsala, Sweden
| | | | | | - Jeroen Dewulf
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - on the behalf of the MINAPIG Consortium
- University of Veterinary Medicine Hannover, Field Station for Epidemiology, Bakum, Germany
- SAFOSO, Waldeggstrasse 1, 3097 Liebefeld, Switzerland
- BIOEPAR, INRA, Oniris, BP40706, F-44307 Nantes Cedex 3, France
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Department of Clinical Sciences, Swedish University of Agriculture, Uppsala, Sweden
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, Uppsala, Sweden
| |
Collapse
|
25
|
Host Factors Affecting Generation of Immunity Against Porcine Epidemic Diarrhea Virus in Pregnant and Lactating Swine and Passive Protection of Neonates. Pathogens 2020; 9:pathogens9020130. [PMID: 32085410 PMCID: PMC7168134 DOI: 10.3390/pathogens9020130] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly virulent re-emerging enteric coronavirus that causes acute diarrhea, dehydration, and up to 100% mortality in neonatal suckling piglets. Despite this, a safe and effective PEDV vaccine against highly virulent strains is unavailable, making PEDV prevention and control challenging. Lactogenic immunity induced via the gut-mammary gland-secretory IgA (sIgA) axis, remains the most promising and effective way to protect suckling piglets from PEDV. Therefore, a successful PEDV vaccine must induce protective maternal IgA antibodies that passively transfer into colostrum and milk. Identifying variables that influence lymphocyte migration and IgA secretion during gestation and lactation is imperative for designing maternal immunization strategies that generate the highest amount of lactogenic immune protection against PEDV in suckling piglets. Because pregnancy-associated immune alterations influence viral pathogenesis and adaptive immune responses in many different species, a better understanding of host immune responses to PEDV in pregnant swine may translate into improved maternal immunization strategies against enteric pathogens for multiple species. In this review, we discuss the role of host factors during pregnancy on antiviral immunity and their implications for generating protective lactogenic immunity in suckling neonates.
Collapse
|
26
|
Cortey M, Díaz I, Vidal A, Martín-Valls G, Franzo G, Gómez de Nova PJ, Darwich L, Puente H, Carvajal A, Martín M, Mateu E. High levels of unreported intraspecific diversity among RNA viruses in faeces of neonatal piglets with diarrhoea. BMC Vet Res 2019; 15:441. [PMID: 31805938 PMCID: PMC6896758 DOI: 10.1186/s12917-019-2204-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/29/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Diarrhoea is a major cause of death in neonate pigs and most of the viruses that cause it are RNA viruses. Next Generation Sequencing (NGS) deeply characterize the genetic diversity among rapidly mutating virus populations at the interspecific as well as the intraspecific level. The diversity of RNA viruses present in faeces of neonatal piglets suffering from diarrhoea in 47 farms, plus 4 samples from non-diarrhoeic piglets has been evaluated by NGS. Samples were selected among the cases submitted to the Veterinary Diagnostic Laboratories of Infectious Diseases of the Universitat Autònoma de Barcelona (Barcelona, Spain) and Universidad de León (León, Spain). RESULTS The analyses identified the presence of 12 virus species corresponding to 8 genera of RNA viruses. Most samples were co-infected by several viruses. Kobuvirus and Rotavirus were more commonly reported, with Sapovirus, Astrovirus 3, 4 and 5, Enterovirus G, Porcine epidemic diarrhoea virus, Pasivirus and Posavirus being less frequently detected. Most sequences showed a low identity with the sequences deposited in GenBank, allowing us to propose several new VP4 and VP7 genotypes for Rotavirus B and Rotavirus C. CONCLUSIONS Among the cases analysed, Rotaviruses were the main aetiological agents of diarrhoea in neonate pigs. Besides, in a small number of cases Kobuvirus and Sapovirus may also have an aetiological role. Even most animals were co-infected in early life, the association with enteric disease among the other examined viruses was unclear. The NGS method applied successfully characterized the RNA virome present in faeces and detected a high level of unreported intraspecific diversity.
Collapse
Affiliation(s)
- Martí Cortey
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ivan Díaz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Anna Vidal
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Gerard Martín-Valls
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Giovanni Franzo
- Department of Animal Medicine Production and Health (MAPS), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | - Pedro José Gómez de Nova
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Laila Darwich
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Héctor Puente
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Ana Carvajal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Marga Martín
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
27
|
Won H, Lee DU, Jang G, Noh YH, Lee SC, Choi HW, Yoon IJ, Yoo HS, Lee C. Generation and protective efficacy of a cold-adapted attenuated genotype 2b porcine epidemic diarrhea virus. J Vet Sci 2019; 20:e32. [PMID: 31364317 PMCID: PMC6669205 DOI: 10.4142/jvs.2019.20.e32] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 11/21/2022] Open
Abstract
The recent emergence and re-emergence of porcine epidemic diarrhea virus (PEDV) underscore the urgent need for the development of novel, safe, and effective vaccines against the prevailing strain. In this study, we generated a cold-adapted live attenuated vaccine candidate (Aram-P29-CA) by short-term passage of a virulent PEDV isolate at successively lower temperatures in Vero cells. Whole genome sequencing identified 12 amino acid changes in the cold-adapted strain with no insertions and deletions throughout the genome. Animal inoculation experiments confirmed the attenuated phenotype of Aram-P29-CA virus in the natural host. Pregnant sows were orally administered P29-CA live vaccines two doses at 2-week intervals prior to parturition, and the newborn piglets were challenged with the parental virus. The oral homologous prime-boost vaccination of P29-CA significantly improved the survival rate of the piglets and notably mitigated the severity of diarrhea and PEDV fecal shedding after the challenge. Furthermore, strong antibody responses to PEDV were detected in the sera and colostrum of immunized sows and in the sera of their offspring. These results demonstrated that the cold-adapted attenuated virus can be used as a live vaccine in maternal vaccination strategies to provide durable lactogenic immunity and confer passive protection to litters against PEDV.
Collapse
Affiliation(s)
- Hokeun Won
- ChoongAng Vaccine Laboratories, Daejeon 34055, Korea.,Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Dong Uk Lee
- ChoongAng Vaccine Laboratories, Daejeon 34055, Korea
| | - Guehwan Jang
- Animal Virology Laboratory, School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Yun Hee Noh
- ChoongAng Vaccine Laboratories, Daejeon 34055, Korea
| | | | - Hwan Won Choi
- ChoongAng Vaccine Laboratories, Daejeon 34055, Korea
| | - In Joong Yoon
- ChoongAng Vaccine Laboratories, Daejeon 34055, Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Changhee Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
28
|
Masiuk DМ, Nedzvetsky VS, Kokariev AV, Danchuk OV, Vasilenko TO, Yefimova OM. Evaluation of commercial methods to separate nucleic acids from intestinal tissues of pigs for diagnosis of porcine epidemic diarrhea. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The article presents the results of evaluating commercial methods for extracting nucleic acids from pig intestinal tissues for the diagnosis of PED. The study was based on samples of small intestine tissues and faeces from 3–5 day old pigs which died from PED. Nucleic acid extraction was performed using commercial kits with different nucleic acid separation strategies based on: silicon-sorbent; silicate membrane fixed in a microcentrifuge column and magnetic balls. The studies were conducted in two stages. The first was a comparison of the results of the amplification of the obtained nucleic acid extracts from the homogenate of the intestines of piglets by using the above-mentioned commercial kits for the extraction of nucleic acids. For this purpose, samples of homogenate were used which in weight corresponded to the guideline for the application of the test kits. The second step was directed to determining the efficiency of extraction of DNA and RNA from homogenate samples with a weight of 10, 50, 100 and 200 mg. Determination of the optimal methodological strategy of nucleic acid extraction for the diagnosis of porcine epidemic diarrhea by PCR has been investigated. The results of the PCR studies of RNA of the PED virus and a unique pig DNA fragment indicate that the extraction of nucleic acids by commercial kits has different levels of efficiency and depends on different factors. According to the research, it was found that the most important of them are the adsorption capacity of the solid-phase sorbent, its configuration and nature, which binds RNA and DNA molecules, the type of sample from which extraction takes place, its volume, or the tissue mass used for extraction. Based on the obtained results, it has been found that the most effective PED virus RNA extraction is by “ArtBioTech”, “Bio Extract Column”, and “Viral DNA/RNA Extraction Kit”, and pig genomic DNA extraction by the “ArtBioTech” and “Viral DNA / RNA extraction Kit”.
Collapse
|
29
|
Vidal A, Martín-Valls GE, Tello M, Mateu E, Martín M, Darwich L. Prevalence of enteric pathogens in diarrheic and non-diarrheic samples from pig farms with neonatal diarrhea in the North East of Spain. Vet Microbiol 2019; 237:108419. [PMID: 31585655 PMCID: PMC7117353 DOI: 10.1016/j.vetmic.2019.108419] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 01/31/2023]
Abstract
Multiple pathogens were found in all neonatal diarrhea outbreaks. RVA was the most frequent agent associated with diarrheic cases. Other enteric pathogens can be involved in some neonatal diarrhea outbreaks. The multifactorial origin of pig diarrhea requires a personalized farm diagnosis.
Diarrhea is one of the major causes of neonatal mortality in pigs. In the present study, 31 pig farms with outbreaks of neonatal diarrhea were investigated in Catalonia (NE Spain) from February 2017 until June 2018. Two hundred and fifteen diarrheic samples from 1 to 7 days old piglets were tested for a panel of enteric pathogens. In 19 of the studied farms additional fecal samples from apparently healthy pen-mates were collected and tested for the same panel of infectious agents. Samples were bacteriologically cultured and tested by PCR for E. coli virulence factors genes, C. perfringens types A and C toxins (Cpα, Cpβ, Cpβ2) and C. difficile toxins (TcdA, TcdB). Moreover, Rotavirus A (RVA), Rotavirus B (RVB), Rotavirus C (RVC), porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) were also determined by RT-qPCR. More than one pathogen could be detected in all of the outbreaks. Nevertheless, RVA was the only agent that could be statistically correlated with the outcome of diarrhea. For the other viruses and bacteria analyzed significant differences between the diseased pigs and the controls were not found. In spite of this, the individual analysis of each of the studied farms indicated that other agents such as RVB, RVC, toxigenic C. difficile or pathogenic E. coli could play a relevant role in the outbreak of diarrhea. In conclusion, the large diversity of agent combinations and disease situations detected in neonatal diarrhea outbreaks of this study stand for a more personalized diagnosis and management advice at a farm level.
Collapse
Affiliation(s)
- Anna Vidal
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.
| | - Gerard E Martín-Valls
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Montse Tello
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Enric Mateu
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain; UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Marga Martín
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain; UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Laila Darwich
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain; UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| |
Collapse
|
30
|
Forecasting herd-level porcine epidemic diarrhea (PED) frequency trends in Ontario (Canada). Prev Vet Med 2019; 164:15-22. [PMID: 30771890 PMCID: PMC7125872 DOI: 10.1016/j.prevetmed.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 11/23/2022]
Abstract
Porcine Epidemic Diarrhea Virus (PEDV) emerged in North America in 2013. The first case of PEDV in Canada was identified on an Ontario farm in January 2014. Surveillance was instrumental in identifying the initial case and in minimizing the spread of the virus to other farms. With recent advances in predictive analytics showing promise for health and disease forecasting, the primary objective of this study was to apply machine learning predictive methods (random forest, artificial neural networks, and classification and regression trees) to provincial PEDV incidence data, and in so doing determine their accuracy for predicting future PEDV trends. Trend was defined as the cumulative number of new cases over a four-week interval, and consisted of four levels (zero, low, medium and high). Provincial PEDV incidence and prevalence estimates from an industry database, as well as temperature, humidity, and precipitation data, were combined to create the forecast dataset. With 10-fold cross validation performed on the entire dataset, the overall accuracy was 0.68 (95% CI: 0.60 - 0.75), 0.57 (95% CI: 0.49 - 0.64), and 0.55 (0.47 - 0.63) for the random forest, artificial neural network, and classification and regression tree models, respectively. Based on the cross-validation approach to evaluating predictive accuracy, the random forest model provided the best prediction.
Collapse
|
31
|
Joshi LR, Okda FA, Singrey A, Maggioli MF, Faccin TC, Fernandes MHV, Hain KS, Dee S, Bauermann FV, Nelson EA, Diel DG. Passive immunity to porcine epidemic diarrhea virus following immunization of pregnant gilts with a recombinant orf virus vector expressing the spike protein. Arch Virol 2018; 163:2327-2335. [PMID: 29725899 PMCID: PMC7086649 DOI: 10.1007/s00705-018-3855-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/18/2018] [Indexed: 01/08/2023]
Abstract
Passive immunity is critical for protection of neonatal piglets against porcine epidemic diarrhea virus (PEDV). Here, we investigated the immunogenicity of an orf virus (ORFV) vector expressing the full-length spike (S) protein of PEDV (ORFV-PEDV-S) in pregnant gilts and its ability to confer passive immunity and protection in piglets. Three doses of ORFV-PEDV-S were given to two groups of PEDV-negative pregnant gilts, with the last dose being administered two weeks prior to farrowing. One of the two groups immunized with the ORFV-PEDV-S recombinant virus was also exposed to live PEDV orally on day 31 post-immunization (pi). Antibody responses were assessed in serum, colostrum and milk of immunized gilts, and passive transfer of antibodies was evaluated in piglet sera. The protective efficacy of ORFV-PEDV-S was evaluated after challenge of the piglets with PEDV. PEDV-specific IgG, IgA and neutralizing antibody (NA) responses were detected in ORFV-PEDV-S-immunized and ORFV-PEDV-S-immunized/PEDV-exposed gilts. PEDV NA, IgG and IgA were detected in the serum of piglets born to immunized gilts, demonstrating the transfer of antibodies through colostrum and milk. Piglets born to immunized gilts showed reduced morbidity and a marked reduction in mortality after PEDV challenge in comparison to control piglets. Piglets born to gilts that received ORFV-PEDV-S and were exposed to live PEDV showed stronger NA responses and lower clinical scores when compared to piglets born to gilts immunized with ORFV-PEDV-S alone. These results demonstrate the potential of ORFV as a vaccine delivery platform capable of eliciting passive immunity against PEDV.
Collapse
Affiliation(s)
- Lok R Joshi
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, 1155 North Campus Drive, Box 2175, Brookings, SD, 57007, USA.,Center for Biologics Research and Commercialization, South Dakota State University, Brookings, SD, 57007, USA
| | - Faten A Okda
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, 1155 North Campus Drive, Box 2175, Brookings, SD, 57007, USA
| | - Aaron Singrey
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, 1155 North Campus Drive, Box 2175, Brookings, SD, 57007, USA.,Center for Biologics Research and Commercialization, South Dakota State University, Brookings, SD, 57007, USA
| | - Mayara F Maggioli
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, 1155 North Campus Drive, Box 2175, Brookings, SD, 57007, USA.,Center for Biologics Research and Commercialization, South Dakota State University, Brookings, SD, 57007, USA
| | - Tatiane C Faccin
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, 1155 North Campus Drive, Box 2175, Brookings, SD, 57007, USA.,Programa de Pós-Graduação em Medicina Veterinária, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Maureen H V Fernandes
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, 1155 North Campus Drive, Box 2175, Brookings, SD, 57007, USA.,Center for Biologics Research and Commercialization, South Dakota State University, Brookings, SD, 57007, USA
| | - Kyle S Hain
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, 1155 North Campus Drive, Box 2175, Brookings, SD, 57007, USA
| | - Scott Dee
- Pipestone Veterinary Services, Pipestone Applied Research, Pipestone, MN, 51164, USA
| | - Fernando V Bauermann
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, 1155 North Campus Drive, Box 2175, Brookings, SD, 57007, USA.,Center for Biologics Research and Commercialization, South Dakota State University, Brookings, SD, 57007, USA
| | - Eric A Nelson
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, 1155 North Campus Drive, Box 2175, Brookings, SD, 57007, USA.,Center for Biologics Research and Commercialization, South Dakota State University, Brookings, SD, 57007, USA
| | - Diego G Diel
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, 1155 North Campus Drive, Box 2175, Brookings, SD, 57007, USA. .,Center for Biologics Research and Commercialization, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
32
|
Mesonero-Escuredo S, Strutzberg-Minder K, Casanovas C, Segalés J. Viral and bacterial investigations on the aetiology of recurrent pig neonatal diarrhoea cases in Spain. Porcine Health Manag 2018; 4:5. [PMID: 29632701 PMCID: PMC5885353 DOI: 10.1186/s40813-018-0083-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/23/2018] [Indexed: 01/15/2023] Open
Abstract
Background Neonatal diarrhoea represents a major disease problem in the early stages of animal production, increasing significantly pre-weaning mortality and piglets weaned below the target weight. Enteric diseases in newborn piglets are often of endemic presentation, but may also occur as outbreaks with high morbidity and mortality. The objective of this study was to assess the frequency of different pathogens involved in cases of recurrent neonatal diarrhoea in Spain. Results A total of 327 litters from 109 sow farms located in Spain with neonatal recurrent diarrhoea were sampled to establish a differential diagnosis against the main enteric pathogens in piglets. In total, 105 out of 109 (96.3%) case submissions were positive to one of the examined enteric organisms considered potentially pathogenic (Escherichia coli, Clostridium perfringens types A and C, Transmissible gastroenteritis virus [TGEV], Porcine epidemic diarrhoea virus [PEDV] or Rotavirus A [RVA]). Fifty-eight out of 109 (53.2%) submissions were positive for only one of these pathogens, 47 out of 109 (43.1%) were positive for more than one pathogen and, finally, 4 out of 109 (3.7%) were negative for all these agents. Escherichia coli strains were isolated from all submissions tested, but only 11 of them were classified into defined pathotypes. Clostridium perfringens type A was detected in 98 submissions (89.9%) and no C. perfringens type C was found. Regarding viruses, 47 (43.1%) submissions were positive for RVA, 4 (3.7%) for PEDV and none of them for TGEV. Conclusion In conclusion, C. perfringens type A, E. coli and RVA were the main pathogens found in faeces of neonatal diarrheic piglets in Spain.
Collapse
Affiliation(s)
| | | | - Carlos Casanovas
- IDT Biologika SL, Gran Vía Carles III, 84, 3°, 08028 Barcelona, Spain
| | - Joaquim Segalés
- 3Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain.,4UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
33
|
Ajayi T, Dara R, Misener M, Pasma T, Moser L, Poljak Z. Herd-level prevalence and incidence of porcine epidemic diarrhoea virus (PEDV) and porcine deltacoronavirus (PDCoV) in swine herds in Ontario, Canada. Transbound Emerg Dis 2018; 65:1197-1207. [PMID: 29607611 PMCID: PMC7169835 DOI: 10.1111/tbed.12858] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Indexed: 11/30/2022]
Abstract
Porcine epidemic diarrhoea virus (PEDV) and porcine deltacoronavirus (PDCoV) were first identified in Canada in 2014. Surveillance efforts have been instrumental in controlling both diseases. In this study, we provide an overview of surveillance components for the two diseases in Ontario (Canada), as well as PEDV and PDCoV incidence and prevalence measures. Swine herds located in the Province of Ontario, of any type, whose owners agreed to participate in a voluntary industry‐led disease control programme (DCP) and with associated diagnostic or epidemiological information about the two swine coronaviruses, were eligible to be included for calculation of disease frequency at the provincial level. PEDV and PDCoV data stored in the industry DCP database were imported into the R statistical software and analysed to produce weekly frequency of incidence counts and prevalence counts, in addition to yearly herd‐level incidence risk and prevalence between 2014 and 2016. The yearly herd‐level incidence risk of PEDV, based on industry data, was 13.5%, 3.0% and 1.4% (95% CI: 11.1–16.2, 2.0–4.2, 0.8–2.3), while the yearly herd‐level incidence risk of PDCoV was 1.1%, 0.3%, and 0.1% (95% CI: 0.5–2.2, 0.1–0.9, 0.0–0.5), for 2014, 2015 and 2016, respectively. Herd‐level prevalence estimates for PEDV in the last week of 2014, 2015 and 2016 were 4.4%, 2.3% and 1.4%, respectively (95% CI: 3.1–6.0, 1.5–3.3, 0.8–2.2), while herd‐level prevalence estimates for PDCoV in the last week of 2014, 2015 and 2016 were 0.5%, 0.2% and 0.2%, respectively (95% CI: 0.1–1.2, 0.0–0.6, 0.0–0.6). Collectively, our results point to low and decreasing incidence risk and prevalence for PEDV and PDCoV in Ontario, making both diseases possible candidates for disease elimination at the provincial level.
Collapse
Affiliation(s)
- T Ajayi
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - R Dara
- School of Computer Science, University of Guelph, Guelph, ON, Canada
| | - M Misener
- Ontario Swine Health Advisory Board (OSHAB), Stratford, ON, Canada
| | - T Pasma
- Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA), Guelph, ON, Canada
| | - L Moser
- Swine Health Ontario, Guelph, ON, Canada
| | - Z Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
34
|
Gillam F, Zhang J, Zhang C. Hepatitis B core antigen based novel vaccine against porcine epidemic diarrhea virus. J Virol Methods 2017; 253:61-69. [PMID: 29129402 DOI: 10.1016/j.jviromet.2017.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 11/24/2022]
Abstract
Porcine epidemic diarrhea Virus (PEDV) is the causative agent of porcine epidemic diarrhea, which is a devastating viral disease and causes severe economic loss to the swine industry. Current vaccine options for PEDV include modified live viruses and killed live viruses. Though these vaccines have shown efficacy, some have side effects including viral shedding. This report details an E. coli based expression and purification process of multiple vaccine candidates for PEDV using Hepatitis B Core Antigen (HBcAg) as a backbone protein. Short linear peptide sequences from PEDV were inserted into the immunodominant region of HBcAg in a novel recombinant vaccine design against PEDV. These peptide sequences were successfully inserted individually as well as all together in a multivalent strategy. Each vaccine candidate was tested in vivo in an intranasal as well as an intraperitoneal administration. Although each candidate was able to elicit a strong immunogenic response specific for the inserted peptide sequences, only two out of five of the test candidates demonstrated an ability to elicit an immune response capable of virus neutralization when delivered via intraperitoneal administration in mice.
Collapse
Affiliation(s)
- Frank Gillam
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington St. SW, Blacksburg, VA 24061, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington St. SW, Blacksburg, VA 24061, USA.
| |
Collapse
|
35
|
Prodanov-Radulović J, Petrović T, Lupulović D, Marčić D, Petrović J, Grgić Ž, Lazić S. First Detection and Clinical Presentation of Porcine Epidemic Diarrhea Virus (Pedv) in Serbia. ACTA VET-BEOGRAD 2017. [DOI: 10.1515/acve-2017-0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
During 2015/2016, fecal and intestinal samples from live diseased and/or dead pigs with suspected PEDV and/or TGEV and signs of rotavirus infection were collected from in total seven different farrow-to-finish swine farms located in Northern Serbia region (Vojvodina Province). A total of 14 samples (2 pools per farm) of small intestine with fecal content were submitted to laboratory molecular investigation (multiplex RTPCR). On these farms the clinical signs included the occurrence of diarrhea in suckling and weaned piglets, with weak or no response to the applied antimicrobial therapy. The epidemic of severe diarrhea affecting pigs of all ages on one farrow-to finish swine farm was detected in January 2016. Watery diarrhea in all swine categories was associated with vomiting and a reduction in feed consumption. Diarrheic, gaunt and dehydrated piglets, covered with feces were found in 90% litters. The disease affected most severely the suckling piglets, and the mortality in newborn piglets was up to 35%. In the weaned piglets and fatteners the mortality was up to 2.5% and 1.2%, respectively. The PEDV RNA was detected in pooled feces and samples of small intestines derived from diseased and dead suckling piglets from only one investigated farm. The PEDV positive samples showed to be negative for rotavirus group A and TGEV. The transport vehicles were identified as the main possible route of PEDV introduction. This is the first report demonstrating the presence of PEDV in Serbia.
Collapse
Affiliation(s)
| | - Tamaš Petrović
- Scientific Veterinary Institute „Novi Sad“, Novi Sad , Serbia
| | - Diana Lupulović
- Scientific Veterinary Institute „Novi Sad“, Novi Sad , Serbia
| | - Doroteja Marčić
- Scientific Veterinary Institute „Novi Sad“, Novi Sad , Serbia
| | - Jelena Petrović
- Scientific Veterinary Institute „Novi Sad“, Novi Sad , Serbia
| | - Živoslav Grgić
- Scientific Veterinary Institute „Novi Sad“, Novi Sad , Serbia
| | - Sava Lazić
- Scientific Veterinary Institute „Novi Sad“, Novi Sad , Serbia
| |
Collapse
|
36
|
Leidenberger S, Schröder C, Zani L, Auste A, Pinette M, Ambagala A, Nikolin V, de Smit H, Beer M, Blome S. Virulence of current German PEDV strains in suckling pigs and investigation of protective effects of maternally derived antibodies. Sci Rep 2017; 7:10825. [PMID: 28883628 PMCID: PMC5589859 DOI: 10.1038/s41598-017-11160-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/21/2017] [Indexed: 11/08/2022] Open
Abstract
Porcine epidemic diarrhea (PED) has caused tremendous losses to the United States pig industry since 2013. From 2014, outbreaks were also reported from Central Europe. To characterize the Central European PEDV strains regarding their virulence in suckling piglets, and to assess the protective effect of maternally derived antibodies (MDA), four trial groups were randomly assigned, each consisting of two pregnant sows and their litter. To induce MDA in a subset of piglets, two sows received a cell culture-adapted PEDV strain, and another two sows were inoculated with field material from German PED outbreaks. Four sows stayed naïve. Subsequently, all piglets were inoculated with the corresponding PEDV strains at an age of 3 to 6 days, and virus shedding, clinical signs and occurrence of specific antibodies were assessed. Piglets without MDA showed a morbidity of 100% and low lethality, while almost all MDA-positive piglets stayed clinically healthy and showed considerably lower virus shedding. Taken together, the Central European PEDV strains showed rather low virulence under experimental conditions, and pre-inoculation of sows led to a solid protection of their offspring. The latter is the prerequisite for a sow vaccination concept that could help to prevent PED induced losses in the piglet sector.
Collapse
Affiliation(s)
- S Leidenberger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, 17493, Germany
| | - Ch Schröder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, 17493, Germany
| | - L Zani
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, 17493, Germany
| | - A Auste
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, 17493, Germany
| | - M Pinette
- Canadian Food inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, R3E 3M4, Canada
| | - A Ambagala
- Canadian Food inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, R3E 3M4, Canada
| | - V Nikolin
- Boehringer Ingelheim Veterinary Research Center, Hannover, 30559, Germany
| | - H de Smit
- Boehringer Ingelheim Veterinary Research Center, Hannover, 30559, Germany
| | - M Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, 17493, Germany
| | - S Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, 17493, Germany.
| |
Collapse
|
37
|
Sasaki Y, Kawabata T, Noguchi M. The effect of porcine epidemic diarrhea (PED) on ovarian function and reproductive performance after weaning in Berkshire sows. Trop Anim Health Prod 2017; 49:879-882. [PMID: 28281162 PMCID: PMC7089500 DOI: 10.1007/s11250-017-1257-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 02/23/2017] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to investigate the ovarian condition at weaning and subsequent reproductive performance of Berkshire sows following an outbreak of PED. This study was conducted on a farrow-to-finish farm that experienced a PED outbreak beginning on January 6, 2014. Blood samples were collected at weaning from 19 to 20 sows every month from July 2013 until July 2014 to investigate the ovarian condition. The mean progesterone concentration was numerically higher during January 2014 than the other months, but this difference was not significant. The mean estradiol-17β concentration was higher during January 2014 than during July and October 2013 (P < 0.05). In addition, reproductive performance was compared during January, February, and March before (2013) and after (2014) the PED outbreak. Sows that farrowed in January had higher preweaning mortality in 2014 than in 2013 (P < 0.05), but sows that farrowed in February and March had similar preweaning mortality in 2013 and 2014 (P > 0.10). Sows that farrowed between January and March 2014 had 15% lower farrowing rate than those that farrowed during the same months in 2013 (P < 0.05). In conclusion, our results demonstrate poorer reproductive performance of Berkshire sows after a PED outbreak compared with before the outbreak.
Collapse
Affiliation(s)
- Yosuke Sasaki
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Tadahiro Kawabata
- Kagoshima Prefectural Economics Federation of Agricultural Co-operatives, Section of Swine, Kagoshima, Japan
| | - Michiko Noguchi
- Laboratory of Theriogenology, Department of Veterinary Medicine, Azabu University, 17-71-1 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan.
| |
Collapse
|
38
|
Dagher D, Ungar K, Robison R, Dagher F. The wide spectrum high biocidal potency of Bioxy formulation when dissolved in water at different concentrations. PLoS One 2017; 12:e0172224. [PMID: 28207828 PMCID: PMC5313143 DOI: 10.1371/journal.pone.0172224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/01/2017] [Indexed: 11/18/2022] Open
Abstract
Traditional surface disinfectants that have long been applied in medicine, animal husbandry, manufacturing and institutions are inconvenient at best and dangerous at worst. Moreover, some of these substances have adverse environmental impacts: for example, quaternary ammonium compounds ("quats") are reproductive toxicants in both fish and mammals. Halogens are corrosive both to metals and living tissues, are highly reactive, can be readily neutralized by metals, and react with organic matter to form toxic, persistent by-products such as dioxins and furans. Aldehydes may be carcinogenic to both human and animals upon repeated exposures, are corrosive, cross-link living tissues and many synthetic materials, and may lose efficacy when pathogens enzymatically adapt to them. Alcohols are flammable and volatile and can be enzymatically degraded by certain bacterial pathogens. Quats are highly irritating to mucous membranes and over time can induce pathogen resistance, especially if they are not alternated with functionally different disinfectants. In contrast, peracetic acid (PAA), a potent oxidizer, liberates hydrogen peroxide (itself a disinfectant), biodegrades to carbon dioxide, water and oxygen, and is at least as efficacious as contact biocides e.g., halogens and aldehydes. Nevertheless, the standard form of liquid PAA is highly corrosive, is neutralized by metals and organic matter, gives off noxious odours and must be stored in vented containers. For the reasons stated above, Bioxy formulations were developed, a series of powder forms of PAA, which are odourless, stable in storage and safe to transport and handle. They generate up to 10% PAA in situ when dissolved in water. A 0.2% aqueous solution of Bioxy (equivalent to 200 ppm PAA) effected a 6.76 log reduction in Methicillin-resistant Staphylococcus aureus (MRSA) within 2 minutes after application. A 5% aqueous solution of Bioxy achieved a 3.93 log reduction in the bovine tuberculosis bacillus Mycobacterium bovis, within 10 minutes after contact. A 1% solution of Bioxy reduced vancomycin-resistant enterococci (VRE) and Pseudomonas aeruginosa by 6.31 and 7.18 logs, respectively, within 3 minutes after application. A 0.5% solution of Bioxy inactivated porcine epidemic diarrhea virus (PEDV) within 15 minutes of contact, and a 5% solution of Bioxy realized a 5.36 log reduction in the spores of Clostridium difficile within 10 minutes of application. In summary, Bioxy is safe and easy to transport and store, poses negligible human, animal and environmental health risks, shows high levels of pathogen control efficacy and does not induce microbial resistance. Further investigations are recommended to explore its use as an industrial biocide.
Collapse
Affiliation(s)
- Dori Dagher
- Bioxy AFD Inc. and Atomes F.D. Inc., Ville Saint-Laurent, Quebec, Canada
| | - Ken Ungar
- Bioxy AFD Inc. and Atomes F.D. Inc., Ville Saint-Laurent, Quebec, Canada
| | - Richard Robison
- Brigham Young University, Provo, Utah, United States of America
| | - Fadi Dagher
- Bioxy AFD Inc. and Atomes F.D. Inc., Ville Saint-Laurent, Quebec, Canada
- * E-mail:
| |
Collapse
|
39
|
Larsson J, Fall N, Lindberg M, Jacobson M. Farm characteristics and management routines related to neonatal porcine diarrhoea: a survey among Swedish piglet producers. Acta Vet Scand 2016; 58:77. [PMID: 27832811 PMCID: PMC5103491 DOI: 10.1186/s13028-016-0261-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/02/2016] [Indexed: 11/12/2022] Open
Abstract
Background In recent years reports from a number of countries, including Sweden, describe problems with diarrhoea in newborn piglets despite the use of previously effective preventive measures. This seemingly altered disease pattern of neonatal porcine diarrhoea (NPD) warrants investigations on the magnitude and manifestation of the problem. The aim of the present study was to investigate the herd-level prevalence of NPD in Sweden and to describe disease characteristics and intervention strategies used in affected herds. To obtain this information a questionnaire was developed and sent out to 170 randomly selected herds. The presence of NPD in the herds was specified as “Yes”, “No” or “Occasional cases” during the preceding year. Results A response rate of 58% (98/170) was achieved. The total prevalence of farmer experienced NPD, including occasional cases was 79.6% (95% CI 70.6–86.4%). Most herds (85%; 83/98) employed maternal vaccination against enterotoxigenic Escherichia coli (ETEC). The most common treatment regimens used in affected herds included antimicrobials only (43%; 18/42) or antimicrobials in combination with supplementary fluids (33%; 14/42). Trimethoprim in combination with a sulphonamide was the drug of choice in 57% (24/42) of the affected herds whereas the remaining herds used a broad range of other antimicrobials (neomycin, amoxicillin, fluoroquinolones, penicillin, and tylosin). Furthermore, the risk of experiencing NPD was found to be higher in herds with >200 sows (OR = 4.0) compared to herds with <200 sows and in herds where more ambitious efforts (such as providing supplemental colostrum or practicing split-suckling) were made to save weak-born piglets (OR = 4.4). Conclusions The results of the present study indicate that Swedish farmers commonly experience NPD in their herds, often despite vaccination against ETEC. Considering the extent of this problem and its contribution to antimicrobial usage, improving alternative control strategies for NPD needs to be prioritized. Electronic supplementary material The online version of this article (doi:10.1186/s13028-016-0261-0) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Pensaert MB, Martelli P. Porcine epidemic diarrhea: A retrospect from Europe and matters of debate. Virus Res 2016; 226:1-6. [PMID: 27317168 PMCID: PMC7132433 DOI: 10.1016/j.virusres.2016.05.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 11/27/2022]
Abstract
A retrospect is given on the emergence of porcine epidemic diarrhea (PED) during the early seventies in Europe. While, at first, it appeared as a disease affecting feeder pigs, fattening- and adult swine, it later also became pathogenic for neonatal and suckling pigs hereby drastically increasing its economic impact. Isolation of the causative virus revealed a new porcine coronavirus, the origin of which has never been clarified. Pathogenesis studies with the prototype strain CV777 showed severe villous atrophy in neonatal pigs and the virus-animal interactions showed many similarities with transmissible gastro-enteritis virus (TGEV), another porcine coronavirus. Disease patterns in field outbreaks showed muchvariation but, while farm related factors played a role, possible genetic variations of virus strains in Europe have not been examined and are thus unknown. CV777 in experimental pigs caused diarrheal disease and mortality rates similar to those later encountered in Asia and more recently with the "original" US strains even though genomic typing of the prototype European strain have shown that it belongs to the S-INDEL strains. In Europe, PED has become endemic during the eighties and nineties and subsequently regressed so that, after 2000, swine populations in many countries have largely become seronegative. Sporadic outbreaks have recently reappeared showing a large variety of clinical outcomes.
Collapse
Affiliation(s)
- Maurice B Pensaert
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, 133, 9820, Merelbeke, Belgium.
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Via del taglio, 10, 43126 Parma, Italy.
| |
Collapse
|
41
|
Díaz I, Cortey M, Olvera À, Segalés J. Use of H-Index and Other Bibliometric Indicators to Evaluate Research Productivity Outcome on Swine Diseases. PLoS One 2016; 11:e0149690. [PMID: 26930283 PMCID: PMC4773010 DOI: 10.1371/journal.pone.0149690] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/03/2016] [Indexed: 02/06/2023] Open
Abstract
H-index is the most commonly applied tool to evaluate scientific productivity. In this study, the use of the H-index to evaluate scientific production in swine veterinary medicine was explored. A database of 137 pig infectious agents was constructed, including its taxonomic division, zoonotic potential, status as emerging pathogen and whether it was OIE-listed. The H-index and the total number of citations were calculated for those pathogens, the location of the affiliation of the first author of each paper included in the H-index core was registered and, for the ten pathogens with the highest H-index, evolution over time was measured. H-index values were compared to the M quotient, A-index, G-index, HG-index and the G/H ratio. H-indices were found to be severely affected by search accuracy and the database was hand curated. Swine pathogen H-indexes were highly dispersed ranging from 0 to 106 and were generally higher for pathogens causing endemic diseases in large pig producing countries. Indeed, the three top pathogens were Escherichia coli, Porcine reproductive and respiratory syndrome virus and Porcine circovirus type 2 with H-indices 106, 95 and 85, respectively. H-indices of viruses and bacteria were significantly higher (P<0.001) than other pathogen types. Also, non-zoonotic pathogens had higher H-indices than zoonotic pathogens (p<0.009) while no differences could be found for being listed by the OIE. For emerging diseases, only non-emerging viruses had higher H-index (p = 0.02). The study of H-indexes over time revealed three general patterns and that they had increased mainly after the 1980’s. As expected, there were strong geographic patterns in terms of authorship and North America (38%) and Europe (46%) coped the majority of the papers. Finally, in order to quantify the contribution of a subject to a specific field, a new index “Deciphering Citations Organized by Subject” (Dcos) is proposed.
Collapse
Affiliation(s)
- Ivan Díaz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- * E-mail:
| | - Martí Cortey
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Àlex Olvera
- Institut de Recerca de la Sida, IrsiCaixa—HIVACAT, Carretera del Canyet, s/n, 08916 Badalona, Spain
| | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Departament de Sanitat i d’Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|