1
|
Calcaterra V, Degrassi I, Taranto S, Porro C, Bianchi A, L’assainato S, Silvestro GS, Quatrale A, Zuccotti G. Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) and Thyroid Function in Childhood Obesity: A Vicious Circle? CHILDREN (BASEL, SWITZERLAND) 2024; 11:244. [PMID: 38397356 PMCID: PMC10887660 DOI: 10.3390/children11020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a multisystem disorder characterized by the presence of fatty liver degeneration associated with excess adiposity or prediabetes/type 2 diabetes or metabolic dysregulation. An intricate relationship between the liver and thyroid has been reported in both health and disease. Simultaneously, there is a strong correlation between obesity and both MAFLD and thyroid dysfunction. In this narrative review, we highlighted the relationship between MAFLD and thyroid function in children and adolescents with obesity in order to explore how thyroid hormones (THs) act as predisposing factors in the onset, progression, and sustainability of MAFLD. THs are integral to the intricate balance of metabolic activities, ensuring energy homeostasis, and are indispensable for growth and development. Regarding liver homeostasis, THs have been suggested to interact with liver lipid homeostasis through a series of processes, including stimulating the entry of free fatty acids into the liver for esterification into triglycerides and increasing mitochondrial β-oxidation of fatty acids to impact hepatic lipid accumulation. The literature supports a correlation between MAFLD and obesity, THs and obesity, and MAFLD and THs; however, results in the pediatric population are very limited. Even though the underlying pathogenic mechanism involved in the relationship between MAFLD and thyroid function remains not fully elucidated, the role of THs as predisposing factors of MAFLD could be postulated. A potential vicious circle among these three conditions cannot be excluded. Identifying novel elements that may contribute to MAFLD could offer a practical approach to assessing children at risk of developing the condition.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Irene Degrassi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Silvia Taranto
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Cecilia Porro
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Alice Bianchi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Sara L’assainato
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Giustino Simone Silvestro
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Antonia Quatrale
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milan, 20157 Milan, Italy
| |
Collapse
|
2
|
Arriola-Montenegro J, Beas R, Cerna-Viacava R, Chaponan-Lavalle A, Hernandez Randich K, Chambergo-Michilot D, Flores Sanga H, Mutirangura P. Therapies for patients with coexisting heart failure with reduced ejection fraction and non-alcoholic fatty liver disease. World J Cardiol 2023; 15:328-341. [PMID: 37576545 PMCID: PMC10415861 DOI: 10.4330/wjc.v15.i7.328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Heart failure with reduced ejection fraction (HFrEF) and nonalcoholic fatty liver disease (NAFLD) are two common comorbidities that share similar pathophysiological mechanisms. There is a growing interest in the potential of targeted therapies to improve outcomes in patients with coexisting HFrEF and NAFLD. This manuscript reviews current and potential therapies for patients with coexisting HFrEF and NAFLD. Pharmacological therapies, including angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, mineralocorticoids receptor antagonist, and sodium-glucose cotransporter-2 inhibitors, have been shown to reduce fibrosis and fat deposits in the liver. However, there are currently no data showing the beneficial effects of sacubitril/valsartan, ivabradine, hydralazine, isosorbide nitrates, digoxin, or beta blockers on NAFLD in patients with HFrEF. This study highlights the importance of considering HFrEF and NAFLD when developing treatment plans for patients with these comorbidities. Further research is needed in patients with coexisting HFrEF and NAFLD, with an emphasis on novel therapies and the importance of a multidisciplinary approach for managing these complex comorbidities.
Collapse
Affiliation(s)
- Jose Arriola-Montenegro
- Department of Internal Medicine, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Renato Beas
- Department of Medicine, Indiana University School of Medicine, Indiana, IN 46202, United States
| | | | | | | | | | - Herson Flores Sanga
- Department of Telemedicine, Cardiology, Hospital Nacional Carlos Alberto Seguin Escobedo, Arequipa 8610, Peru
| | - Pornthira Mutirangura
- Department of Medicine, University of Minnesota, Minneapolis, MN 55415, United States
| |
Collapse
|
3
|
Eshraghian A, Taghavi A, Nikoupour H, Nikeghbalian S, Malek-Hosseini SA. Angiotensin receptor blockers might be protective against hepatic steatosis after liver transplantation. BMC Gastroenterol 2023; 23:152. [PMID: 37189076 DOI: 10.1186/s12876-023-02781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/23/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Hepatic steatosis is an increasing complication in liver transplant recipients. Currently, there is no pharmacologic therapy for treatment of hepatic steatosis after liver transplantation. The aim of this study was to determine the association between use of angiotensin receptor blockers (ARB) and hepatic steatosis in liver transplant recipients. METHODS We conducted a case-control analysis on data from Shiraz Liver Transplant Registry. Liver transplant recipients with and without hepatic steatosis were compared for risk factors including use of ARB. RESULTS A total of 103 liver transplant recipients were included in the study. Thirty five patients treated with ARB and 68 patients (66%) did not receive these medications. In univariate analysis, ARB use (P = 0.002), serum triglyceride (P = 0.006), weight after liver transplantation (P = 0.011) and etiology of liver disease (P = 0.008) were associated with hepatic steatosis after liver transplantation. In multivariate regression analysis, ARB use was associated with lower likelihood of hepatic steatosis in liver transplant recipients (OR = 0.303, 95% CI: 0.117-0.784; P = 0.014). Mean duration of ARB use (P = 0.024) and mean cumulative daily dose of ARB (P = 0.015) were significantly lower in patients with hepatic steatosis. CONCLUSION Our study showed that ARB use was associated with reduced incidence of hepatic steatosis in liver transplant recipients.
Collapse
Affiliation(s)
- Ahad Eshraghian
- Shiraz Transplant Center, Abu-Ali Sina Hospital, 71994-67985, Shiraz, Iran.
| | - Alireza Taghavi
- Shiraz Transplant Center, Abu-Ali Sina Hospital, 71994-67985, Shiraz, Iran
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Nikoupour
- Shiraz Transplant Center, Abu-Ali Sina Hospital, 71994-67985, Shiraz, Iran
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Nikeghbalian
- Shiraz Transplant Center, Abu-Ali Sina Hospital, 71994-67985, Shiraz, Iran
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Malek-Hosseini
- Shiraz Transplant Center, Abu-Ali Sina Hospital, 71994-67985, Shiraz, Iran
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Li J, Cheung R. Nonalcoholic Fatty Liver Disease in Children: Where Are We? Clin Gastroenterol Hepatol 2022; 20:2210-2215. [PMID: 35149222 DOI: 10.1016/j.cgh.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Ramsey Cheung
- Division of Gastroenterology and Hepatology, Veterans Affairs Palo Alto Health Care System, Palo Alto, California; Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California
| |
Collapse
|
5
|
Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways. Clin Sci (Lond) 2022; 136:1347-1366. [PMID: 36148775 PMCID: PMC9508552 DOI: 10.1042/cs20220572] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 01/30/2023]
Abstract
The metabolic-associated fatty liver disease (MAFLD) is a condition of fat accumulation in the liver in combination with metabolic dysfunction in the form of overweight or obesity and insulin resistance. It is also associated with an increased cardiovascular disease risk, including hypertension and atherosclerosis. Hepatic lipid metabolism is regulated by a combination of the uptake and export of fatty acids, de novo lipogenesis, and fat utilization by β-oxidation. When the balance between these pathways is altered, hepatic lipid accumulation commences, and long-term activation of inflammatory and fibrotic pathways can progress to worsen the liver disease. This review discusses the details of the molecular mechanisms regulating hepatic lipids and the emerging therapies targeting these pathways as potential future treatments for MAFLD.
Collapse
|
6
|
Vos MB, Van Natta ML, Blondet NM, Dasarathy S, Fishbein M, Hertel P, Jain AK, Karpen SJ, Lavine JE, Mohammad S, Miriel LA, Molleston JP, Mouzaki M, Sanyal A, Sharkey EP, Schwimmer JB, Tonascia J, Wilson LA, Xanthakos SA. Randomized placebo-controlled trial of losartan for pediatric NAFLD. Hepatology 2022; 76:429-444. [PMID: 35133671 PMCID: PMC9288975 DOI: 10.1002/hep.32403] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/18/2021] [Accepted: 12/04/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS To date, no pharmacotherapy exists for pediatric NAFLD. Losartan, an angiotensin II receptor blocker, has been proposed as a treatment due to its antifibrotic effects. APPROACH AND RESULTS The Nonalcoholic Steatohepatitis Clinical Research Network conducted a multicenter, double-masked, placebo-controlled, randomized clinical trial in children with histologically confirmed NAFLD at 10 sites (September 2018 to April 2020). Inclusion criteria were age 8-17 years, histologic NAFLD activity score ≥ 3, and serum alanine aminotransferase (ALT) ≥ 50 U/l. Children received 100 mg of losartan or placebo orally once daily for 24 weeks. The primary outcome was change in ALT levels from baseline to 24 weeks, and the preset sample size was n = 110. Treatment effects were assessed using linear regression of change in treatment group adjusted for baseline value. Eighty-three participants (81% male, 80% Hispanic) were randomized to losartan (n = 43) or placebo (n = 40). During an enrollment pause, necessitated by the 2019 coronavirus pandemic, an unplanned interim analysis showed low probability (7%) of significant group difference. The Data and Safety Monitoring Board recommended early study termination. Baseline characteristics were similar between groups. The 24-week change in ALT did not differ significantly between losartan versus placebo groups (adjusted mean difference: 1.1 U/l; 95% CI = -30.6, 32.7; p = 0.95), although alkaline phosphatase decreased significantly in the losartan group (adjusted mean difference: -23.4 U/l; 95% CI = -41.5, -5.3; p = 0.01). Systolic blood pressure decreased in the losartan group but increased in placebo (adjusted mean difference: -7.5 mm Hg; 95% CI = -12.2, -2.8; p = 0.002). Compliance by pill counts and numbers and types of adverse events did not differ by group. CONCLUSIONS Losartan did not significantly reduce ALT in children with NAFLD when compared with placebo.
Collapse
Affiliation(s)
- Miriam B Vos
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Mark L Van Natta
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Niviann M Blondet
- Division of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Srinivasan Dasarathy
- Division of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mark Fishbein
- Department of Pediatrics, Feinberg Medical School of Northwestern University, Chicago, Illinois, USA
| | - Paula Hertel
- Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Ajay K Jain
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, St. Louis University, St. Louis, Missouri, USA
| | - Saul J Karpen
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Joel E Lavine
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Saeed Mohammad
- Department of Pediatrics, Feinberg Medical School of Northwestern University, Chicago, Illinois, USA
| | - Laura A Miriel
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jean P Molleston
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Indiana University School of Medicine/Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Marialena Mouzaki
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Arun Sanyal
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Emily P Sharkey
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jeffrey B Schwimmer
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - James Tonascia
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Laura A Wilson
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Stavra A Xanthakos
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | |
Collapse
|
7
|
Caveolin-1 Alleviates Acetaminophen—Induced Hepatotoxicity in Alcoholic Fatty Liver Disease by Regulating the Ang II/EGFR/ERK Axis. Int J Mol Sci 2022; 23:ijms23147587. [PMID: 35886933 PMCID: PMC9317714 DOI: 10.3390/ijms23147587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/18/2023] Open
Abstract
Acetaminophen (APAP) is a widely used antipyretic analgesic which can lead to acute liver failure after overdoses. Chronic alcoholic fatty liver disease (AFLD) appears to enhance the risk and severity of APAP-induced liver injury, and the level of angiotensin II (Ang II) increased sharply at the same time. However, the underlying mechanisms remain unclear. Caveolin-1 (CAV1) has been proven to have a protective effect on AFLD. This study aimed to examine whether CAV1 can protect the APAP-induced hepatotoxicity of AFLD by affecting Ang II or its related targets. In vivo, the AFLD model was established according to the chronic-plus-binge ethanol model. Liver injury and hepatic lipid accumulation level were determined. The levels of Angiotensin converting enzyme 2 (ACE2), Ang II, CAV1, and other relevant proteins were evaluated by western blotting. In vitro, L02 cells were treated with alcohol and oleic acid mixture and APAP. CAV1 and ACE2 expression was downregulated in APAP-treated AFLD mice compared to APAP-treated mice. The overexpression of CAV1 in mice and L02 cells alleviated APAP-induced hepatotoxicity in AFLD and downregulated Ang II, p-EGFR/EGFR and P-ERK/ERK expression. Immunofluorescence experiments revealed interactions between CAV1, Ang II, and EGFR. The application of losartan (an Ang II receptor antagonist) and PD98059 (an ERK1/2 inhibitor) alleviated APAP-induced hepatotoxicity in AFLD. In conclusion, our findings verified that CAV1 alleviates APAP-aggravated hepatotoxicity in AFLD by downregulating the Ang II /EGFR/ERK axis, which could be a novel therapeutic target for its prevention or treatment.
Collapse
|
8
|
Deng Z, Gao X, Utsunomiya H, Arner JW, Ruzbarsky JJ, Huard M, Ravuri S, Philippon MJ, Huard J. Effects of oral losartan administration on homeostasis of articular cartilage and bone in a rabbit model. Bone Rep 2022; 16:101526. [PMID: 35372645 PMCID: PMC8971351 DOI: 10.1016/j.bonr.2022.101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/26/2022] Open
Abstract
Background and aims Previous work has shown that oral losartan can enhance microfracture-mediated cartilage repair in a rabbit osteochondral defect injury model. In this study, we aimed to determine whether oral losartan would have a detrimental effect on articular cartilage and bone homeostasis in the uninjured sides. Methods New Zealand rabbits were divided into 4 groups including normal uninjured (Normal), contralateral uninjured side of osteochondral defect (Defect), osteochondral defect plus microfracture (Microfracture) and osteochondral defect plus microfracture and losartan oral administration (10 mg/kg/day) (Losartan). Rabbits underwent different surgeries and treatment and were sacrificed at 12 weeks. Both side of the normal group and uninjured side of treatment groups tibias were harvested for Micro-CT and histological analysis for cartilage and bone including H&E staining, Herovici's staining (bone and cartilage) Alcian blue and Safranin O staining (cartilage) as well as immunohistochemistry of losartan related signaling pathways molecules for both cartilage and bone. Results Our results showed losartan oral treatment at 10 mg/kg/day slightly increase Alcian blue positive matrix as well as decrease collagen type 3 in articular cartilage while having no significant effect on articular cartilage structure, cellularity, and other matrix. Losartan treatment also did not affect angiotensin receptor type 1 (AGTR1), angiotensin receptor type 2 (AGTR2) and phosphorylated transforming factor β1 activated kinase 1 (pTAK1) expression level and pattern in the articular cartilage. Furthermore, losartan treatment did not affect microarchitecture of normal cancellous bone and cortical bone of tibias compared to normal and other groups. Losartan treatment slightly increased osteocalcin positive osteoblasts on the surface of cancellous bone and did not affect bone matrix collagen type 1 content and did not change AGTR1, AGTR2 and pTAK1 signal molecule expression. Conclusion Oral losartan used as a microfracture augmentation therapeutic does not have significant effect on uninjured articular cartilage and bone based on our preclinical rabbit model. These results provided further evidence that the current regimen of using losartan as a microfracture augmentation therapeutic is safe with respect to bone and cartilage homeostasis and support clinical trials for its application in human cartilage repair.
Collapse
|
9
|
Metabolic Fatty Liver Disease in Children: A Growing Public Health Problem. Biomedicines 2021; 9:biomedicines9121915. [PMID: 34944730 PMCID: PMC8698722 DOI: 10.3390/biomedicines9121915] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/24/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), previously called nonalcoholic fatty liver diseases (NAFLD), is one of the most important causes of chronic liver disease worldwide and will likely become the leading cause of end-stage liver disease in the decades ahead. MAFLD covers a continuum of liver diseases from fatty liver to nonalcoholic steatohepatitis (NASH), liver fibrosis/cirrhosis and hepatocellular cancer. Importantly, the growing incidence of overweight and obesity in childhood, 4% in 1975 to 18% in 2016, with persisting obesity complications into adulthood, is likely to be harmful by increasing the incidence of severe MAFLD at an earlier age. Currently, MAFLD is the leading form of chronic liver disease in children and adolescents, with a global prevalence of 3 to 10%, pointing out that early diagnosis is therefore crucial. In this review, we highlight the current knowledge concerning the epidemiology, risk factors and potential pathogenic mechanisms, as well as diagnostic and therapeutic approaches, of pediatric MAFLD.
Collapse
|
10
|
Metabolic Associated Fatty Liver Disease in Children-From Atomistic to Holistic. Biomedicines 2021; 9:biomedicines9121866. [PMID: 34944682 PMCID: PMC8698557 DOI: 10.3390/biomedicines9121866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease has become the most common chronic liver disease in children due to the alarmingly increasing incidence of pediatric obesity. It is well-documented that MAFLD prevalence is directly related to an incremental increase in BMI. The multiple hits theory was designed for providing insights regarding the pathogenesis of steatohepatitis and fibrosis in MAFLD. Recent evidence suggested that the microbiome is a crucial contributor in the pathogenesis of MAFLD. Aside from obesity, the most common risk factors for pediatric MAFLD include male gender, low-birth weight, family history of obesity, MAFLD, insulin resistance, type 2 diabetes mellitus, obstructive sleep apnea, and polycystic ovarium syndrome. Usually, pediatric patients with MAFLD have nonspecific symptoms consisting of fatigue, malaise, or diffuse abdominal pain. A wide spectrum of biomarkers was proposed for the diagnosis of MAFLD and NASH, as well as for quantifying the degree of fibrosis, but liver biopsy remains the key diagnostic and staging tool. Nevertheless, elastography-based methods present promising results in this age group as potential non-invasive replacers for liver biopsy. Despite the lack of current guidelines regarding MAFLD treatment in children, lifestyle intervention was proven to be crucial in the management of these patients.
Collapse
|
11
|
Salah HM, Pandey A, Soloveva A, Abdelmalek MF, Diehl AM, Moylan CA, Wegermann K, Rao VN, Hernandez AF, Tedford RJ, Parikh KS, Mentz RJ, McGarrah RW, Fudim M. Relationship of Nonalcoholic Fatty Liver Disease and Heart Failure With Preserved Ejection Fraction. JACC Basic Transl Sci 2021; 6:918-932. [PMID: 34869957 PMCID: PMC8617573 DOI: 10.1016/j.jacbts.2021.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022]
Abstract
Although there is an established bidirectional relationship between heart failure with reduced ejection fraction and liver disease, the association between heart failure with preserved ejection fraction (HFpEF) and liver diseases, such as nonalcoholic fatty liver disease (NAFLD), has not been well explored. In this paper, the authors provide an in-depth review of the relationship between HFpEF and NAFLD and propose 3 NAFLD-related HFpEF phenotypes (obstructive HFpEF, metabolic HFpEF, and advanced liver fibrosis HFpEF). The authors also discuss diagnostic challenges related to the concurrent presence of NAFLD and HFpEF and offer several treatment options for NAFLD-related HFpEF phenotypes. The authors propose that NAFLD-related HFpEF should be recognized as a distinct HFpEF phenotype.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- AV, arteriovenous
- BCAA, branched-chain amino acid
- GLP, glucagon-like peptide
- HF, heart failure
- HFpEF
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- IL, interleukin
- LV, left ventricular
- LVEF, left ventricular ejection fraction
- NAFLD
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- NT-proBNP, N terminal pro–B-type natriuretic peptide
- RAAS, renin-angiotensin aldosterone system
- SGLT2, sodium-glucose cotransporter 2
- SPSS, spontaneous portosystemic shunt(s)
- TNF, tumor necrosis factor
- cardiomyopathy
- heart failure
- liver
Collapse
Affiliation(s)
- Husam M. Salah
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ambarish Pandey
- Division of Cardiology, Department of Medicine, University of Texas Southwestern, and Parkland Health and Hospital System, Dallas, Texas, USA
| | - Anzhela Soloveva
- Department of Cardiology, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Manal F. Abdelmalek
- Division of Gastroenterology and Hepatology, Duke University, Durham, North Carolina, USA
| | - Anna Mae Diehl
- Division of Gastroenterology and Hepatology, Duke University, Durham, North Carolina, USA
| | - Cynthia A. Moylan
- Division of Gastroenterology and Hepatology, Duke University, Durham, North Carolina, USA
| | - Kara Wegermann
- Division of Gastroenterology and Hepatology, Duke University, Durham, North Carolina, USA
| | - Vishal N. Rao
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Adrian F. Hernandez
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Ryan J. Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kishan S. Parikh
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Robert J. Mentz
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Robert W. McGarrah
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Marat Fudim
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| |
Collapse
|
12
|
Kumar V, Xin X, Ma J, Tan C, Osna N, Mahato RI. Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis. Adv Drug Deliv Rev 2021; 176:113888. [PMID: 34314787 PMCID: PMC8440458 DOI: 10.1016/j.addr.2021.113888] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/12/2021] [Accepted: 07/18/2021] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) associated non-alcoholic fatty liver disease (NAFLD) is the fourth-leading cause of death. Hyperglycemia induces various complications, including nephropathy, cirrhosis and eventually hepatocellular carcinoma (HCC). There are several etiological factors leading to liver disease development, which involve insulin resistance and oxidative stress. Free fatty acid (FFA) accumulation in the liver exerts oxidative and endoplasmic reticulum (ER) stresses. Hepatocyte injury induces release of inflammatory cytokines from Kupffer cells (KCs), which are responsible for activating hepatic stellate cells (HSCs). In this review, we will discuss various molecular targets for treating chronic liver diseases, including homeostasis of FFA, lipid metabolism, and decrease in hepatocyte apoptosis, role of growth factors, and regulation of epithelial-to-mesenchymal transition (EMT) and HSC activation. This review will also critically assess different strategies to enhance drug delivery to different cell types. Targeting nanocarriers to specific liver cell types have the potential to increase efficacy and suppress off-target effects.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xiaofei Xin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jingyi Ma
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Natalia Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
13
|
Zhang C, Yang M. Current Options and Future Directions for NAFLD and NASH Treatment. Int J Mol Sci 2021; 22:ijms22147571. [PMID: 34299189 PMCID: PMC8306701 DOI: 10.3390/ijms22147571] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, with a broad spectrum ranging from simple steatosis to advanced stage of nonalcoholic steatohepatitis (NASH). Although there are many undergoing clinical trials for NAFLD treatment, there is no currently approved treatment. NAFLD accounts as a major causing factor for the development of hepatocellular carcinoma (HCC), and its incidence rises accompanying the prevalence of obesity and diabetes. Reprogramming of antidiabetic and anti-obesity medicine is a major treatment option for NAFLD and NASH. Liver inflammation and cellular death, with or without fibrosis account for the progression of NAFLD to NASH. Therefore, molecules and signaling pathways involved in hepatic inflammation, fibrosis, and cell death are critically important targets for the therapy of NAFLD and NASH. In addition, the avoidance of aberrant infiltration of inflammatory cytokines by treating with CCR antagonists also provides a therapeutic option. Currently, there is an increasing number of pre-clinical and clinical trials undergoing to evaluate the effects of antidiabetic and anti-obesity drugs, antibiotics, pan-caspase inhibitors, CCR2/5 antagonists, and others on NAFLD, NASH, and liver fibrosis. Non-invasive serum diagnostic markers are developed for fulfilling the need of diagnostic testing in a large amount of NAFLD cases. Overall, a better understanding of the underlying mechanism of the pathogenesis of NAFLD is helpful to choose an optimized treatment.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
14
|
Shaunak M, Byrne CD, Davis N, Afolabi P, Faust SN, Davies JH. Non-alcoholic fatty liver disease and childhood obesity. Arch Dis Child 2021; 106:3-8. [PMID: 32409495 DOI: 10.1136/archdischild-2019-318063] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) in children and adolescents has an estimated prevalence of 36.1% in the context of obesity. This figure is anticipated to increase in conjunction with the global obesity epidemic. Worryingly, NAFLD in childhood persisting into adulthood is likely to be harmful, contributing to significant hepatic and extrahepatic morbidities. Early disease detection is required, although the optimum timing, frequency and mode of screening remains undetermined. While the efficacy of several medications, antioxidants, fatty acid supplements and probiotics has been investigated in children, healthy eating and physical activity remain the only prevention and treatment strategies for paediatric NAFLD. This short review discusses the epidemiology, diagnosis, pathogenesis and management of NAFLD in childhood obesity.
Collapse
Affiliation(s)
- Meera Shaunak
- Department of Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Christopher D Byrne
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Nikki Davis
- Department of Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Paul Afolabi
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Saul N Faust
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,NIHR Southampton Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Justin Huw Davies
- Department of Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton, UK .,Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
15
|
Di Sessa A, Cirillo G, Guarino S, Marzuillo P, Miraglia Del Giudice E. Pediatric non-alcoholic fatty liver disease: current perspectives on diagnosis and management. PEDIATRIC HEALTH MEDICINE AND THERAPEUTICS 2019; 10:89-97. [PMID: 31692530 PMCID: PMC6711552 DOI: 10.2147/phmt.s188989] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the most common cause of chronic liver disease in childhood. To date, the “multiple-hit” hypothesis is largely recognized as an explanation of NAFLD pathogenesis and progression. Obesity and features of the metabolic syndrome have been closely linked to NAFLD development. Due to the increased prevalence of obesity worldwide, NAFLD has reached epidemic proportions over time. Given its unfavorable cardiometabolic burden (such as cardiovascular and metabolic consequences), it represents a worrying phenomenon needing a more comprehensive and successful management. Laboratory tests and classical imaging techniques play a pivotal role in NAFLD diagnosis, but novel noninvasive alternative methods to diagnose and monitor NAFLD have been investigated. Currently, lifestyle modifications remain the mainstay treatment, although its efficacy is poor because of the lack of compliance. Pediatric research is focusing on multiple alternative treatments targeting the main pathogenic factors such as insulin-resistance, dyslipidemia, gut-liver axis and microbiota, oxidative stress, and proinflammatory pathways. Results from these studies are promising but larger validation is needed. Innovative therapeutic approaches might add an important piece in the complex knowledge of pediatric NAFLD. We aimed to summarize recent insights into NAFLD diagnosis and treatment in children, with a focus on possible future perspectives in pediatric research.
Collapse
Affiliation(s)
- Anna Di Sessa
- Department of Woman, Child and General and Specialized Surgery, University of Studies of Campania "Luigi Vanvitelli", Napoli 80138, Italy
| | - Grazia Cirillo
- Department of Woman, Child and General and Specialized Surgery, University of Studies of Campania "Luigi Vanvitelli", Napoli 80138, Italy
| | - Stefano Guarino
- Department of Woman, Child and General and Specialized Surgery, University of Studies of Campania "Luigi Vanvitelli", Napoli 80138, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child and General and Specialized Surgery, University of Studies of Campania "Luigi Vanvitelli", Napoli 80138, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Studies of Campania "Luigi Vanvitelli", Napoli 80138, Italy
| |
Collapse
|
16
|
Draijer L, Benninga M, Koot B. Pediatric NAFLD: an overview and recent developments in diagnostics and treatment. Expert Rev Gastroenterol Hepatol 2019; 13:447-461. [PMID: 30875479 DOI: 10.1080/17474124.2019.1595589] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children and adults in industrialized countries. Besides liver-related morbidity, NAFLD is also associated with an increased risk of cardiovascular disease, type 2 diabetes and mortality at adult age. However, despite the high prevalence and serious complications, diagnosing and staging of disease remains complicated due to a lack of accurate screening tools and non-invasive methods to detect fibrosis. Areas covered: Recent insights in epidemiology, pathogenesis, diagnostic evaluation and treatment options in pediatric NAFLD are being reviewed, with a particular focus on new developments in diagnostic tools. Expert opinion: Due to their long life span, children with NAFLD are particularly at risk of complications in their lifetime. Therefore, an effective screening strategy for children to identify those with NAFLD at risk of complications is urgently needed. This is further underscored by new pharmacological therapies that are expected to become available in the next 5 years. Momentarily no accurate non-invasive method for diagnosing pediatric NAFLD is available. New promising biomarkers and imaging tools could hopefully provide better screening tools and could contribute to the development of a successful management plan to identify children with NAFLD.
Collapse
Affiliation(s)
- Laura Draijer
- a Department of Pediatric Gastroenterology and Nutrition , Amsterdam University Medical Centers, Location Academic Medical Center/Emma Children's Hospital , Amsterdam , The Netherlands
| | - Marc Benninga
- a Department of Pediatric Gastroenterology and Nutrition , Amsterdam University Medical Centers, Location Academic Medical Center/Emma Children's Hospital , Amsterdam , The Netherlands
| | - Bart Koot
- a Department of Pediatric Gastroenterology and Nutrition , Amsterdam University Medical Centers, Location Academic Medical Center/Emma Children's Hospital , Amsterdam , The Netherlands
| |
Collapse
|
17
|
Update on pathogenesis, diagnostics and therapy of nonalcoholic fatty liver disease in children. Clin Exp Hepatol 2019; 5:11-21. [PMID: 30915402 PMCID: PMC6431091 DOI: 10.5114/ceh.2019.83152] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/31/2019] [Indexed: 12/21/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents the most common cause of chronic liver disease. Increasing prevalence of NAFLD in children may be the cause of unfavorable metabolic implications and development of end stage liver disease. NAFLD is a “multiple-hit” disease mediated by several metabolic, environmental, genetic and microbiological mechanisms. Additionally, lipotoxicity, oxidative stress and inflammation predispose to progressive liver damage. According to current guidelines, liver biopsy is an imperfect gold standard for NAFLD diagnosis, but due to its invasive character its use is limited in children and it should be performed only in children who need exclusion of coexisting diseases. Noninvasive methods should be preferred and current research is focused on serum markers and novel imaging or elastographic techniques. Therapeutic approaches for NAFLD are currently focused on lifestyle modification, insulin resistance, dyslipidemia, oxidative stress and the gut microbiome. However, a number of clinical studies on novel therapeutic molecules are ongoing.
Collapse
|
18
|
Yin Y, Liu H, Zheng Z, Lu R, Jiang Z. Genistein can ameliorate hepatic inflammatory reaction in nonalcoholic steatohepatitis rats. Biomed Pharmacother 2019; 111:1290-1296. [PMID: 30841442 DOI: 10.1016/j.biopha.2019.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
Genistein plays an active role in improving nonalcoholic fatty liver disease (NAFLD). This study is designed to investigate the effect of genistein on liver inflammation in rats with nonalcoholic steatohepatitis (NASH). Forty SPF male SD rats were randomly divided into normal group, model group, genistein low-dose group (0.1% wt/wt) and high-dose group (0.2% wt/wt) with 10 rats in each group. After 12 weeks' feeding, liver tissues and serum samples of rats were taken, and HE staining was used to perform pathological examination of liver tissues, then the degree of inflammatory infiltration was observed and NAFLD activity score(NAS) was calculated. With corresponding kits, several indicators were detected, namely, serum triglyceride (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), liver TC and TG, and serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood glucose and serum endotoxin. The levels of tumor necrosis factor (TNFα) in liver and insulin in blood of rats were detected by enzyme linked immunosorbent assay (ELISA), then the HOMA-IR index was calculated. Immunohistochemistry staining was used to observe the expression level of TLR4 protein and the RT-PCR was used to detect Tlr4 mRNA expression in liver tissue. The results showed that genistein could reduce TLR4 protein and gene expression, decrease the endotoxin and TNFα, alleviate the inflammatory reaction and make the indicators detected in blood and liver stay near normal in NASH rats. In conclusion, genistein can ameliorate hepatic inflammatory reaction in nonalcoholic steatohepatitis rats.
Collapse
Affiliation(s)
- Yimin Yin
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| | - Huanhuan Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| | - Zicong Zheng
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| | - Rongrong Lu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| | - Zhuoqin Jiang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|