1
|
Liu T, Kong X, Wei J. Disulfidptosis: A New Target for Parkinson's Disease and Cancer. Curr Issues Mol Biol 2024; 46:10038-10064. [PMID: 39329952 PMCID: PMC11430384 DOI: 10.3390/cimb46090600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Recent studies have uncovered intriguing connections between Parkinson's disease (PD) and cancer, two seemingly distinct disease categories. Disulfidptosis has garnered attention as a novel form of regulated cell death that is implicated in various pathological conditions, including neurodegenerative disorders and cancer. Disulfidptosis involves the dysregulation of intracellular redox homeostasis, leading to the accumulation of disulfide bonds and subsequent cell demise. This has sparked our interest in exploring common molecular mechanisms and genetic factors that may be involved in the relationship between neurodegenerative diseases and tumorigenesis. The Gene4PD database was used to retrieve PD differentially expressed genes (DEGs), the biological functions of differential expression disulfidptosis-related genes (DEDRGs) were analyzed, the ROCs of DEDRGs were analyzed using the GEO database, and the expression of DEDRGs was verified by an MPTP-induced PD mouse model in vivo. Then, the DEDRGs in more than 9000 samples of more than 30 cancers were comprehensively and systematically characterized by using multi-omics analysis data. In PD, we obtained a total of four DEDRGs, including ACTB, ACTN4, INF2, and MYL6. The enriched biological functions include the regulation of the NF-κB signaling pathway, mitochondrial function, apoptosis, and tumor necrosis factor, and these genes are rich in different brain regions. In the MPTP-induced PD mouse model, the expression of ACTB was decreased, while the expression of ACTN4, INF2, and MYL6 was increased. In pan-cancer, the high expression of ACTB, ACTN4, and MYL6 in GBMLGG, LGG, MESO, and LAML had a poor prognosis, and the high expression of INF2 in LIHC, LUAD, UVM, HNSC, GBM, LAML, and KIPAN had a poor prognosis. Our study showed that these genes were more highly infiltrated in Macrophages, NK cells, Neutrophils, Eosinophils, CD8 T cells, T cells, T helper cells, B cells, dendritic cells, and mast cells in pan-cancer patients. Most substitution mutations were G-to-A transitions and C-to-T transitions. We also found that miR-4298, miR-296-3p, miR-150-3p, miR-493-5p, and miR-6742-5p play important roles in cancer and PD. Cyclophosphamide and ethinyl estradiol may be potential drugs affected by DEDRGs for future research. This study found that ACTB, ACTN4, INF2, and MYL6 are closely related to PD and pan-cancer and can be used as candidate genes for the diagnosis, prognosis, and therapeutic biomarkers of neurodegenerative diseases and cancers.
Collapse
Affiliation(s)
- Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiangrui Kong
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
2
|
Ramazi S, Dadzadi M, Darvazi M, Seddigh N, Allahverdi A. Protein modification in neurodegenerative diseases. MedComm (Beijing) 2024; 5:e674. [PMID: 39105197 PMCID: PMC11298556 DOI: 10.1002/mco2.674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Posttranslational modifications play a crucial role in governing cellular functions and protein behavior. Researchers have implicated dysregulated posttranslational modifications in protein misfolding, which results in cytotoxicity, particularly in neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and Huntington disease. These aberrant posttranslational modifications cause proteins to gather in certain parts of the brain that are linked to the development of the diseases. This leads to neuronal dysfunction and the start of neurodegenerative disease symptoms. Cognitive decline and neurological impairments commonly manifest in neurodegenerative disease patients, underscoring the urgency of comprehending the posttranslational modifications' impact on protein function for targeted therapeutic interventions. This review elucidates the critical link between neurodegenerative diseases and specific posttranslational modifications, focusing on Tau, APP, α-synuclein, Huntingtin protein, Parkin, DJ-1, and Drp1. By delineating the prominent aberrant posttranslational modifications within Alzheimer disease, Parkinson disease, and Huntington disease, the review underscores the significance of understanding the interplay among these modifications. Emphasizing 10 key abnormal posttranslational modifications, this study aims to provide a comprehensive framework for investigating neurodegenerative diseases holistically. The insights presented herein shed light on potential therapeutic avenues aimed at modulating posttranslational modifications to mitigate protein aggregation and retard neurodegenerative disease progression.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Maedeh Dadzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mona Darvazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Nasrin Seddigh
- Department of BiochemistryFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
3
|
Kitada T, Ardah MT, Haque ME. History of Parkinson's Disease-Associated Gene, Parkin: Research over a Quarter Century in Quest of Finding the Physiological Substrate. Int J Mol Sci 2023; 24:16734. [PMID: 38069057 PMCID: PMC10706564 DOI: 10.3390/ijms242316734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Parkin, the gene responsible for hereditary Parkinson's disease (PD) called "Autosomal Recessive Juvenile Parkinsonism (AR-JP)" was discovered a quarter of a century ago. Owing to its huge gene structure and unique protein functions, parkin has become a subject of interest to those involved in PD research and researchers and clinicians in various fields and is being vigorously studied worldwide in relation to its nature and disease. The gene structure was registered under the gene name "parkin" in the GenBank in 1997. In 1998, deletion and point mutations in the parkin gene were reported, thereby demonstrating parkin is the causative gene for hereditary PD. Although 25 years have passed since the gene's discovery and many researchers have worked tirelessly to elucidate the function of the Parkin protein and the mechanism of its role against neuronal cell death and pathogenesis remain unknown, which raises a major question concerning the current leading hypothesis. In this review, we present the results of related research on the parkin gene in chronological order and discuss unresolved problems concerning its function and pathology as well as new trends in the research conducted to solve them. The relationship between parkin and tumorigenesis has also been addressed from the perspective of Parkin's redox molecule.
Collapse
Affiliation(s)
- Tohru Kitada
- Otawa-Kagaku, Parkinson Clinic and Research, Kamakura 247-0061, Japan;
| | - Mustafa T. Ardah
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - M. Emdadul Haque
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
4
|
Perales-Linares R, Leli NM, Mohei H, Beghi S, Rivera OD, Kostopoulos N, Giglio A, George SS, Uribe-Herranz M, Costabile F, Pierini S, Pustylnikov S, Skoufos G, Barash Y, Hatzigeorgiou AG, Koumenis C, Maity A, Lotze MT, Facciabene A. Parkin Deficiency Suppresses Antigen Presentation to Promote Tumor Immune Evasion and Immunotherapy Resistance. Cancer Res 2023; 83:3562-3576. [PMID: 37578274 PMCID: PMC10618737 DOI: 10.1158/0008-5472.can-22-2499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/20/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Parkin is an E3 ubiquitin ligase, which plays a key role in the development of Parkinson disease. Parkin defects also occur in numerous cancers, and a growing body of evidence indicates that Parkin functions as a tumor suppressor that impedes a number of cellular processes involved in tumorigenesis. Here, we generated murine and human models that closely mimic the advanced-stage tumors where Parkin deficiencies are found to provide deeper insights into the tumor suppressive functions of Parkin. Loss of Parkin expression led to aggressive tumor growth, which was associated with poor tumor antigen presentation and limited antitumor CD8+ T-cell infiltration and activation. The effect of Parkin deficiency on tumor growth was lost following depletion of CD8+ T cells. In line with previous findings, Parkin deficiency was linked with mitochondria-associated metabolic stress, PTEN degradation, and enhanced Akt activation. Increased Akt signaling led to dysregulation of antigen presentation, and treatment with the Akt inhibitor MK2206-2HCl restored antigen presentation in Parkin-deficient tumors. Analysis of data from patients with clear cell renal cell carcinoma indicated that Parkin expression was downregulated in tumors and that low expression correlated with reduced overall survival. Furthermore, low Parkin expression correlated with reduced patient response to immunotherapy. Overall, these results identify a role for Parkin deficiency in promoting tumor immune evasion that may explain the poor prognosis associated with loss of Parkin across multiple types of cancer. SIGNIFICANCE Parkin prevents immune evasion by regulating tumor antigen processing and presentation through the PTEN/Akt network, which has important implications for immunotherapy treatments in patients with Parkin-deficient tumors.
Collapse
Affiliation(s)
- Renzo Perales-Linares
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nektaria Maria Leli
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hesham Mohei
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Silvia Beghi
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Osvaldo D. Rivera
- Graduate Group in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nektarios Kostopoulos
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Andrea Giglio
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Subin S. George
- Penn Bioinformatics Core, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mireia Uribe-Herranz
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Francesca Costabile
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Stefano Pierini
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sergei Pustylnikov
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Giorgos Skoufos
- Department of Computer Science and Biomedical Informatics, University of Thessaly - Hellenic Pasteur Institute, Athens, Greece
| | - Yoseph Barash
- Graduate Group in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Artemis G. Hatzigeorgiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly - Hellenic Pasteur Institute, Athens, Greece
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Amit Maity
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael T. Lotze
- Department of Surgery, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Andrea Facciabene
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Jung BC, Kim SH, Cho Y, Kim YS. Tumor suppressor Parkin induces p53-mediated cell cycle arrest in human lung and colorectal cancer cells. BMB Rep 2023; 56:557-562. [PMID: 37679297 PMCID: PMC10618076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/11/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Dysregulation of the E3 ubiquitin ligase Parkin has been linked to various human cancers, indicating that Parkin is a tumor suppressor protein. However, the mechanisms of action of Parkin remain unclear to date. Thus, we aimed to elucidate the mechanisms of action of Parkin as a tumor suppressor in human lung and colorectal cancer cells. Results showed that Parkin overexpression reduced the viability of A549 human lung cancer cells by inducing G2/M cell cycle arrest. In addition, Parkin caused DNA damage and ATM (Ataxia telangiectasia mutated) activation, which subsequently led to p53 activation. It also induced the p53-mediated upregulation of p21 and downregulation of cyclin B1. Moreover, Parkin suppressed the proliferation of HCT-15 human colorectal cancer cells by a mechanism similar to that in A549 lung cancer cells. Taken together, our results suggest that the tumor-suppressive effects of Parkin on lung and colorectal cancer cells are mediated by DNA damage/p53 activation/cyclin B1 reduction/cell cycle arrest. [BMB Reports 2023; 56(10): 557-562].
Collapse
Affiliation(s)
- Byung Chul Jung
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA, Wonju 26460, Korea
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju 26493, Korea
| | - Sung Hoon Kim
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju 26493, Korea
- Department of Biomedical Laboratory Science, Korea Nazarene University, Cheonan 31172, Korea
| | - Yoonjung Cho
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju 26493, Korea
- Forensic DNA Division, National Forensic Service, Wonju 26460, Korea
| | - Yoon Suk Kim
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju 26493, Korea
| |
Collapse
|
6
|
Sun X, Ye G, Li J, Shou H, Bai G, Zhang J. Parkin regulates IGF2BP3 through ubiquitination in the tumourigenesis of cervical cancer. Clin Transl Med 2023; 13:e1457. [PMID: 37877353 PMCID: PMC10599278 DOI: 10.1002/ctm2.1457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Insulin-like growth Factor 2 mRNA-binding protein 3 (IGF2BP3) is a highly conserved RNA-binding protein and plays a critical role in regulating posttranscriptional modifications. METHODS Immunoprecipitation was used to examine the interaction of Parkin and IGF2BP3. Mass spectrometry was performed to identify the ubiquitination sites of IGF2BP3. RNA-immunoprecipitation was conducted to examine the target genes of IGF2BP3. Xenograft mouse model was constructed to determine the tumorigenesis of IGF2BP3. RESULTS IGF2BP3 expression is negatively correlated with Parkin expression in human cervical cancer cells and tissues. Parkin directly interacts with IGF2BP3, and overexpression of Parkin causes the proteasomal degradation of IGF2BP3, while knockdown of PARK2 increases the protein levels of IGF2BP3. Mechanistically, in vivo and in vitro ubiquitination assays demonstrated that Parkin is able to ubiquitinate IGF2BP3. Moreover, the ubiquitination site of IGF2BP3 was identified at K213 in the first KH domain of IGF2BP3. IGF2BP3 mutation results in the loss of its oncogenic function as an m6A reader, resulting in the inactivation of the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signalling pathways. In addition, IGF2BP3 mutation results in the attenuation of Parkin-mediated mitophagy, indicating its inverse role in regulating Parkin. Consequently, the tumourigenesis of cervical cancer is also inhibited by IGF2BP3 mutation. CONCLUSION IGF2BP3 is ubiquitinated and regulated by the E3 ubiquitin ligase Parkin in human cervical cancer and ubiquitination modification plays an important role in modulating IGF2BP3 function. Thus, understanding the role of IGF2BP3 in tumourigenesis could provide new insights into cervical cancer therapy.
Collapse
Affiliation(s)
- Xin Sun
- Department of Medical OncologyCancer CenterKey Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouChina
| | - Guiqin Ye
- Basic Medical SciencesHangzhou Medical CollegeHangzhouChina
| | - Jiuzhou Li
- Department of NeurosurgeryBinzhou People's HospitalBinzhouChina
| | - Huafeng Shou
- Department of GynecologyZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)BinzhouChina
| | - Gongxun Bai
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic TechnologyChina Jiliang UniversityHangzhouChina
| | - Jianbin Zhang
- Department of Medical OncologyCancer CenterKey Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouChina
| |
Collapse
|
7
|
George M, Masamba P, Iwalokun BA, Kappo AP. Zooming into the structure-function of RING finger proteins for anti-cancer therapeutic applications. Am J Cancer Res 2023; 13:2773-2789. [PMID: 37559981 PMCID: PMC10408477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/22/2023] [Indexed: 08/11/2023] Open
Abstract
Cancer is one of the most common and widely diagnosed diseases worldwide. With an increase in prevalence and incidence, many studies in cancer biology have been looking at the role pro-cancer proteins play. One of these proteins is the Really Interesting New Gene (RING), which has been studied extensively due to its structure and functions such as apoptosis, neddylation, and its role in ubiquitination. The RING domain is a cysteine-rich domain known to bind Cysteine and Histidine residues. It also binds two zinc ions that help stabilize the protein in various patterns, often with a 'cross-brace' topology. Different RING finger proteins have been studied and found to have suitable targets for developing anti-cancer therapeutics. These identified candidate proteins include Parkin, COP1, MDM2, BARD1, BRCA-1, PIRH2, c-CBL, SIAH1, RBX1 and RNF8. Inhibiting these candidate proteins provides opportunities for shutting down pathways associated with tumour development and metastasis.
Collapse
Affiliation(s)
- Mary George
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway CampusAuckland Park, Johannesburg, South Africa
| | - Priscilla Masamba
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway CampusAuckland Park, Johannesburg, South Africa
| | - Bamidele Abiodun Iwalokun
- Department of Molecular Biology and Biotechnology, Nigerian Institute of Medical Research (NIMR)Yaba, Lagos, Nigeria
| | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway CampusAuckland Park, Johannesburg, South Africa
| |
Collapse
|
8
|
Stauch KL, Totusek S, Trease AJ, Estrella LD, Emanuel K, Fangmeier A, Fox HS. Longitudinal in vivo metabolic labeling reveals tissue-specific mitochondrial proteome turnover rates and proteins selectively altered by parkin deficiency. Sci Rep 2023; 13:11414. [PMID: 37452120 PMCID: PMC10349111 DOI: 10.1038/s41598-023-38484-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
Our study utilizes a longitudinal isotopic metabolic labeling approach in vivo in combination with organelle fraction proteomics to address the role of parkin in mitochondrial protein turnover in mice. The use of metabolic labeling provides a method to quantitatively determine the global changes in protein half-lives whilst simultaneously assessing protein expression. Studying two diverse mitochondrial populations, we demonstrated the median half-life of brain striatal synaptic mitochondrial proteins is significantly greater than that of hepatic mitochondrial proteins (25.7 vs. 3.5 days). Furthermore, loss of parkin resulted in an overall, albeit modest, increase in both mitochondrial protein abundance and half-life. Pathway and functional analysis of our proteomics data identified both known and novel pathways affected by loss of parkin that are consistent with its role in both mitochondrial quality control and neurodegeneration. Our study therefore adds to a growing body of evidence suggesting dependence on parkin is low for basal mitophagy in vivo and provides a foundation for the investigation of novel parkin targets.
Collapse
Affiliation(s)
- K L Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - S Totusek
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - A J Trease
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - L D Estrella
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - K Emanuel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - A Fangmeier
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - H S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
9
|
Lee M, Kim YS, Lim S, Shin SH, Kim I, Kim J, Choi M, Kim JH, Koh SJ, Park JW, Shin HW. Protein stabilization of ITF2 by NF-κB prevents colitis-associated cancer development. Nat Commun 2023; 14:2363. [PMID: 37185280 PMCID: PMC10130090 DOI: 10.1038/s41467-023-38080-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Chronic colonic inflammation is a feature of cancer and is strongly associated with tumorigenesis, but its underlying molecular mechanisms remain poorly understood. Inflammatory conditions increased ITF2 and p65 expression both ex vivo and in vivo, and ITF2 and p65 showed positive correlations. p65 overexpression stabilized ITF2 protein levels by interfering with the binding of Parkin to ITF2. More specifically, the C-terminus of p65 binds to the N-terminus of ITF2 and inhibits ubiquitination, thereby promoting ITF2 stabilization. Parkin acts as a E3 ubiquitin ligase for ITF2 ubiquitination. Intestinal epithelial-specific deletion of ITF2 facilitated nuclear translocation of p65 and thus increased colitis-associated cancer tumorigenesis, which was mediated by Azoxymethane/Dextran sulfate sodium or dextran sulfate sodium. Upregulated ITF2 expression was lost in carcinoma tissues of colitis-associated cancer patients, whereas p65 expression much more increased in both dysplastic and carcinoma regions. Therefore, these findings indicate a critical role for ITF2 in the repression of colitis-associated cancer progression and ITF2 would be an attractive target against inflammatory diseases including colitis-associated cancer.
Collapse
Affiliation(s)
- Mingyu Lee
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, USA
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Yi-Sook Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Suha Lim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung-Hyun Shin
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., 550 Dongtangiheung-ro, Hwaseong-si, 18469, Gyeonggi-do, South Korea
| | - Iljin Kim
- Department of Pharmacology, Inha University College of Medicine, Incheon, South Korea
| | - Jiyoung Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Min Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seong-Joon Koh
- Liver Research Institute and Seoul National University College of Medicine, Seoul, South Korea
| | - Jong-Wan Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyun-Woo Shin
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea.
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea.
- Sensory Organ Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
10
|
Sun T, Han Y, Li JL, Jiao XY, Zuo L, Wang J, Wang HX, Yang JL, Cao JM, Wang JX. FOXO3a-dependent PARKIN negatively regulates cardiac hypertrophy by restoring mitophagy. Cell Biosci 2022; 12:204. [PMID: 36539848 PMCID: PMC9764573 DOI: 10.1186/s13578-022-00935-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sustained cardiac hypertrophy often develops maladaptive myocardial remodeling, and eventually progresses to heart failure and sudden death. Therefore, maladaptive hypertrophy is considered as a critical therapeutic target for many heart diseases. Mitophagy, a crucial mechanism in mitochondria quality control and cellular homeostasis, has been implicated in diverse cardiac disorders such as myocardial infarction, diabetic cardiomyopathy, cardiac hypertrophy and heart failure. However, what role mitophagy plays in heart diseases remains an enigma. PARKIN functions as an E3 ubiquitin protein ligase and mediates mitophagy cascades. It is still unclear whether PARKIN participates in the regulation of cardiac hypertrophy. RESULTS PARKIN was downregulated in cardiomyocytes and hearts under hypertrophic stress. Enforced expression of PARKIN inhibited Ang II-induced cardiomyocyte hypertrophy. Compared to wide-type mice with Ang II-induced cardiac hypertrophy, Parkin transgenic mice subjected to Ang II administration showed attenuated cardiac hypertrophy and improved cardiac function. In addition, mitophagy machinery was impaired in response to Ang II, which was rescued by overexpression of PARKIN. PARKIN exerted the anti-hypertrophy effect through restoring mitophagy. In further exploring the underlying mechanisms, we found that PARKIN was transcriptionally activated by FOXO3a. FOXO3a promoted mitophagy and suppressed cardiac hypertrophy by targeting Parkin. CONCLUSIONS The present study reveals a novel cardiac hypertrophy regulating model composed of FOXO3a, PARKIN and mitophagy program. Modulation of their levels may provide a new approach for preventing cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Teng Sun
- grid.263452.40000 0004 1798 4018Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yu Han
- grid.263452.40000 0004 1798 4018Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jia-Lei Li
- grid.263452.40000 0004 1798 4018Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Xiang-Ying Jiao
- grid.263452.40000 0004 1798 4018Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Lin Zuo
- grid.263452.40000 0004 1798 4018Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jin Wang
- grid.263452.40000 0004 1798 4018Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Hai-Xiong Wang
- grid.477944.d0000 0005 0231 8693Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi China
| | - Jun-Li Yang
- grid.263452.40000 0004 1798 4018Computer teaching department, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- grid.263452.40000 0004 1798 4018Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jian-Xun Wang
- grid.410645.20000 0001 0455 0905School of Basic Medical Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Genetic Study of Early Onset Parkinson's Disease in Cyprus. Int J Mol Sci 2022; 23:ijms232315369. [PMID: 36499697 PMCID: PMC9739936 DOI: 10.3390/ijms232315369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's Disease (PD) is a multifactorial neurodegenerative disease characterized by motor and non-motor symptoms. The etiology of PD remains unclear. However, several studies have demonstrated the interplay of genetic, epigenetic, and environmental factors in PD. Early-onset PD (EOPD) is a subgroup of PD diagnosed between the ages of 21 and 50. Population genetic studies have demonstrated great genetic variability amongst EOPD patients. Hence, this study aimed to obtain a genetic landscape of EOPD in the Cypriot population. Greek-Cypriot EOPD patients (n = 48) were screened for variants in the six most common EOPD-associated genes (PINK1, PRKN, FBXO7, SNCA, PLA2G6, and DJ-1). This included DNA sequencing and Multiplex ligation-dependent probe amplification (MLPA). One previously described frameshift variant in PINK1 (NM_032409.3:c.889del) was detected in five patients (10.4%)-the largest number to be detected to date. Copy number variations in the PRKN gene were identified in one homozygous and 3 compound heterozygous patients (8.3%). To date, the pathogenic variants identified in this study have explained the PD phenotype for 18.8% of the EOPD cases. The results of this study may contribute to the genetic screening of EOPD in Cyprus.
Collapse
|
12
|
Kapadia BB, Roychowdhury A, Kayastha F, Nanaji N, Gartenhaus RB. PARK2 regulates eIF4B-driven lymphomagenesis. Mol Cancer Res 2022; 20:molcanres.MCR-21-0729-A.2021. [PMID: 35191952 PMCID: PMC9339581 DOI: 10.1158/1541-7786.mcr-21-0729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 01/09/2023]
Abstract
Patients with high-risk diffuse large B-cell lymphoma (DLBCL) have poor outcomes following first-line cyclophosphamide, doxorubicin, vincristine, prednisone, and rituximab (R-CHOP); thus, treatment of this fatal disease remains an area of unmet medical need and requires identification of novel therapeutic approaches. Dysregulation of protein translation initiation has emerged as a common downstream node in several malignancies, including lymphoma. Ubiquitination, a prominent post-translational modification associated with substrate degradation, has recently been shown to be a key modulator of nascent peptide synthesis by limiting several translational initiation factors. While a few deubiquitinases have been identified, the E3-ligase responsible for the critical ubiquitination of these translational initiation factors is still unknown. In this study, using complementary cellular models along with clinical readouts, we establish that PARK2 ubiquitinates eIF4B and consequently regulates overall protein translational activity. The formation of this interaction depends on upstream signaling, which is negatively regulated at the protein level of PARK2. Through biochemical, mutational, and genetic studies, we identified PARK2 as a mTORC1 substrate. mTORC1 phosphorylates PARK2 at Ser127, which blocks its cellular ubiquitination activity, thereby hindering its tumor suppressor effect on eIF4B's stability. This resultant increase of eIF4B protein level helps drive enhanced overall protein translation. These data support a novel paradigm in which PARK2-generated eIF4B ubiquitination serves as an anti-oncogenic intracellular inhibitor of protein translation, attenuated by mTORC1 signaling. Implications: Our data implicates the FASN/mTOR-PARK2-eIF4B axis as a critical driver of enhanced oncogene expression contributing to lymphomagenesis.
Collapse
Affiliation(s)
- Bandish B. Kapadia
- Section of Hematology and Oncology, Medicine Service, McGuire Cancer Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Anirban Roychowdhury
- Section of Hematology and Oncology, Medicine Service, McGuire Cancer Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Forum Kayastha
- Section of Hematology and Oncology, Medicine Service, McGuire Cancer Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Nahid Nanaji
- Department of Veteran Affairs, Maryland Healthcare System, Baltimore, Maryland
| | - Ronald B. Gartenhaus
- Section of Hematology and Oncology, Medicine Service, McGuire Cancer Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
13
|
Sun X, Shu Y, Ye G, Wu C, Xu M, Gao R, Huang D, Zhang J. Histone deacetylase inhibitors inhibit cervical cancer growth through Parkin acetylation-mediated mitophagy. Acta Pharm Sin B 2022; 12:838-852. [PMID: 35256949 PMCID: PMC8897022 DOI: 10.1016/j.apsb.2021.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/30/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023] Open
Abstract
Parkin, an E3 ubiquitin ligase, plays a role in maintaining mitochondrial homeostasis through targeting damaged mitochondria for mitophagy. Accumulating evidence suggests that the acetylation modification of the key mitophagy machinery influences mitophagy level, but the underlying mechanism is poorly understood. Here, our study demonstrated that inhibition of histone deacetylase (HDAC) by treatment of HDACis activates mitophagy through mediating Parkin acetylation, leading to inhibition of cervical cancer cell proliferation. Bioinformatics analysis shows that Parkin expression is inversely correlated with HDAC2 expression in human cervical cancer, indicating the low acetylation level of Parkin. Using mass spectrometry, Parkin is identified to interact with two upstream molecules, acetylase acetyl-CoA acetyltransferase 1 (ACAT1) and deacetylase HDAC2. Under treatment of suberoylanilide hydroxamic acid (SAHA), Parkin is acetylated at lysine residues 129, 220 and 349, located in different domains of Parkin protein. In in vitro experiments, combined mutation of Parkin largely attenuate the interaction of Parkin with PTEN induced putative kinase 1 (PINK1) and the function of Parkin in mitophagy induction and tumor suppression. In tumor xenografts, the expression of mutant Parkin impairs the tumor suppressive effect of Parkin and decreases the anticancer activity of SAHA. Our results reveal an acetylation-dependent regulatory mechanism governing Parkin in mitophagy and cervical carcinogenesis, which offers a new mitophagy modulation strategy for cancer therapy.
Collapse
Key Words
- ACAT1
- ACAT1, acetyl-CoA acetyltransferase 1
- Acetylation
- CCK-8, cell counting kit-8
- COXⅣ, cytochrome c oxidase Ⅳ
- Cervical cancer
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- HDAC, histone deacetylase
- HDAC2
- HIF-1α, hypoxia inducible factor-1α
- HSP60, heat shock protein 60 kDa
- LC3, microtubule-associated proteins 1A/1B light chain 3
- MFN2, mitofusion 2
- MS, mass spectrometry
- Mitophagy
- PARK2, Parkin
- PINK1, PTEN induced putative kinase 1
- Parkin
- ROS, reactive oxygen species
- SAHA, suberoylanilide hydroxamic acid
- TIM23, translocase of the inner membrane 23
- TOMM20, translocase of outer mitochondrial membrane 20
- TSA, trichostatin A
- Tumor suppression
- ULK1, unc-51 like autophagy activating kinase 1
- Ubiquitination
- VDAC1, voltage-dependent anion-selective channel protein 1
Collapse
Affiliation(s)
- Xin Sun
- Department of Oncology, Cancer Center of Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Yuhan Shu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310028, China
| | - Guiqin Ye
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310014, China
| | - Caixia Wu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Mengting Xu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310028, China
| | - Ruilan Gao
- Department of Hematology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Dongsheng Huang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310014, China
- Corresponding authors.
| | - Jianbin Zhang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Corresponding authors.
| |
Collapse
|
14
|
Esser LK, Branchi V, Shakeri F, Simon AG, Stephan C, Kristiansen G, Buness A, Schorle H, Toma MI. Overexpression of Parkin in clear cell renal cell carcinoma decreases tumor aggressiveness by regulating CKS2 levels. Int J Oncol 2022; 60:20. [PMID: 35059737 PMCID: PMC8776329 DOI: 10.3892/ijo.2022.5310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/25/2021] [Indexed: 11/15/2022] Open
Abstract
Low expression levels of the E3 ubiquitin-protein ligase Parkin (PARK2) are exhibited in several cancer entities, including clear cell renal cell carcinoma (ccRCC), and are associated with poor prognosis; however, PARK2 can also function as a tumor suppressor gene. The aim of the present study was to thoroughly investigate the effects of PARK2 overexpression in ccRCC cell lines and to determine its effects on malignancy by conducting functional assays such as cell cycle analysis, apoptosis analysis, migration and invasion assays. Furthermore, liquid chromatography-mass spectrometry was used to decipher potential targets of PARK2 that may influence the behavior of ccRCC tumor cells. In addition, ccRCC tumor tissues from a patient cohort were examined in tissue microarrays to find correlations between different clinical parameters. In the present study, it was demonstrated that the induction of PARK2 resulted in a less aggressive phenotype, as indicated by lower migration and invasion in ccRCC cell lines. Mass spectrometry revealed decreased levels of 29 proteins in cells with PARK2 overexpression, including CDC28 protein kinase regulatory subunit 2 (CKS2), which is highly expressed in numerous types of cancer. The link between the function of PARK2 as an E3 ubiquitin ligase and the low expression levels of CKS2 was investigated by mutating the catalytic domain of the PARK2 gene, and it was found that the effect of decreased migration was abolished in 786-O and RCC-MH ccRCC cell lines. CKS2 silencing decreased migratory ability of the cells. Furthermore, it was revealed that high CKS2 levels are associated with high tumor grading in patient samples and lower patient survival. In conclusion, the results from the present study indicated that PARK2 may signal via CKS2 to affect tumor behavior. In consequence, CKS2 may be a biomarker in ccRCC and may also serve as potential target for ccRCC therapy.
Collapse
Affiliation(s)
| | - Vittorio Branchi
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, D-53127 Bonn, Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, D-53127 Bonn, Germany
| | | | - Carsten Stephan
- Department of Urology, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Berlin Institute for Urologic Research, D-10117 Berlin, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, D-53127 Bonn, Germany
| | - Andreas Buness
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, D-53127 Bonn, Germany
| | - Hubert Schorle
- Institute of Pathology, Department of Developmental Pathology, University Hospital Bonn, D-53127 Bonn, Germany
| | | |
Collapse
|
15
|
Yalçin M, Malhan D, Basti A, Peralta AR, Ferreira JJ, Relógio A. A Computational Analysis in a Cohort of Parkinson's Disease Patients and Clock-Modified Colorectal Cancer Cells Reveals Common Expression Alterations in Clock-Regulated Genes. Cancers (Basel) 2021; 13:cancers13235978. [PMID: 34885088 PMCID: PMC8657387 DOI: 10.3390/cancers13235978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cancer and neurodegenerative diseases are two aging-related pathologies with differential developmental characteristics, but they share altered cellular pathways. Interestingly, dysregulations in the biological clock are reported in both diseases, though the extent and potential consequences of such disruption have not been fully elucidated. In this study, we aimed at characterizing global changes on common cellular pathways associated with Parkinson’s disease (PD) and colorectal cancer (CRC). We used gene expression data retrieved from an idiopathic PD (IPD) patient cohort and from CRC cells with unmodified versus genetically altered clocks. Our results highlight common differentially expressed genes between IPD patients and cells with disrupted clocks, suggesting a role for the circadian clock in the regulation of pathways altered in both pathologies. Interestingly, several of these genes are related to cancer hallmarks and may have an impact on the overall survival of colon cancer patients, as suggested by our analysis. Abstract Increasing evidence suggests a role for circadian dysregulation in prompting disease-related phenotypes in mammals. Cancer and neurodegenerative disorders are two aging related diseases reported to be associated with circadian disruption. In this study, we investigated a possible effect of circadian disruption in Parkinson’s disease (PD) and colorectal cancer (CRC). We used high-throughput data sets retrieved from whole blood of idiopathic PD (IPD) patients and time course data sets derived from an in vitro model of CRC including the wildtype and three core-clock knockout (KO) cell lines. Several gene expression alterations in IPD patients resembled the expression profiles in the core-clock KO cells. These include expression changes in DBP, GBA, TEF, SNCA, SERPINA1 and TGFB1. Notably, our results pointed to alterations in the core-clock network in IPD patients when compared to healthy controls and revealed variations in the expression profile of PD-associated genes (e.g., HRAS and GBA) upon disruption of the core-clock genes. Our study characterizes changes at the transcriptomic level following circadian clock disruption on common cellular pathways associated with cancer and neurodegeneration (e.g., immune system, energy metabolism and RNA processing), and it points to a significant influence on the overall survival of colon cancer patients for several genes resulting from our analysis (e.g., TUBB6, PAK6, SLC11A1).
Collapse
Affiliation(s)
- Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.Y.); (D.M.); (A.B.)
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Deeksha Malhan
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.Y.); (D.M.); (A.B.)
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
| | - Alireza Basti
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.Y.); (D.M.); (A.B.)
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
| | - Ana Rita Peralta
- EEG/Sleep Laboratory, Department Neurosciences and Mental Health, Hospital de Santa Maria—CHULN, 1649-035 Lisbon, Portugal;
- Department of Neurology, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Instituto de Fisiologia, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- CNS-Campus Neurológico Senior, 2560-280 Torres Vedras, Portugal;
| | - Joaquim J. Ferreira
- CNS-Campus Neurológico Senior, 2560-280 Torres Vedras, Portugal;
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.Y.); (D.M.); (A.B.)
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
- Correspondence: or
| |
Collapse
|
16
|
Mustafa MF, Saliluddin SM, Fakurazi S, Tizen Laim NMS, Md Pauzi SH, Nik Yahya NH, S Raja Gopal N, Abdullah MA, Maniam S. Expression of Autophagy and Mitophagy Markers in Breast Cancer Tissues. Front Oncol 2021; 11:612009. [PMID: 34490076 PMCID: PMC8416475 DOI: 10.3389/fonc.2021.612009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria play important roles in regulating cell bioenergetics status and reactive oxygen species (ROS) generation. ROS-induced mitochondrial damage is among the main intracellular signal inducers of autophagy. Autophagy is a cellular catabolic process that regulates protein and organelle turnover, while a selective form of autophagy, mitophagy, specifically targets dysfunctional mitochondrial degradation. This study aims to measure the levels of autophagy, mitophagy, oxidative stress, and apoptosis in invasive breast carcinoma tissues using immunohistochemistry (IHC). Tissue microarrays of 76 patients with breast cancer were stained with six IHC markers (MnSOD, Beclin-1, LC3, BNIP3, Parkin, and cleaved caspase 3). The expression intensity was determined for each tumor tissue and the adjacent tumor-matched control tissues. Intermediate and strong staining scores of MnSOD, Beclin-1, LC-3, BNIP-3, and Parkin were significantly higher in tumor tissues compared to the adjacent matched control. The scoring intensity was further classified into tissues with negative staining and positive staining, which showed that positive scores of Beclin-1 and Parkin were significantly high in tumor tissues compared to other markers. Positive association was also noted between BNIP-3 and Beclin-1 as well as LC-3 and cleaved caspase-3 immunostaining. To our knowledge, this is one of the first studies that measure both mitophagy and autophagy in the same breast cancer tissues and the adjacent matched control. The findings from this study will be of great potential in identifying new cancer biomarkers and inspire significant interest in applying anti-autophagy therapies as a possible treatment for breast cancer.
Collapse
Affiliation(s)
- Mohd Fazirul Mustafa
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia
| | - Suhainizam Muhamad Saliluddin
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia
| | | | - Suria Hayati Md Pauzi
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | | | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
17
|
Methods to Monitor Mitophagy and Mitochondrial Quality: Implications in Cancer, Neurodegeneration, and Cardiovascular Diseases. Methods Mol Biol 2021; 2310:113-159. [PMID: 34096002 DOI: 10.1007/978-1-0716-1433-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria are dynamic organelles that participate in a broad array of molecular functions within the cell. They are responsible for maintaining the appropriate energetic levels and control the cellular homeostasis throughout the generation of intermediary metabolites. Preserving a healthy and functional mitochondrial population is of fundamental importance throughout the life of the cells under pathophysiological conditions. Hence, cells have evolved fine-tuned mechanisms of quality control that help to preserve the right amount of functional mitochondria to meet the demand of the cell. The specific recycling of mitochondria by autophagy, termed mitophagy, represents the primary contributor to mitochondrial quality control. During this process, damaged or unnecessary mitochondria are recognized and selectively degraded. In the past few years, the knowledge in mitophagy has seen rapid progress, and a growing body of evidence confirms that mitophagy holds a central role in controlling cellular functions and the progression of various human diseases.In this chapter, we will discuss the pathophysiological roles of mitophagy and provide a general overview of the current methods used to monitor and quantify mitophagy. We will also outline the main established approaches to investigate the mitochondrial function, metabolism, morphology, and protein damage.
Collapse
|
18
|
Sun X, Hong Y, Shu Y, Wu C, Ye G, Chen H, Zhou H, Gao R, Zhang J. The involvement of Parkin-dependent mitophagy in the anti-cancer activity of Ginsenoside. J Ginseng Res 2021; 46:266-274. [PMID: 35509820 PMCID: PMC9058836 DOI: 10.1016/j.jgr.2021.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/03/2023] Open
Abstract
Colon cancer, the third most frequent occurred cancer, has high mortality and extremely poor prognosis. Ginsenoside, the active components of traditional Chinese herbal medicine Panax ginseng, exerts antitumor effect in various cancers, including colon cancer. However, the detailed molecular mechanism of Ginsenoside in the tumor suppression have not been fully elucidated. Here, we chose the representative ginsenoside Rg3 and reported for the first time that Rg3 induces mitophagy in human colon cancer cells, which is responsible for its anticancer effect. Rg3 treatment leads to mitochondria damage and the formation of mitophagosome; when autophagy is inhibited, the clearance of damaged mitochondria can be reversed. Next, our results showed that Rg3 treatment activates the PINK1-Parkin signaling pathway and recruits Parkin and ubiquitin proteins to mitochondria to induce mitophagy. GO analysis of Parkin targets showed that Parkin interacts with a large number of mitochondrial proteins and regulates the molecular function of mitochondria. The cellular energy metabolism enzyme GAPDH is validated as a novel substrate of Parkin, which is ubiquitinated by Parkin. Moreover, GAPDH participates in the Rg3-induced mitophagy and regulates the translocation of Parkin to mitochondria. Functionally, Rg3 exerts the inhibitory effect through regulating the nonglycolytic activity of GAPDH, which could be associated with the cellular oxidative stress. Thus, our results revealed GAPDH ubiquitination by Parkin as a crucial mechanism for mitophagy induction that contributes to the tumor-suppressive function of ginsenoside, which could be a novel treatment strategy for colon cancer.
Collapse
Affiliation(s)
- Xin Sun
- Department of Oncology, Cancer Center of Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | | | - Yuhan Shu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Caixia Wu
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Guiqin Ye
- Hangzhou Medical College, Hangzhou, China
| | | | - Hongying Zhou
- Department of Oncology, Cancer Center of Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ruilan Gao
- Institution of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Corresponding author. Institution of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Jianbin Zhang
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Corresponding author. Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, People’s Hospital of Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
19
|
Murillo-González FE, García-Aguilar R, Vega L, Elizondo G. Regulation of Parkin expression as the key balance between neural survival and cancer cell death. Biochem Pharmacol 2021; 190:114650. [PMID: 34111426 DOI: 10.1016/j.bcp.2021.114650] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/25/2022]
Abstract
Parkin is a cytosolic E3 ubiquitin ligase that plays an important role in neuroprotection by targeting several proteins to be degraded by the 26S proteasome. Its dysfunction has been associated not only with Parkinson's disease (PD) but also with other neurodegenerative pathologies, such as Alzheimer's disease and Huntington's disease. More recently, Parkin has been identified as a tumor suppressor gene implicated in cancer development. Due to the important roles that this E3 ubiquitin ligase plays in cellular homeostasis, its expression, activity, and turnover are tightly regulated. Several reviews have addressed Parkin regulation; however, genetic and epigenetic regulation have been excluded. In addition to posttranslational modifications (PTMs), this review examines the regulatory mechanisms that control Parkin function through gene expression, epigenetic regulation, and degradation. Furthermore, the consequences of disrupting these regulatory processes on human health are discussed.
Collapse
Affiliation(s)
| | | | - Libia Vega
- Department of Toxicology, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Mexico City, Mexico
| | - Guillermo Elizondo
- Department of Cellular Biology, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Mexico City, Mexico.
| |
Collapse
|
20
|
Brewer K, Nip I, Bellizzi J, Costa-Guda J, Arnold A. Molecular analysis of cyclin D1 modulators PRKN and FBX4 as candidate tumor suppressors in sporadic parathyroid adenomas. Endocr Connect 2021; 10:302-308. [PMID: 33617468 PMCID: PMC8052572 DOI: 10.1530/ec-21-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Primary hyperparathyroidism is most often caused by a sporadic single-gland parathyroid adenoma (PTA), a tumor type for which cyclin D1 is the only known and experimentally validated oncoprotein. However, the molecular origins of its frequent overexpression have remained mostly elusive. In this study, we explored a potential tumorigenic mechanism that could increase cyclin D1 stability through a defect in molecules responsible for its degradation. METHODS We examined two tumor suppressor genes known to modulate cyclin D1 ubiquitination, PRKN and FBXO4 (FBX4), for evidence of classic two-hit tumor suppressor inactivation within a cohort of 82 PTA cases. We examined the cohort for intragenic inactivating and splice site mutations by Sanger sequencing and for locus-associated loss of heterozygosity (LOH) by microsatellite analysis. RESULTS We identified no evidence of bi-allelic tumor suppressor inactivation of PRKN or FBXO4 via inactivating mutation or splice site perturbation, neither in combination with nor independent of LOH. Among the 82 cases, we encountered previously documented benign single nucleotide polymorphisms (SNPs) in 35 tumors at frequencies similar to those reported in the germlines of the general population. Eight cases exhibited intragenic LOH at the PRKN locus, in some cases extending to cover at least an additional 1.7 Mb of chromosome 6q25-26. FBXO4 was not affected by LOH. CONCLUSION The absence of evidence for specific bi-allelic inactivation in PRKN and FBXO4 in this sizeable cohort suggests that these genes only rarely, if ever, serve as classic driver tumor suppressors responsible for the growth of PTAs.
Collapse
Affiliation(s)
- Kelly Brewer
- Center for Molecular Oncology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Isabel Nip
- Center for Molecular Oncology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Justin Bellizzi
- Center for Molecular Oncology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jessica Costa-Guda
- Center for Molecular Oncology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut School of Dental Medicine, Farmington, Connecticut, USA
| | - Andrew Arnold
- Center for Molecular Oncology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Division of Endocrinology and Metabolism, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Correspondence should be addressed to A Arnold:
| |
Collapse
|
21
|
Roverato ND, Sailer C, Catone N, Aichem A, Stengel F, Groettrup M. Parkin is an E3 ligase for the ubiquitin-like modifier FAT10, which inhibits Parkin activation and mitophagy. Cell Rep 2021; 34:108857. [PMID: 33730565 DOI: 10.1016/j.celrep.2021.108857] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Parkin is an E3 ubiquitin ligase belonging to the RING-between-RING family. Mutations in the Parkin-encoding gene PARK2 are associated with familial Parkinson's disease. Here, we investigate the interplay between Parkin and the inflammatory cytokine-induced ubiquitin-like modifier FAT10. FAT10 targets hundreds of proteins for degradation by the 26S proteasome. We show that FAT10 gets conjugated to Parkin and mediates its degradation in a proteasome-dependent manner. Parkin binds to the E2 enzyme of FAT10 (USE1), auto-FAT10ylates itself, and facilitates FAT10ylation of the Parkin substrate Mitofusin2 in vitro and in cells, thus identifying Parkin as a FAT10 E3 ligase. On mitochondrial depolarization, FAT10ylation of Parkin inhibits its activation and ubiquitin-ligase activity causing impairment of mitophagy progression and aggravation of rotenone-mediated death of dopaminergic neuronal cells. In conclusion, FAT10ylation inhibits Parkin and mitophagy rendering FAT10 a likely inflammation-induced exacerbating factor and potential drug target for Parkinson's disease.
Collapse
Affiliation(s)
- Nicola D Roverato
- Department of Biology, Division of Immunology, University of Konstanz, 78457 Konstanz, Germany
| | - Carolin Sailer
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Nicola Catone
- Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Annette Aichem
- Department of Biology, Division of Immunology, University of Konstanz, 78457 Konstanz, Germany; Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Florian Stengel
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Marcus Groettrup
- Department of Biology, Division of Immunology, University of Konstanz, 78457 Konstanz, Germany; Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland.
| |
Collapse
|
22
|
Zhang C, Liu J, Wang J, Zhang T, Xu D, Hu W, Feng Z. The Interplay Between Tumor Suppressor p53 and Hypoxia Signaling Pathways in Cancer. Front Cell Dev Biol 2021; 9:648808. [PMID: 33681231 PMCID: PMC7930565 DOI: 10.3389/fcell.2021.648808] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is a hallmark of solid tumors and plays a critical role in different steps of tumor progression, including proliferation, survival, angiogenesis, metastasis, metabolic reprogramming, and stemness of cancer cells. Activation of the hypoxia-inducible factor (HIF) signaling plays a critical role in regulating hypoxic responses in tumors. As a key tumor suppressor and transcription factor, p53 responds to a wide variety of stress signals, including hypoxia, and selectively transcribes its target genes to regulate various cellular responses to exert its function in tumor suppression. Studies have demonstrated a close but complex interplay between hypoxia and p53 signaling pathways. The p53 levels and activities can be regulated by the hypoxia and HIF signaling differently depending on the cell/tissue type and the severity and duration of hypoxia. On the other hand, p53 regulates the hypoxia and HIF signaling at multiple levels. Many tumor-associated mutant p53 proteins display gain-of-function (GOF) oncogenic activities to promote cancer progression. Emerging evidence has also shown that GOF mutant p53 can promote cancer progression through its interplay with the hypoxia and HIF signaling pathway. In this review, we summarize our current understanding of the interplay between the hypoxia and p53 signaling pathways, its impact upon cancer progression, and its potential application in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ, United States
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
23
|
Gillispie GJ, Sah E, Krishnamurthy S, Ahmidouch MY, Zhang B, Orr ME. Evidence of the Cellular Senescence Stress Response in Mitotically Active Brain Cells-Implications for Cancer and Neurodegeneration. Life (Basel) 2021; 11:153. [PMID: 33671362 PMCID: PMC7922097 DOI: 10.3390/life11020153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular stress responses influence cell fate decisions. Apoptosis and proliferation represent opposing reactions to cellular stress or damage and may influence distinct health outcomes. Clinical and epidemiological studies consistently report inverse comorbidities between age-associated neurodegenerative diseases and cancer. This review discusses how one particular stress response, cellular senescence, may contribute to this inverse correlation. In mitotically competent cells, senescence is favorable over uncontrolled proliferation, i.e., cancer. However, senescent cells notoriously secrete deleterious molecules that drive disease, dysfunction and degeneration in surrounding tissue. In recent years, senescent cells have emerged as unexpected mediators of neurodegenerative diseases. The present review uses pre-defined criteria to evaluate evidence of cellular senescence in mitotically competent brain cells, highlights the discovery of novel molecular regulators and discusses how this single cell fate decision impacts cancer and degeneration in the brain. We also underscore methodological considerations required to appropriately evaluate the cellular senescence stress response in the brain.
Collapse
Affiliation(s)
- Gregory J. Gillispie
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (G.J.G.); (E.S.); (S.K.); (M.Y.A.)
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Eric Sah
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (G.J.G.); (E.S.); (S.K.); (M.Y.A.)
| | - Sudarshan Krishnamurthy
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (G.J.G.); (E.S.); (S.K.); (M.Y.A.)
- Bowman Gray Center for Medical Education, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Mohamed Y. Ahmidouch
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (G.J.G.); (E.S.); (S.K.); (M.Y.A.)
- Wake Forest University, Winston-Salem, NC 27109, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Department of Pharmacological Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Miranda E. Orr
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (G.J.G.); (E.S.); (S.K.); (M.Y.A.)
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Salisbury VA Medical Center, Salisbury, NC 28144, USA
| |
Collapse
|
24
|
Yin S, Liu L, Gan W. The Roles of Post-Translational Modifications on mTOR Signaling. Int J Mol Sci 2021; 22:ijms22041784. [PMID: 33670113 PMCID: PMC7916890 DOI: 10.3390/ijms22041784] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a master regulator of cell growth, proliferation, and metabolism by integrating various environmental inputs including growth factors, nutrients, and energy, among others. mTOR signaling has been demonstrated to control almost all fundamental cellular processes, such as nucleotide, protein and lipid synthesis, autophagy, and apoptosis. Over the past fifteen years, mapping the network of the mTOR pathway has dramatically advanced our understanding of its upstream and downstream signaling. Dysregulation of the mTOR pathway is frequently associated with a variety of human diseases, such as cancers, metabolic diseases, and cardiovascular and neurodegenerative disorders. Besides genetic alterations, aberrancies in post-translational modifications (PTMs) of the mTOR components are the major causes of the aberrant mTOR signaling in a number of pathologies. In this review, we summarize current understanding of PTMs-mediated regulation of mTOR signaling, and also update the progress on targeting the mTOR pathway and PTM-related enzymes for treatment of human diseases.
Collapse
|
25
|
Bastian P, Dulski J, Roszmann A, Jacewicz D, Kuban-Jankowska A, Slawek J, Wozniak M, Gorska-Ponikowska M. Regulation of Mitochondrial Dynamics in Parkinson's Disease-Is 2-Methoxyestradiol a Missing Piece? Antioxidants (Basel) 2021; 10:248. [PMID: 33562035 PMCID: PMC7915370 DOI: 10.3390/antiox10020248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondria, as "power house of the cell", are crucial players in cell pathophysiology. Beyond adenosine triphosphate (ATP) production, they take part in a generation of reactive oxygen species (ROS), regulation of cell signaling and cell death. Dysregulation of mitochondrial dynamics may lead to cancers and neurodegeneration; however, the fusion/fission cycle allows mitochondria to adapt to metabolic needs of the cell. There are multiple data suggesting that disturbed mitochondrial homeostasis can lead to Parkinson's disease (PD) development. 2-methoxyestradiol (2-ME), metabolite of 17β-estradiol (E2) and potential anticancer agent, was demonstrated to inhibit cell growth of hippocampal HT22 cells by means of nitric oxide synthase (NOS) production and oxidative stress at both pharmacologically and also physiologically relevant concentrations. Moreover, 2-ME was suggested to inhibit mitochondrial biogenesis and to be a dynamic regulator. This review is a comprehensive discussion, from both scientific and clinical point of view, about the influence of 2-ME on mitochondria and its plausible role as a modulator of neuron survival.
Collapse
Affiliation(s)
- Paulina Bastian
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
| | - Jaroslaw Dulski
- Department of Neurological-Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.D.); (A.R.); (J.S.)
- Neurology & Stroke Dpt. St. Adalbert Hospital, “Copernicus” Ltd., 80-462 Gdansk, Poland
| | - Anna Roszmann
- Department of Neurological-Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.D.); (A.R.); (J.S.)
- Neurology & Stroke Dpt. St. Adalbert Hospital, “Copernicus” Ltd., 80-462 Gdansk, Poland
| | - Dagmara Jacewicz
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
| | - Jaroslaw Slawek
- Department of Neurological-Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.D.); (A.R.); (J.S.)
- Neurology & Stroke Dpt. St. Adalbert Hospital, “Copernicus” Ltd., 80-462 Gdansk, Poland
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
- Euro-Mediterranean Institute of Science and Technology, 90139 Palermo, Italy
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70174 Stuttgart, Germany
| |
Collapse
|
26
|
Liu J, Zhang C, Wu H, Sun XX, Li Y, Huang S, Yue X, Lu SE, Shen Z, Su X, White E, Haffty BG, Hu W, Feng Z. Parkin ubiquitinates phosphoglycerate dehydrogenase to suppress serine synthesis and tumor progression. J Clin Invest 2021; 130:3253-3269. [PMID: 32478681 DOI: 10.1172/jci132876] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Phosphoglycerate dehydrogenase (PHGDH), the first rate-limiting enzyme of serine synthesis, is frequently overexpressed in human cancer. PHGDH overexpression activates serine synthesis to promote cancer progression. Currently, PHGDH regulation in normal cells and cancer is not well understood. Parkin, an E3 ubiquitin ligase involved in Parkinson's disease, is a tumor suppressor. Parkin expression is frequently downregulated in many types of cancer, and its tumor-suppressive mechanism is poorly defined. Here, we show that PHGDH is a substrate for Parkin-mediated ubiquitination and degradation. Parkin interacted with PHGDH and ubiquitinated PHGDH at lysine 330, leading to PHGDH degradation to suppress serine synthesis. Parkin deficiency in cancer cells stabilized PHGDH and activated serine synthesis to promote cell proliferation and tumorigenesis, which was largely abolished by targeting PHGDH with RNA interference, CRISPR/Cas9 KO, or small-molecule PHGDH inhibitors. Furthermore, Parkin expression was inversely correlated with PHGDH expression in human breast cancer and lung cancer. Our results revealed PHGDH ubiquitination by Parkin as a crucial mechanism for PHGDH regulation that contributes to the tumor-suppressive function of Parkin and identified Parkin downregulation as a critical mechanism underlying PHGDH overexpression in cancer.
Collapse
Affiliation(s)
- Juan Liu
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Cen Zhang
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Hao Wu
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Yanchen Li
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Shan Huang
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Xuetian Yue
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Shou-En Lu
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers State University of New Jersey, Piscataway, New Jersey.,Biometrics Division, Rutgers Cancer Institute of New Jersey
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers Robert Wood Johnson Medical School.,Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, and
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA.,Department of Molecular Biology and Biochemistry, Robert Wood Johnson Medical School, Rutgers State University of New Jersey, New Brunswick, New Jersey
| | - Bruce G Haffty
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Zhaohui Feng
- Rutgers Cancer Institute of New Jersey, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
27
|
Zhao H, Lin J, Sieck G, Haddad GG. Neuroprotective Role of Akt in Hypoxia Adaptation in Andeans. Front Neurosci 2021; 14:607711. [PMID: 33519361 PMCID: PMC7843528 DOI: 10.3389/fnins.2020.607711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
Chronic mountain sickness (CMS) is a disease that potentially threatens a large segment of high-altitude populations during extended living at altitudes above 2,500 m. Patients with CMS suffer from severe hypoxemia, excessive erythrocytosis and neurologic deficits. The cellular mechanisms underlying CMS neuropathology remain unknown. We previously showed that iPSC-derived CMS neurons have altered mitochondrial dynamics and increased susceptibility to hypoxia-induced cell death. Genome analysis from the same population identified many ER stress-related genes that play an important role in hypoxia adaptation or lack thereof. In the current study, we showed that iPSC-derived CMS neurons have increased expression of ER stress markers Grp78 and XBP1s under normoxia and hyperphosphorylation of PERK under hypoxia, alleviating ER stress does not rescue the hypoxia-induced CMS neuronal cell death. Akt is a cytosolic regulator of ER stress with PERK as a direct target of Akt. CMS neurons exhibited lack of Akt activation and lack of increased Parkin expression as compared to non-CMS neurons under hypoxia. By enhancing Akt activation and Parkin overexpression, hypoxia-induced CMS neuronal cell death was reduced. Taken together, we propose that increased Akt activation protects non-CMS from hypoxia-induced cell death. In contrast, impaired adaptive mechanisms including failure to activate Akt and increase Parkin expression render CMS neurons more susceptible to hypoxia-induced cell death.
Collapse
Affiliation(s)
- Helen Zhao
- Department of Pediatrics (Respiratory Medicine), University of California, San Diego, La Jolla, CA, United States
| | - Jonathan Lin
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
- Department of Pathology, Stanford University, Stanford, CA, United States
- VA Palo Alto Healthcare System, Palo Alto, CA, United States
| | - Gary Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Gabriel G. Haddad
- Department of Pediatrics (Respiratory Medicine), University of California, San Diego, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
- The Rady Children’s Hospital, San Diego, CA, United States
| |
Collapse
|
28
|
The Regulation of Ferroptosis by Tumor Suppressor p53 and its Pathway. Int J Mol Sci 2020; 21:ijms21218387. [PMID: 33182266 PMCID: PMC7664917 DOI: 10.3390/ijms21218387] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor suppressor p53 plays a key role in tumor suppression. In addition to tumor suppression, p53 is also involved in many other biological and pathological processes, such as immune response, maternal reproduction, tissue ischemia/reperfusion injuries and neurodegenerative diseases. While it has been widely accepted that the role of p53 in regulation of cell cycle arrest, senescence and apoptosis contributes greatly to the function of p53 in tumor suppression, emerging evidence has implicated that p53 also exerts its tumor suppressive function through regulation of many other cellular processes, such as metabolism, anti-oxidant defense and ferroptosis. Ferroptosis is a unique iron-dependent form of programmed cell death driven by lipid peroxidation in cells. Ferroptosis has been reported to be involved in cancer, tissue ischemia/reperfusion injuries and neurodegenerative diseases. Recent studies have shown that ferroptosis can be regulated by p53 and its signaling pathway as well as tumor-associated mutant p53. Interestingly, the regulation of ferroptosis by p53 appears to be highly context-dependent. In this review, we summarize recent advances in the regulation of ferroptosis by p53 and its signaling pathway. Further elucidation of the role and molecular mechanism of p53 in ferroptosis regulation will yield new therapeutic strategies for cancer and other diseases, including neurodegenerative diseases and tissue ischemia/reperfusion injuries.
Collapse
|
29
|
Sun C, Li M, Feng Y, Sun F, Zhang L, Xu Y, Lu S, Zhu J, Huang J, Wang J, Hu Y, Zhang Y. MDM2-P53 Signaling Pathway-Mediated Upregulation of CDC20 Promotes Progression of Human Diffuse Large B-Cell Lymphoma. Onco Targets Ther 2020; 13:10475-10487. [PMID: 33116627 PMCID: PMC7575066 DOI: 10.2147/ott.s253758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/14/2020] [Indexed: 01/03/2023] Open
Abstract
Background Cell-division cycle 20 (CDC20) is overexpressed in a variety of tumor cells and is negatively regulated by wild-type p53 (wtp53). Our previous study uncovered that CDC20 was upregulated and associated with poor outcome in diffuse large B-cell lymphoma (DLBCL) based on bioinformatics analysis. Dysregulation of the MDM2-p53 is a major mechanism to promote DLBCL. Thus, we hypothesized that CDC20 could be a downstream gene of the MDM2-p53 signaling pathway. However, the clinical significance and mechanistic role of a novel MDM2-p53-CDC20 signaling pathway in DLBCL have still remained unclear. Materials and Methods RT-qPCR was performed in MDM2 knocked down (KD) and control (Ctrl) OCI-Ly3/OCI-Ly10 cells to investigate whether CDC20 was a downstream gene of the MDM2-p53 pathway. The effects of CDC20 on cell proliferation, cell cycle and apoptosis were assessed, as well as the role of CDC20 in suppressing tumorigenicity in vivo. Furthermore, we also investigated the roles of CDC20 and MDM2 in progression of DLBCL and the underlying mechanisms. Results The results of RT-qPCR revealed that CDC20 was downregulated while TP53 was upregulated in MDM2 KD OCI-Ly3 and OCI-Ly10 cells. It was unveiled that the expression levels of CDC20 and MDM2 were upregulated in DLBCL tissues and cells, and high CDC20 expression was correlated with adverse clinical features and poor outcome. Functional assays showed that downregulation of CDC20 could inhibit proliferation, induce apoptosis and cell cycle arrest in vitro. In addition, inactivation of the MDM2-p53 pathway by downregulation of MDM2 restored wtp53 expression level and reduced CDC20 protein level in OCI-Ly3 and OCI-Ly10 cells. Besides, targeting CDC20 was found to suppress tumorigenesis of DLBCL in vivo. Conclusion CDC20 was identified as a key downstream gene of the MDM2-p53 signaling pathway in DLBCL and may be used as a novel target gene to guide therapeutic applications.
Collapse
Affiliation(s)
- Chengtao Sun
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Mengzhen Li
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yanfen Feng
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Feifei Sun
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Li Zhang
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Yanjie Xu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Suying Lu
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Jia Zhu
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Junting Huang
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Juan Wang
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Yang Hu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yizhuo Zhang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China.,Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
30
|
Ejma M, Madetko N, Brzecka A, Guranski K, Alster P, Misiuk-Hojło M, Somasundaram SG, Kirkland CE, Aliev G. The Links between Parkinson's Disease and Cancer. Biomedicines 2020; 8:biomedicines8100416. [PMID: 33066407 PMCID: PMC7602272 DOI: 10.3390/biomedicines8100416] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Epidemiologic studies indicate a decreased incidence of most cancer types in Parkinson’s disease (PD) patients. However, some neoplasms are associated with a higher risk of occurrence in PD patients. Both pathologies share some common biological pathways. Although the etiologies of PD and cancer are multifactorial, some factors associated with PD, such as α-synuclein aggregation; mutations of PINK1, PARKIN, and DJ-1; mitochondrial dysfunction; and oxidative stress can also be involved in cancer proliferation or cancer suppression. The main protein associated with PD, i.e., α-synuclein, can be involved in some types of neoplastic formations. On the other hand, however, its downregulation has been found in the other cancers. PINK1 can act as oncogenic or a tumor suppressor. PARKIN dysfunction may lead to some cancers’ growth, and its expression may be associated with some tumors’ suppression. DJ-1 mutation is involved in PD pathogenesis, but its increased expression was found in some neoplasms, such as melanoma or breast, lung, colorectal, uterine, hepatocellular, and nasopharyngeal cancers. Both mitochondrial dysfunction and oxidative stress are involved in PD and cancer development. The aim of this review is to summarize the possible associations between PD and carcinogenesis.
Collapse
Affiliation(s)
- Maria Ejma
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (M.E.); (N.M.); (K.G.)
| | - Natalia Madetko
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (M.E.); (N.M.); (K.G.)
| | - Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, Grabiszyńska 105, 53-439 Wroclaw, Poland;
| | - Konstanty Guranski
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (M.E.); (N.M.); (K.G.)
| | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warszawa, Poland;
| | - Marta Misiuk-Hojło
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Siva G. Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV 26426, USA; (S.G.S.); (C.E.K.)
| | - Cecil E. Kirkland
- Department of Biological Sciences, Salem University, Salem, WV 26426, USA; (S.G.S.); (C.E.K.)
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia
- Research Institute of Human Morphology, Russian Academy of Medical Science, Street Tsyurupa 3, 117418 Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432 Moscow Region, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, USA
- Correspondence: or ; Tel.: +1-210-442-8625 or +1-440-263-7461
| |
Collapse
|
31
|
Advani D, Gupta R, Tripathi R, Sharma S, Ambasta RK, Kumar P. Protective role of anticancer drugs in neurodegenerative disorders: A drug repurposing approach. Neurochem Int 2020; 140:104841. [PMID: 32853752 DOI: 10.1016/j.neuint.2020.104841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
The disease heterogeneity and little therapeutic progress in neurodegenerative diseases justify the need for novel and effective drug discovery approaches. Drug repurposing is an emerging approach that reinvigorates the classical drug discovery method by divulging new therapeutic uses of existing drugs. The common biological background and inverse tuning between cancer and neurodegeneration give weight to the conceptualization of repurposing of anticancer drugs as novel therapeutics. Many studies are available in the literature, which highlights the success story of anticancer drugs as repurposed therapeutics. Among them, kinase inhibitors, developed for various oncology indications evinced notable neuroprotective effects in neurodegenerative diseases. In this review, we shed light on the salient role of multiple protein kinases in neurodegenerative disorders. We also proposed a feasible explanation of the action of kinase inhibitors in neurodegenerative disorders with more attention towards neurodegenerative disorders. The problem of neurotoxicity associated with some anticancer drugs is also highlighted. Our review encourages further research to better encode the hidden potential of anticancer drugs with the aim of developing prospective repurposed drugs with no toxicity for neurodegenerative disorders.
Collapse
Affiliation(s)
- Dia Advani
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rohan Gupta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rahul Tripathi
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
32
|
Liu J, Zhang C, Hu W, Feng Z. Tumor suppressor p53 and metabolism. J Mol Cell Biol 2020; 11:284-292. [PMID: 30500901 PMCID: PMC6487777 DOI: 10.1093/jmcb/mjy070] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/19/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
p53 plays a key role in tumor suppression. The tumor suppressive function of p53 has long been attributed to its ability to induce apoptosis, cell cycle arrest, and senescence in cells. However, recent studies suggest that other functions of p53 also contribute to its role as a tumor suppressor, such as its function in metabolic regulation. p53 regulates various metabolic pathways to maintain the metabolic homeostasis of cells and adapt cells to stress. In addition, recent studies have also shown that gain-of-function (GOF) mutant p53 proteins drive metabolic reprogramming in cancer cells, contributing to cancer progression. Further understanding of p53 and its GOF mutants in metabolism will provide new opportunities for cancer therapy.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA
| | - Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA.,Department of Pharmacology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA.,Department of Pharmacology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
33
|
Chang JC, Chang HS, Wu YC, Cheng WL, Lin TT, Chang HJ, Chen ST, Liu CS. Antitumor Actions of Intratumoral Delivery of Membrane-Fused Mitochondria in a Mouse Model of Triple-Negative Breast Cancers. Onco Targets Ther 2020; 13:5241-5255. [PMID: 32606744 PMCID: PMC7294573 DOI: 10.2147/ott.s238143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background The transfer of whole mitochondria has been demonstrated to be beneficial for treating breast cancer because it induces apoptosis and drug sensitivity; however, in vivo evidence of this benefit remains scant. The present study compared the transplantation of mitochondria with instinctive (Mito) and membrane-fused morphologies induced by Pep-1 conjugation (P-Mito) using a mouse model of triple-negative breast cancers. Materials and Methods Mice with advanced severe immunodeficiency received orthotopic implantation of MDA-MB-231 human breast cancer cells followed by transplants of 5-bromo-2'-deoxyuridine (BrdU)-labeled Mito or P-Mito (200 μg [10 μg/μL]) through intratumoral injection at multiple points once a week for 4 weeks. Results After 1 month of consecutive treatment, 8.2% and 14.2% of the BrdU-labeled mitochondria were preserved in tumors of the Mito and P-Mito groups, respectively. Both Pep-1 and P-Mito treatments reduced tumor weight (21.7% ± 2.43% vs 40.6% ± 2.28%) and led to marked inhibition of Ki67 staining and angiogenesis. However, only the P-Mito group exhibited obvious necrosis and DNA fragmentation accompanied by an altered tumor microenvironment, which included reduced oxidative stress and size of cancer-associated fibroblast populations and enhanced immune cell infiltration. Transmission electron microscopy images further revealed an elongated network of perinuclear mitochondria fused with a few peripheral mitochondria in the nonnecrotic area in the P-Mito group as well as increases in mitochondrial fusion proteins and parkin compared with mitochondrial fission proteins. Conclusion In this study, the results of mitochondrial transplantation emphasized that the facilitation of mitochondrial fusion is a critical regulator in breast cancer therapy.
Collapse
Affiliation(s)
- Jui-Chih Chang
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50094, Taiwan
| | - Huei-Shin Chang
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50094, Taiwan
| | - Yao-Chung Wu
- Department of Medicine, College of Medicine, China Medical University, Taichung 40447, Taiwan
| | - Wen-Ling Cheng
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50094, Taiwan
| | - Ta-Tsung Lin
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50094, Taiwan
| | - Hui-Ju Chang
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50094, Taiwan
| | - Shou-Tung Chen
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua 50094, Taiwan.,Department of Medical Research, Changhua Christian Hospital, Changhua 50094, Taiwan
| | - Chin-San Liu
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50094, Taiwan.,Department of Neurology, Changhua Christian Hospital, Changhua 50094, Taiwan.,School of Chinese Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, College of Chinese Medicine, Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung 40447, Taiwan
| |
Collapse
|
34
|
Dalton WB. Parkin on serine: a Parkinson disease gene suppresses serine synthesis in cancer. J Clin Invest 2020; 130:2820-2822. [PMID: 32420915 PMCID: PMC7259987 DOI: 10.1172/jci137411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Phosphoglycerate dehydrogenase (PHGDH) catalyzes the first step in the synthesis of the amino acid serine, important for protein synthesis, one-carbon metabolism, lipid production, redox homeostasis, and other key processes of normal and cancer metabolism. While PHGDH is often overexpressed in cancer cells, how it is regulated has been unclear. In this issue of the JCI, Liu and colleagues describe a new aspect of PHGDH regulation, demonstrating that the Parkinson disease gene and tumor suppressor Parkin bound and ubiquitinated PHGDH. Parkin promoted PHGDH degradation, suppressed serine synthesis, and inhibited tumor growth in human cancer cell line xenografts. Conversely, inactivation of Parkin not only accelerated tumor growth, but also sensitized tumors to small molecule inhibitors of PHGDH. These results offer a new link between Parkin and the serine synthesis pathway, and they bear translational potential that warrants further study in Parkin-deficient human cancers.
Collapse
|
35
|
Di Rita A, Maiorino T, Bruqi K, Volpicelli F, Bellenchi GC, Strappazzon F. miR-218 Inhibits Mitochondrial Clearance by Targeting PRKN E3 Ubiquitin Ligase. Int J Mol Sci 2020; 21:ijms21010355. [PMID: 31948106 PMCID: PMC6981953 DOI: 10.3390/ijms21010355] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 01/10/2023] Open
Abstract
The selective elimination of dysfunctional mitochondria through mitophagy is crucial for preserving mitochondrial quality and cellular homeostasis. The most described mitophagy pathway is regulated by a positive ubiquitylation feedback loop in which the PINK1 (PTEN induced kinase 1) kinase phosphorylates both ubiquitin and the E3 ubiquitin ligase PRKN (Parkin RBR E3 ubiquitin ligase), also known as PARKIN. This event recruits PRKN to the mitochondria, thus amplifying ubiquitylation signal. Here we report that miR-218 targets PRKN and negatively regulates PINK1/PRKN-mediated mitophagy. Overexpression of miR-218 reduces PRKN mRNA levels, thus also reducing protein content and deregulating the E3 ubiquitin ligase action. In fact, following miR-218 overexpression, mitochondria result less ubiquitylated and the autophagy machinery fails to proceed with correct mitochondrial clearance. Since mitophagy defects are associated with various human diseases, these results qualify miR-218 as a promising therapeutic target for human diseases.
Collapse
Affiliation(s)
- Anthea Di Rita
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (A.D.R.); (T.M.); (K.B.); (G.C.B.)
- University of Rome Tor Vergata, 00133 Rome, Italy
| | - Teresa Maiorino
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (A.D.R.); (T.M.); (K.B.); (G.C.B.)
| | - Krenare Bruqi
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (A.D.R.); (T.M.); (K.B.); (G.C.B.)
- University of Rome Tor Vergata, 00133 Rome, Italy
| | - Floriana Volpicelli
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80131 Naples, Italy;
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Gian Carlo Bellenchi
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (A.D.R.); (T.M.); (K.B.); (G.C.B.)
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80131 Naples, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Flavie Strappazzon
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (A.D.R.); (T.M.); (K.B.); (G.C.B.)
- Correspondence: ; Tel.: +39-06501703093
| |
Collapse
|
36
|
Post-translational modification of Parkin and its research progress in cancer. Cancer Commun (Lond) 2019; 39:77. [PMID: 31753025 PMCID: PMC6873554 DOI: 10.1186/s40880-019-0421-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022] Open
Abstract
Clinical practice has shown that Parkin is the major causative gene found in an autosomal recessive juvenile parkinsonism (AR-JP) via Parkin mutations and that the Parkin protein is the core expression product of the Parkin gene, which itself belongs to an E3 ubiquitin ligase. Since the discovery of the Parkin gene in the late 1990s, researchers in many countries have begun extensive research on this gene and found that in addition to AR-JP, the Parkin gene is associated with many diseases, including type 2 diabetes, leprosy, Alzheimer’s, autism, and cancer. Recent studies have found that the loss or dysfunction of Parkin has a certain relationship with tumorigenesis. In general, the Parkin gene, a well-established tumor suppressor, is deficient and mutated in a variety of malignancies. Parkin overexpression inhibits tumor cell growth and promotes apoptosis. However, the functions of Parkin in tumorigenesis and its regulatory mechanisms are still not fully understood. This article describes the structure, functions, and post-translational modifications of Parkin, and summarizes the recent advances in the tumor suppressive function of Parkin and its underlying mechanisms.
Collapse
|
37
|
Vania L, Morris G, Otgaar TC, Bignoux MJ, Bernert M, Burns J, Gabathuse A, Singh E, Ferreira E, Weiss SFT. Patented therapeutic approaches targeting LRP/LR for cancer treatment. Expert Opin Ther Pat 2019; 29:987-1009. [PMID: 31722579 DOI: 10.1080/13543776.2019.1693543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The ubiquitously expressed 37 kDa/67 kDa high-affinity laminin receptor (laminin receptor precursor/laminin receptor, LRP/LR) is a protein found to play several roles within cells. The receptor is located in the nucleus, cytosol and the cell surface. LRP/LR mediates cell proliferation, cell adhesion and cell differentiation. As a result, it is seen to enhance tumor angiogenesis as well as invasion and adhesion, key steps in the metastatic cascade of cancer. Recent findings have shown that LRP/LR is involved in the maintenance of cell viability through apoptotic evasion, allowing for tumor progression. Thus, several patented therapeutic approaches targeting the receptor for the prevention and treatment of cancer have emerged.Areas covered: The several roles that LRP/LR plays in cancer progression as well as an overview of the current therapeutic patented strategies targeting LRP/LR and cancer to date.Expert opinion: Small molecule inhibitors, monoclonal antibodies and small interfering RNAs might act used as powerful tools in preventing tumor angiogenesis and metastasis through the induction of apoptosis and telomere erosion in several cancers. This review offers an overview of the roles played by LRP/LR in cancer progression, while providing novel patented approaches targeting the receptor as potential therapeutic routes for the treatment of cancer as well as various other diseases.
Collapse
Affiliation(s)
- Leila Vania
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Gavin Morris
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Tyrone C Otgaar
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Monique J Bignoux
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Martin Bernert
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Jessica Burns
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Anne Gabathuse
- Wits Commercial Enterprise, The Commercial Development Hub, Johannesburg, Republic of South Africa
| | - Elvira Singh
- School of Public Health, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Eloise Ferreira
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Stefan F T Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| |
Collapse
|
38
|
Parkin facilitates proteasome inhibitor-induced apoptosis via suppression of NF-κB activity in hepatocellular carcinoma. Cell Death Dis 2019; 10:719. [PMID: 31558697 PMCID: PMC6763437 DOI: 10.1038/s41419-019-1881-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022]
Abstract
The ubiquitin–proteasome system (UPS) is a tight homeostatic control mechanism of intracellular protein degradation and turnover involved in many human diseases. Proteasome inhibitors were initially developed as anticancer agents with potential benefits in the suppression of tumor growth. However, clinical trials of patients with solid tumors fail to demonstrate the same efficacy of these proteasome inhibitors. Here, we show that Parkin, an E3 ubiquitin ligase, is implicated in tumorigenesis and therapy resistance of hepatocellular carcinoma (HCC), the most common type of primary liver cancer in adults. Lower Parkin expression correlates with poor survival in patients with HCC. Ectopic Parkin expression enhances proteasome inhibitor-induced apoptosis and tumor suppression in HCC cells in vitro and in vivo. In contrast, knockdown of Parkin expression promotes apoptosis resistance and tumor growth. Mechanistically, Parkin promotes TNF receptor-associated factor (TRAF) 2 and TRAF6 degradation and thus facilitates nuclear factor-kappa-B (NF-κB) inhibition, which finally results in apoptosis. These findings reveal a direct molecular link between Parkin and protein degradation in the control of the NF-κB pathway and may provide a novel UPS-dependent strategy for the treatment of HCC by induction of apoptosis.
Collapse
|
39
|
Tommasini-Ghelfi S, Murnan K, Kouri FM, Mahajan AS, May JL, Stegh AH. Cancer-associated mutation and beyond: The emerging biology of isocitrate dehydrogenases in human disease. SCIENCE ADVANCES 2019; 5:eaaw4543. [PMID: 31131326 PMCID: PMC6530995 DOI: 10.1126/sciadv.aaw4543] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/16/2019] [Indexed: 05/12/2023]
Abstract
Isocitrate dehydrogenases (IDHs) are critical metabolic enzymes that catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (αKG), NAD(P)H, and CO2. IDHs epigenetically control gene expression through effects on αKG-dependent dioxygenases, maintain redox balance and promote anaplerosis by providing cells with NADPH and precursor substrates for macromolecular synthesis, and regulate respiration and energy production through generation of NADH. Cancer-associated mutations in IDH1 and IDH2 represent one of the most comprehensively studied mechanisms of IDH pathogenic effect. Mutant enzymes produce (R)-2-hydroxyglutarate, which in turn inhibits αKG-dependent dioxygenase function, resulting in a global hypermethylation phenotype, increased tumor cell multipotency, and malignancy. Recent studies identified wild-type IDHs as critical regulators of normal organ physiology and, when transcriptionally induced or down-regulated, as contributing to cancer and neurodegeneration, respectively. We describe how mutant and wild-type enzymes contribute on molecular levels to disease pathogenesis, and discuss efforts to pharmacologically target IDH-controlled metabolic rewiring.
Collapse
Affiliation(s)
- Serena Tommasini-Ghelfi
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior, Chicago, IL 60611, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Kevin Murnan
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior, Chicago, IL 60611, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Fotini M. Kouri
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior, Chicago, IL 60611, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Akanksha S. Mahajan
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior, Chicago, IL 60611, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Jasmine L. May
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior, Chicago, IL 60611, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Alexander H. Stegh
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior, Chicago, IL 60611, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Corresponding author.
| |
Collapse
|