1
|
Zavvar TS, Hörmann AA, Konijnenberg M, Kraihammer M, Mair C, Kronthaler A, Joosten L, Laverman P, Gruber L, di Santo G, Decristoforo C, Virgolini I, von Guggenberg E. Radiopharmaceutical formulation and preliminary clinical dosimetry of [ 177Lu]Lu-DOTA-MGS5 for application in peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging 2025; 52:1321-1331. [PMID: 39643727 DOI: 10.1007/s00259-024-06979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/01/2024] [Indexed: 12/09/2024]
Abstract
PURPOSE Radiolabelled minigastrin (MG) analogues targeting the cholecystokinin-2 receptor (CCK2R) have proven to be a promising approach for peptide receptor radionuclide therapy (PRRT). In this study, we report on the radiopharmaceutical development and standardization of the preparation of [177Lu]Lu-DOTA-MGS5 using an automated synthesis module. Furthermore, we present the preclinical tests required to move forward towards a first therapeutic clinical trial as well as preliminary clinical dosimetry data. METHODS Five individual batches of [177Lu]Lu-DOTA-MGS5 were synthesized and analysed according to predefined quality control specifications. Cell-based experiments and biodistribution studies were performed to evaluate the specific receptor binding and tumour uptake of the radiopharmaceutical formulation. A preclinical dosimetry study was carried out in tumour xenografted mice and a first dosimetry study was performed in a patient with small cell lung cancer. RESULTS The automated cassette-based production of [177Lu]Lu-DOTA-MGS5 resulted in a product with high radiochemical purity of > 98% and high stability. The new radiopharmaceutical showed a favourable biodistribution profile in A431-CCK2R xenografted BALB/c nude mice. Pharmacokinetic data obtained in mice and dosimetry extrapolation demonstrated the feasibility of PRRT. In the preliminary patient-specific dosimetry study, a low risk of toxicity was shown and a mean absorbed dose of 12.5 ± 10.2 (1.2-28) Gy/GBq was calculated for delineable tumour lesions. CONCLUSION The radiopharmaceutical development and the preclinical/clinical results support the initiation of a first clinical trial to evaluate the therapeutic potential of [177Lu]Lu-DOTA-MGS5 in PRRT.
Collapse
Affiliation(s)
- Taraneh Sadat Zavvar
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Anton Amadeus Hörmann
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Martin Kraihammer
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Christian Mair
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Ariane Kronthaler
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands
| | - Peter Laverman
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands
| | - Leonhard Gruber
- Department of Radiology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Gianpaolo di Santo
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | | |
Collapse
|
2
|
McAteer MA, McGowan DR, Cook GJR, Leung HY, Ng T, O'Connor JPB, Aloj L, Barnes A, Blower PJ, Brindle KM, Braun J, Buckley C, Darian D, Evans P, Goh V, Grainger D, Green C, Hall MG, Harding TA, Hines CDG, Hollingsworth SJ, Cristinacce PLH, Illing RO, Lee M, Leurent B, Mallett S, Neji R, Norori N, Pashayan N, Patel N, Prior K, Reiner T, Retter A, Taylor A, van der Aart J, Woollcott J, Wong WL, van der Meulen J, Punwani S, Higgins GS. Translation of PET radiotracers for cancer imaging: recommendations from the National Cancer Imaging Translational Accelerator (NCITA) consensus meeting. BMC Med 2025; 23:37. [PMID: 39849494 PMCID: PMC11756105 DOI: 10.1186/s12916-024-03831-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND The clinical translation of positron emission tomography (PET) radiotracers for cancer management presents complex challenges. We have developed consensus-based recommendations for preclinical and clinical assessment of novel and established radiotracers, applied to image different cancer types, to improve the standardisation of translational methodologies and accelerate clinical implementation. METHODS A consensus process was developed using the RAND/UCLA Appropriateness Method (RAM) to gather insights from a multidisciplinary panel of 38 key stakeholders on the appropriateness of preclinical and clinical methodologies and stakeholder engagement for PET radiotracer translation. Panellists independently completed a consensus survey of 57 questions, rating each on a 9-point Likert scale. Subsequently, panellists attended a consensus meeting to discuss survey outcomes and readjust scores independently if desired. Survey items with median scores ≥ 7 were considered 'required/appropriate', ≤ 3 'not required/inappropriate', and 4-6 indicated 'uncertainty remained'. Consensus was determined as ~ 70% participant agreement on whether the item was 'required/appropriate' or 'not required/not appropriate'. RESULTS Consensus was achieved for 38 of 57 (67%) survey questions related to preclinical and clinical methodologies, and stakeholder engagement. For evaluating established radiotracers in new cancer types, in vitro and preclinical studies were considered unnecessary, clinical pharmacokinetic studies were considered appropriate, and clinical dosimetry and biodistribution studies were considered unnecessary, if sufficient previous data existed. There was 'agreement without consensus' that clinical repeatability and reproducibility studies are required while 'uncertainty remained' regarding the need for comparison studies. For novel radiotracers, in vitro and preclinical studies, such as dosimetry and/or biodistribution studies and tumour histological assessment were considered appropriate, as well as comprehensive clinical validation. Conversely, preclinical reproducibility studies were considered unnecessary and 'uncertainties remained' regarding preclinical pharmacokinetic and repeatability evaluation. Other consensus areas included standardisation of clinical study protocols, streamlined regulatory frameworks and patient and public involvement. While a centralised UK clinical imaging research infrastructure and open access federated data repository were considered necessary, there was 'agreement without consensus' regarding the requirement for a centralised UK preclinical imaging infrastructure. CONCLUSIONS We provide consensus-based recommendations, emphasising streamlined methodologies and regulatory frameworks, together with active stakeholder engagement, for improving PET radiotracer standardisation, reproducibility and clinical implementation in oncology.
Collapse
Affiliation(s)
| | - Daniel R McGowan
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Medical Physics and Clinical Engineering, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Gary J R Cook
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- King's College London and Guy's and St Thomas' PET Centre, St Thomas' Hospital, London, UK
| | - Hing Y Leung
- CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Tony Ng
- School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- Oncology Translational Research, GSK, Stevenage, UK
| | - James P B O'Connor
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Luigi Aloj
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Anna Barnes
- Southeast Region, Office of the Chief Scientific Officer, NHS-England, England, UK
- King's Technology Evaluation Centre (KiTEC), School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - Phil J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - John Braun
- RMH Radiotherapy Focus Group & RMH Biomedical Research Centre Consumer Group, Sutton, UK
| | | | | | - Paul Evans
- GE HealthCare, Pharmaceutical Diagnostics, Chalfont St. Giles, UK
| | - Vicky Goh
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Radiology, NHS Foundation Trust, Guy's and St Thomas, London, UK
| | - David Grainger
- Medicines and Healthcare Products Regulatory Agency, London, UK
| | - Carol Green
- Patient and Public Representative, Oxford, UK
| | - Matt G Hall
- National Physical Laboratory, Teddington, UK
| | - Thomas A Harding
- Prostate Cancer UK, London, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | | | | | | | - Rowland O Illing
- Department of Surgery & Interventional Science, University College London, London, UK
| | - Martin Lee
- Clinical Trial and Statistics Unit, Institute of Cancer Research, Sutton, UK
- The Royal Marsden Clinical Research Facility, London, UK
| | - Baptiste Leurent
- Department of Statistical Science, University College London, London, UK
| | - Sue Mallett
- Centre for Medical Imaging, University College London, London, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Siemens Healthcare Limited, Camberley, UK
| | | | - Nora Pashayan
- Department of Applied Health Research, University College London, London, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Neel Patel
- Department of Radiology, Churchill Hospital, Oxford University NHS Foundation Trust, Oxford, UK
- Telix Pharmaceuticals Limited, North Melbourne, Australia
| | | | - Thomas Reiner
- Evergreen Theragnostics, Springfield, NJ, 07081, USA
| | - Adam Retter
- Centre for Medical Imaging, University College London, London, UK
| | - Alasdair Taylor
- University Hospitals of Morecambe Bay NHS Foundation Trust, Royal Lancaster Infirmary, Lancaster, UK
| | | | | | - Wai-Lup Wong
- PET CT Department, Strickland Scanner Centre Mount Vernon Hospital, Northwood, UK
| | - Jan van der Meulen
- Department of Health Services Research & Policy, London School of Hygiene & Tropical Medicine, London, UK
| | - Shonit Punwani
- Centre for Medical Imaging, University College London, London, UK
| | | |
Collapse
|
3
|
İlem-Özdemir D, Santos-Oliveira R. Can radiopharmaceuticals be delivered by quantum dots? Expert Opin Drug Deliv 2024; 21:1689-1691. [PMID: 39420518 DOI: 10.1080/17425247.2024.2419446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Affiliation(s)
- Derya İlem-Özdemir
- Faculty of Pharmacy, Department of Radiopharmacy, Ege University, Bornova, Izmir, Turkey
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Synthesis of Novel Radiopharmaceuticals and Nanoradiopharmacy, Rio de Janeiro, Brazil
- Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Kretschmer J, Chiaffarelli R, Vuozzo M, Cotton J, Blahut J, Ráliš J, Dračínský M, Matějková S, Seeling U, Schmid AM, Martins AF, Polasek M. A Macrocyclic Hybrid PET/MRI Probe for Quantitative Perfusion Imaging In Vivo. Angew Chem Int Ed Engl 2024; 63:e202409520. [PMID: 39058684 DOI: 10.1002/anie.202409520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Perfusion dynamics play a vital role in delivering essential nutrients and oxygen to tissues while removing metabolic waste products. Imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET) use contrast agents to visualize perfusion and clearance patterns; however, each technique has specific limitations. Hybrid PET/MRI combines the quantitative power and sensitivity of PET with the high functional and anatomical detail of MRI and holds great promise for precision in molecular imaging. However, the development of dual PET/MRI probes has been hampered by challenging synthesis and radiolabeling. Here, we present a novel PET/MRI probe, [18F][Gd(FL1)], which exhibits excellent stability comparable to macrocyclic MRI contrast agents used in clinical practice. The unique molecular design of [18F][Gd(FL1)] allows selective and expeditious radiolabeling of the gadolinium chelate in the final synthetic step. Leveraging the strengths of MRI and PET signals, the probe enables quantitative in vivo mapping of perfusion and excretion dynamics through an innovative voxel-based analysis. The diagnostic capabilities of [18F][Gd(FL1)] were demonstrated in a pilot study on healthy mice, successfully detecting early cases of unilateral renal dysfunction, a condition that is typically challenging to diagnose. This study introduces a new approach for PET/MRI and emphasizes a streamlined probe design for practical synthesis and improved diagnostic accuracy.
Collapse
Affiliation(s)
- Jan Kretschmer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
- Faculty of Science, Department of Organic Chemistry, Charles University Praha 2, Albertov 6, 12800, Prague, Czech Republic
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13/1, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Remy Chiaffarelli
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13/1, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Marta Vuozzo
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13/1, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Jonathan Cotton
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13/1, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Jan Blahut
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
| | - Jan Ráliš
- Nuclear Physics Institute of the CAS Řež 130, 250 68, Řež, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
| | - Stanislava Matějková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
| | - Ulrike Seeling
- Institute for Engineering, Electronics and Analytics (ZEA-3: Analytics), Research Center Jülich GmbH, Wilhelm-Johnen-Str., 52428, Jülich, Germany
| | - Andreas M Schmid
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13/1, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - André F Martins
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13/1, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Miloslav Polasek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
| |
Collapse
|
5
|
Nelson BJ, Krol V, Bansal A, Andersson JD, Wuest F, Pandey MK. Aspects and prospects of preclinical theranostic radiopharmaceutical development. Theranostics 2024; 14:6446-6470. [PMID: 39479448 PMCID: PMC11519794 DOI: 10.7150/thno.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 11/02/2024] Open
Abstract
This article provides an overview of preclinical theranostic radiopharmaceutical development, highlighting aspects of the preclinical development stages that can lead towards a clinical trial. The key stages of theranostic radiopharmaceutical development are outlined, including target selection, tracer development, radiopharmaceutical synthesis, automation and quality control, in vitro radiopharmaceutical analysis, selecting a suitable in vivo model, preclinical imaging and pharmacokinetic analysis, preclinical therapeutic analysis, dosimetry, toxicity, and preparing for clinical translation. Each stage is described and augmented with examples from the literature. Finally, an outlook on the prospects for the radiopharmaceutical theranostics field is provided.
Collapse
Affiliation(s)
- Bryce J.B. Nelson
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
| | - Viktoria Krol
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Aditya Bansal
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jan D. Andersson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
- Edmonton Radiopharmaceutical Center, Alberta Health Services, Edmonton, Alberta, T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Mukesh K. Pandey
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Kraihammer M, Petřík M, Rangger C, Gabriel M, Haas H, Nilica B, Virgolini I, Decristoforo C. Automated Production of [ 68Ga]Ga-Desferrioxamine B on Two Different Synthesis Platforms. Pharmaceutics 2024; 16:1231. [PMID: 39339267 PMCID: PMC11435116 DOI: 10.3390/pharmaceutics16091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: PET imaging of bacterial infection could potentially provide added benefits for patient care through non-invasive means. [68Ga]Ga-desferrioxamine B-a radiolabelled siderophore-shows specific uptake by human-pathogenic bacteria like Staphylococcus aureus or Pseudomonas aeruginosa and sufficient serum stability for clinical application. In this report, we present data for automated production of [68Ga]Ga-desferrioxamine B on two different cassette-based synthesis modules (Modular-Lab PharmTracer and GRP 3V) utilising commercially obtainable cassettes together with a licensed 68Ge/68Ga radionuclide generator. Methods: Quality control, including the determination of radiochemical purity, as well as a system suitability test, was set up via RP-HPLC on a C18 column. The two described production processes use an acetic acid/acetate buffer system with ascorbic acid as a radical scavenger for radiolabelling, yielding ready-to-use formulations with sufficient activity yield. Results: Batch data analysis demonstrated radiochemical purity of >95% by RP-HPLC combined with ITLC and excellent stability up to 2 h after synthesis. Specifications for routine production were set up and validated with four masterbatches for each synthesis module. Conclusions: Based on this study, an academic clinical trial for imaging of bacterial infection was initiated. Both described synthesis methods enable automated production of [68Ga]Ga-desferrioxamine B in-house with high reproducibility for clinical application.
Collapse
Affiliation(s)
- Martin Kraihammer
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
- Institute of Nuclear Medicine and Endocrinology, Kepler University Hospital, Krankenhausstrasse 9, A-4021 Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, A-4040 Linz, Austria
| | - Miloš Petřík
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, CZ-77900 Olomouc, Czech Republic
| | - Christine Rangger
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Michael Gabriel
- Institute of Nuclear Medicine and Endocrinology, Kepler University Hospital, Krankenhausstrasse 9, A-4021 Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, A-4040 Linz, Austria
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Bernhard Nilica
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
7
|
Giammarile F, Paez D, Zimmermann R, Cutler CS, Jalilian A, Korde A, Knoll P, Ayati N, Lewis JS, Lapi SE, Delgado Bolton RC, Kunikowska J, Estrada Lobato E, Urbain JL, Holmberg O, Abdel-Wahab M, Scott AM. Production and regulatory issues for theranostics. Lancet Oncol 2024; 25:e260-e269. [PMID: 38821100 PMCID: PMC11325260 DOI: 10.1016/s1470-2045(24)00041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 06/02/2024]
Abstract
Theranostics has become a major area of innovation and progress in cancer care over the last decade. In view of the introduction of approved therapeutics in neuroendocrine tumours and prostate cancer in the last 10 years, the ability to provide access to these treatments has emerged as a key factor in ensuring global benefits from this cancer therapy approach. In this Series paper we explore the issues that affect access to and availability of theranostic radiopharmaceuticals, including supply and regulatory issues that might affect the availability of theranostic treatments for patients with cancer.
Collapse
Affiliation(s)
- Francesco Giammarile
- Division of Human Health, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - Diana Paez
- Division of Human Health, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - Richard Zimmermann
- Chrysalium Consulting, Lalaye, France; MEDraysintell, Louvain la Neuve, Belgium; Oncidium Foundation, Auderghem, Belgium
| | - Cathy S Cutler
- Isotope Research and Production Department, Brookhaven National Laboratory Upton, New York City, NY, USA
| | - Amirreza Jalilian
- Division of Physical and Chemical Sciences, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - Aruna Korde
- Division of Physical and Chemical Sciences, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - Peter Knoll
- Division of Physical and Chemical Sciences, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - Nayyereh Ayati
- Centre for Health Economics, Monash Business School, Monash University, Melbourne, VIC, Australia
| | - Jason S Lewis
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, Upton, NY, USA; Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York City, NY, USA
| | - Suzanne E Lapi
- Departments of Radiology and Chemistry, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja, Logroño, Spain; Servico Cántabro de Salud, Santander, Spain
| | - Jolanta Kunikowska
- Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Enrique Estrada Lobato
- Division of Human Health, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | | | - Ola Holmberg
- Department of Nuclear Science and Applications, and Division of Radiation, Transport and Waste Safety, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - May Abdel-Wahab
- Division of Human Health, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia; Department of Molecular Imaging and Therapy, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia; Faculty of Medicine, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Stokke C, Gnesin S, Tran-Gia J, Cicone F, Holm S, Cremonesi M, Blakkisrud J, Wendler T, Gillings N, Herrmann K, Mottaghy FM, Gear J. EANM guidance document: dosimetry for first-in-human studies and early phase clinical trials. Eur J Nucl Med Mol Imaging 2024; 51:1268-1286. [PMID: 38366197 PMCID: PMC10957710 DOI: 10.1007/s00259-024-06640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
The numbers of diagnostic and therapeutic nuclear medicine agents under investigation are rapidly increasing. Both novel emitters and novel carrier molecules require careful selection of measurement procedures. This document provides guidance relevant to dosimetry for first-in human and early phase clinical trials of such novel agents. The guideline includes a short introduction to different emitters and carrier molecules, followed by recommendations on the methods for activity measurement, pharmacokinetic analyses, as well as absorbed dose calculations and uncertainty analyses. The optimal use of preclinical information and studies involving diagnostic analogues is discussed. Good practice reporting is emphasised, and relevant dosimetry parameters and method descriptions to be included are listed. Three examples of first-in-human dosimetry studies, both for diagnostic tracers and radionuclide therapies, are given.
Collapse
Affiliation(s)
- Caroline Stokke
- Department of Diagnostic Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.
- Department of Physics, University of Oslo, Oslo, Norway.
| | - Silvano Gnesin
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Johannes Tran-Gia
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Francesco Cicone
- Nuclear Medicine Unit, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Søren Holm
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Marta Cremonesi
- Department of Medical Imaging and Radiation Sciences, European Institute of Oncology, IRCCS, Milan, Italy
| | - Johan Blakkisrud
- Department of Diagnostic Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Thomas Wendler
- Computer-Aided Medical Procedures and Augmented Reality, Technische Universität München, Munich, Germany
- Clinical Computational Medical Imaging Research, Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Nic Gillings
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
- National Center for Tumor Diseases (NCT), NCT West, Heidelberg, Germany
| | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Jonathan Gear
- Joint Department of Physics, Royal Marsden NHSFT & Institute of Cancer Research, Sutton, UK
| |
Collapse
|
9
|
Zimmer L. Recent applications of positron emission tomographic (PET) imaging in psychiatric drug discovery. Expert Opin Drug Discov 2024; 19:161-172. [PMID: 37948046 DOI: 10.1080/17460441.2023.2278635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Psychiatry is one of the medical disciplines that suffers most from a lack of innovation in its therapeutic arsenal. Many failures in drug candidate trials can be explained by pharmacological properties that have been poorly assessed upstream, in terms of brain passage, brain target binding and clinical outcomes. Positron emission tomography can provide pharmacokinetic and pharmacodynamic data to help select candidate-molecules for further clinical trials. AREAS COVERED This review aims to explain and discuss the various methods using positron-emitting radiolabeled molecules to trace the cerebral distribution of the drug-candidate or indirectly measure binding to its therapeutic target. More than an exhaustive review of PET studies in psychopharmacology, this article highlights the contributions this technology can make in drug discovery applied to psychiatry. EXPERT OPINION PET neuroimaging is the only technological approach that can, in vivo in humans, measure cerebral delivery of a drug candidate, percentage and duration of target binding, and even the pharmacological effects. PET studies in a small number of subjects in the early stages of the development of a psychotropic drug can therefore provide the pharmacokinetic/pharmacodynamic data required for subsequent clinical evaluation. While PET technology is demanding in terms of radiochemical, radiopharmacological and nuclear medicine expertise, its integration into the development process of new drugs for psychiatry has great added value.
Collapse
Affiliation(s)
- Luc Zimmer
- Lyon Neuroscience Research Center, Université Claude Bernard, Lyon, France
- CERMEP, Hospices Civils de Lyon, Lyon, France
- Institut National des Sciences et Technologies Nucléaire, Saclay, France
| |
Collapse
|
10
|
Korde A, Patt M, Selivanova SV, Scott AM, Hesselmann R, Kiss O, Ramamoorthy N, Todde S, Rubow SM, Gwaza L, Lyashchenko S, Andersson J, Hockley B, Kaslival R, Decristoforo C. Position paper to facilitate patient access to radiopharmaceuticals: considerations for a suitable pharmaceutical regulatory framework. EJNMMI Radiopharm Chem 2024; 9:2. [PMID: 38165504 PMCID: PMC10761641 DOI: 10.1186/s41181-023-00230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Nuclear medicine has made enormous progress in the past decades. However, there are still significant inequalities in patient access among different countries, which could be mitigated by improving access to and availability of radiopharmaceuticals. MAIN BODY This paper summarises major considerations for a suitable pharmaceutical regulatory framework to facilitate patient access to radiopharmaceuticals. These include the distinct characteristics of radiopharmaceuticals which require dedicated regulations, considering the impact of the variable complexity of radiopharmaceutical preparation, personnel requirements, manufacturing practices and quality assurance, regulatory authority interfaces, communication and training, as well as marketing authorisation procedures to ensure availability of radiopharmaceuticals. Finally, domestic and regional supply to ensure patient access via alternative regulatory pathways, including in-house production of radiopharmaceuticals, is described, and an outlook on regulatory challenges faced by new developments, such as the use of alpha emitters, is provided. CONCLUSIONS All these considerations are an outcome of a dedicated Technical Meeting organised by the IAEA in 2023 and represent the views and opinions of experts in the field, not those of any regulatory authorities.
Collapse
Affiliation(s)
- Aruna Korde
- Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Marianne Patt
- Section Radiopharmacy, Department of Nuclear Medicine, University Hospital Augsburg, Augsburg, Germany
| | - Svetlana V Selivanova
- Canadian Nuclear Laboratories, Chalk River, ON, Canada
- Faculty of Pharmacy, Universite Laval, Quebec City, QC, Canada
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, and Faculty of Medicine, University of Melbourne, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Rolf Hesselmann
- Health Protection Directorate, Radiation Protection Division, Section for Research Facilities and Nuclear Medicine, Federal Office of Public Health, Bern, Switzerland
| | - Oliver Kiss
- Department of Targetry, Target Chemistry and Radiopharmacy, Institute for Radipopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | | | - Sergio Todde
- Department of Medicine and Surgery, University of Milano-Bicocca, Tecnomed Foundation, Via Pergolesi, 33, 20900, Monza, Italy
| | - Sietske M Rubow
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Luther Gwaza
- Health Products Policy and Standards Department, World Health Organization, Geneva, Switzerland
| | - Serge Lyashchenko
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jan Andersson
- Edmonton Radiopharmaceutical Centre, Alberta Health Services, Edmonton, Canada
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Brian Hockley
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Ravindra Kaslival
- Office of New Drug Products, Office of Pharmaceutical Quality, CDER, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
11
|
Jalilian A, Decristoforo C, Denecke M, Elsinga PH, Hoehr C, Korde A, Lapi SE, Scott PJH. Proceedings of international symposium of trends in radiopharmaceuticals 2023 (ISTR-2023). EJNMMI Radiopharm Chem 2023; 8:39. [PMID: 37950112 PMCID: PMC10638263 DOI: 10.1186/s41181-023-00224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023] Open
Abstract
The International Atomic Energy Agency (IAEA) held the 3rd International Symposium on Trends in Radiopharmaceuticals, (ISTR-2023) at IAEA Headquarters in Vienna, Austria, during the week of 16-21 April 2023. This procedural paper summarizes highlights from symposium presentations, posters, panel discussions and satellite meetings, and provides additional resources that may be useful to researchers working with diagnostic and therapeutic radiopharmaceuticals in the academic, government and industry setting amongst IAEA Member States and beyond. More than 550 participants in person from 88 Member States attended the ISTR-2023. Over 360 abstracts were presented from all over the world by a diverse group of global scientists working with radiopharmaceuticals. Given this group of international radiochemists is unique to ISTR (IAEA funding enabled many to attend), there was an invaluable wealth of knowledge on the global state of the radiopharmaceutical sciences present at the meeting. The intent of this Proceedings paper is to share this snapshot from our international colleagues with the broader radiopharmaceutical sciences community by highlighting presentations from the conference on the following topics: Isotope Production and Radiochemistry, Industrial Insights, Regional Trends, Training and Education, Women in the Radiopharmaceutical Sciences, and Future Perspectives and New Initiatives. The authors of this paper are employees of IAEA, members of the ISTR-2023 Organizing Committee and/or members of the EJNMMI Radiopharmacy and Chemistry Editorial Board who attended ISTR-2023. Overall, ISTR-2023 fostered the successful exchange of scientific ideas around every aspect of the radiopharmaceutical sciences. It was well attended by a diverse mix of radiopharmaceutical scientists from all over the world, and the oral and poster presentations provided a valuable update on the current state-of-the-art of the field amongst IAEA Member States. Presentations as well as networking amongst the attendees resulted in extensive knowledge transfer amongst the various stakeholders representing 88 IAEA Member States. This was considered particularly valuable for attendees from Member States where nuclear medicine and the radiopharmaceutical sciences are still relatively new. Since the goal is for the symposium series to be held every four years; the next one is anticipated to take place in 2027.
Collapse
Affiliation(s)
- Amirreza Jalilian
- Division of Physical and Chemical Sciences, International Atomic Energy Agency, Vienna, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Melissa Denecke
- Division of Physical and Chemical Sciences, International Atomic Energy Agency, Vienna, Austria
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Aruna Korde
- Division of Physical and Chemical Sciences, International Atomic Energy Agency, Vienna, Austria
| | - Suzanne E Lapi
- Departments of Radiology and Chemistry, O'Neal Comprehensive Cancer Center at UAB, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Ekinci M, Alencar LMR, Lopes AM, Santos-Oliveira R, İlem-Özdemir D. Radiolabeled Human Serum Albumin Nanoparticles Co-Loaded with Methotrexate and Decorated with Trastuzumab for Breast Cancer Diagnosis. J Funct Biomater 2023; 14:477. [PMID: 37754891 PMCID: PMC10532481 DOI: 10.3390/jfb14090477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/02/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Breast cancer is a leading cause of cancer-related mortality among women worldwide, with millions of new cases diagnosed yearly. Addressing the burden of breast cancer mortality requires a comprehensive approach involving early detection, accurate diagnosis, effective treatment, and equitable access to healthcare services. In this direction, nano-radiopharmaceuticals have shown potential for enhancing breast cancer diagnosis by combining the benefits of nanoparticles and radiopharmaceutical agents. These nanoscale formulations can provide improved imaging capabilities, increased targeting specificity, and enhanced sensitivity for detecting breast cancer lesions. In this study, we developed and evaluated a novel nano-radio radiopharmaceutical, technetium-99m ([99mTc]Tc)-labeled trastuzumab (TRZ)-decorated methotrexate (MTX)-loaded human serum albumin (HSA) nanoparticles ([99mTc]-TRZ-MTX-HSA), for the diagnosis of breast cancer. In this context, HSA and MTX-HSA nanoparticles were prepared. Conjugation of MTX-HSA nanoparticles with TRZ was performed using adsorption and covalent bonding methods. The prepared formulations were evaluated for particle size, PDI value, zeta (ζ) potential, scanning electron microscopy analysis, encapsulation efficiency, and loading capacity and cytotoxicity on MCF-7, 4T1, and MCF-10A cells. Finally, the nanoparticles were radiolabeled with [99mTc]Tc using the direct radiolabeling method, and cellular uptake was performed with the nano-radiopharmaceutical. The results showed the formation of spherical nanoparticles, with a particle size of 224.1 ± 2.46 nm, a PDI value of 0.09 ± 0.07, and a ζ potential value of -16.4 ± 0.53 mV. The encapsulation efficiency of MTX was found to be 32.46 ± 1.12%, and the amount of TRZ was 80.26 ± 1.96%. The labeling with [99mTc]Tc showed a high labeling efficiency (>99%). The cytotoxicity studies showed no effect, and the cellular uptake studies showed 97.54 ± 2.16% uptake in MCF-7 cells at the 120th min and were found to have a 3-fold higher uptake in cancer cells than in healthy cells. In conclusion, [99mTc]Tc-TRZ-MTX-HSA nanoparticles are promising for diagnosing breast cancer and evaluating the response to treatment in breast cancer patients.
Collapse
Affiliation(s)
- Meliha Ekinci
- Faculty of Pharmacy, Department of Radiopharmacy, Ege University, Bornova, Izmir 35040, Turkey;
| | | | - André Moreni Lopes
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL/USP), São Paulo 12612-550, Brazil;
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmacy and Synthesis of Novel Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil;
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, State University of Rio de Janeiro, Rio de Janeiro 23070-200, Brazil
| | - Derya İlem-Özdemir
- Faculty of Pharmacy, Department of Radiopharmacy, Ege University, Bornova, Izmir 35040, Turkey;
| |
Collapse
|
13
|
Gnesin S, Chouin N, Cherel M, Dunn SM, Schaefer N, Faivre-Chauvet A, Prior JO, Delage JA. From bench to bedside: 64Cu/ 177Lu 1C1m-Fc anti TEM-1: mice-to-human dosimetry extrapolations for future theranostic applications. EJNMMI Res 2023; 13:59. [PMID: 37314509 DOI: 10.1186/s13550-023-01010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
The development of diagnostic and therapeutic radiopharmaceuticals is an hot topic in nuclear medicine. Several radiolabeled antibodies are under development necessitating both biokinetic and dosimetry extrapolations for effective human translation. The validation of different animal-to-human dosimetry extrapolation methods still is an open issue. This study reports the mice-to-human dosimetry extrapolation of 64Cu/177Lu 1C1m-Fc anti-TEM-1 for theranostic application in soft-tissue sarcomas. We adopt four methods; direct mice-to-human extrapolation (M1); dosimetry extrapolation considering a relative mass scaling factor (M2), application of a metabolic scaling factor (M3) and combination of M2 and M3 (M4). Predicted in-human dosimetry for the [64Cu]Cu-1C1m-Fc resulted in an effective dose of 0.05 mSv/MBq. Absorbed dose (AD) extrapolation for the [177Lu]Lu-1C1m-Fc indicated that the AD of 2 Gy and 4 Gy to the red-marrow and total-body can be reached with 5-10 GBq and 25-30 GBq of therapeutic activity administration respectively depending on applied dosimetry method. Dosimetry extrapolation methods provided significantly different absorbed doses in organs. Dosimetry properties for the [64Cu]Cu-1C1m-Fc are suitable for a diagnostic in-human use. The therapeutic application of [177Lu]Lu-1C1m-Fc presents challenges and would benefit from further assessments in animals' models such as dogs before moving into the clinic.
Collapse
Affiliation(s)
- Silvano Gnesin
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - Nicolas Chouin
- Inserm, CNRS, University of Angers, Oniris, CRCI2NA, University of Nantes, Nantes, France
| | - Michel Cherel
- CHU Nantes, CNRS, Inserm, CRCINA, University of Nantes, 44000, Nantes, France
| | - Steven Mark Dunn
- LAbCore, Ludwig Institute for Cancer Research, Lausanne University Hospital and University of Lausanne, 1066, Epalinges, Switzerland
| | - Niklaus Schaefer
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | | | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland.
| | - Judith Anna Delage
- Radiopharmacy Unit, Department of Pharmacy, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| |
Collapse
|
14
|
Kiss OC, Scott PJH, Behe M, Penuelas I, Passchier J, Rey A, Patt M, Aime S, Jalilian A, Laverman P, Cheng Z, Chauvet AF, Engle J, Cleeren F, Zhu H, Vercouillie J, van Dam M, Zhang MR, Perk L, Guillet B, Alves F. Highlight selection of radiochemistry and radiopharmacy developments by editorial board. EJNMMI Radiopharm Chem 2023; 8:6. [PMID: 36952073 PMCID: PMC10036721 DOI: 10.1186/s41181-023-00192-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development. MAIN BODY This selection of highlights provides commentary on 21 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first-in-human application of novel radiopharmaceuticals. CONCLUSION Trends in radiochemistry and radiopharmacy are highlighted. Hot topics cover the entire scope of EJNMMI Radiopharmacy and Chemistry, demonstrating the progress in the research field, and include new PET-labelling methods for 11C and 18F, the importance of choosing the proper chelator for a given radioactive metal ion, implications of total body PET on use of radiopharmaceuticals, legislation issues and radionuclide therapy including the emerging role of 161Tb.
Collapse
Affiliation(s)
- Oliver C Kiss
- Helmholtz Zentrum Dresden Rossendorf, Dresden, Germany.
| | | | - Martin Behe
- Paul Scherrer Institute, Villigen, Switzerland
| | | | | | - Ana Rey
- Universidad de la Rebublica, Montevideo, Uruguay
| | | | | | | | - Peter Laverman
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zhen Cheng
- Shanghai Institute of Materia Medica, Shanghai, China
| | | | | | | | - Hua Zhu
- Peking University Cancer Hospital, Beijing, China
| | | | | | | | - Lars Perk
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | |
Collapse
|
15
|
Akter A, Lyons O, Mehra V, Isenman H, Abbate V. Radiometal chelators for infection diagnostics. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 2:1058388. [PMID: 37388440 PMCID: PMC7614707 DOI: 10.3389/fnume.2022.1058388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Infection of native tissues or implanted devices is common, but clinical diagnosis is frequently difficult and currently available noninvasive tests perform poorly. Immunocompromised individuals (for example transplant recipients, or those with cancer) are at increased risk. No imaging test in clinical use can specifically identify infection, or accurately differentiate bacterial from fungal infections. Commonly used [18F]fluorodeoxyglucose (18FDG) positron emission computed tomography (PET/CT) is sensitive for infection, but limited by poor specificity because increased glucose uptake may also indicate inflammation or malignancy. Furthermore, this tracer provides no indication of the type of infective agent (bacterial, fungal, or parasitic). Imaging tools that directly and specifically target microbial pathogens are highly desirable to improve noninvasive infection diagnosis and localization. A growing field of research is exploring the utility of radiometals and their chelators (siderophores), which are small molecules that bind radiometals and form a stable complex allowing sequestration by microbes. This radiometal-chelator complex can be directed to a specific microbial target in vivo, facilitating anatomical localization by PET or single photon emission computed tomography. Additionally, bifunctional chelators can further conjugate therapeutic molecules (e.g., peptides, antibiotics, antibodies) while still bound to desired radiometals, combining specific imaging with highly targeted antimicrobial therapy. These novel therapeutics may prove a useful complement to the armamentarium in the global fight against antimicrobial resistance. This review will highlight current state of infection imaging diagnostics and their limitations, strategies to develop infection-specific diagnostics, recent advances in radiometal-based chelators for microbial infection imaging, challenges, and future directions to improve targeted diagnostics and/or therapeutics.
Collapse
Affiliation(s)
- Asma Akter
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| | - Oliver Lyons
- Vascular Endovascular and Transplant Surgery, Christchurch Public Hospital, Christchurch, New Zealand
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Varun Mehra
- Department of Hematology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Heather Isenman
- Department of Infectious Diseases, General Medicine, Christchurch Hospital, Christchurch, New Zealand
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| |
Collapse
|